code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase_ ( lowerCAmelCase__ : Namespace ) -> Dict: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __snake_case :Tuple ='\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class lowerCAmelCase__ ( _lowerCamelCase ): @staticmethod def __UpperCamelCase ( __UpperCamelCase : ArgumentParser ) -> Optional[int]: A = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=__UpperCamelCase , required=__UpperCamelCase , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=__UpperCamelCase , required=__UpperCamelCase , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=__UpperCamelCase , required=__UpperCamelCase , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=__UpperCamelCase , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=__UpperCamelCase , default=__UpperCamelCase , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=__UpperCamelCase ) def __init__( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : str , *__UpperCamelCase : Dict , ) -> Optional[int]: A = logging.get_logger('transformers-cli/converting' ) self._logger.info(f'''Loading model {model_type}''' ) A = model_type A = tf_checkpoint A = pytorch_dump_output A = config A = finetuning_task_name def __UpperCamelCase ( self : Optional[int] ) -> Tuple: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) if "ckpt" in self._tf_checkpoint.lower(): A = self._tf_checkpoint A = '' else: A = self._tf_checkpoint A = '' convert_transfo_xl_checkpoint_to_pytorch( __UpperCamelCase , self._config , self._pytorch_dump_output , __UpperCamelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
106
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : Any = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase__ : List[str] = Dataset.from_dict(UpperCAmelCase ) return dataset class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __lowerCamelCase ( self : Optional[int] ) ->Tuple: lowerCamelCase__ : Optional[Any] = get_dataset() lowerCamelCase__ : int = make_duplicate_clusters(A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __lowerCamelCase ( self : List[str] ) ->Any: lowerCamelCase__ : str = get_dataset() lowerCamelCase__ , lowerCamelCase__ : Any = deduplicate_dataset(A ) self.assertEqual(len(A ) , 2 ) print(A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , A )
315
0
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] ) -> None: '''simple docstring''' lowercase : dict[str, TrieNode] ={} # Mapping from char to TrieNode lowercase : Optional[int] =False def A__ ( self : Tuple , UpperCAmelCase : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(UpperCAmelCase ) def A__ ( self : str , UpperCAmelCase : str ) -> None: '''simple docstring''' lowercase : Optional[int] =self for char in word: if char not in curr.nodes: lowercase : Union[str, Any] =TrieNode() lowercase : List[Any] =curr.nodes[char] lowercase : Union[str, Any] =True def A__ ( self : Union[str, Any] , UpperCAmelCase : str ) -> bool: '''simple docstring''' lowercase : List[Any] =self for char in word: if char not in curr.nodes: return False lowercase : Tuple =curr.nodes[char] return curr.is_leaf def A__ ( self : Dict , UpperCAmelCase : str ) -> None: '''simple docstring''' def _delete(UpperCAmelCase : TrieNode , UpperCAmelCase : str , UpperCAmelCase : int ) -> bool: if index == len(UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False lowercase : Union[str, Any] =False return len(curr.nodes ) == 0 lowercase : Dict =word[index] lowercase : Dict =curr.nodes.get(UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowercase : Optional[int] =_delete(UpperCAmelCase , UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase , 0 ) def lowercase_ ( __A : TrieNode , __A : str ) -> None: """simple docstring""" if node.is_leaf: print(__A , end=''' ''' ) for key, value in node.nodes.items(): print_words(__A , word + key ) def lowercase_ ( ) -> bool: """simple docstring""" lowercase : Union[str, Any] ='''banana bananas bandana band apple all beast'''.split() lowercase : Dict =TrieNode() root.insert_many(__A ) # print_words(root, "") assert all(root.find(__A ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowercase_ ( __A : str , __A : bool ) -> None: """simple docstring""" print(str(__A ) , '''works!''' if passes else '''doesn\'t work :(''' ) def lowercase_ ( ) -> None: """simple docstring""" assert test_trie() def lowercase_ ( ) -> None: """simple docstring""" print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCamelCase__ ): def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> None: warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
40
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = ["""image_processor""", """tokenizer"""] __lowercase = """CLIPImageProcessor""" __lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self :List[Any] , lowercase_ :List[str]=None , lowercase_ :Any=None , **lowercase_ :Union[str, Any] )-> Optional[Any]: A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :Optional[Any] , lowercase_ :Optional[int]=None , lowercase_ :Dict=None , lowercase_ :List[Any]=None , **lowercase_ :Optional[Any] )-> Union[str, Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: A__ = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: A__ = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: A__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def UpperCAmelCase_ ( self :int , *lowercase_ :Tuple , **lowercase_ :Any )-> Dict: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Any , *lowercase_ :Any , **lowercase_ :Any )-> List[str]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self :Union[str, Any] )-> Optional[int]: A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self :List[Any] )-> str: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase_ ( self :List[str] )-> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
440
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _lowerCamelCase = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _snake_case (__SCREAMING_SNAKE_CASE): def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case ,"width_multiplier" ) ) class _snake_case : def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=64 ,_snake_case=2 ,_snake_case=3 ,_snake_case="swish" ,_snake_case=3 ,_snake_case=32 ,_snake_case=0.1 ,_snake_case=0.02 ,_snake_case=True ,_snake_case=True ,_snake_case=10 ,_snake_case=None ,_snake_case=0.25 ,_snake_case=0.0 ,_snake_case=0.0 ,): UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : str = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = make_divisible(5_12 * width_multiplier ,divisor=8 ) UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : str = conv_kernel_size UpperCAmelCase_ : Optional[int] = output_stride UpperCAmelCase_ : str = classifier_dropout_prob UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : Optional[int] = width_multiplier UpperCAmelCase_ : List[Any] = ffn_dropout UpperCAmelCase_ : Tuple = attn_dropout def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] ,self.num_labels ) UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) UpperCAmelCase_ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase__ ( self ): return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Any = MobileViTVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Tuple = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileViTVaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Dict = MobileViTVaForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : Any = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) UpperCAmelCase_ : Tuple = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = config_and_inputs UpperCAmelCase_ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Any =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __A : List[str] =( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __A : Dict =False __A : Optional[int] =False __A : int =False __A : Optional[int] =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = MobileViTVaModelTester(self ) UpperCAmelCase_ : Optional[Any] = MobileViTVaConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def UpperCamelCase__ ( self ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def UpperCamelCase__ ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(_snake_case ) UpperCAmelCase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): def check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase_ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Dict = 5 self.assertEqual(len(_snake_case ) ,_snake_case ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ : str = 2 for i in range(len(_snake_case ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[Any] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) @slow def UpperCamelCase__ ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = MobileViTVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def a__ ( ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case (unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _snake_case ) UpperCAmelCase_ : Optional[Any] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : Tuple = image_processor(images=_snake_case ,return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**_snake_case ) # verify the logits UpperCAmelCase_ : List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_snake_case ) UpperCAmelCase_ : Any = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ : Union[str, Any] = model.to(_snake_case ) UpperCAmelCase_ : int = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : Dict = image_processor(images=_snake_case ,return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**_snake_case ) UpperCAmelCase_ : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase_ : Optional[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,_snake_case ) UpperCAmelCase_ : Optional[int] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] ,device=_snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_snake_case ,atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ : Any = model.to(_snake_case ) UpperCAmelCase_ : Dict = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ : str = prepare_img() UpperCAmelCase_ : int = image_processor(images=_snake_case ,return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_snake_case ) UpperCAmelCase_ : Union[str, Any] = outputs.logits.detach().cpu() UpperCAmelCase_ : Tuple = image_processor.post_process_semantic_segmentation(outputs=_snake_case ,target_sizes=[(50, 60)] ) UpperCAmelCase_ : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,_snake_case ) UpperCAmelCase_ : Any = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) UpperCAmelCase_ : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,_snake_case )
323
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __a ( _snake_case ): __UpperCamelCase : torch.FloatTensor __UpperCamelCase : Optional[torch.FloatTensor] = None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ) -> Union[str, Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __SCREAMING_SNAKE_CASE = [] for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class __a ( _snake_case, _snake_case ): @register_to_config def __init__( self : Tuple ,lowerCamelCase : int = 1000 ,lowerCamelCase : str = "fixed_small_log" ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[float] = 1.0 ,lowerCamelCase : str = "epsilon" ,lowerCamelCase : str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCamelCase ) __SCREAMING_SNAKE_CASE = 1.0 - self.betas __SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas ,dim=0 ) __SCREAMING_SNAKE_CASE = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE = 1.0 # setable values __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = torch.from_numpy(np.arange(0 ,lowerCamelCase )[::-1].copy() ) __SCREAMING_SNAKE_CASE = variance_type def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def UpperCAmelCase__ ( self : str ,lowerCamelCase : int ,lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = num_inference_steps __SCREAMING_SNAKE_CASE = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __SCREAMING_SNAKE_CASE = (np.arange(0 ,lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Dict ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : List[str]=None ,lowerCamelCase : Any=None ): '''simple docstring''' if prev_timestep is None: __SCREAMING_SNAKE_CASE = t - 1 __SCREAMING_SNAKE_CASE = self.alphas_cumprod[t] __SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __SCREAMING_SNAKE_CASE = self.betas[t] else: __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __SCREAMING_SNAKE_CASE = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __SCREAMING_SNAKE_CASE = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __SCREAMING_SNAKE_CASE = torch.log(torch.clamp(lowerCamelCase ,min=1E-2_0 ) ) __SCREAMING_SNAKE_CASE = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __SCREAMING_SNAKE_CASE = variance.log() __SCREAMING_SNAKE_CASE = beta.log() __SCREAMING_SNAKE_CASE = (predicted_variance + 1) / 2 __SCREAMING_SNAKE_CASE = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self : str ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : int ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Tuple=None ,lowerCamelCase : bool = True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(lowerCamelCase ,sample.shape[1] ,dim=1 ) else: __SCREAMING_SNAKE_CASE = None # 1. compute alphas, betas if prev_timestep is None: __SCREAMING_SNAKE_CASE = t - 1 __SCREAMING_SNAKE_CASE = self.alphas_cumprod[t] __SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __SCREAMING_SNAKE_CASE = self.betas[t] __SCREAMING_SNAKE_CASE = self.alphas[t] else: __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev __SCREAMING_SNAKE_CASE = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE = torch.clamp( lowerCamelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __SCREAMING_SNAKE_CASE = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __SCREAMING_SNAKE_CASE = 0 if t > 0: __SCREAMING_SNAKE_CASE = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=lowerCamelCase ,device=model_output.device ) __SCREAMING_SNAKE_CASE = self._get_variance( lowerCamelCase ,predicted_variance=lowerCamelCase ,prev_timestep=lowerCamelCase ,) if self.variance_type == "fixed_small_log": __SCREAMING_SNAKE_CASE = variance elif self.variance_type == "learned_range": __SCREAMING_SNAKE_CASE = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" """ for the UnCLIPScheduler.""" ) __SCREAMING_SNAKE_CASE = variance * variance_noise __SCREAMING_SNAKE_CASE = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCamelCase ,pred_original_sample=lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.IntTensor ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = alphas_cumprod[timesteps] ** 0.5 __SCREAMING_SNAKE_CASE = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE = sqrt_alpha_prod.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = (1 - alphas_cumprod[timesteps]) ** 0.5 __SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
109
import gc import threading import time import psutil import torch class lowerCAmelCase : def __init__( self : str ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = psutil.Process() lowerCamelCase__ : Union[str, Any] = False def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : Optional[Any] = -1 while True: lowerCamelCase__ : Dict = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = threading.Thread(target=self.peak_monitor ) lowerCamelCase__ : Union[str, Any] = True self.thread.start() def A_ ( self : str ) -> Dict: lowerCamelCase__ : int = False self.thread.join() return self.cpu_memory_peak _UpperCAmelCase : Dict = PeakCPUMemory() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # Time lowerCamelCase__ : List[Any] = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : List[str] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : Union[str, Any] = torch.cuda.memory_allocated(_UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: # Time lowerCamelCase__ : Optional[int] = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : Dict = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 lowerCamelCase__ : int = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : List[str] = (torch.cuda.memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 lowerCamelCase__ : Optional[Any] = (torch.cuda.max_memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_UpperCAmelCase )]:.2f}MiB""" ) lowerCamelCase__ : List[str] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
295
0
from ..utils import DummyObject, requires_backends class a__( metaclass=lowerCamelCase__ ): lowercase__ = ["""speech"""] def __init__( self : int , *__snake_case : str , **__snake_case : Any ): requires_backends(self , ['speech'] ) class a__( metaclass=lowerCamelCase__ ): lowercase__ = ["""speech"""] def __init__( self : List[str] , *__snake_case : Tuple , **__snake_case : Tuple ): requires_backends(self , ['speech'] )
702
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase: Optional[Any] = logging.get_logger(__name__) class a__( lowerCamelCase__ ): def __init__( self : Union[str, Any] , *__snake_case : List[str] , **__snake_case : Union[str, Any] ): warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
195
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
78
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class __lowercase ( A ): __magic_name__ : List[Any] = '''efficientnet''' def __init__( self , a__ = 3 , a__ = 6_0_0 , a__ = 2.0 , a__ = 3.1 , a__ = 8 , a__ = [3, 3, 5, 3, 5, 5, 3] , a__ = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , a__ = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , a__ = [] , a__ = [1, 2, 2, 2, 1, 2, 1] , a__ = [1, 2, 2, 3, 3, 4, 1] , a__ = [1, 6, 6, 6, 6, 6, 6] , a__ = 0.25 , a__ = "swish" , a__ = 2_5_6_0 , a__ = "mean" , a__ = 0.02 , a__ = 0.0_01 , a__ = 0.99 , a__ = 0.5 , a__ = 0.2 , **a__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**a__ ) A_ = num_channels A_ = image_size A_ = width_coefficient A_ = depth_coefficient A_ = depth_divisor A_ = kernel_sizes A_ = in_channels A_ = out_channels A_ = depthwise_padding A_ = strides A_ = num_block_repeats A_ = expand_ratios A_ = squeeze_expansion_ratio A_ = hidden_act A_ = hidden_dim A_ = pooling_type A_ = initializer_range A_ = batch_norm_eps A_ = batch_norm_momentum A_ = dropout_rate A_ = drop_connect_rate A_ = sum(a__ ) * 4 class __lowercase ( A ): __magic_name__ : Any = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' return 1E-5
141
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a ( __UpperCAmelCase ): lowercase_ : Union[str, Any] = 'beit' def __init__( self : Optional[Any] , snake_case__ : List[Any]=8_192 , snake_case__ : str=768 , snake_case__ : Union[str, Any]=12 , snake_case__ : str=12 , snake_case__ : Optional[int]=3_072 , snake_case__ : Optional[int]="gelu" , snake_case__ : str=0.0 , snake_case__ : Optional[Any]=0.0 , snake_case__ : int=0.0_2 , snake_case__ : Optional[int]=1E-12 , snake_case__ : Dict=224 , snake_case__ : str=16 , snake_case__ : Optional[Any]=3 , snake_case__ : int=False , snake_case__ : List[str]=False , snake_case__ : Tuple=False , snake_case__ : Dict=False , snake_case__ : List[str]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=True , snake_case__ : List[Any]=[3, 5, 7, 11] , snake_case__ : Optional[int]=[1, 2, 3, 6] , snake_case__ : str=True , snake_case__ : Any=0.4 , snake_case__ : Dict=256 , snake_case__ : str=1 , snake_case__ : Tuple=False , snake_case__ : Union[str, Any]=255 , **snake_case__ : List[str] , ): """simple docstring""" super().__init__(**snake_case__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_mask_token __lowerCAmelCase = use_absolute_position_embeddings __lowerCAmelCase = use_relative_position_bias __lowerCAmelCase = use_shared_relative_position_bias __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = drop_path_rate __lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase = out_indices __lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = auxiliary_channels __lowerCAmelCase = auxiliary_num_convs __lowerCAmelCase = auxiliary_concat_input __lowerCAmelCase = semantic_loss_ignore_index class a ( __UpperCAmelCase ): lowercase_ : List[str] = version.parse('1.11' ) @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return 1E-4
376
import math import sys def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = "" try: with open(UpperCamelCase , "rb" ) as binary_file: __lowerCAmelCase = binary_file.read() for dat in data: __lowerCAmelCase = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = {"0": "0", "1": "1"} __lowerCAmelCase , __lowerCAmelCase = "", "" __lowerCAmelCase = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCAmelCase = lexicon[curr_string] result += last_match_id __lowerCAmelCase = last_match_id + "0" if math.loga(UpperCamelCase ).is_integer(): __lowerCAmelCase = {} for curr_key in list(UpperCamelCase ): __lowerCAmelCase = lexicon.pop(UpperCamelCase ) __lowerCAmelCase = new_lex __lowerCAmelCase = last_match_id + "1" index += 1 __lowerCAmelCase = "" return result def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = 8 try: with open(UpperCamelCase , "wb" ) as opened_file: __lowerCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCAmelCase = data_bits[counter:] __lowerCAmelCase = data_bits[counter + 1 :] return data_bits def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = read_file_binary(UpperCamelCase ) __lowerCAmelCase = remove_prefix(UpperCamelCase ) __lowerCAmelCase = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
376
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : str = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE__ : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE__ : int = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE__ : Dict = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE__ : List[Any] = False @property def A_ ( self ): '''simple docstring''' return 3_2 @property def A_ ( self ): '''simple docstring''' return 3_2 @property def A_ ( self ): '''simple docstring''' return self.time_input_dim @property def A_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self ): '''simple docstring''' return 1_0_0 @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Dict = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase : Optional[Any] = UNetaDConditionModel(**snake_case ) return model @property def A_ ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.dummy_unet UpperCAmelCase : Tuple = self.dummy_movq UpperCAmelCase : str = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase : Tuple = DDIMScheduler(**snake_case ) UpperCAmelCase : str = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def A_ ( self , snake_case , snake_case=0 ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case ) ).to(snake_case ) UpperCAmelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case ) # create init_image UpperCAmelCase : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case ) ).to(snake_case ) UpperCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Tuple = Image.fromarray(np.uinta(snake_case ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create hint UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case ) ).to(snake_case ) if str(snake_case ).startswith("mps" ): UpperCAmelCase : Union[str, Any] = torch.manual_seed(snake_case ) else: UpperCAmelCase : Tuple = torch.Generator(device=snake_case ).manual_seed(snake_case ) UpperCAmelCase : Optional[int] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = "cpu" UpperCAmelCase : List[str] = self.get_dummy_components() UpperCAmelCase : Any = self.pipeline_class(**snake_case ) UpperCAmelCase : List[str] = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) UpperCAmelCase : Tuple = pipe(**self.get_dummy_inputs(snake_case ) ) UpperCAmelCase : Any = output.images UpperCAmelCase : List[Any] = pipe( **self.get_dummy_inputs(snake_case ) , return_dict=snake_case , )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase : Dict = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) UpperCAmelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase : List[Any] = init_image.resize((5_1_2, 5_1_2) ) UpperCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) UpperCAmelCase : Dict = torch.from_numpy(np.array(snake_case ) ).float() / 255.0 UpperCAmelCase : Tuple = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : Any = "A robot, 4k photo" UpperCAmelCase : List[Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case ) UpperCAmelCase : Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) UpperCAmelCase : Any = pipeline.to(snake_case ) pipeline.set_progress_bar_config(disable=snake_case ) UpperCAmelCase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = pipe_prior( snake_case , image=snake_case , strength=0.85 , generator=snake_case , negative_prompt="" , ).to_tuple() UpperCAmelCase : Optional[int] = pipeline( image=snake_case , image_embeds=snake_case , negative_image_embeds=snake_case , hint=snake_case , generator=snake_case , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="np" , ) UpperCAmelCase : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(snake_case , snake_case )
679
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : str = logging.getLogger(__name__) class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def A_ ( self , snake_case , snake_case , snake_case=None , snake_case=None ): '''simple docstring''' UpperCAmelCase : Tuple = self.layer[current_layer](snake_case , snake_case , head_mask[current_layer] ) UpperCAmelCase : Optional[int] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowercase__ , ) class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__(snake_case ) UpperCAmelCase : Dict = BertEncoderWithPabee(snake_case ) self.init_weights() UpperCAmelCase : int = 0 UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : List[Any] = 0 def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = threshold def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : str = patience def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = 0 UpperCAmelCase : List[Any] = 0 def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.inference_layers_num / self.inference_instances_num UpperCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(snake_case ) @add_start_docstrings_to_model_forward(snake_case ) def A_ ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=False , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: UpperCAmelCase : Dict = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase : Any = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) UpperCAmelCase : Optional[int] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase : Tuple = torch.ones(snake_case , device=snake_case ) if token_type_ids is None: UpperCAmelCase : List[Any] = torch.zeros(snake_case , dtype=torch.long , device=snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(snake_case , snake_case , snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = encoder_hidden_states.size() UpperCAmelCase : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase : int = torch.ones(snake_case , device=snake_case ) UpperCAmelCase : str = self.invert_attention_mask(snake_case ) else: UpperCAmelCase : int = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase : Dict = self.get_head_mask(snake_case , self.config.num_hidden_layers ) UpperCAmelCase : Tuple = self.embeddings( input_ids=snake_case , position_ids=snake_case , token_type_ids=snake_case , inputs_embeds=snake_case ) UpperCAmelCase : int = embedding_output if self.training: UpperCAmelCase : int = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase : List[Any] = self.encoder.adaptive_forward( snake_case , current_layer=snake_case , attention_mask=snake_case , head_mask=snake_case ) UpperCAmelCase : Dict = self.pooler(snake_case ) UpperCAmelCase : List[Any] = output_layers[i](output_dropout(snake_case ) ) res.append(snake_case ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase : Union[str, Any] = self.encoder( snake_case , attention_mask=snake_case , head_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) UpperCAmelCase : Optional[int] = self.pooler(encoder_outputs[0] ) UpperCAmelCase : List[str] = [output_layers[self.config.num_hidden_layers - 1](snake_case )] else: UpperCAmelCase : int = 0 UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase : Tuple = self.encoder.adaptive_forward( snake_case , current_layer=snake_case , attention_mask=snake_case , head_mask=snake_case ) UpperCAmelCase : Any = self.pooler(snake_case ) UpperCAmelCase : int = output_layers[i](snake_case ) if regression: UpperCAmelCase : Optional[Any] = logits.detach() if patient_result is not None: UpperCAmelCase : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase : Optional[Any] = 0 else: UpperCAmelCase : Any = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase : Tuple = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(snake_case ) ): patient_counter += 1 else: UpperCAmelCase : str = 0 UpperCAmelCase : int = logits if patient_counter == self.patience: break UpperCAmelCase : int = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowercase__ , ) class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__(snake_case ) UpperCAmelCase : Union[str, Any] = config.num_labels UpperCAmelCase : Optional[Any] = BertModelWithPabee(snake_case ) UpperCAmelCase : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : Any = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(snake_case ) def A_ ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ): '''simple docstring''' UpperCAmelCase : int = self.bert( input_ids=snake_case , attention_mask=snake_case , token_type_ids=snake_case , position_ids=snake_case , head_mask=snake_case , inputs_embeds=snake_case , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase : Tuple = (logits[-1],) if labels is not None: UpperCAmelCase : Optional[int] = None UpperCAmelCase : List[Any] = 0 for ix, logits_item in enumerate(snake_case ): if self.num_labels == 1: # We are doing regression UpperCAmelCase : Dict = MSELoss() UpperCAmelCase : Union[str, Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : Optional[int] = CrossEntropyLoss() UpperCAmelCase : Tuple = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase : int = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase : Tuple = (total_loss / total_weights,) + outputs return outputs
679
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ : Dict = logging.get_logger(__name__) class __snake_case ( _lowerCamelCase ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> None: '''simple docstring''' warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
699
from collections import namedtuple lowerCAmelCase__ : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ : Tuple = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def UpperCamelCase__ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
699
1
'''simple docstring''' import pytest lowerCAmelCase : Optional[Any] = """__dummy_dataset1__""" lowerCAmelCase : Optional[Any] = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def _A ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ) -> Tuple: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( A ,A ,A ) -> str: lowercase : Union[str, Any] = dataset_loading_script_name lowercase : Dict = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=A ) lowercase : str = script_dir / F'''{script_name}.py''' with open(A ,"w" ) as f: f.write(A ) return str(A )
372
import copy import random from transformers import CLIPTokenizer class A__ ( __SCREAMING_SNAKE_CASE): def __init__( self , *__magic_name__ , **__magic_name__ ): super().__init__(*__magic_name__ , **__magic_name__ ) lowerCamelCase : Dict = {} def UpperCamelCase__ ( self , __magic_name__ , *__magic_name__ , **__magic_name__ ): lowerCamelCase : Any = super().add_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' """ `placeholder_token` that is not already in the tokenizer.""" ) def UpperCamelCase__ ( self , __magic_name__ , *__magic_name__ , __magic_name__=1 , **__magic_name__ ): lowerCamelCase : List[Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) output.append(__magic_name__ ) else: lowerCamelCase : Dict = [] for i in range(__magic_name__ ): lowerCamelCase : Optional[Any] = placeholder_token + F'''_{i}''' self.try_adding_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ ) output.append(__magic_name__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) lowerCamelCase : Any = output def UpperCamelCase__ ( self , __magic_name__ , __magic_name__=False , __magic_name__=1.0 ): if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase : List[str] = [] for i in range(len(__magic_name__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__magic_name__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowerCamelCase : List[str] = self.token_map[placeholder_token] lowerCamelCase : Optional[Any] = tokens[: 1 + int(len(__magic_name__ ) * prop_tokens_to_load )] if vector_shuffle: lowerCamelCase : Union[str, Any] = copy.copy(__magic_name__ ) random.shuffle(__magic_name__ ) lowerCamelCase : str = text.replace(__magic_name__ , """ """.join(__magic_name__ ) ) return text def __call__( self , __magic_name__ , *__magic_name__ , __magic_name__=False , __magic_name__=1.0 , **__magic_name__ ): return super().__call__( self.replace_placeholder_tokens_in_text( __magic_name__ , vector_shuffle=__magic_name__ , prop_tokens_to_load=__magic_name__ ) , *__magic_name__ , **__magic_name__ , ) def UpperCamelCase__ ( self , __magic_name__ , *__magic_name__ , __magic_name__=False , __magic_name__=1.0 , **__magic_name__ ): return super().encode( self.replace_placeholder_tokens_in_text( __magic_name__ , vector_shuffle=__magic_name__ , prop_tokens_to_load=__magic_name__ ) , *__magic_name__ , **__magic_name__ , )
681
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = ort.SessionOptions() _lowerCAmelCase = False return options def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) _lowerCAmelCase = 'A red cat sitting on a park bench' _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=lowercase__ , image=lowercase__ , mask_image=lowercase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase__ , output_type='np' , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCAmelCase = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) _lowerCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) _lowerCAmelCase = 'A red cat sitting on a park bench' _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=lowercase__ , image=lowercase__ , mask_image=lowercase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase__ , output_type='np' , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCAmelCase = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
225
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =OpenAIGPTTokenizer UpperCamelCase__ =OpenAIGPTTokenizerFast UpperCamelCase__ =True UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _lowerCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) _lowerCAmelCase = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowercase__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowercase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : str ): return "lower newer", "lower newer" def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase = 'lower' _lowerCAmelCase = ['low', 'er</w>'] _lowerCAmelCase = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) _lowerCAmelCase = tokens + ['<unk>'] _lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Union[str, Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) # Simple input _lowerCAmelCase = 'This is a simple input' _lowerCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase = ('This is a simple input', 'This is a pair') _lowerCAmelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding='max_length' ) # Simple input self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding='max_length' ) # Simple input self.assertRaises( lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding='max_length' , ) # Pair input self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding='max_length' ) # Pair input self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding='max_length' ) # Pair input self.assertRaises( lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding='max_length' , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): pass @require_ftfy @require_spacy @require_tokenizers class lowerCamelCase__ ( UpperCAmelCase ): pass
225
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__: lowerCAmelCase = XGLMConfig lowerCAmelCase = {} lowerCAmelCase = "gelu" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=14 , __SCREAMING_SNAKE_CASE : Union[str, Any]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=5_12 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = ffn_dim __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 1 def _a ( self : List[str] ) -> Tuple: """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case__ , ) def _a ( self : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class A__( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowerCAmelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCAmelCase = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCAmelCase = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFXGLMModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , n_embd=37 ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @slow def _a ( self : int ) -> Any: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFXGLMModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _a ( self : str ) -> Optional[int]: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__( unittest.TestCase ): @slow def _a ( self : int , __SCREAMING_SNAKE_CASE : Optional[int]=True ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __SCREAMING_SNAKE_CASE = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __SCREAMING_SNAKE_CASE = model.generate(snake_case__ , do_sample=snake_case__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , snake_case__ ) @slow def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) __SCREAMING_SNAKE_CASE = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): __SCREAMING_SNAKE_CASE = model.generate(snake_case__ , do_sample=snake_case__ , seed=[7, 0] ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case__ ) __SCREAMING_SNAKE_CASE = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(snake_case__ , snake_case__ ) @slow def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __SCREAMING_SNAKE_CASE = '''left''' # use different length sentences to test batching __SCREAMING_SNAKE_CASE = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] __SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , return_tensors='''tf''' , padding=snake_case__ ) __SCREAMING_SNAKE_CASE = inputs['''input_ids'''] __SCREAMING_SNAKE_CASE = model.generate(input_ids=snake_case__ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) __SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __SCREAMING_SNAKE_CASE = model.generate(input_ids=snake_case__ , max_new_tokens=12 ) __SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __SCREAMING_SNAKE_CASE = model.generate(input_ids=snake_case__ , max_new_tokens=12 ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) __SCREAMING_SNAKE_CASE = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] )
482
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
644
0
'''simple docstring''' from __future__ import annotations import pandas as pd def _SCREAMING_SNAKE_CASE( snake_case_ : list[int] , snake_case_ : list[int] , snake_case_ : int ) ->Optional[Any]: '''simple docstring''' _lowercase : Dict = [0] * no_of_processes _lowercase : Optional[Any] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_SCREAMING_SNAKE_CASE ): _lowercase : Union[str, Any] = burst_time[i] _lowercase : Any = 0 _lowercase : Dict = 0 _lowercase : str = 9_99_99_99_99 _lowercase : Optional[int] = 0 _lowercase : Union[str, Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(_SCREAMING_SNAKE_CASE ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _lowercase : str = remaining_time[j] _lowercase : List[Any] = j _lowercase : Union[str, Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _lowercase : Optional[Any] = remaining_time[short] if minm == 0: _lowercase : Union[str, Any] = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 _lowercase : Dict = False # Find finish time of current process _lowercase : Optional[Any] = increment_time + 1 # Calculate waiting time _lowercase : Union[str, Any] = finish_time - arrival_time[short] _lowercase : List[str] = finar - burst_time[short] if waiting_time[short] < 0: _lowercase : int = 0 # Increment time increment_time += 1 return waiting_time def _SCREAMING_SNAKE_CASE( snake_case_ : list[int] , snake_case_ : int , snake_case_ : list[int] ) ->Optional[Any]: '''simple docstring''' _lowercase : int = [0] * no_of_processes for i in range(_SCREAMING_SNAKE_CASE ): _lowercase : List[Any] = burst_time[i] + waiting_time[i] return turn_around_time def _SCREAMING_SNAKE_CASE( snake_case_ : list[int] , snake_case_ : list[int] , snake_case_ : int ) ->List[str]: '''simple docstring''' _lowercase : Optional[Any] = 0 _lowercase : int = 0 for i in range(_SCREAMING_SNAKE_CASE ): _lowercase : Union[str, Any] = total_waiting_time + waiting_time[i] _lowercase : str = total_turn_around_time + turn_around_time[i] print(F"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') lowerCamelCase_ = int(input()) lowerCamelCase_ = [0] * no_of_processes lowerCamelCase_ = [0] * no_of_processes lowerCamelCase_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) lowerCamelCase_ = map(int, input().split()) lowerCamelCase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase_ = burst_time lowerCamelCase_ = no_of_processes lowerCamelCase_ = waiting_time lowerCamelCase_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCamelCase_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
707
'''simple docstring''' lowerCamelCase__ = 2_56 # Modulus to hash a string lowerCamelCase__ = 1_00_00_03 def _SCREAMING_SNAKE_CASE( snake_case_ : str , snake_case_ : str ) ->bool: '''simple docstring''' _lowercase : int = len(snake_case_ ) _lowercase : str = len(snake_case_ ) if p_len > t_len: return False _lowercase : List[str] = 0 _lowercase : Any = 0 _lowercase : Union[str, Any] = 1 # Calculating the hash of pattern and substring of text for i in range(snake_case_ ): _lowercase : List[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _lowercase : List[str] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _lowercase : Optional[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _lowercase : Optional[int] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _SCREAMING_SNAKE_CASE( ) ->None: '''simple docstring''' _lowercase : List[str] = '''abc1abc12''' _lowercase : int = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _lowercase : List[str] = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(snake_case_ , snake_case_ ) and not rabin_karp(snake_case_ , snake_case_ ) # Test 2) _lowercase : int = '''ABABX''' _lowercase : Any = '''ABABZABABYABABX''' assert rabin_karp(snake_case_ , snake_case_ ) # Test 3) _lowercase : Tuple = '''AAAB''' _lowercase : Tuple = '''ABAAAAAB''' assert rabin_karp(snake_case_ , snake_case_ ) # Test 4) _lowercase : Dict = '''abcdabcy''' _lowercase : List[Any] = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(snake_case_ , snake_case_ ) # Test 5) _lowercase : Tuple = '''Lü''' _lowercase : Any = '''Lüsai''' assert rabin_karp(snake_case_ , snake_case_ ) _lowercase : Tuple = '''Lue''' assert not rabin_karp(snake_case_ , snake_case_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
411
0
a_ = "Tobias Carryer" from time import time class _lowercase : def __init__( self : int , snake_case : Tuple , snake_case : Optional[int] , snake_case : List[Any] , snake_case : int=int(time() ) ) -> Tuple: # noqa: B008 """simple docstring""" UpperCamelCase_ : str = multiplier UpperCamelCase_ : List[Any] = increment UpperCamelCase_ : Any = modulo UpperCamelCase_ : Optional[Any] = seed def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a_ = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
417
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : str = getLogger(__name__) def UpperCamelCase ( _a , _a , _a , _a = 8 , _a = 1_0_2_4 , _a="val" , _a=None , _a=False , _a="summarization" , _a=None , _a=1 , _a = None , _a="" , **_a , ) -> Dict: '''simple docstring''' lowercase_ :Union[str, Any] = str(_a ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_a ) lowercase_ :int = Path(_a ) lowercase_ :Optional[int] = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(_a ) lowercase_ :int = AutoModelForSeqaSeqLM.from_pretrained(_a ).cuda() if fpaa: lowercase_ :Union[str, Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(_a , _a ) # update config with task specific params lowercase_ :Union[str, Any] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowercase_ :Tuple = num_return_sequences lowercase_ :Dict = AutoTokenizer.from_pretrained(_a ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: lowercase_ :List[str] = tokenizer.model_max_length if prefix is None: lowercase_ :Tuple = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' lowercase_ :str = SeqaSeqDataset( _a , _a , _a , max_target_length=1_0_2_4 , type_path=_a , n_obs=_a , prefix=_a , **_a , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowercase_ :List[Any] = ds.make_sortish_sampler(_a , distributed=_a , add_extra_examples=_a , shuffle=_a ) lowercase_ :Optional[Any] = DataLoader(_a , sampler=_a , batch_size=_a , collate_fn=ds.collate_fn ) lowercase_ :List[Any] = [] for batch in tqdm(_a ): lowercase_ :Tuple = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_a , num_beams=_a , **_a , ) lowercase_ :Tuple = tokenizer.batch_decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) lowercase_ :Dict = batch['''ids'''] if num_return_sequences > 1: lowercase_ :int = chunks(_a , _a ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_a ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_a , _a ) return results, sampler.num_replicas def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' lowercase_ :Tuple = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_a , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_a , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_a , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_a , default=_a ) parser.add_argument( '''--type_path''' , type=_a , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_a , default=8 , required=_a , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_a , default=-1 , required=_a , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_a , default=_a , required=_a , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_a , default=1 , required=_a , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_a , default=6_0_0 , required=_a , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_a , default=_a , required=_a ) parser.add_argument('''--tgt_lang''' , type=_a , default=_a , required=_a ) parser.add_argument( '''--prefix''' , type=_a , required=_a , default=_a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) lowercase_ :str = time.time() lowercase_ , lowercase_ :Optional[Any] = parser.parse_known_args() lowercase_ :Dict = parse_numeric_n_bool_cl_kwargs(_a ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) lowercase_ :str = Path(args.save_dir + '''_tmp''' ) Path(_a ).mkdir(exist_ok=_a ) # this handles locking. lowercase_ :str = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowercase_ :Optional[int] = {} if args.src_lang is not None: lowercase_ :Any = args.src_lang if args.tgt_lang is not None: lowercase_ :int = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_a ) lowercase_ , lowercase_ :Tuple = eval_data_dir( args.data_dir , _a , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_a , **_a , ) if args.local_rank <= 0: lowercase_ :int = Path(args.save_dir ) save_dir.mkdir(exist_ok=_a ) lowercase_ :Optional[Any] = gather_results_from_each_node(_a , _a , args.sync_timeout ) lowercase_ :Tuple = combine_partial_results(_a ) if args.num_return_sequences > 1: lowercase_ :Optional[Any] = save_dir.joinpath('''pseudolabel_results.json''' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(_a , _a ) return lowercase_ :List[Any] = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_a ) as f: lowercase_ :Optional[int] = [x.rstrip() for x in f.readlines()][: len(_a )] # Calculate metrics, save metrics, and save _generations.txt lowercase_ :Optional[int] = '''translation''' in args.task lowercase_ :str = calculate_bleu if calc_bleu else calculate_rouge lowercase_ :List[str] = '''bleu''' if calc_bleu else '''rouge''' lowercase_ :Dict = score_fn(_a , _a ) lowercase_ :Optional[Any] = len(_a ) lowercase_ :str = time.time() - start_time lowercase_ :int = round(runtime / metrics['''n_obs'''] , 4 ) lowercase_ :Any = num_replicas # TODO(@stas00): add whatever metadata to metrics lowercase_ :int = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(_a , _a , indent=_a ) print(_a ) write_txt_file(_a , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(_a , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(_a ) def UpperCamelCase ( _a ) -> List: '''simple docstring''' lowercase_ :str = [] for partial_result in partial_results: records.extend(_a ) lowercase_ :Optional[Any] = sorted(_a , key=lambda _a : x["id"] ) lowercase_ :Optional[Any] = [x['''pred'''] for x in records] return preds def UpperCamelCase ( _a , _a , _a ) -> List[Dict[str, List]]: '''simple docstring''' lowercase_ :int = time.time() logger.info('''waiting for all nodes to finish''' ) lowercase_ :int = None while (time.time() - start_wait) < timeout: lowercase_ :int = list(save_dir.glob('''rank_*.json''' ) ) if len(_a ) < num_replicas: continue try: # make sure all json files are fully saved lowercase_ :Dict = lmap(_a , _a ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
257
0
'''simple docstring''' print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
593
'''simple docstring''' from collections import defaultdict def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = 1 snake_case_ = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCAmelCase ) if ret % 2 == 0: cuts.append(__UpperCAmelCase ) return ret def __magic_name__ ( ) -> List[Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": a ,a : int = 10, 9 a : Any = defaultdict(list) a : dict[int, bool] = {} a : list[int] = [] a : List[Any] = 0 a : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
593
1
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __lowerCAmelCase = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __lowerCAmelCase = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} __lowerCAmelCase = """zero2""" __lowerCAmelCase = """zero3""" __lowerCAmelCase = [ZEROa, ZEROa] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __lowerCAmelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> str: self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) def lowercase (self , UpperCAmelCase ) -> Any: pass def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 10 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = True , ) -> str: _snake_case = models[model] _snake_case = self.run_trainer( stage=_lowerCAmelCase , model_name=_lowerCAmelCase , eval_steps=_lowerCAmelCase , num_train_epochs=1 , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) self.do_checks(_lowerCAmelCase ) return output_dir def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 10 , UpperCAmelCase = 1 , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Dict: _snake_case = self.get_auto_remove_tmp_dir("""./xxx""" , after=_lowerCAmelCase ) _snake_case = f"""\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(_lowerCAmelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() _snake_case = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] _snake_case = self.get_launcher(_lowerCAmelCase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) return output_dir def lowercase (self , UpperCAmelCase=False ) -> Dict: _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
585
from math import factorial def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowerCamelCase ) // (factorial(lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", F'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", F'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
80
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowerCamelCase ( _A ): snake_case_ = ["image_processor"] snake_case_ = "SamImageProcessor" def __init__( self , a_ ): super().__init__(a_ ) lowerCAmelCase : Optional[Any] = self.image_processor lowerCAmelCase : int = -10 lowerCAmelCase : Dict = self.image_processor.size["longest_edge"] def __call__( self , a_=None , a_=None , a_=None , a_=None , a_ = None , **a_ , ): lowerCAmelCase : List[str] = self.image_processor( a_ , return_tensors=a_ , **a_ , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase : str = encoding_image_processor["original_sizes"] if hasattr(a_ , "numpy" ): # Checks if Torch or TF tensor lowerCAmelCase : Dict = original_sizes.numpy() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = self._check_and_preprocess_points( input_points=a_ , input_labels=a_ , input_boxes=a_ , ) lowerCAmelCase : str = self._normalize_and_convert( a_ , a_ , input_points=a_ , input_labels=a_ , input_boxes=a_ , return_tensors=a_ , ) return encoding_image_processor def _lowerCamelCase ( self , a_ , a_ , a_=None , a_=None , a_=None , a_="pt" , ): if input_points is not None: if len(a_ ) != len(a_ ): lowerCAmelCase : Optional[int] = [ self._normalize_coordinates(self.target_size , a_ , original_sizes[0] ) for point in input_points ] else: lowerCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , a_ , a_ ) for point, original_size in zip(a_ , a_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowerCAmelCase , lowerCAmelCase : Tuple = self._pad_points_and_labels(a_ , a_ ) lowerCAmelCase : int = np.array(a_ ) if input_labels is not None: lowerCAmelCase : str = np.array(a_ ) if input_boxes is not None: if len(a_ ) != len(a_ ): lowerCAmelCase : str = [ self._normalize_coordinates(self.target_size , a_ , original_sizes[0] , is_bounding_box=a_ ) for box in input_boxes ] else: lowerCAmelCase : List[Any] = [ self._normalize_coordinates(self.target_size , a_ , a_ , is_bounding_box=a_ ) for box, original_size in zip(a_ , a_ ) ] lowerCAmelCase : str = np.array(a_ ) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase : Tuple = torch.from_numpy(a_ ) # boxes batch size of 1 by default lowerCAmelCase : Tuple = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase : Any = tf.convert_to_tensor(a_ ) # boxes batch size of 1 by default lowerCAmelCase : int = tf.expand_dims(a_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": lowerCAmelCase : Dict = torch.from_numpy(a_ ) # point batch size of 1 by default lowerCAmelCase : Any = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase : Optional[Any] = tf.convert_to_tensor(a_ ) # point batch size of 1 by default lowerCAmelCase : int = tf.expand_dims(a_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase : Dict = torch.from_numpy(a_ ) # point batch size of 1 by default lowerCAmelCase : Any = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase : List[str] = tf.convert_to_tensor(a_ ) # point batch size of 1 by default lowerCAmelCase : Union[str, Any] = tf.expand_dims(a_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _lowerCamelCase ( self , a_ , a_ ): lowerCAmelCase : Tuple = max([point.shape[0] for point in input_points] ) lowerCAmelCase : Union[str, Any] = [] for i, point in enumerate(a_ ): if point.shape[0] != expected_nb_points: lowerCAmelCase : Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowerCAmelCase : Any = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(a_ ) lowerCAmelCase : Union[str, Any] = processed_input_points return input_points, input_labels def _lowerCamelCase ( self , a_ , a_ , a_ , a_=False ): lowerCAmelCase , lowerCAmelCase : Any = original_size lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor._get_preprocess_shape(a_ , longest_edge=a_ ) lowerCAmelCase : Optional[int] = deepcopy(a_ ).astype(a_ ) if is_bounding_box: lowerCAmelCase : Union[str, Any] = coords.reshape(-1 , 2 , 2 ) lowerCAmelCase : Any = coords[..., 0] * (new_w / old_w) lowerCAmelCase : int = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase : Tuple = coords.reshape(-1 , 4 ) return coords def _lowerCamelCase ( self , a_=None , a_=None , a_=None , ): if input_points is not None: if hasattr(a_ , "numpy" ): # Checks for TF or Torch tensor lowerCAmelCase : int = input_points.numpy().tolist() if not isinstance(a_ , a_ ) or not isinstance(input_points[0] , a_ ): raise ValueError("Input points must be a list of list of floating points." ) lowerCAmelCase : List[Any] = [np.array(a_ ) for input_point in input_points] else: lowerCAmelCase : List[str] = None if input_labels is not None: if hasattr(a_ , "numpy" ): lowerCAmelCase : Optional[int] = input_labels.numpy().tolist() if not isinstance(a_ , a_ ) or not isinstance(input_labels[0] , a_ ): raise ValueError("Input labels must be a list of list integers." ) lowerCAmelCase : Dict = [np.array(a_ ) for label in input_labels] else: lowerCAmelCase : Any = None if input_boxes is not None: if hasattr(a_ , "numpy" ): lowerCAmelCase : Any = input_boxes.numpy().tolist() if ( not isinstance(a_ , a_ ) or not isinstance(input_boxes[0] , a_ ) or not isinstance(input_boxes[0][0] , a_ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) lowerCAmelCase : Union[str, Any] = [np.array(a_ ).astype(np.floataa ) for box in input_boxes] else: lowerCAmelCase : Dict = None return input_points, input_labels, input_boxes @property def _lowerCamelCase ( self ): lowerCAmelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(a_ ) ) def _lowerCamelCase ( self , *a_ , **a_ ): return self.image_processor.post_process_masks(*a_ , **a_ )
551
'''simple docstring''' import numpy as np def __A ( a_ : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
551
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _snake_case = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = factor * value _snake_case = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
672
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Optional[int] = """falcon""" _lowerCAmelCase : List[Any] = ["""past_key_values"""] def __init__( self : Any , lowercase_ : Any=65024 , lowercase_ : Optional[Any]=4544 , lowercase_ : List[str]=32 , lowercase_ : List[str]=71 , lowercase_ : List[str]=1E-5 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : int=True , lowercase_ : int=0.0 , lowercase_ : Dict=0.0 , lowercase_ : List[Any]=None , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=False , lowercase_ : str=True , lowercase_ : Tuple=True , lowercase_ : str=False , lowercase_ : Optional[int]=11 , lowercase_ : List[str]=11 , **lowercase_ : Optional[Any] , ): snake_case_ : List[Any] = vocab_size # Backward compatibility with n_embed kwarg snake_case_ : str = kwargs.pop('''n_embed''' , lowercase_ ) snake_case_ : Dict = hidden_size if n_embed is None else n_embed snake_case_ : Any = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Union[str, Any] = layer_norm_epsilon snake_case_ : Any = initializer_range snake_case_ : Any = use_cache snake_case_ : int = hidden_dropout snake_case_ : List[Any] = attention_dropout snake_case_ : Optional[Any] = bos_token_id snake_case_ : List[Any] = eos_token_id snake_case_ : Tuple = num_attention_heads if num_kv_heads is None else num_kv_heads snake_case_ : Union[str, Any] = alibi snake_case_ : Union[str, Any] = new_decoder_architecture snake_case_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True snake_case_ : str = parallel_attn snake_case_ : List[Any] = bias super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self : str ): return self.hidden_size // self.num_attention_heads @property def _snake_case ( self : Optional[Any] ): return not self.alibi
715
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( lowerCAmelCase__): def _snake_case ( self : int ): snake_case_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowercase_ , '''num_heads''' ) ) class _UpperCAmelCase : def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : int=13 , lowercase_ : Optional[int]=64 , lowercase_ : Any=3 , lowercase_ : Any=[16, 48, 96] , lowercase_ : List[Any]=[1, 3, 6] , lowercase_ : Union[str, Any]=[1, 2, 10] , lowercase_ : Optional[Any]=[7, 3, 3] , lowercase_ : Union[str, Any]=[4, 2, 2] , lowercase_ : Tuple=[2, 1, 1] , lowercase_ : List[str]=[2, 2, 2] , lowercase_ : Union[str, Any]=[False, False, True] , lowercase_ : Optional[int]=[0.0, 0.0, 0.0] , lowercase_ : str=0.02 , lowercase_ : Optional[Any]=1E-12 , lowercase_ : Optional[int]=True , lowercase_ : Optional[int]=True , lowercase_ : Optional[Any]=2 , ): snake_case_ : List[Any] = parent snake_case_ : int = batch_size snake_case_ : Union[str, Any] = image_size snake_case_ : Tuple = patch_sizes snake_case_ : List[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Any = is_training snake_case_ : Any = use_labels snake_case_ : str = num_labels snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : int = num_heads snake_case_ : List[str] = stride_kv snake_case_ : Any = depth snake_case_ : Dict = cls_token snake_case_ : Dict = attention_drop_rate snake_case_ : int = initializer_range snake_case_ : Tuple = layer_norm_eps def _snake_case ( self : Dict ): snake_case_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : str = None if self.use_labels: # create a random int32 tensor of given shape snake_case_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : Dict = self.get_config() return config, pixel_values, labels def _snake_case ( self : int ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _snake_case ( self : int , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): snake_case_ : Tuple = TFCvtModel(config=lowercase_ ) snake_case_ : Tuple = model(lowercase_ , training=lowercase_ ) snake_case_ : int = (self.image_size, self.image_size) snake_case_, snake_case_ : List[str] = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case_ : str = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case_ : str = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _snake_case ( self : Dict , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): snake_case_ : int = self.num_labels snake_case_ : Any = TFCvtForImageClassification(lowercase_ ) snake_case_ : List[Any] = model(lowercase_ , labels=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Any ): snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ : List[str] = config_and_inputs snake_case_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Optional[int] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _lowerCAmelCase : str = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) _lowerCAmelCase : str = False _lowerCAmelCase : int = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : int = False _lowerCAmelCase : int = False def _snake_case ( self : int ): snake_case_ : Optional[int] = TFCvtModelTester(self ) snake_case_ : str = TFCvtConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def _snake_case ( self : int ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def _snake_case ( self : Any ): pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def _snake_case ( self : str ): pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def _snake_case ( self : Tuple ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _snake_case ( self : Tuple ): super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def _snake_case ( self : List[str] ): snake_case_ : Optional[Any] = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(lowercase_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def _snake_case ( self : int ): snake_case_, snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Dict = model_class(lowercase_ ) snake_case_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[str] = [*signature.parameters.keys()] snake_case_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def _snake_case ( self : List[str] ): def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : str ): snake_case_ : Any = model_class(lowercase_ ) snake_case_ : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ : Tuple = outputs.hidden_states snake_case_ : str = len(self.model_tester.depth ) self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_, snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Dict = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _snake_case ( self : str ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self : List[Any] ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def _snake_case ( self : Optional[Any] ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : int = TFCvtModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __lowercase ( ): snake_case_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase): @cached_property def _snake_case ( self : List[Any] ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Tuple ): snake_case_ : int = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case_ : Any = self.default_image_processor snake_case_ : Union[str, Any] = prepare_img() snake_case_ : int = image_processor(images=lowercase_ , return_tensors='''tf''' ) # forward pass snake_case_ : Tuple = model(**lowercase_ ) # verify the logits snake_case_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ : Tuple = tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1E-4 ) )
485
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class lowercase__ ( _snake_case ): '''simple docstring''' A_ : List[Any] = """rwkv""" A_ : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , __snake_case=5_0277 , __snake_case=1024 , __snake_case=4096 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _SCREAMING_SNAKE_CASE : int = vocab_size _SCREAMING_SNAKE_CASE : Tuple = context_length _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size _SCREAMING_SNAKE_CASE : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _SCREAMING_SNAKE_CASE : List[Any] = layer_norm_epsilon _SCREAMING_SNAKE_CASE : Union[str, Any] = rescale_every _SCREAMING_SNAKE_CASE : str = use_cache _SCREAMING_SNAKE_CASE : int = bos_token_id _SCREAMING_SNAKE_CASE : Any = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
533
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Dict = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
533
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Dict =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _A ( __A , unittest.TestCase ): snake_case__ : Tuple = XGLMTokenizer snake_case__ : str = XGLMTokenizerFast snake_case__ : List[Any] = True snake_case__ : List[str] = True def A__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase = XGLMTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = '<pad>' lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(__lowerCAmelCase ) , 1008 ) def A__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def A__ ( self ): """simple docstring""" lowercase = XGLMTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def A__ ( self ): """simple docstring""" return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def A__ ( self ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCAmelCase , f.name ) lowercase = XGLMTokenizer(f.name , keep_accents=__lowerCAmelCase ) lowercase = pickle.dumps(__lowerCAmelCase ) pickle.loads(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = 'I was born in 92000, and this is falsé.' lowercase = tokenizer.tokenize(__lowerCAmelCase ) lowercase = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase = self.get_rust_tokenizer() lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = 'Hello World!' lowercase = [2, 3_1227, 4447, 35] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def A__ ( self ): """simple docstring""" lowercase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def A__ ( self ): """simple docstring""" lowercase = { 'input_ids': [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="""facebook/xglm-564M""" , padding=__lowerCAmelCase , )
704
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase="None" , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = relative_attention lowercase = position_biased_input lowercase = pos_att_type lowercase = scope def A__ ( self ): """simple docstring""" lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A__ ( self ): """simple docstring""" lowercase = self.get_config() lowercase = 300 return config def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DebertaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase )[0] lowercase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase )[0] lowercase = model(__lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DebertaForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = DebertaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = DebertaForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DebertaForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Any = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : int = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Optional[Any] = True snake_case__ : Optional[Any] = False snake_case__ : Optional[int] = False snake_case__ : Any = False snake_case__ : List[Any] = False def A__ ( self ): """simple docstring""" lowercase = DebertaModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = DebertaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def A__ ( self ): """simple docstring""" pass @slow def A__ ( self ): """simple docstring""" lowercase = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) lowercase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] # compare the actual values for a slice. lowercase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
197
0
'''simple docstring''' from math import factorial A_ : List[str] = {str(d): factorial(d) for d in range(10)} def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(__magic_name__ ) ) def UpperCamelCase__ ( ) -> int: '''simple docstring''' snake_case__ : Any = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , __magic_name__ ) if sum_of_digit_factorial(__magic_name__ ) == i ) if __name__ == "__main__": print(F'{solution() = }')
38
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __SCREAMING_SNAKE_CASE = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] _lowercase = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[Any] =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token SCREAMING_SNAKE_CASE_ : Tuple =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token SCREAMING_SNAKE_CASE_ : List[Any] =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token SCREAMING_SNAKE_CASE_ : Union[str, Any] =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token SCREAMING_SNAKE_CASE_ : Optional[Any] =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token SCREAMING_SNAKE_CASE_ : int =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE_ : Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =vocab_file SCREAMING_SNAKE_CASE_ : Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def __lowerCamelCase ( self ): return self.sp_model.get_piece_size() def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Dict ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): SCREAMING_SNAKE_CASE_ : int =self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Union[str, Any] =None return state def __setstate__( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : int =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Any ={} SCREAMING_SNAKE_CASE_ : List[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , __UpperCAmelCase ): return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase ): return self.sp_model.piece_to_id(__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : str =self.sp_model.IdToPiece(__UpperCAmelCase ) return token def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] =[] SCREAMING_SNAKE_CASE_ : Dict ='' SCREAMING_SNAKE_CASE_ : Optional[Any] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token SCREAMING_SNAKE_CASE_ : Optional[int] =True SCREAMING_SNAKE_CASE_ : Any =[] else: current_sub_tokens.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[int] =kwargs.pop('use_source_tokenizer' , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE_ : List[str] =[] SCREAMING_SNAKE_CASE_ : Any =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] =[] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: SCREAMING_SNAKE_CASE_ : Dict =re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(__UpperCAmelCase ) ) else: SCREAMING_SNAKE_CASE_ : str =''.join(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE_ : Any =self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE_ : Optional[Any] =os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] =[self.cls_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] =[self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): SCREAMING_SNAKE_CASE_ : List[str] =[self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
220
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def A__ ( __A , __A , __A = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(__A ), magnitude * sin(__A )] return [magnitude * cos(radians(__A ) ), magnitude * sin(radians(__A ) )] def A__ ( __A , __A , __A = 10**-1 ): '''simple docstring''' _lowerCamelCase : NDArray[floataa] = cross(__A , __A ) _lowerCamelCase : float = sum(__A ) return abs(__A ) < eps if __name__ == "__main__": # Test to check if it works lowerCAmelCase : List[str] =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowerCAmelCase : NDArray[floataa] =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCAmelCase : Any =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCAmelCase : int =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCAmelCase : List[str] =array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCAmelCase : Any =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
15
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=False , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ): '''simple docstring''' __a : Union[str, Any] = parent __a : Optional[Any] = batch_size __a : Optional[int] = seq_length __a : Any = is_training __a : Optional[int] = use_input_mask __a : Union[str, Any] = use_token_type_ids __a : str = use_labels __a : int = vocab_size __a : Tuple = hidden_size __a : List[Any] = num_hidden_layers __a : List[str] = num_attention_heads __a : List[Any] = intermediate_size __a : Optional[Any] = hidden_act __a : Optional[int] = hidden_dropout_prob __a : Any = attention_probs_dropout_prob __a : Union[str, Any] = max_position_embeddings __a : Tuple = type_vocab_size __a : int = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_labels __a : List[Any] = num_choices __a : List[str] = scope def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Dict = None if self.use_input_mask: __a : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[Any] = None if self.use_token_type_ids: __a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Optional[Any] = None __a : Optional[int] = None __a : Optional[int] = None if self.use_labels: __a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __a : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Any = BioGptModel(config=__a ) model.to(__a ) model.eval() __a : Optional[int] = model(__a , attention_mask=__a ) __a : Dict = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ): '''simple docstring''' __a : int = BioGptForCausalLM(config=__a ) model.to(__a ) model.eval() __a : Tuple = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Optional[Any] = BioGptModel(config=__a ) model.to(__a ) model.eval() # create attention mask __a : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__a ) __a : List[Any] = self.seq_length // 2 __a : int = 0 # first forward pass __a , __a : Dict = model(__a , attention_mask=__a ).to_tuple() # create hypothetical next token and extent to next_input_ids __a : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __a : Dict = ids_tensor((1,) , __a ).item() + 1 __a : int = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __a : List[Any] = random_other_next_tokens # append to next input_ids and attn_mask __a : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __a : str = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__a )] , dim=1 , ) # get two different outputs __a : str = model(__a , attention_mask=__a )['last_hidden_state'] __a : Optional[Any] = model(__a , past_key_values=__a , attention_mask=__a )['last_hidden_state'] # select random slice __a : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __a : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Optional[Any] = BioGptModel(config=__a ).to(__a ).eval() __a : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__a ) # first forward pass __a : Optional[int] = model(__a , attention_mask=__a , use_cache=__a ) __a , __a : Any = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __a : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __a : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) __a : str = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __a : List[Any] = model(__a , attention_mask=__a )['last_hidden_state'] __a : List[Any] = model(__a , attention_mask=__a , past_key_values=__a )[ 'last_hidden_state' ] # select random slice __a : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __a : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a , __a=False ): '''simple docstring''' __a : Optional[int] = BioGptForCausalLM(__a ) model.to(__a ) if gradient_checkpointing: model.gradient_checkpointing_enable() __a : Optional[int] = model(__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __UpperCAmelCase ( self , __a , *__a ): '''simple docstring''' __a : Dict = BioGptModel(__a ) __a : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Tuple = self.num_labels __a : Union[str, Any] = BioGptForTokenClassification(__a ) model.to(__a ) model.eval() __a : List[Any] = model(__a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Union[str, Any] = config_and_inputs __a : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): A_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) A_ = (BioGptForCausalLM,) if is_torch_available() else () A_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = BioGptModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a : Tuple = type self.model_tester.create_and_check_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__a , gradient_checkpointing=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__a ) __a : List[str] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __a : Dict = 'left' # Define PAD Token = EOS Token = 50256 __a : Tuple = tokenizer.eos_token __a : Tuple = model.config.eos_token_id # use different length sentences to test batching __a : Tuple = [ 'Hello, my dog is a little', 'Today, I', ] __a : int = tokenizer(__a , return_tensors='pt' , padding=__a ) __a : int = inputs['input_ids'].to(__a ) __a : List[str] = model.generate( input_ids=__a , attention_mask=inputs['attention_mask'].to(__a ) , ) __a : Union[str, Any] = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(__a ) __a : str = model.generate(input_ids=__a ) __a : List[Any] = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() __a : Any = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(__a ) __a : Union[str, Any] = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) __a : str = tokenizer.batch_decode(__a , skip_special_tokens=__a ) __a : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) __a : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) __a : List[str] = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : int = BioGptModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Union[str, Any] = 3 __a : List[str] = input_dict['input_ids'] __a : str = input_ids.ne(1 ).to(__a ) __a : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a : Union[str, Any] = BioGptForSequenceClassification(__a ) model.to(__a ) model.eval() __a : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Tuple = 3 __a : int = 'multi_label_classification' __a : Dict = input_dict['input_ids'] __a : Union[str, Any] = input_ids.ne(1 ).to(__a ) __a : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __a : Optional[int] = BioGptForSequenceClassification(__a ) model.to(__a ) model.eval() __a : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) __a : Any = torch.tensor([[2, 4805, 9, 656, 21]] ) __a : Tuple = model(__a )[0] __a : str = 4_2384 __a : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __a ) __a : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __a : Optional[int] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__a ) torch.manual_seed(0 ) __a : Union[str, Any] = tokenizer('COVID-19 is' , return_tensors='pt' ).to(__a ) __a : Optional[int] = model.generate( **__a , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=__a , ) __a : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=__a ) __a : int = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(__a , __a )
476
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCamelCase_ ( A__ , A__ ): a_ = [] for part_id in partition_order: a_ = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(A__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): a_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() a_ = spark.range(1_00 ).repartition(1 ) a_ = Spark(A__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): a_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() a_ = spark.range(10 ).repartition(2 ) a_ = [1, 0] a_ = _generate_iterable_examples(A__ , A__ ) # Reverse the partitions. a_ = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , A__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): a_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() a_ = spark.range(10 ).repartition(1 ) a_ = SparkExamplesIterable(A__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(A__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): a_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() a_ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: a_ = lambda A__ : x.reverse() a_ = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [2, 1, 0] ) a_ = SparkExamplesIterable(A__ ).shuffle_data_sources(A__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(A__ ): a_ , a_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): a_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() a_ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(A__ ): a_ , a_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(A__ ): a_ , a_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_ ( ): a_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() a_ = spark.range(1_00 ).repartition(1 ) a_ = Spark(A__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
263
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = None lowerCAmelCase_ : Any = 20 lowerCAmelCase_ : Optional[Any] = self._get_uniform_logits(batch_size=2 ,length=lowerCAmelCase__ ) # tweak scores to not be uniform anymore lowerCAmelCase_ : List[str] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase_ : Union[str, Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase_ : Optional[Any] = jax.nn.softmax(lowerCAmelCase__ ,axis=-1 ) lowerCAmelCase_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : str = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase_ : int = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ ,scores.copy() ,cur_len=lowerCAmelCase__ ) ,axis=-1 ) lowerCAmelCase_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ ,scores.copy() ,cur_len=lowerCAmelCase__ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCAmelCase_ ( self : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : Tuple = 2 # create ramp distribution lowerCAmelCase_ : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, vocab_size) ).copy() lowerCAmelCase_ : int = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase_ : str = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : Any = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase_ : List[Any] = 5 lowerCAmelCase_ : Dict = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCAmelCase_ : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, length) ).copy() lowerCAmelCase_ : List[Any] = top_k_warp_safety_check(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : List[str] = 10 lowerCAmelCase_ : Optional[int] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase_ : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase_ : Any = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase_ : Union[str, Any] = np.exp(top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase_ : Optional[Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase_ : Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase_ : Optional[Any] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCAmelCase_ : Tuple = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCAmelCase_ : Any = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 20 lowerCAmelCase_ : List[str] = 4 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) # check that min length is applied at length 5 lowerCAmelCase_ : Any = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCAmelCase_ : Dict = 5 lowerCAmelCase_ : Any = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = min_dist_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase_ : Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = 15 lowerCAmelCase_ : Optional[int] = min_dist_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = 20 lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase_ : Any = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : int = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = 20 lowerCAmelCase_ : int = 4 lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Any = 5 lowerCAmelCase_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase_ : Optional[Any] = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCAmelCase_ : Union[str, Any] = 4 lowerCAmelCase_ : Any = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase_ : Union[str, Any] = 3 lowerCAmelCase_ : Optional[int] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = 4 lowerCAmelCase_ : Union[str, Any] = 10 lowerCAmelCase_ : List[Any] = 15 lowerCAmelCase_ : Tuple = 2 lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Dict = 15 # dummy input_ids and scores lowerCAmelCase_ : List[Any] = ids_tensor((batch_size, sequence_length) ,lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = input_ids.copy() lowerCAmelCase_ : str = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = scores.copy() # instantiate all dist processors lowerCAmelCase_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = 10 # no processor list lowerCAmelCase_ : int = temp_dist_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = min_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = bos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = eos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # with processor list lowerCAmelCase_ : Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase_ : List[str] = processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : int = 15 lowerCAmelCase_ : Union[str, Any] = 2 lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : List[Any] = 15 # dummy input_ids and scores lowerCAmelCase_ : str = ids_tensor((batch_size, sequence_length) ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = input_ids.copy() lowerCAmelCase_ : Optional[int] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = scores.copy() # instantiate all dist processors lowerCAmelCase_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase_ : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = temp_dist_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Any = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = min_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = eos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) return scores # with processor list def run_processor_list(lowerCAmelCase__ : str ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase_ : Any = processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) return scores lowerCAmelCase_ : Any = jax.jit(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = jax.jit(lowerCAmelCase__ ) lowerCAmelCase_ : str = jitted_run_no_processor_list(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = jitted_run_processor_list(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
709
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = "▁" lowerCamelCase__ = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} lowerCamelCase__ = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } lowerCamelCase__ = {"vinai/bartpho-syllable": 1_024} class _UpperCamelCase ( __snake_case): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["input_ids", "attention_mask"] def __init__(self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) A__ = vocab_file A__ = monolingual_vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A__ = {} A__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase__ ) not in self.fairseq_tokens_to_ids: A__ = cnt cnt += 1 with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): A__ = line.strip().split()[0] A__ = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase__ ) not in self.fairseq_tokens_to_ids: A__ = len(self.fairseq_tokens_to_ids ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): """simple docstring""" A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__(self , lowerCamelCase__ ): """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A (self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A (self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def A (self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A (self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def A (self ): """simple docstring""" A__ = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A (self , lowerCamelCase__ ): """simple docstring""" return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def A (self , lowerCamelCase__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def A (self , lowerCamelCase__ ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def A (self , lowerCamelCase__ ): """simple docstring""" A__ = """""".join(lowerCamelCase__ ).replace(lowerCamelCase__ , """ """ ).strip() return out_string def A (self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , """wb""" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(lowerCamelCase__ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
574
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCamelCase ( __snake_case): __lowerCamelCase = "xlm-roberta-xl" def __init__(self , lowerCamelCase__=2_5_0_8_8_0 , lowerCamelCase__=2_5_6_0 , lowerCamelCase__=3_6 , lowerCamelCase__=3_2 , lowerCamelCase__=1_0_2_4_0 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_4 , lowerCamelCase__=1 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1E-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class _UpperCamelCase ( __snake_case): @property def A (self ): """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
574
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[int] ) -> int: """simple docstring""" return getitem, k def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Dict , UpperCamelCase : Any ) -> Tuple: """simple docstring""" return setitem, k, v def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" return delitem, k def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : Dict , *UpperCamelCase : Optional[int] ) -> str: """simple docstring""" try: return fun(UpperCamelCase , *UpperCamelCase ), None except Exception as e: return None, e _A = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) _A = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] _A = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] _A = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] _A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" a_ = HashMap(initial_block_size=4 ) a_ = {} for _, (fun, *args) in enumerate(UpperCamelCase ): a_ , a_ = _run_operation(UpperCamelCase , UpperCamelCase , *UpperCamelCase ) a_ , a_ = _run_operation(UpperCamelCase , UpperCamelCase , *UpperCamelCase ) assert my_res == py_res assert str(UpperCamelCase ) == str(UpperCamelCase ) assert set(UpperCamelCase ) == set(UpperCamelCase ) assert len(UpperCamelCase ) == len(UpperCamelCase ) assert set(my.items() ) == set(py.items() ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" def is_public(UpperCamelCase : str ) -> bool: return not name.startswith("""_""" ) a_ = {name for name in dir({} ) if is_public(UpperCamelCase )} a_ = {name for name in dir(HashMap() ) if is_public(UpperCamelCase )} assert dict_public_names > hash_public_names
403
import argparse import os import re _A = 'src/diffusers' # Pattern that looks at the indentation in a line. _A = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _A = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _A = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _A = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _A = re.compile(r'\[([^\]]+)\]') def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Any ) -> List[Any]: """simple docstring""" a_ = _re_indent.search(UpperCamelCase ) return "" if search is None else search.groups()[0] def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]="" , UpperCamelCase : int=None , UpperCamelCase : Dict=None ) -> List[str]: """simple docstring""" a_ = 0 a_ = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(UpperCamelCase ): index += 1 a_ = ["""\n""".join(lines[:index] )] else: a_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). a_ = [lines[index]] index += 1 while index < len(UpperCamelCase ) and (end_prompt is None or not lines[index].startswith(UpperCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(UpperCamelCase ) ) if index < len(UpperCamelCase ) - 1: a_ = [lines[index + 1]] index += 1 else: a_ = [] else: blocks.append("""\n""".join(UpperCamelCase ) ) a_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCamelCase ) > 0: blocks.append("""\n""".join(UpperCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" def _inner(UpperCamelCase : Optional[int] ): return key(UpperCamelCase ).lower().replace("""_""" , """""" ) return _inner def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" def noop(UpperCamelCase : Tuple ): return x if key is None: a_ = noop # Constants are all uppercase, they go first. a_ = [obj for obj in objects if key(UpperCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. a_ = [obj for obj in objects if key(UpperCamelCase )[0].isupper() and not key(UpperCamelCase ).isupper()] # Functions begin with a lowercase, they go last. a_ = [obj for obj in objects if not key(UpperCamelCase )[0].isupper()] a_ = ignore_underscore(UpperCamelCase ) return sorted(UpperCamelCase , key=UpperCamelCase ) + sorted(UpperCamelCase , key=UpperCamelCase ) + sorted(UpperCamelCase , key=UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" def _replace(UpperCamelCase : Tuple ): a_ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" a_ = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a_ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(UpperCamelCase )] ) + "]" a_ = import_statement.split("""\n""" ) if len(UpperCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. a_ = 2 if lines[1].strip() == """[""" else 1 a_ = [(i, _re_strip_line.search(UpperCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] a_ = sort_objects(UpperCamelCase , key=lambda UpperCamelCase : x[1] ) a_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: a_ = _re_bracket_content.sub(_replace , lines[1] ) else: a_ = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a_ = keys[:-1] a_ = get_indent(lines[1] ) + """, """.join([F"""\"{k}\"""" for k in sort_objects(UpperCamelCase )] ) return "\n".join(UpperCamelCase ) else: # Finally we have to deal with imports fitting on one line a_ = _re_bracket_content.sub(_replace , UpperCamelCase ) return import_statement def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] , UpperCamelCase : str=True ) -> Tuple: """simple docstring""" with open(UpperCamelCase , """r""" ) as f: a_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 a_ = split_code_in_indented_blocks( UpperCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. a_ = main_blocks[block_idx] a_ = block.split("""\n""" ) # Get to the start of the imports. a_ = 0 while line_idx < len(UpperCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: a_ = len(UpperCamelCase ) else: line_idx += 1 if line_idx >= len(UpperCamelCase ): continue # Ignore beginning and last line: they don't contain anything. a_ = """\n""".join(block_lines[line_idx:-1] ) a_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. a_ = split_code_in_indented_blocks(UpperCamelCase , indent_level=UpperCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend a_ = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. a_ = [(pattern.search(UpperCamelCase ).groups()[0] if pattern.search(UpperCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. a_ = [(i, key) for i, key in enumerate(UpperCamelCase ) if key is not None] a_ = [x[0] for x in sorted(UpperCamelCase , key=lambda UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. a_ = 0 a_ = [] for i in range(len(UpperCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: a_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCamelCase ) count += 1 # And we put our main block back together with its first and last line. a_ = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCamelCase ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(UpperCamelCase , """w""" ) as f: f.write("""\n""".join(UpperCamelCase ) ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[Any]=True ) -> List[str]: """simple docstring""" a_ = [] for root, _, files in os.walk(UpperCamelCase ): if "__init__.py" in files: a_ = sort_imports(os.path.join(UpperCamelCase , """__init__.py""" ) , check_only=UpperCamelCase ) if result: a_ = [os.path.join(UpperCamelCase , """__init__.py""" )] if len(UpperCamelCase ) > 0: raise ValueError(F"""Would overwrite {len(UpperCamelCase )} files, run `make style`.""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _A = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
403
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __magic_name__ = """\ Text data. Second line of data.""" __magic_name__ = """file""" @pytest.fixture(scope='session' ) def _lowerCamelCase ( UpperCAmelCase__ ) -> Dict: '''simple docstring''' a__ = tmp_path_factory.mktemp('data' ) / (FILE_PATH + """.zstd""") a__ = bytes(lowercase_,'utf-8' ) with zstd.open(lowercase_,'wb' ) as f: f.write(lowercase_ ) return path @pytest.fixture def _lowerCamelCase ( UpperCAmelCase__ ) -> str: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir,lowercase_ ),'w' ) as f: f.write(lowercase_ ) return FILE_PATH @pytest.mark.parametrize('compression_format',['gzip', 'xz', 'zstd'] ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} a__ = input_paths[compression_format] a__ = tmp_path / """cache""" a__ = DownloadConfig(cache_dir=lowercase_,extract_compressed_file=lowercase_ ) a__ = cached_path(lowercase_,download_config=lowercase_ ) with open(lowercase_ ) as f: a__ = f.read() with open(lowercase_ ) as f: a__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted',[True, False] ) @pytest.mark.parametrize('default_cache_dir',[True, False] ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> int: '''simple docstring''' a__ = """custom_cache""" a__ = """custom_extracted_dir""" a__ = tmp_path / """custom_extracted_path""" if default_extracted: a__ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR',lowercase_ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH',str(lowercase_ ) ) a__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) a__ = xz_file a__ = ( DownloadConfig(extract_compressed_file=lowercase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir,extract_compressed_file=lowercase_ ) ) a__ = cached_path(lowercase_,download_config=lowercase_ ) assert Path(lowercase_ ).parent.parts[-2:] == expected def _lowerCamelCase ( UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = str(Path(lowercase_ ).resolve() ) assert cached_path(lowercase_ ) == text_file # relative path a__ = str(Path(lowercase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase_ ) == text_file def _lowerCamelCase ( UpperCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(lowercase_ ): cached_path(lowercase_ ) # relative path a__ = """./__missing_file__.txt""" with pytest.raises(lowercase_ ): cached_path(lowercase_ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(lowercase_ ) as f: a__ = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE',lowercase_ ) def _lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' with pytest.raises(lowercase_ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE',lowercase_ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowercase_ ): http_get('https://huggingface.co',temp_file=lowercase_ ) with pytest.raises(lowercase_ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE',lowercase_ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowercase_ ): ftp_get('ftp://huggingface.co',temp_file=lowercase_ ) with pytest.raises(lowercase_ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE',lowercase_ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> str: '''simple docstring''' a__ = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowercase_ ): fsspec_get('s3://huggingface.co',temp_file=lowercase_ ) with pytest.raises(lowercase_ ): fsspec_head('s3://huggingface.co' )
232
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' def _snake_case ( A_ : int = 10**9 ): """simple docstring""" a_ : int = 1 a_ : List[Any] = 2 a_ : Union[str, Any] = 0 a_ : Union[str, Any] = 0 a_ : Optional[int] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value a_ : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
700
'''simple docstring''' def _snake_case ( A_ : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Dict ): """simple docstring""" a_ : Optional[int] = [False] * len(A_ ) a_ : List[str] = [] queue.append(A_ ) a_ : Union[str, Any] = True while queue: a_ : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) a_ : Any = True a_ : List[Any] = u return visited[t] def _snake_case ( A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : List[Any] ): """simple docstring""" a_ : Dict = [-1] * (len(A_ )) a_ : List[str] = 0 while bfs(A_ , A_ , A_ , A_ ): a_ : Any = float("""Inf""" ) a_ : Any = sink while s != source: # Find the minimum value in select path a_ : Any = min(A_ , graph[parent[s]][s] ) a_ : List[Any] = parent[s] max_flow += path_flow a_ : Tuple = sink while v != source: a_ : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow a_ : List[Any] = parent[v] return max_flow __snake_case: List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __snake_case ,__snake_case: int = 0, 5 print(ford_fulkerson(graph, source, sink))
460
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): _lowerCamelCase : Tuple =[image] _lowerCamelCase : Tuple =[trans(img.convert('RGB' ) ) for img in image] _lowerCamelCase : List[Any] =torch.stack(SCREAMING_SNAKE_CASE__ ) return image class A ( UpperCamelCase_ ): def __init__( self : Tuple , lowercase_ : Optional[int] , lowercase_ : List[str] ) -> Optional[int]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowerCamelCase : List[Any] =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def lowerCamelCase ( self : int , lowercase_ : int ) -> str: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowerCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : int ) -> List[Any]: """simple docstring""" _lowerCamelCase : str =min(int(num_inference_steps * strength ) , lowercase_ ) _lowerCamelCase : Optional[int] =max(num_inference_steps - init_timestep , 0 ) _lowerCamelCase : int =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[Any]=None ) -> Any: """simple docstring""" if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) _lowerCamelCase : Tuple =image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowerCamelCase : Union[str, Any] =init_latents.shape _lowerCamelCase : List[str] =randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) _lowerCamelCase : Optional[Any] =self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) _lowerCamelCase : Optional[int] =init_latents return latents @torch.no_grad() def __call__( self : List[Any] , lowercase_ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowercase_ : float = 0.8 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : float = 0.0 , lowercase_ : int = 50 , lowercase_ : Optional[bool] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(lowercase_ ) # 2. Preprocess image _lowerCamelCase : str =preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) _lowerCamelCase , _lowerCamelCase : Dict =self.get_timesteps(lowercase_ , lowercase_ , self.device ) _lowerCamelCase : List[Any] =timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables _lowerCamelCase : str =self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) _lowerCamelCase : Any =latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output _lowerCamelCase : List[Any] =self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCamelCase : List[Any] =self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample _lowerCamelCase : int =(image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase : List[Any] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase : Optional[int] =self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
464
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase = logging.get_logger(__name__) class A ( UpperCamelCase_ ): def __init__( self : Optional[Any] , *lowercase_ : str , **lowercase_ : List[Any] ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
464
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=1_3 ,lowerCamelCase_=3_2 ,lowerCamelCase_=3 ,lowerCamelCase_=4 ,lowerCamelCase_=[1_0, 2_0, 3_0, 4_0] ,lowerCamelCase_=[2, 2, 3, 2] ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=3_7 ,lowerCamelCase_="gelu" ,lowerCamelCase_=1_0 ,lowerCamelCase_=0.02 ,lowerCamelCase_=["stage2", "stage3", "stage4"] ,lowerCamelCase_=[2, 3, 4] ,lowerCamelCase_=None ,) -> Optional[int]: A = parent A = batch_size A = image_size A = num_channels A = num_stages A = hidden_sizes A = depths A = is_training A = use_labels A = intermediate_size A = hidden_act A = num_labels A = initializer_range A = out_features A = out_indices A = scope def UpperCamelCase__ ( self ) -> Tuple: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.num_labels ) A = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> str: return ConvNextConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=lowerCAmelCase_ ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: A = ConvNextModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A = model(lowerCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) ,) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = ConvNextForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A = model(lowerCAmelCase_ ,labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Tuple: A = ConvNextBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A = model(lowerCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None A = None A = ConvNextBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCamelCase__ ( self ) -> Tuple: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowerCamelCase = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCamelCase__ ( self ) -> Union[str, Any]: A = ConvNextModelTester(self ) A = ConfigTester(self ,config_class=lowerCAmelCase_ ,has_text_modality=lowerCAmelCase_ ,hidden_size=3_7 ) def UpperCamelCase__ ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ) -> Dict: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def UpperCamelCase__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def UpperCamelCase__ ( self ) -> List[Any]: pass def UpperCamelCase__ ( self ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(lowerCAmelCase_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCAmelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase_ ) def UpperCamelCase__ ( self ) -> int: def check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ): A = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(lowerCAmelCase_ ,lowerCAmelCase_ ) ) A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = True check_hidden_states_output(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) def UpperCamelCase__ ( self ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def UpperCamelCase__ ( self ) -> List[str]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = ConvNextModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def _A ( ): """simple docstring""" A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ) -> Optional[Any]: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ) -> Optional[Any]: A = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(lowerCAmelCase_ ) A = self.default_image_processor A = prepare_img() A = image_processor(images=lowerCAmelCase_ ,return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): A = model(**lowerCAmelCase_ ) # verify the logits A = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,lowerCAmelCase_ ) A = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase_ ,atol=1E-4 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase , __lowerCAmelCase ): '''simple docstring''' _lowerCamelCase = (ConvNextBackbone,) if is_torch_available() else () _lowerCamelCase = ConvNextConfig _lowerCamelCase = False def UpperCamelCase__ ( self ) -> Dict: A = ConvNextModelTester(self )
717
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> Dict: A = path_or_paths A = split if split or isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else """train""" A = features A = cache_dir A = keep_in_memory A = streaming A = num_proc A = kwargs @abstractmethod def UpperCamelCase__ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> int: A = features A = cache_dir A = keep_in_memory A = streaming A = num_proc A = kwargs @abstractmethod def UpperCamelCase__ ( self ) -> Union[Dataset, IterableDataset]: pass
255
0
_lowerCamelCase : Union[str, Any] = [0, 2, 4, 6, 8] _lowerCamelCase : List[Any] = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 A__ = 0 for digit in range(10 ): A__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowercase_ , lowercase_ ) return result A__ = 0 for digita in range(10 ): A__ = digita if (remainder + digita) % 2 == 0: A__ = ODD_DIGITS else: A__ = EVEN_DIGITS for digita in other_parity_digits: A__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowercase_ , lowercase_ , ) return result def SCREAMING_SNAKE_CASE ( lowercase_ = 9 ) -> int: """simple docstring""" A__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowercase_ , 0 , [0] * length , lowercase_ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
87
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
64
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = ['''input_features''', '''attention_mask'''] def __init__( self , snake_case=80 , snake_case=1_6000 , snake_case=0.0 , snake_case=10 , snake_case=25 , snake_case="hamming_window" , snake_case=3_27_68.0 , snake_case=0.97 , snake_case=1.0 , snake_case=True , snake_case=True , snake_case=False , **snake_case , ): super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) snake_case_ = feature_size snake_case_ = sampling_rate snake_case_ = padding_value snake_case_ = hop_length snake_case_ = win_length snake_case_ = frame_signal_scale snake_case_ = preemphasis_coeff snake_case_ = mel_floor snake_case_ = normalize_means snake_case_ = normalize_vars snake_case_ = win_function snake_case_ = return_attention_mask snake_case_ = win_length * sampling_rate // 1000 snake_case_ = hop_length * sampling_rate // 1000 snake_case_ = optimal_fft_length(self.sample_size ) snake_case_ = (self.n_fft // 2) + 1 def a ( self , snake_case ): if self.win_function == "hamming_window": snake_case_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: snake_case_ = window_function(window_length=self.sample_size , name=self.win_function ) snake_case_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) snake_case_ = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def a ( self , snake_case , snake_case , snake_case ): # make sure we normalize float32 arrays if self.normalize_means: snake_case_ = x[:input_length].mean(axis=0 ) snake_case_ = np.subtract(snake_case , snake_case ) if self.normalize_vars: snake_case_ = x[:input_length].std(axis=0 ) snake_case_ = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: snake_case_ = padding_value # make sure array is in float32 snake_case_ = x.astype(np.floataa ) return x def a ( self , snake_case , snake_case = None ): snake_case_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self , snake_case , snake_case = False , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) snake_case_ = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): snake_case_ = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [raw_speech] # extract fbank features snake_case_ = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding snake_case_ = BatchFeature({'input_features': features} ) snake_case_ = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format snake_case_ = padded_inputs.get('input_features' ) if isinstance(input_features[0] , snake_case ): snake_case_ = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] snake_case_ = padded_inputs.get('attention_mask' ) if attention_mask is not None: snake_case_ = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: snake_case_ = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) snake_case_ = self.normalize( padded_inputs['input_features'] , attention_mask=snake_case ) if return_tensors is not None: snake_case_ = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
108
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) snake_case_ = sum(UpperCamelCase__ ) / len(UpperCamelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
108
1
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _lowercase = logging.get_logger(__name__) def lowerCAmelCase__ ( ) ->List[str]: # Get the sagemaker specific mp parameters from smp_options variable. __lowercase = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowercase = json.loads(__magic_name__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowercase = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowercase = json.loads(__magic_name__ ) if not mpi_options.get("sagemaker_mpi_enabled" , __magic_name__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __a ( __a ): '''simple docstring''' _lowerCamelCase : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , _lowerCamelCase , ) @cached_property def SCREAMING_SNAKE_CASE ( self ) -> "torch.device": '''simple docstring''' logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: __lowercase = torch.device("cpu" ) __lowercase = 0 elif is_sagemaker_model_parallel_available(): __lowercase = smp.local_rank() __lowercase = torch.device("cuda" , _lowerCamelCase ) __lowercase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) __lowercase = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) __lowercase = torch.device("cuda" , self.local_rank ) __lowercase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowercase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowercase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) __lowercase = torch.device("cuda" , self.local_rank ) __lowercase = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase ) return device @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' return False
118
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _lowercase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _lowercase = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase__ ( ) ->Any: __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(__magic_name__ ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(__magic_name__ ) for n in cs] return dict(zip(__magic_name__ , __magic_name__ ) ) def lowerCAmelCase__ ( __magic_name__ ) ->Tuple: __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class __a ( __a ): '''simple docstring''' _lowerCamelCase : List[str] = VOCAB_FILES_NAMES _lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , **_lowerCamelCase , ) -> int: '''simple docstring''' __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(_lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> int: '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(_lowerCamelCase ) __lowercase = get_pairs(_lowerCamelCase ) if not pairs: return token while True: __lowercase = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(_lowerCamelCase ): try: __lowercase = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(_lowerCamelCase ) __lowercase = new_word if len(_lowerCamelCase ) == 1: break else: __lowercase = get_pairs(_lowerCamelCase ) __lowercase = " ".join(_lowerCamelCase ) __lowercase = word return word def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , _lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(" " ) ) return bpe_tokens def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Tuple: '''simple docstring''' return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> str: '''simple docstring''' return self.decoder.get(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = "".join(_lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowercase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + "\n" ) __lowercase = 0 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(_lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple: '''simple docstring''' return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) __lowercase = " ".join(_lowerCamelCase ) __lowercase = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
118
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } lowercase_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } lowercase_ = '''▁''' # Segments (not really needed) lowercase_ = 0 lowercase_ = 1 lowercase_ = 2 lowercase_ = 3 lowercase_ = 4 class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : int =VOCAB_FILES_NAMES lowerCamelCase__ : Tuple =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple ="left" lowerCamelCase__ : List[str] =XLNetTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<sep>" , lowerCamelCase="<pad>" , lowerCamelCase="<cls>" , lowerCamelCase="<mask>" , lowerCamelCase=["<eop>", "<eod>"] , **lowerCamelCase , ) -> Optional[Any]: """simple docstring""" __magic_name__ : Dict = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( vocab_file=lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , remove_space=lowerCamelCase , keep_accents=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) __magic_name__ : Union[str, Any] = 3 __magic_name__ : List[Any] = do_lower_case __magic_name__ : Union[str, Any] = remove_space __magic_name__ : Tuple = keep_accents __magic_name__ : Tuple = vocab_file __magic_name__ : Tuple = False if not self.vocab_file else True def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" __magic_name__ : Union[str, Any] = [self.sep_token_id] __magic_name__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" __magic_name__ : int = [self.sep_token_id] __magic_name__ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : Union[str, Any] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
336
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def lowercase ( self ) -> Dict: """simple docstring""" __magic_name__ : List[Any] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } __magic_name__ : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(lowerCamelCase ) , lowerCamelCase ) def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , x.transpose() ) ) __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase ( self ) -> Optional[int]: """simple docstring""" __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ : List[str] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , transpose(lowerCamelCase ).numpy() ) ) __magic_name__ : int = np.random.randn(3 , 4 , 5 ) __magic_name__ : Union[str, Any] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , transpose(lowerCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Dict = np.random.randn(3 , 4 ) __magic_name__ : Any = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , transpose(lowerCamelCase ).numpy() ) ) __magic_name__ : str = np.random.randn(3 , 4 , 5 ) __magic_name__ : Optional[int] = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , transpose(lowerCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase ( self ) -> int: """simple docstring""" __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ : Optional[Any] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , np.asarray(transpose(lowerCamelCase ) ) ) ) __magic_name__ : int = np.random.randn(3 , 4 , 5 ) __magic_name__ : Tuple = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCamelCase , axes=(1, 2, 0) ) ) ) ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" __magic_name__ : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , np.reshape(lowerCamelCase , (4, 3) ) ) ) __magic_name__ : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , np.reshape(lowerCamelCase , (12, 5) ) ) ) @require_torch def lowercase ( self ) -> int: """simple docstring""" __magic_name__ : Tuple = np.random.randn(3 , 4 ) __magic_name__ : List[Any] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , reshape(lowerCamelCase , (4, 3) ).numpy() ) ) __magic_name__ : List[str] = np.random.randn(3 , 4 , 5 ) __magic_name__ : Tuple = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , reshape(lowerCamelCase , (12, 5) ).numpy() ) ) @require_tf def lowercase ( self ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ : List[str] = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , reshape(lowerCamelCase , (4, 3) ).numpy() ) ) __magic_name__ : Optional[Any] = np.random.randn(3 , 4 , 5 ) __magic_name__ : str = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , reshape(lowerCamelCase , (12, 5) ).numpy() ) ) @require_flax def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Dict = np.random.randn(3 , 4 ) __magic_name__ : Optional[Any] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , np.asarray(reshape(lowerCamelCase , (4, 3) ) ) ) ) __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) __magic_name__ : List[Any] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , np.asarray(reshape(lowerCamelCase , (12, 5) ) ) ) ) def lowercase ( self ) -> Dict: """simple docstring""" __magic_name__ : Optional[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , np.squeeze(lowerCamelCase ) ) ) __magic_name__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , np.squeeze(lowerCamelCase , axis=2 ) ) ) @require_torch def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : Any = np.random.randn(1 , 3 , 4 ) __magic_name__ : List[str] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , squeeze(lowerCamelCase ).numpy() ) ) __magic_name__ : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ : Tuple = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , squeeze(lowerCamelCase , axis=2 ).numpy() ) ) @require_tf def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Optional[int] = np.random.randn(1 , 3 , 4 ) __magic_name__ : Any = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , squeeze(lowerCamelCase ).numpy() ) ) __magic_name__ : int = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ : str = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , squeeze(lowerCamelCase , axis=2 ).numpy() ) ) @require_flax def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : str = np.random.randn(1 , 3 , 4 ) __magic_name__ : List[str] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , np.asarray(squeeze(lowerCamelCase ) ) ) ) __magic_name__ : Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) __magic_name__ : Optional[int] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , np.asarray(squeeze(lowerCamelCase , axis=2 ) ) ) ) def lowercase ( self ) -> Optional[int]: """simple docstring""" __magic_name__ : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , np.expand_dims(lowerCamelCase , axis=1 ) ) ) @require_torch def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = np.random.randn(3 , 4 ) __magic_name__ : str = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , expand_dims(lowerCamelCase , axis=1 ).numpy() ) ) @require_tf def lowercase ( self ) -> Any: """simple docstring""" __magic_name__ : List[str] = np.random.randn(3 , 4 ) __magic_name__ : Union[str, Any] = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , expand_dims(lowerCamelCase , axis=1 ).numpy() ) ) @require_flax def lowercase ( self ) -> Optional[Any]: """simple docstring""" __magic_name__ : List[Any] = np.random.randn(3 , 4 ) __magic_name__ : int = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , np.asarray(expand_dims(lowerCamelCase , axis=1 ) ) ) )
336
1
import string def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> None: for key in range(len(string.ascii_uppercase ) ): _lowercase = '' for symbol in message: if symbol in string.ascii_uppercase: _lowercase = string.ascii_uppercase.find(snake_case__ ) _lowercase = num - key if num < 0: _lowercase = num + len(string.ascii_uppercase ) _lowercase = translated + string.ascii_uppercase[num] else: _lowercase = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: _lowercase = input('Encrypted message: ' ) _lowercase = message.upper() decrypt(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
67
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any ) -> str: _lowercase = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: _lowercase = 1024 _lowercase = 4096 _lowercase = 24 _lowercase = 16 _lowercase = [5, 11, 17, 23] _lowercase = [256, 512, 1024, 1024] _lowercase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowercase = 768 _lowercase = [1, 1, 1, 0.5] _lowercase = [256, 512, 768, 768] _lowercase = 150 _lowercase = 16 _lowercase = (1, 384, 384) _lowercase = False _lowercase = 'project' if "ade" in checkpoint_url: _lowercase = True _lowercase = 768 _lowercase = [1, 1, 1, 0.5] _lowercase = 150 _lowercase = 16 _lowercase = 'huggingface/label-files' _lowercase = 'ade20k-id2label.json' _lowercase = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type='dataset' ) ) , 'r' ) ) _lowercase = {int(snake_case__ ): v for k, v in idalabel.items()} _lowercase = idalabel _lowercase = {v: k for k, v in idalabel.items()} _lowercase = [1, 150, 480, 480] return config, expected_shape def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> str: _lowercase = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowercase = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _lowercase = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _lowercase = name.replace('patch_embed' , '' ) if "pos_embed" in name: _lowercase = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _lowercase = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _lowercase = name.replace('proj' , 'projection' ) if "blocks" in name: _lowercase = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _lowercase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: _lowercase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: _lowercase = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _lowercase = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _lowercase = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _lowercase = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _lowercase = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _lowercase = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _lowercase = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _lowercase = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowercase = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _lowercase = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _lowercase = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _lowercase = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _lowercase = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _lowercase = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowercase = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowercase = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowercase = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowercase = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowercase = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _lowercase = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _lowercase = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _lowercase = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _lowercase = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _lowercase = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _lowercase = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _lowercase = name.replace('pretrained' , 'dpt' ) if "bn" in name: _lowercase = name.replace('bn' , 'batch_norm' ) if "head" in name: _lowercase = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _lowercase = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _lowercase = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: _lowercase = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: _lowercase = name.replace('..' , '.' ) if "stem.conv" in name: _lowercase = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _lowercase = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: _lowercase = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: _lowercase = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: _lowercase = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: _lowercase = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: _lowercase = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :int ) -> Dict: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowercase = in_proj_weight[: config.hidden_size, :] _lowercase = in_proj_bias[: config.hidden_size] _lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase = in_proj_weight[ -config.hidden_size :, : ] _lowercase = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: _lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] , snake_case__ :List[Any] , snake_case__ :str , snake_case__ :Any , snake_case__ :List[str] ) -> str: _lowercase , _lowercase = get_dpt_config(snake_case__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowercase = torch.load(snake_case__ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(snake_case__ ) # rename keys for key in state_dict.copy().keys(): _lowercase = state_dict.pop(snake_case__ ) _lowercase = val # read in qkv matrices read_in_q_k_v(snake_case__ , snake_case__ ) # load HuggingFace model _lowercase = DPTForSemanticSegmentation(snake_case__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # Check outputs on an image _lowercase = 480 if 'ade' in checkpoint_url else 384 _lowercase = DPTImageProcessor(size=snake_case__ ) _lowercase = prepare_img() _lowercase = image_processor(snake_case__ , return_tensors='pt' ) # forward pass _lowercase = model(**snake_case__ ).logits if 'ade' in checkpoint_url else model(**snake_case__ ).predicted_depth if show_prediction: _lowercase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=snake_case__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) snake_case = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
67
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __A : Any = logging.get_logger(__name__) def __UpperCamelCase ( _A : Tuple , _A : Any ) ->List[Any]: """simple docstring""" lowerCamelCase_ =set() lowerCamelCase_ =[] def parse_line(_A : List[Any] ): for line in fp: if isinstance(_A , _A ): lowerCamelCase_ =line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(_A ) > 0: lowerCamelCase_ ="""\n""".join(_A ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(_A ) buffer.clear() continue else: lowerCamelCase_ =line.strip() buffer.append(_A ) if from_gh: for filename in os.listdir(_A ): lowerCamelCase_ =os.path.join(_A , _A ) if not os.path.isdir(_A ): # read the file if filename != "warnings.txt": continue with open(_A ) as fp: parse_line(_A ) else: try: with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file if filename != "warnings.txt": continue with z.open(_A ) as fp: parse_line(_A ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def __UpperCamelCase ( _A : Optional[Any] , _A : int ) ->str: """simple docstring""" lowerCamelCase_ =set() lowerCamelCase_ =[os.path.join(_A , _A ) for p in os.listdir(_A ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_A , _A ) ) return selected_warnings if __name__ == "__main__": def __UpperCamelCase ( _A : Dict ) ->Optional[int]: """simple docstring""" return values.split(""",""" ) __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) __A : Union[str, Any] = parser.parse_args() __A : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __A : Optional[int] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __A : Optional[int] = extract_warnings(args.output_dir, args.targets) __A : Tuple = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
721
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __A : Optional[Any] = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' __A : Tuple = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' __A : str = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] ) ->Dict: """simple docstring""" return float((preds == labels).mean() ) def __UpperCamelCase ( _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any]="binary" ) ->List[Any]: """simple docstring""" lowerCamelCase_ =simple_accuracy(_A , _A ) lowerCamelCase_ =float(fa_score(y_true=_A , y_pred=_A , average=_A ) ) return { "accuracy": acc, "f1": fa, } def __UpperCamelCase ( _A : int , _A : Union[str, Any] ) ->int: """simple docstring""" lowerCamelCase_ ={} for id_pred, label in zip(_A , _A ): lowerCamelCase_ =f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' lowerCamelCase_ =id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase_ =[(pred, label)] lowerCamelCase_ , lowerCamelCase_ =[], [] for question, preds_labels in question_map.items(): lowerCamelCase_ , lowerCamelCase_ =zip(*_A ) lowerCamelCase_ =fa_score(y_true=_A , y_pred=_A , average="""macro""" ) fas.append(_A ) lowerCamelCase_ =int(sum(pred == label for pred, label in preds_labels ) == len(_A ) ) ems.append(_A ) lowerCamelCase_ =float(sum(_A ) / len(_A ) ) lowerCamelCase_ =sum(_A ) / len(_A ) lowerCamelCase_ =float(fa_score(y_true=_A , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _SCREAMING_SNAKE_CASE ( datasets.Metric): def _snake_case ( self )-> Union[str, Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _snake_case ( self )-> Optional[Any]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="""macro""" ) elif self.config_name == "record": lowerCamelCase_ =[ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCamelCase_ ={pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
75
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __a : Union[str, Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" __a : int = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" __a : Dict = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : int="auto" , UpperCamelCase_ : str=-1 , UpperCamelCase_ : str=0.9 , UpperCamelCase_ : Dict=5 , UpperCamelCase_ : str=500 , UpperCamelCase_ : int="gpt2-large" , UpperCamelCase_ : Dict=-1 , UpperCamelCase_ : Tuple=1_024 , UpperCamelCase_ : Optional[Any]=25 , UpperCamelCase_ : str=5 , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict=25 , ): """simple docstring""" __A = compute_mauve( p_text=UpperCamelCase_ , q_text=UpperCamelCase_ , p_features=UpperCamelCase_ , q_features=UpperCamelCase_ , p_tokens=UpperCamelCase_ , q_tokens=UpperCamelCase_ , num_buckets=UpperCamelCase_ , pca_max_data=UpperCamelCase_ , kmeans_explained_var=UpperCamelCase_ , kmeans_num_redo=UpperCamelCase_ , kmeans_max_iter=UpperCamelCase_ , featurize_model_name=UpperCamelCase_ , device_id=UpperCamelCase_ , max_text_length=UpperCamelCase_ , divergence_curve_discretization_size=UpperCamelCase_ , mauve_scaling_factor=UpperCamelCase_ , verbose=UpperCamelCase_ , seed=UpperCamelCase_ , ) return out
637
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() __a : Union[str, Any] = logging.get_logger(__name__) __a : Tuple = "Hello world! cécé herlolip" def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : str , __lowercase : bool ) -> List[Any]: """simple docstring""" __A = FairseqRobertaModel.from_pretrained(__lowercase ) roberta.eval() # disable dropout __A = roberta.model.encoder.sentence_encoder __A = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __A = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , __lowercase ) __A = XLMRobertaXLForSequenceClassification(__lowercase ) if classification_head else XLMRobertaXLForMaskedLM(__lowercase ) model.eval() # Now let's copy all the weights. # Embeddings __A = roberta_sent_encoder.embed_tokens.weight __A = roberta_sent_encoder.embed_positions.weight __A = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __A = roberta_sent_encoder.layer_norm.weight __A = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __A = model.roberta.encoder.layer[i] __A = roberta_sent_encoder.layers[i] __A = layer.attention __A = roberta_layer.self_attn_layer_norm.weight __A = roberta_layer.self_attn_layer_norm.bias # self attention __A = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __A = roberta_layer.self_attn.q_proj.weight __A = roberta_layer.self_attn.q_proj.bias __A = roberta_layer.self_attn.k_proj.weight __A = roberta_layer.self_attn.k_proj.bias __A = roberta_layer.self_attn.v_proj.weight __A = roberta_layer.self_attn.v_proj.bias # self-attention output __A = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __A = roberta_layer.self_attn.out_proj.weight __A = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __A = roberta_layer.final_layer_norm.weight __A = roberta_layer.final_layer_norm.bias # intermediate __A = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __A = roberta_layer.fca.weight __A = roberta_layer.fca.bias # output __A = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __A = roberta_layer.fca.weight __A = roberta_layer.fca.bias # end of layer if classification_head: __A = roberta.model.classification_heads["""mnli"""].dense.weight __A = roberta.model.classification_heads["""mnli"""].dense.bias __A = roberta.model.classification_heads["""mnli"""].out_proj.weight __A = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __A = roberta.model.encoder.lm_head.dense.weight __A = roberta.model.encoder.lm_head.dense.bias __A = roberta.model.encoder.lm_head.layer_norm.weight __A = roberta.model.encoder.lm_head.layer_norm.bias __A = roberta.model.encoder.lm_head.weight __A = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __A = roberta.encode(__lowercase ).unsqueeze(0 ) # batch of size 1 __A = model(__lowercase )[0] if classification_head: __A = roberta.model.classification_heads["""mnli"""](roberta.extract_features(__lowercase ) ) else: __A = roberta.model(__lowercase )[0] print(our_output.shape , their_output.shape ) __A = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __A = torch.allclose(__lowercase , __lowercase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(__lowercase ).mkdir(parents=__lowercase , exist_ok=__lowercase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __a : Dict = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
637
1
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __UpperCamelCase : str = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowercase ( lowerCAmelCase : str = "dhaka" , lowerCAmelCase : int = 5): """simple docstring""" _A : Optional[int] = min(lowerCAmelCase , 50) # Prevent abuse! _A : Union[str, Any] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _A : str = requests.get('''https://www.google.com/search''' , params=lowerCAmelCase , headers=lowerCAmelCase) _A : List[Any] = BeautifulSoup(html.text , '''html.parser''') _A : Dict = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''')))) _A : List[Any] = json.dumps(lowerCAmelCase) _A : Optional[int] = json.loads(lowerCAmelCase) _A : List[Any] = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , lowerCAmelCase , ) if not matched_google_image_data: return 0 _A : str = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(lowerCAmelCase) , ) _A : Optional[Any] = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , lowerCAmelCase , ) for index, fixed_full_res_image in enumerate(lowerCAmelCase): if index >= max_images: return index _A : Dict = bytes(lowerCAmelCase , '''ascii''').decode( '''unicode-escape''') _A : Optional[Any] = bytes(lowerCAmelCase , '''ascii''').decode( '''unicode-escape''') _A : Optional[int] = urllib.request.build_opener() _A : Union[str, Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(lowerCAmelCase) _A : Tuple = f"""query_{query.replace(' ' , '_')}""" if not os.path.exists(lowerCAmelCase): os.makedirs(lowerCAmelCase) urllib.request.urlretrieve( # noqa: S310 lowerCAmelCase , f"""{path_name}/original_size_img_{index}.jpg""") return index if __name__ == "__main__": try: __UpperCamelCase : int = download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
721
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __UpperCamelCase : str = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = """albert""" def __init__( self , UpperCAmelCase__=3_0_0_0_0 , UpperCAmelCase__=1_2_8 , UpperCAmelCase__=4_0_9_6 , UpperCAmelCase__=1_2 , UpperCAmelCase__=1 , UpperCAmelCase__=6_4 , UpperCAmelCase__=1_6_3_8_4 , UpperCAmelCase__=1 , UpperCAmelCase__="gelu_new" , UpperCAmelCase__=0 , UpperCAmelCase__=0 , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0.1 , UpperCAmelCase__="absolute" , UpperCAmelCase__=0 , UpperCAmelCase__=2 , UpperCAmelCase__=3 , **UpperCAmelCase__ , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _A : Optional[Any] = vocab_size _A : Optional[int] = embedding_size _A : str = hidden_size _A : Union[str, Any] = num_hidden_layers _A : Optional[int] = num_hidden_groups _A : Optional[Any] = num_attention_heads _A : Tuple = inner_group_num _A : Tuple = hidden_act _A : List[Any] = intermediate_size _A : str = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : List[Any] = type_vocab_size _A : Any = initializer_range _A : Tuple = layer_norm_eps _A : Dict = classifier_dropout_prob _A : Union[str, Any] = position_embedding_type class lowerCamelCase__ ( snake_case_ ): """simple docstring""" @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _A : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
417
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = """ClapFeatureExtractor""" __SCREAMING_SNAKE_CASE :List[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[Any] , a__ : Dict , a__ : Dict ): super().__init__(a__ , a__ ) def __call__( self : Dict , a__ : List[str]=None , a__ : List[Any]=None , a__ : Any=None , **a__ : Tuple ): __magic_name__ = kwargs.pop('''sampling_rate''' , a__ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: __magic_name__ = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if audios is not None: __magic_name__ = self.feature_extractor( a__ , sampling_rate=a__ , return_tensors=a__ , **a__ ) if text is not None and audios is not None: __magic_name__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def snake_case__ ( self : List[Any] , *a__ : str , **a__ : List[str] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case__ ( self : int , *a__ : Tuple , **a__ : Tuple ): return self.tokenizer.decode(*a__ , **a__ ) @property def snake_case__ ( self : Any ): __magic_name__ = self.tokenizer.model_input_names __magic_name__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
432
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["LayoutLMv3FeatureExtractor"] _lowerCAmelCase = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
432
1
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ : List[str] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class _lowercase ( lowerCAmelCase , unittest.TestCase ): _a : str = BartphoTokenizer _a : Union[str, Any] = False _a : Any = True def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" super().setUp() __snake_case : List[Any] =['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case : Any =dict(zip(a , range(len(a ) ) ) ) __snake_case : Dict ={'''unk_token''': '''<unk>'''} __snake_case : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) __snake_case : Optional[Any] =BartphoTokenizer(a , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self : Union[str, Any] , **a : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a ) def _UpperCamelCase ( self : Union[str, Any] , a : Union[str, Any] ): """simple docstring""" __snake_case : Optional[int] ='''This is a là test''' __snake_case : Optional[Any] ='''This is a<unk><unk> test''' return input_text, output_text def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : Any =BartphoTokenizer(a , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case : Optional[int] ='''This is a là test''' __snake_case : List[Any] ='''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case : Union[str, Any] =tokenizer.tokenize(a ) self.assertListEqual(a , a ) __snake_case : Any =tokens + [tokenizer.unk_token] __snake_case : Optional[int] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a )
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase_ : str = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Union[str, Any] = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
497
0
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" __a = {} __a = job["""started_at"""] __a = job["""completed_at"""] __a = date_parser.parse(__SCREAMING_SNAKE_CASE ) __a = date_parser.parse(__SCREAMING_SNAKE_CASE ) __a = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __a = start __a = end __a = duration_in_min return job_info def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" __a = None if token is not None: __a = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} __a = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __a = requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ).json() __a = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(__SCREAMING_SNAKE_CASE ) for job in result["""jobs"""]} ) __a = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__SCREAMING_SNAKE_CASE ): __a = requests.get(url + F'''&page={i + 2}''' , headers=__SCREAMING_SNAKE_CASE ).json() job_time.update({job["""name"""]: extract_time_from_single_job(__SCREAMING_SNAKE_CASE ) for job in result["""jobs"""]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE_ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
582
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" pass def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for shard in shards: for i in range(__SCREAMING_SNAKE_CASE ): yield {"i": i, "shard": shard} def __lowercase ( ) -> Tuple: """simple docstring""" __a = int(os.environ["""RANK"""] ) __a = int(os.environ["""WORLD_SIZE"""] ) __a = ArgumentParser() parser.add_argument("""--streaming""" , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--local_rank""" , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--num_workers""" , type=__SCREAMING_SNAKE_CASE , default=0 ) __a = parser.parse_args() __a = args.streaming __a = args.num_workers __a = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(__SCREAMING_SNAKE_CASE )]} __a = IterableDataset.from_generator(__SCREAMING_SNAKE_CASE , gen_kwargs=__SCREAMING_SNAKE_CASE ) if not streaming: __a = Dataset.from_list(list(__SCREAMING_SNAKE_CASE ) ) __a = split_dataset_by_node(__SCREAMING_SNAKE_CASE , rank=__SCREAMING_SNAKE_CASE , world_size=__SCREAMING_SNAKE_CASE ) __a = torch.utils.data.DataLoader(__SCREAMING_SNAKE_CASE , num_workers=__SCREAMING_SNAKE_CASE ) __a = NUM_SHARDS * NUM_ITEMS_PER_SHARD __a = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __a = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
582
1
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : list[list] ) -> list[list]: _SCREAMING_SNAKE_CASE : Optional[Any] = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : Any = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _SCREAMING_SNAKE_CASE : Optional[int] = column continue _SCREAMING_SNAKE_CASE : int = column / magnitude # Subtract to cancel term _SCREAMING_SNAKE_CASE : List[Any] = current_set[0] _SCREAMING_SNAKE_CASE : Tuple = [first_row] _SCREAMING_SNAKE_CASE : Optional[Any] = current_set[1::] for row in current_set: _SCREAMING_SNAKE_CASE : List[str] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _SCREAMING_SNAKE_CASE : Union[str, Any] = final_set[0] _SCREAMING_SNAKE_CASE : int = [] _SCREAMING_SNAKE_CASE : Any = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _SCREAMING_SNAKE_CASE : Optional[int] = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = resultant return final_set def _lowerCAmelCase ( lowerCamelCase__ : list[list] ) -> list: if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _SCREAMING_SNAKE_CASE : int = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _SCREAMING_SNAKE_CASE : Optional[Any] = equations.copy() if any(0 in row for row in data_set ): _SCREAMING_SNAKE_CASE : Dict = data_set.copy() _SCREAMING_SNAKE_CASE : int = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _SCREAMING_SNAKE_CASE : str = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : List[str] = data_set.copy() _SCREAMING_SNAKE_CASE : Dict = simplify(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Dict = simplified[::-1] _SCREAMING_SNAKE_CASE : list = [] for row in simplified: _SCREAMING_SNAKE_CASE : Dict = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _SCREAMING_SNAKE_CASE : str = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _SCREAMING_SNAKE_CASE : List[Any] = temp_row[1::] _SCREAMING_SNAKE_CASE : str = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Optional[int] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
295
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : str, lowerCamelCase__ : str ) -> Union[str, Any]: print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ), end="\t" ) else: print("INF", end="\t" ) print() def _lowerCAmelCase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Any ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = [[float("inf" ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase__ ): # looping through rows of graph array for i in range(lowerCamelCase__ ): # looping through columns of graph array for j in range(lowerCamelCase__ ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _SCREAMING_SNAKE_CASE : List[Any] = dist[i][k] + dist[k][j] _print_dist(lowerCamelCase__, lowerCamelCase__ ) return dist, v if __name__ == "__main__": lowercase_ : Tuple = int(input('''Enter number of vertices: ''')) lowercase_ : List[Any] = int(input('''Enter number of edges: ''')) lowercase_ : Optional[Any] = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): lowercase_ : Tuple = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) lowercase_ : str = int(input('''Enter source:''')) lowercase_ : Optional[Any] = int(input('''Enter destination:''')) lowercase_ : Union[str, Any] = float(input('''Enter weight:''')) lowercase_ : str = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
295
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase = { '''google/electra-small-generator''': 512, '''google/electra-base-generator''': 512, '''google/electra-large-generator''': 512, '''google/electra-small-discriminator''': 512, '''google/electra-base-discriminator''': 512, '''google/electra-large-discriminator''': 512, } UpperCAmelCase = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class __magic_name__ ( __UpperCAmelCase ): __A : Dict = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_INIT_CONFIGURATION __A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[Any] = ElectraTokenizer def __init__( self : Dict , snake_case__ : Optional[int]=None , snake_case__ : List[Any]=None , snake_case__ : Any=True , snake_case__ : Tuple="[UNK]" , snake_case__ : Tuple="[SEP]" , snake_case__ : str="[PAD]" , snake_case__ : Dict="[CLS]" , snake_case__ : Union[str, Any]="[MASK]" , snake_case__ : Optional[Any]=True , snake_case__ : str=None , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowercase :Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case__ ) != tokenize_chinese_chars ): lowercase :Any = getattr(snake_case__ , normalizer_state.pop('''type''' ) ) lowercase :int = do_lower_case lowercase :List[Any] = strip_accents lowercase :Optional[Any] = tokenize_chinese_chars lowercase :Tuple = normalizer_class(**snake_case__ ) lowercase :List[str] = do_lower_case def __snake_case ( self : Any , snake_case__ : Dict , snake_case__ : Any=None ): '''simple docstring''' lowercase :int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' lowercase :Tuple = [self.sep_token_id] lowercase :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' lowercase :str = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
677
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( __UpperCAmelCase ): @staticmethod @abstractmethod def __snake_case ( snake_case__ : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def __snake_case ( self : Optional[Any] ): '''simple docstring''' raise NotImplementedError()
677
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = 42 class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self ,__SCREAMING_SNAKE_CASE = 16 ,__SCREAMING_SNAKE_CASE = 88 ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = 1 ,__SCREAMING_SNAKE_CASE = 0.0 ,__SCREAMING_SNAKE_CASE = 32 ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = False ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = "geglu" ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE = True ,): super().__init__() SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = attention_head_dim SCREAMING_SNAKE_CASE : Dict = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE : Union[str, Any] = in_channels SCREAMING_SNAKE_CASE : List[Any] = torch.nn.GroupNorm(num_groups=__SCREAMING_SNAKE_CASE ,num_channels=__SCREAMING_SNAKE_CASE ,eps=1e-6 ,affine=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # 3. Define transformers blocks SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,dropout=__SCREAMING_SNAKE_CASE ,cross_attention_dim=__SCREAMING_SNAKE_CASE ,activation_fn=__SCREAMING_SNAKE_CASE ,attention_bias=__SCREAMING_SNAKE_CASE ,double_self_attention=__SCREAMING_SNAKE_CASE ,norm_elementwise_affine=__SCREAMING_SNAKE_CASE ,) for d in range(__SCREAMING_SNAKE_CASE ) ] ) SCREAMING_SNAKE_CASE : str = nn.Linear(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=1 ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE = True ,): SCREAMING_SNAKE_CASE : List[Any] = hidden_states.shape SCREAMING_SNAKE_CASE : Optional[int] = batch_frames // num_frames SCREAMING_SNAKE_CASE : Optional[int] = hidden_states SCREAMING_SNAKE_CASE : Tuple = hidden_states[None, :].reshape(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = hidden_states.permute(0 ,2 ,1 ,3 ,4 ) SCREAMING_SNAKE_CASE : int = self.norm(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states.permute(0 ,3 ,4 ,2 ,1 ).reshape(batch_size * height * width ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = self.proj_in(__SCREAMING_SNAKE_CASE ) # 2. Blocks for block in self.transformer_blocks: SCREAMING_SNAKE_CASE : Optional[int] = block( __SCREAMING_SNAKE_CASE ,encoder_hidden_states=__SCREAMING_SNAKE_CASE ,timestep=__SCREAMING_SNAKE_CASE ,cross_attention_kwargs=__SCREAMING_SNAKE_CASE ,class_labels=__SCREAMING_SNAKE_CASE ,) # 3. Output SCREAMING_SNAKE_CASE : Union[str, Any] = self.proj_out(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = ( hidden_states[None, None, :] .reshape(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) .permute(0 ,3 ,4 ,1 ,2 ) .contiguous() ) SCREAMING_SNAKE_CASE : Dict = hidden_states.reshape(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__SCREAMING_SNAKE_CASE )
705
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = 0 A = False A = 3.0 class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() ,{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() ,{'a': 2} ) self.assertDictEqual(MockClass(a=2 ,b=__SCREAMING_SNAKE_CASE ).to_kwargs() ,{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 ,c=2.25 ).to_kwargs() ,{'a': 2, 'c': 2.25} ) @require_cuda def __a ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE : Union[str, Any] = GradScalerKwargs(init_scale=1024 ,growth_factor=2 ) AcceleratorState._reset_state() SCREAMING_SNAKE_CASE : Optional[int] = Accelerator(mixed_precision='fp16' ,kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) SCREAMING_SNAKE_CASE : int = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale ,1024.0 ) self.assertEqual(scaler._growth_factor ,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor ,0.5 ) self.assertEqual(scaler._growth_interval ,2000 ) self.assertEqual(scaler._enabled ,__SCREAMING_SNAKE_CASE ) @require_multi_gpu def __a ( self ): SCREAMING_SNAKE_CASE : Optional[int] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__SCREAMING_SNAKE_CASE ,env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __UpperCAmelCase = Accelerator(kwargs_handlers=[ddp_scaler]) __UpperCAmelCase = torch.nn.Linear(100, 200) __UpperCAmelCase = accelerator.prepare(model) # Check the values changed in kwargs __UpperCAmelCase = '' __UpperCAmelCase = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
220
0
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return base * power(lowercase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") _UpperCAmelCase = int(input("""Enter the base: """).strip()) _UpperCAmelCase = int(input("""Enter the exponent: """).strip()) _UpperCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _UpperCAmelCase = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
409
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'Speech2TextFeatureExtractor' UpperCamelCase : Optional[Any] = 'Speech2TextTokenizer' def __init__( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor SCREAMING_SNAKE_CASE_: List[Any] =False def __call__( self : Dict , *lowerCAmelCase : str , **lowerCAmelCase : str ) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase , **lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""raw_speech""" ) else: SCREAMING_SNAKE_CASE_: int =kwargs.pop("""audio""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =kwargs.pop("""sampling_rate""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""text""" , lowerCAmelCase ) if len(lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_: List[str] =args[0] SCREAMING_SNAKE_CASE_: List[str] =args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =self.tokenizer(lowerCAmelCase , **lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_: Any =encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : int ) -> Any: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @contextmanager def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =True SCREAMING_SNAKE_CASE_: Dict =self.tokenizer yield SCREAMING_SNAKE_CASE_: int =self.feature_extractor SCREAMING_SNAKE_CASE_: str =False
409
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _UpperCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } _UpperCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _a ( _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , _snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = R""".*sequential.(\d+).*""" UpperCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list UpperCAmelCase = re.match(_snake_case , _snake_case ).group(1 ) UpperCAmelCase = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_snake_case )//3}.linear.''' ) elif re.match(_snake_case , _snake_case ): UpperCAmelCase = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase = 1 if projecton_layer == 0 else 2 UpperCAmelCase = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase = value UpperCAmelCase = mixed_qkv.size(0 ) // 3 UpperCAmelCase = mixed_qkv[:qkv_dim] UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase = query_layer UpperCAmelCase = key_layer UpperCAmelCase = value_layer else: UpperCAmelCase = value return model_state_dict def _a ( _snake_case , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() UpperCAmelCase = clap_model.state_dict() UpperCAmelCase = rename_state_dict(_snake_case ) UpperCAmelCase = ClapConfig() UpperCAmelCase = enable_fusion UpperCAmelCase = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") _UpperCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
74
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger("""transformers.models.speecht5""") def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" hf_model.apply_weight_norm() UpperCAmelCase = checkpoint["""input_conv.weight_g"""] UpperCAmelCase = checkpoint["""input_conv.weight_v"""] UpperCAmelCase = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCAmelCase = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCAmelCase = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCAmelCase = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCAmelCase = checkpoint["""output_conv.1.weight_g"""] UpperCAmelCase = checkpoint["""output_conv.1.weight_v"""] UpperCAmelCase = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , ): """simple docstring""" if config_path is not None: UpperCAmelCase = SpeechTaHifiGanConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = SpeechTaHifiGanConfig() UpperCAmelCase = SpeechTaHifiGan(_snake_case ) UpperCAmelCase = torch.load(_snake_case ) load_weights(orig_checkpoint["""model"""]["""generator"""] , _snake_case , _snake_case ) UpperCAmelCase = np.load(_snake_case ) UpperCAmelCase = stats[0].reshape(-1 ) UpperCAmelCase = stats[1].reshape(-1 ) UpperCAmelCase = torch.from_numpy(_snake_case ).float() UpperCAmelCase = torch.from_numpy(_snake_case ).float() model.save_pretrained(_snake_case ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
74
1
import argparse from collections import defaultdict import yaml lowerCAmelCase_ = '''docs/source/en/_toctree.yml''' def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = defaultdict(_UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case_ : List[str] = [key for key, value in counts.items() if value > 1] snake_case_ : List[str] = [] for duplicate_key in duplicates: snake_case_ : Union[str, Any] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_UpperCamelCase , key=lambda _UpperCamelCase : s["title"].lower() ) def lowerCamelCase_ ( _UpperCamelCase=False ) -> Dict: """simple docstring""" with open(_UpperCamelCase , encoding='''utf-8''' ) as f: snake_case_ : List[Any] = yaml.safe_load(f.read() ) # Get to the API doc snake_case_ : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case_ : List[Any] = content[api_idx]['''sections'''] # Then to the model doc snake_case_ : List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case_ : Any = api_doc[model_idx]['''sections'''] snake_case_ : Any = [(idx, section) for idx, section in enumerate(_UpperCamelCase ) if '''sections''' in section] snake_case_ : Optional[int] = False for idx, modality_doc in modalities_docs: snake_case_ : Dict = modality_doc['''sections'''] snake_case_ : int = clean_model_doc_toc(_UpperCamelCase ) if old_modality_doc != new_modality_doc: snake_case_ : Optional[int] = True if overwrite: snake_case_ : Dict = new_modality_doc if diff: if overwrite: snake_case_ : str = model_doc snake_case_ : int = api_doc with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_UpperCamelCase , allow_unicode=_UpperCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase_ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
60
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel A = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def lowerCamelCase ( UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> Optional[Any]: return torch.atana(UpperCamelCase , UpperCamelCase ) / math.pi * 2 def lowerCamelCase ( UpperCamelCase : str ) -> Union[str, Any]: _lowerCamelCase = torch.sin(t * math.pi / 2 ) ** 2 _lowerCamelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(UpperCamelCase , UpperCamelCase ) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , snake_case__ : Any ) -> Optional[Any]: super().__init__() _lowerCamelCase = DiffusionAttnUnetaD(snake_case__ , n_attn_layers=4 ) _lowerCamelCase = deepcopy(self.diffusion ) _lowerCamelCase = torch.quasirandom.SobolEngine(1 , scramble=snake_case__ ) def lowerCamelCase ( UpperCamelCase : List[Any] ) -> List[str]: _lowerCamelCase = MODELS_MAP[model_name]['url'] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" A = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } A = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } A = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } A = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } A = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } A = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowerCamelCase ( UpperCamelCase : Tuple ) -> int: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowerCamelCase ( UpperCamelCase : Optional[Any] ) -> Tuple: for key, value in ATTN_MAP.items(): if name.startswith(UpperCamelCase ) and not isinstance(UpperCamelCase , UpperCamelCase ): return name.replace(UpperCamelCase , UpperCamelCase ) elif name.startswith(UpperCamelCase ): return [name.replace(UpperCamelCase , UpperCamelCase ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def lowerCamelCase ( UpperCamelCase : Any , UpperCamelCase : int=13 ) -> Optional[int]: _lowerCamelCase = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) _lowerCamelCase = 0 if string.startswith('net.3.' ): depth += 1 _lowerCamelCase = string[6:] elif string.startswith('net.' ): _lowerCamelCase = string[4:] while string.startswith('main.7.' ): depth += 1 _lowerCamelCase = string[7:] if string.startswith('main.' ): _lowerCamelCase = string[5:] # mid block if string[:2].isdigit(): _lowerCamelCase = string[:2] _lowerCamelCase = string[2:] else: _lowerCamelCase = string[0] _lowerCamelCase = string[1:] if depth == max_depth: _lowerCamelCase = MID_NUM_TO_LAYER[layer_num] _lowerCamelCase = 'mid_block' elif depth > 0 and int(UpperCamelCase ) < 7: _lowerCamelCase = DOWN_NUM_TO_LAYER[layer_num] _lowerCamelCase = F"""down_blocks.{depth}""" elif depth > 0 and int(UpperCamelCase ) > 7: _lowerCamelCase = UP_NUM_TO_LAYER[layer_num] _lowerCamelCase = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: _lowerCamelCase = DEPTH_0_TO_LAYER[layer_num] _lowerCamelCase = F"""up_blocks.{max_depth - 1}""" if int(UpperCamelCase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) _lowerCamelCase = string_left[1:] if "resnets" in new_layer: _lowerCamelCase = convert_resconv_naming(UpperCamelCase ) elif "attentions" in new_layer: _lowerCamelCase = convert_attn_naming(UpperCamelCase ) _lowerCamelCase = new_string_left if not isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = prefix + '.' + new_layer + '.' + string_left else: _lowerCamelCase = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowerCamelCase ( UpperCamelCase : List[Any] ) -> int: _lowerCamelCase = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue _lowerCamelCase = rename(UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = transform_conv_attns(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: _lowerCamelCase = v return new_state_dict def lowerCamelCase ( UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Dict ) -> Optional[Any]: if len(UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight _lowerCamelCase = v[:, :, 0] else: # bias _lowerCamelCase = v else: # qkv matrices _lowerCamelCase = v.shape[0] _lowerCamelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _lowerCamelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _lowerCamelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCamelCase ( UpperCamelCase : Any ) -> Optional[Any]: _lowerCamelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _lowerCamelCase = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" _lowerCamelCase = download(UpperCamelCase ) _lowerCamelCase = MODELS_MAP[model_name]['sample_rate'] _lowerCamelCase = MODELS_MAP[model_name]['sample_size'] _lowerCamelCase = Object() _lowerCamelCase = sample_size _lowerCamelCase = sample_rate _lowerCamelCase = 0 _lowerCamelCase = UNetaDModel(sample_size=UpperCamelCase , sample_rate=UpperCamelCase ) _lowerCamelCase = diffusers_model.state_dict() _lowerCamelCase = DiffusionUncond(UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=UpperCamelCase )['state_dict'] ) _lowerCamelCase = orig_model.diffusion_ema.eval() _lowerCamelCase = orig_model.state_dict() _lowerCamelCase = rename_orig_weights(UpperCamelCase ) _lowerCamelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _lowerCamelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(UpperCamelCase ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(UpperCamelCase ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": _lowerCamelCase = value.squeeze() _lowerCamelCase = value diffusers_model.load_state_dict(UpperCamelCase ) _lowerCamelCase = 1_00 _lowerCamelCase = 33 _lowerCamelCase = IPNDMScheduler(num_train_timesteps=UpperCamelCase ) _lowerCamelCase = torch.manual_seed(UpperCamelCase ) _lowerCamelCase = torch.randn([1, 2, config.sample_size] , generator=UpperCamelCase ).to(UpperCamelCase ) _lowerCamelCase = torch.linspace(1 , 0 , steps + 1 , device=UpperCamelCase )[:-1] _lowerCamelCase = get_crash_schedule(UpperCamelCase ) _lowerCamelCase = DanceDiffusionPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) _lowerCamelCase = torch.manual_seed(33 ) _lowerCamelCase = pipe(num_inference_steps=UpperCamelCase , generator=UpperCamelCase ).audios _lowerCamelCase = sampling.iplms_sample(UpperCamelCase , UpperCamelCase , UpperCamelCase , {} ) _lowerCamelCase = generated.clamp(-1 , 1 ) _lowerCamelCase = (generated - audio).abs().sum() _lowerCamelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , UpperCamelCase ) print('Diff max' , UpperCamelCase ) assert diff_max < 1e-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') A = parser.parse_args() main(args)
544
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : int = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Tuple = 'data2vec-text' def __init__( self , _A=30522 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=2 , _A=0.0_2 , _A=1e-1_2 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , _A=None , **_A , ): super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) __A : List[str] = vocab_size __A : List[str] = hidden_size __A : str = num_hidden_layers __A : Any = num_attention_heads __A : Optional[int] = hidden_act __A : Optional[int] = intermediate_size __A : Union[str, Any] = hidden_dropout_prob __A : List[Any] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Union[str, Any] = type_vocab_size __A : Optional[int] = initializer_range __A : List[str] = layer_norm_eps __A : Any = position_embedding_type __A : int = use_cache __A : List[Any] = classifier_dropout class _A( snake_case__ ): """simple docstring""" @property def UpperCAmelCase_ ( self ): if self.task == "multiple-choice": __A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
717
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( a , a ) -> list: if len(a ) != 2 or len(a[0] ) != 2 or len(a ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) __A : Optional[int] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _SCREAMING_SNAKE_CASE ( a , a ) -> str: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a ) ) ] def _SCREAMING_SNAKE_CASE ( a , a ) -> Optional[int]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a ) ) ] def _SCREAMING_SNAKE_CASE ( a ) -> tuple[list, list, list, list]: if len(a ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) __A : str = len(a ) __A : List[Any] = matrix_length // 2 __A : List[str] = [[a[i][j] for j in range(a , a )] for i in range(a )] __A : Dict = [ [a[i][j] for j in range(a , a )] for i in range(a , a ) ] __A : int = [[a[i][j] for j in range(a )] for i in range(a )] __A : Any = [[a[i][j] for j in range(a )] for i in range(a , a )] return top_left, top_right, bot_left, bot_right def _SCREAMING_SNAKE_CASE ( a ) -> tuple[int, int]: return len(a ), len(matrix[0] ) def _SCREAMING_SNAKE_CASE ( a ) -> None: print('\n'.join(str(a ) for line in matrix ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> list: if matrix_dimensions(a ) == (2, 2): return default_matrix_multiplication(a , a ) __A , __A , __A , __A : str = split_matrix(a ) __A , __A , __A , __A : List[Any] = split_matrix(a ) __A : Any = actual_strassen(a , matrix_subtraction(a , a ) ) __A : Tuple = actual_strassen(matrix_addition(a , a ) , a ) __A : List[str] = actual_strassen(matrix_addition(a , a ) , a ) __A : Optional[int] = actual_strassen(a , matrix_subtraction(a , a ) ) __A : Any = actual_strassen(matrix_addition(a , a ) , matrix_addition(a , a ) ) __A : Any = actual_strassen(matrix_subtraction(a , a ) , matrix_addition(a , a ) ) __A : List[Any] = actual_strassen(matrix_subtraction(a , a ) , matrix_addition(a , a ) ) __A : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a , a ) , a ) , a ) __A : Union[str, Any] = matrix_addition(a , a ) __A : str = matrix_addition(a , a ) __A : Dict = matrix_subtraction(matrix_subtraction(matrix_addition(a , a ) , a ) , a ) # construct the new matrix from our 4 quadrants __A : List[Any] = [] for i in range(len(a ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _SCREAMING_SNAKE_CASE ( a , a ) -> list: if matrix_dimensions(a )[1] != matrix_dimensions(a )[0]: __A : Dict = ( 'Unable to multiply these matrices, please check the dimensions.\n' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a ) __A : int = matrix_dimensions(a ) __A : Any = matrix_dimensions(a ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __A : List[Any] = max(*a , *a ) __A : Optional[Any] = int(math.pow(2 , math.ceil(math.loga(a ) ) ) ) __A : Union[str, Any] = matrixa __A : Optional[int] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __A : str = actual_strassen(a , a ) # Removing the additional zeros for i in range(0 , a ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
77
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __A : Any = 0 __A : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __A : int = tuple[int, int] class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = pos_x _A = pos_y _A = (pos_y, pos_x) _A = goal_x _A = goal_y _A = g_cost _A = parent _A = self.calculate_heuristic() _A = self.g_cost + self.h_cost def lowerCAmelCase__ ( self ): _A = self.pos_x - self.goal_x _A = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): _A = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _A = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , snake_case_ ) _A = [self.start] _A = [] _A = False def lowerCAmelCase__ ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _A = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _A = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _A = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def lowerCAmelCase__ ( self , snake_case_ ): _A = [] for action in delta: _A = parent.pos_x + action[1] _A = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def lowerCAmelCase__ ( self , snake_case_ ): _A = node _A = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _A = current_node.parent path.reverse() return path class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): _A = AStar(snake_case_ , snake_case_ ) _A = AStar(snake_case_ , snake_case_ ) _A = False def lowerCAmelCase__ ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _A = self.fwd_astar.open_nodes.pop(0 ) _A = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _A = current_bwd_node _A = current_fwd_node _A = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _A = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = self.fwd_astar.retrace_path(snake_case_ ) _A = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _A = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __A : str = (0, 0) __A : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __A : Union[str, Any] = time.time() __A : Any = AStar(init, goal) __A : Optional[Any] = a_star.search() __A : Dict = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") __A : Tuple = time.time() __A : str = BidirectionalAStar(init, goal) __A : Union[str, Any] = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
27
def UpperCamelCase ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): snake_case : Dict = set() # Replace all the whitespace in our sentence snake_case : List[Any] = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowerCamelCase ) == 26 def UpperCamelCase ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): snake_case : Optional[int] = [False] * 26 for char in input_str: if char.islower(): snake_case : Dict = True elif char.isupper(): snake_case : Optional[Any] = True return all(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase ( ): from timeit import timeit snake_case : Tuple = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=__lowerCamelCase ) ) print(timeit("is_pangram_faster()" , setup=__lowerCamelCase ) ) print(timeit("is_pangram_fastest()" , setup=__lowerCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
204
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _snake_case ( __snake_case ) -> List[str]: '''simple docstring''' return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def _snake_case ( __snake_case , __snake_case ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ : str = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCAmelCase_ : Union[str, Any] = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) UpperCAmelCase_ : Union[str, Any] = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) UpperCAmelCase_ : int = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) UpperCAmelCase_ : int = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) UpperCAmelCase_ : str = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) UpperCAmelCase_ : str = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) UpperCAmelCase_ : str = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) UpperCAmelCase_ : Optional[Any] = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) UpperCAmelCase_ : Dict = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) UpperCAmelCase_ : Optional[Any] = key.replace("image_encoder.module" , "flava.image_model" ) UpperCAmelCase_ : Optional[int] = key.replace("text_encoder.module" , "flava.text_model" ) UpperCAmelCase_ : List[Any] = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) UpperCAmelCase_ : Tuple = key.replace("mm_encoder.module" , "flava.multimodal_model" ) UpperCAmelCase_ : Optional[Any] = key.replace("text_projection" , "flava.text_projection" ) UpperCAmelCase_ : int = key.replace("image_projection" , "flava.image_projection" ) UpperCAmelCase_ : Optional[Any] = value.float() for key, value in codebook_state_dict.items(): UpperCAmelCase_ : int = value return upgrade @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case=None ) -> Any: '''simple docstring''' if config_path is not None: UpperCAmelCase_ : Union[str, Any] = FlavaConfig.from_pretrained(__snake_case ) else: UpperCAmelCase_ : Any = FlavaConfig() UpperCAmelCase_ : Optional[int] = FlavaForPreTraining(__snake_case ).eval() UpperCAmelCase_ : List[Any] = convert_dalle_checkpoint(__snake_case , __snake_case , save_checkpoint=__snake_case ) if os.path.exists(__snake_case ): UpperCAmelCase_ : int = torch.load(__snake_case , map_location="cpu" ) else: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" ) UpperCAmelCase_ : str = upgrade_state_dict(__snake_case , __snake_case ) hf_model.load_state_dict(__snake_case ) UpperCAmelCase_ : Optional[int] = hf_model.state_dict() UpperCAmelCase_ : str = count_parameters(__snake_case ) UpperCAmelCase_ : Tuple = count_parameters(__snake_case ) + count_parameters(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-3 ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __lowerCamelCase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
455
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase = 16 __lowerCamelCase = 32 def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = 1_6 ) -> Tuple: '''simple docstring''' UpperCAmelCase_ : int = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase_ : List[Any] = DatasetDict( { "train": dataset["train"].select(__snake_case ), "validation": dataset["train"].select(__snake_case ), "test": dataset["validation"], } ) def tokenize_function(__snake_case ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ : int = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": UpperCAmelCase_ : str = 8 else: UpperCAmelCase_ : Dict = None return tokenizer.pad( __snake_case , padding="longest" , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase_ : List[str] = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) UpperCAmelCase_ : Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) UpperCAmelCase_ : str = DataLoader( tokenized_datasets["test"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader, test_dataloader def _snake_case ( __snake_case , __snake_case ) -> List[str]: '''simple docstring''' UpperCAmelCase_ : Tuple = [] # Download the dataset UpperCAmelCase_ : Optional[int] = load_dataset("glue" , "mrpc" ) # Create our splits UpperCAmelCase_ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase_ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : Optional[int] = config["lr"] UpperCAmelCase_ : Dict = int(config["num_epochs"] ) UpperCAmelCase_ : Union[str, Any] = int(config["seed"] ) UpperCAmelCase_ : Optional[Any] = int(config["batch_size"] ) UpperCAmelCase_ : Optional[Any] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ : int = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ : List[str] = MAX_GPU_BATCH_SIZE set_seed(__snake_case ) # New Code # # Create our folds: UpperCAmelCase_ : int = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) UpperCAmelCase_ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__snake_case ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = get_fold_dataloaders( __snake_case , __snake_case , __snake_case , __snake_case , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ : Tuple = AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler UpperCAmelCase_ : str = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=1_0_0 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ : Optional[Any] = model(**__snake_case ) UpperCAmelCase_ : Dict = outputs.loss UpperCAmelCase_ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : str = model(**__snake_case ) UpperCAmelCase_ : Optional[int] = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) UpperCAmelCase_ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __snake_case ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase_ : Union[str, Any] = [] for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**__snake_case ) UpperCAmelCase_ : Optional[int] = outputs.logits UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__snake_case , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase_ : Union[str, Any] = torch.cat(__snake_case , dim=0 ) UpperCAmelCase_ : str = torch.stack(__snake_case , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase_ : List[str] = metric.compute(predictions=__snake_case , references=__snake_case ) accelerator.print("Average test metrics from all folds:" , __snake_case ) def _snake_case ( ) -> str: '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__snake_case , default=__snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=__snake_case , default=3 , help="The number of splits to perform across the dataset" ) UpperCAmelCase_ : Any = parser.parse_args() UpperCAmelCase_ : List[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
455
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __snake_case ( _lowercase): snake_case__ : Optional[int] = "speech_to_text" snake_case__ : Any = ["past_key_values"] snake_case__ : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , __lowerCAmelCase : List[str]=1_0_0_0_0 , __lowerCAmelCase : Optional[Any]=1_2 , __lowerCAmelCase : Dict=2_0_4_8 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Optional[Any]=6 , __lowerCAmelCase : Dict=2_0_4_8 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Union[str, Any]="relu" , __lowerCAmelCase : Tuple=2_5_6 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=1 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : str=6_0_0_0 , __lowerCAmelCase : Any=1_0_2_4 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Union[str, Any]=(5, 5) , __lowerCAmelCase : Optional[int]=1_0_2_4 , __lowerCAmelCase : List[Any]=8_0 , __lowerCAmelCase : int=1 , **__lowerCAmelCase : List[str] , ): """simple docstring""" _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : List[str] = d_model _lowerCamelCase : Any = encoder_ffn_dim _lowerCamelCase : str = encoder_layers _lowerCamelCase : List[str] = encoder_attention_heads _lowerCamelCase : int = decoder_ffn_dim _lowerCamelCase : int = decoder_layers _lowerCamelCase : Optional[Any] = decoder_attention_heads _lowerCamelCase : Union[str, Any] = dropout _lowerCamelCase : List[str] = attention_dropout _lowerCamelCase : List[Any] = activation_dropout _lowerCamelCase : Optional[Any] = activation_function _lowerCamelCase : Optional[Any] = init_std _lowerCamelCase : str = encoder_layerdrop _lowerCamelCase : Union[str, Any] = decoder_layerdrop _lowerCamelCase : Any = use_cache _lowerCamelCase : Union[str, Any] = encoder_layers _lowerCamelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : int = max_source_positions _lowerCamelCase : int = max_target_positions _lowerCamelCase : Dict = num_conv_layers _lowerCamelCase : Union[str, Any] = list(__lowerCAmelCase ) _lowerCamelCase : str = conv_channels _lowerCamelCase : str = input_feat_per_channel _lowerCamelCase : Tuple = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
83
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCAmelCase__ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = [] for config_class in list(CONFIG_MAPPING.values() ): _lowerCamelCase : Tuple = False # source code of `config_class` _lowerCamelCase : int = inspect.getsource(A_ ) _lowerCamelCase : str = _re_checkpoint.findall(A_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _lowerCamelCase , _lowerCamelCase : Tuple = checkpoint # verify the checkpoint name corresponds to the checkpoint link _lowerCamelCase : Tuple = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _lowerCamelCase : Union[str, Any] = True break _lowerCamelCase : Tuple = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(A_ ) if len(A_ ) > 0: _lowerCamelCase : Union[str, Any] = '''\n'''.join(sorted(A_ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
83
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : int = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class a__ ( __snake_case ): A__ : Tuple = 'canine' def __init__( self , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_6_3_8_4 , UpperCAmelCase=1_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase=0Xe000 , UpperCAmelCase=0Xe001 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=8 , UpperCAmelCase=1_6_3_8_4 , UpperCAmelCase=1_2_8 , **UpperCAmelCase , ) -> List[Any]: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps # Character config: __a = downsampling_rate __a = upsampling_kernel_size __a = num_hash_functions __a = num_hash_buckets __a = local_transformer_stride
246
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase( __lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase , __lowerCamelCase ) -> bool: __a = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __a = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __a = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = 1.0 ): def identity_function(__lowerCamelCase ) -> float: return x __a = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __a = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def lowerCAmelCase( __lowerCamelCase ): def function_to_integrate(__lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __a = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
246
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A_ : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='cifar10' ,metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'The column name of the images in the files.'} ) lowerCamelCase__ : Optional[str] = field(default=A__ ,metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase__ : Optional[str] = field(default=A__ ,metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase__ : Optional[float] = field( default=0.1_5 ,metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE__ = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE__ = self.validation_dir SCREAMING_SNAKE_CASE__ = data_files if data_files else None @dataclass class lowerCamelCase : lowerCamelCase__ : str = field( default=A__ ,metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCamelCase__ : str = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) lowerCamelCase__ : str = field(default=A__ ,metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) lowerCamelCase__ : float = field( default=0.7_5 ,metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class lowerCamelCase (A__ ): lowerCamelCase__ : float = field( default=1E-3 ,metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , a__ , a__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = training_args.get_process_log_level() logger.setLevel(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. SCREAMING_SNAKE_CASE__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE__ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , a__ ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE__ = ds["""train"""].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE__ = split["""train"""] SCREAMING_SNAKE_CASE__ = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE__ = ViTMAEConfig.from_pretrained(model_args.config_name , **a__ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **a__ ) else: SCREAMING_SNAKE_CASE__ = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **a__ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **a__ ) else: SCREAMING_SNAKE_CASE__ = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining(a__ ) if training_args.do_train: SCREAMING_SNAKE_CASE__ = ds["""train"""].column_names else: SCREAMING_SNAKE_CASE__ = ds["""validation"""].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE__ = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE__ = """image""" elif "img" in column_names: SCREAMING_SNAKE_CASE__ = """img""" else: SCREAMING_SNAKE_CASE__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE__ = image_processor.size["""shortest_edge"""] else: SCREAMING_SNAKE_CASE__ = (image_processor.size["""height"""], image_processor.size["""width"""]) SCREAMING_SNAKE_CASE__ = Compose( [ Lambda(lambda snake_case__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(a__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(snake_case__ ): SCREAMING_SNAKE_CASE__ = [transforms(a__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE__ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(a__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE__ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(a__ ) # Compute absolute learning rate SCREAMING_SNAKE_CASE__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE__ = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer SCREAMING_SNAKE_CASE__ = Trainer( model=a__ , args=a__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=a__ , data_collator=a__ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE__ = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE__ = last_checkpoint SCREAMING_SNAKE_CASE__ = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE__ = trainer.evaluate() trainer.log_metrics("""eval""" , a__ ) trainer.save_metrics("""eval""" , a__ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE__ = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) def A ( snake_case__ ): '''simple docstring''' main() if __name__ == "__main__": main()
196
import math import qiskit def lowerCAmelCase__ ( a__: int = 1 , a__: int = 1 , a__: int = 1 ) -> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(a__ , a__ ) or isinstance(a__ , a__ ) or isinstance(a__ , a__ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(a__ ) != input_a) or (math.floor(a__ ) != input_a) or (math.floor(a__ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers _UpperCAmelCase = qiskit.QuantumRegister(4 , 'qr' ) _UpperCAmelCase = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries _UpperCAmelCase = [input_a, input_a, carry_in] _UpperCAmelCase = qiskit.QuantumCircuit(a__ , a__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(a__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , a__ ) # measure the last two qbits _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) _UpperCAmelCase = qiskit.execute(a__ , a__ , shots=1_0_0_0 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
618
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : str = ["input_features", "is_longer"] def __init__( self : Union[str, Any] , _lowerCAmelCase : int=64 , _lowerCAmelCase : int=4_80_00 , _lowerCAmelCase : int=4_80 , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : Dict=10_24 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : float = 0 , _lowerCAmelCase : float = 1_40_00 , _lowerCAmelCase : int = None , _lowerCAmelCase : str = "fusion" , _lowerCAmelCase : str = "repeatpad" , **_lowerCAmelCase : str , ): super().__init__( feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case : Optional[Any] = top_db __snake_case : str = truncation __snake_case : Optional[int] = padding __snake_case : List[str] = fft_window_size __snake_case : str = (fft_window_size >> 1) + 1 __snake_case : Dict = hop_length __snake_case : List[str] = max_length_s __snake_case : List[Any] = max_length_s * sampling_rate __snake_case : List[str] = sampling_rate __snake_case : Optional[Any] = frequency_min __snake_case : List[str] = frequency_max __snake_case : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCAmelCase , min_frequency=_lowerCAmelCase , max_frequency=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , norm=_lowerCAmelCase , mel_scale="""htk""" , ) __snake_case : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCAmelCase , min_frequency=_lowerCAmelCase , max_frequency=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ) def snake_case__ ( self : Optional[int] ): __snake_case : int = copy.deepcopy(self.__dict__ ) __snake_case : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case__ ( self : List[str] , _lowerCAmelCase : np.array , _lowerCAmelCase : Optional[np.array] = None ): __snake_case : int = spectrogram( _lowerCAmelCase , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_lowerCAmelCase , log_mel="""dB""" , ) return log_mel_spectrogram.T def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): __snake_case : Optional[int] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __snake_case : str = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __snake_case : int = [0] # randomly choose index for each part __snake_case : Tuple = np.random.choice(ranges[0] ) __snake_case : Tuple = np.random.choice(ranges[1] ) __snake_case : Tuple = np.random.choice(ranges[2] ) __snake_case : List[str] = mel[idx_front : idx_front + chunk_frames, :] __snake_case : Dict = mel[idx_middle : idx_middle + chunk_frames, :] __snake_case : int = mel[idx_back : idx_back + chunk_frames, :] __snake_case : int = torch.tensor(mel[None, None, :] ) __snake_case : Any = torch.nn.functional.interpolate( _lowerCAmelCase , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=_lowerCAmelCase ) __snake_case : str = mel_shrink[0][0].numpy() __snake_case : List[str] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def snake_case__ ( self : List[Any] , _lowerCAmelCase : np.array , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __snake_case : str = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __snake_case : Optional[Any] = len(_lowerCAmelCase ) - max_length __snake_case : Tuple = np.random.randint(0 , overflow + 1 ) __snake_case : int = waveform[idx : idx + max_length] __snake_case : Optional[Any] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __snake_case : Optional[int] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters ) __snake_case : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __snake_case : int = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __snake_case : Union[str, Any] = np.stack([mel, mel, mel, mel] , axis=0 ) __snake_case : Optional[int] = False else: __snake_case : List[str] = self._random_mel_fusion(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Dict = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: __snake_case : List[str] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __snake_case : int = int(max_length / len(_lowerCAmelCase ) ) __snake_case : Tuple = np.stack(np.tile(_lowerCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __snake_case : Optional[int] = int(max_length / len(_lowerCAmelCase ) ) __snake_case : int = np.stack(np.tile(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case : Optional[Any] = np.pad(_lowerCAmelCase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": __snake_case : Union[str, Any] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters ) __snake_case : List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __snake_case : Dict = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , _lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowerCAmelCase : str = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : str , ): __snake_case : Optional[int] = truncation if truncation is not None else self.truncation __snake_case : str = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __snake_case : Union[str, Any] = isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __snake_case : Optional[Any] = is_batched_numpy or ( isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __snake_case : int = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ): __snake_case : List[Any] = np.asarray(_lowerCAmelCase , dtype=np.floataa ) elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __snake_case : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __snake_case : str = [np.asarray(_lowerCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. __snake_case : Dict = [ self._get_input_mel(_lowerCAmelCase , max_length if max_length else self.nb_max_samples , _lowerCAmelCase , _lowerCAmelCase ) for waveform in raw_speech ] __snake_case : Tuple = [] __snake_case : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(_lowerCAmelCase ) is_longer.append(_lowerCAmelCase ) if truncation == "fusion" and sum(_lowerCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __snake_case : Optional[int] = np.random.randint(0 , len(_lowerCAmelCase ) ) __snake_case : Dict = True if isinstance(input_mel[0] , _lowerCAmelCase ): __snake_case : int = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __snake_case : Union[str, Any] = [[longer] for longer in is_longer] __snake_case : Union[str, Any] = {"""input_features""": input_mel, """is_longer""": is_longer} __snake_case : str = BatchFeature(_lowerCAmelCase ) if return_tensors is not None: __snake_case : Optional[int] = input_features.convert_to_tensors(_lowerCAmelCase ) return input_features
706
lowercase_ = {str(digit): digit**5 for digit in range(10)} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(solution())
390
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Union[str, Any] = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] A : Optional[int] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( A ): __lowerCamelCase = (DDIMParallelScheduler,) __lowerCamelCase = (("eta", 0.0), ("num_inference_steps", 5_0)) def _snake_case ( self , **__A ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[Any] ={ '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__A ) return config def _snake_case ( self , **__A ) -> List[Any]: SCREAMING_SNAKE_CASE_ : int =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : str =self.get_scheduler_config(**__A ) SCREAMING_SNAKE_CASE_ : List[Any] =scheduler_class(**__A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =10, 0.0 SCREAMING_SNAKE_CASE_ : List[str] =self.dummy_model() SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.dummy_sample_deter scheduler.set_timesteps(__A ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Optional[int] =model(__A , __A ) SCREAMING_SNAKE_CASE_ : List[Any] =scheduler.step(__A , __A , __A , __A ).prev_sample return sample def _snake_case ( self ) -> Optional[Any]: for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__A ) def _snake_case ( self ) -> Optional[int]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) SCREAMING_SNAKE_CASE_ : Dict =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE_ : Dict =scheduler_class(**__A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _snake_case ( self ) -> Dict: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def _snake_case ( self ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def _snake_case ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def _snake_case ( self ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def _snake_case ( self ) -> int: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__A ) def _snake_case ( self ) -> Tuple: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__A ) def _snake_case ( self ) -> List[Any]: self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , ) def _snake_case ( self ) -> Dict: for t in [1, 10, 49]: self.check_over_forward(time_step=__A ) def _snake_case ( self ) -> Dict: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__A , num_inference_steps=__A ) def _snake_case ( self ) -> int: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__A , eta=__A ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : List[Any] =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] =self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[str] =scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[str] =self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] =self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : str =scheduler_class(**__A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =10, 0.0 scheduler.set_timesteps(__A ) SCREAMING_SNAKE_CASE_ : List[str] =self.dummy_model() SCREAMING_SNAKE_CASE_ : str =self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : int =self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE_ : Tuple =self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] =samplea.shape[0] SCREAMING_SNAKE_CASE_ : List[str] =torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE_ : Any =torch.arange(__A )[0:3, None].repeat(1 , __A ) SCREAMING_SNAKE_CASE_ : Dict =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE_ : Optional[int] =scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __A ) SCREAMING_SNAKE_CASE_ : str =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : int =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : List[str] =self.full_loop() SCREAMING_SNAKE_CASE_ : List[Any] =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str =self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE_ : List[Any] =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : str =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def _snake_case ( self ) -> Dict: # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE_ : Tuple =self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : Tuple =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : int =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def _snake_case ( self ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE_ : List[str] =self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : Optional[int] =torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE_ : Tuple =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
443
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A : List[Any] = TypeVar("T") def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return (position - 1) // 2 def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return (2 * position) + 1 def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return (2 * position) + 2 class _UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = 0 def __len__( self ): return self.elements def __repr__( self ): return str(self.heap ) def snake_case ( self ): return self.elements == 0 def snake_case ( self , __a , __a ): self.heap.append((elem, weight) ) __lowerCAmelCase = self.elements self.elements += 1 self._bubble_up(UpperCAmelCase__ ) def snake_case ( self ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __lowerCAmelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowerCAmelCase = self.heap[0] self._bubble_down(UpperCAmelCase__ ) return elem def snake_case ( self , __a , __a ): __lowerCAmelCase = self.position_map[elem] __lowerCAmelCase = (elem, weight) if position > 0: __lowerCAmelCase = get_parent_position(UpperCAmelCase__ ) __lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCAmelCase__ ) else: self._bubble_down(UpperCAmelCase__ ) else: self._bubble_down(UpperCAmelCase__ ) def snake_case ( self , __a ): __lowerCAmelCase = self.position_map[elem] if curr_pos == 0: return None __lowerCAmelCase = get_parent_position(UpperCAmelCase__ ) __lowerCAmelCase = self.heap[curr_pos] __lowerCAmelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCAmelCase__ , UpperCAmelCase__ ) return self._bubble_up(UpperCAmelCase__ ) return None def snake_case ( self , __a ): __lowerCAmelCase = self.position_map[elem] __lowerCAmelCase = self.heap[curr_pos] __lowerCAmelCase = get_child_left_position(UpperCAmelCase__ ) __lowerCAmelCase = get_child_right_position(UpperCAmelCase__ ) if child_left_position < self.elements and child_right_position < self.elements: __lowerCAmelCase = self.heap[child_left_position] __lowerCAmelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCAmelCase__ , UpperCAmelCase__ ) return self._bubble_down(UpperCAmelCase__ ) if child_left_position < self.elements: __lowerCAmelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCAmelCase__ , UpperCAmelCase__ ) return self._bubble_down(UpperCAmelCase__ ) else: return None if child_right_position < self.elements: __lowerCAmelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCAmelCase__ , UpperCAmelCase__ ) return self._bubble_down(UpperCAmelCase__ ) return None def snake_case ( self , __a , __a ): __lowerCAmelCase = self.heap[nodea_pos][0] __lowerCAmelCase = self.heap[nodea_pos][0] __lowerCAmelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowerCAmelCase = nodea_pos __lowerCAmelCase = nodea_pos class _UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): __lowerCAmelCase = {} __lowerCAmelCase = 0 def __repr__( self ): return str(self.connections ) def __len__( self ): return self.nodes def snake_case ( self , __a ): # Add a node in the graph if it is not in the graph if node not in self.connections: __lowerCAmelCase = {} self.nodes += 1 def snake_case ( self , __a , __a , __a ): self.add_node(UpperCAmelCase__ ) self.add_node(UpperCAmelCase__ ) __lowerCAmelCase = weight __lowerCAmelCase = weight def _lowerCamelCase ( _UpperCamelCase , ): '''simple docstring''' __lowerCAmelCase = {node: maxsize for node in graph.connections} __lowerCAmelCase = {node: None for node in graph.connections} __lowerCAmelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_UpperCamelCase , _UpperCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization __lowerCAmelCase = priority_queue.extract_min() __lowerCAmelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCamelCase , dist[neighbour] ) __lowerCAmelCase = node # running prim's algorithm while not priority_queue.is_empty(): __lowerCAmelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCamelCase , dist[neighbour] ) __lowerCAmelCase = node return dist, parent
700
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Union[str, Any] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
282
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase__ : List[str] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Dict , *_a:str , **_a:Any ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
33
'''simple docstring''' from math import factorial def _a ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float ): """simple docstring""" if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) snake_case__ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! snake_case__ : str = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
347
0
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase_ : int = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowerCAmelCase : """simple docstring""" snake_case = PegasusConfig snake_case = {} snake_case = "gelu" def __init__( self : List[Any] , _snake_case : int , _snake_case : Optional[Any]=13 , _snake_case : Dict=7 , _snake_case : List[str]=True , _snake_case : Dict=False , _snake_case : Dict=99 , _snake_case : List[Any]=32 , _snake_case : int=5 , _snake_case : int=4 , _snake_case : Any=37 , _snake_case : Tuple=0.1 , _snake_case : Optional[int]=0.1 , _snake_case : Dict=20 , _snake_case : str=2 , _snake_case : Tuple=1 , _snake_case : Optional[Any]=0 , ) -> Tuple: """simple docstring""" A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = eos_token_id A_ = pad_token_id A_ = bos_token_id def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" A_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) A_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) A_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A_ = prepare_pegasus_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, inputs_dict def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[int] ) -> Tuple: """simple docstring""" A_ = 20 A_ = model_class_name(_snake_case ) A_ = model.encode(inputs_dict["input_ids"] ) A_ , A_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) A_ = model.init_cache(decoder_input_ids.shape[0] , _snake_case , _snake_case ) A_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) A_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ = model.decode( decoder_input_ids[:, :-1] , _snake_case , decoder_attention_mask=_snake_case , past_key_values=_snake_case , decoder_position_ids=_snake_case , ) A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A_ = model.decode( decoder_input_ids[:, -1:] , _snake_case , decoder_attention_mask=_snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_snake_case , ) A_ = model.decode(_snake_case , _snake_case ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def lowerCamelCase__ ( self : str , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Dict ) -> Tuple: """simple docstring""" A_ = 20 A_ = model_class_name(_snake_case ) A_ = model.encode(inputs_dict["input_ids"] ) A_ , A_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) A_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A_ = model.init_cache(decoder_input_ids.shape[0] , _snake_case , _snake_case ) A_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ = model.decode( decoder_input_ids[:, :-1] , _snake_case , decoder_attention_mask=_snake_case , past_key_values=_snake_case , decoder_position_ids=_snake_case , ) A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A_ = model.decode( decoder_input_ids[:, -1:] , _snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_snake_case , decoder_position_ids=_snake_case , ) A_ = model.decode(_snake_case , _snake_case , decoder_attention_mask=_snake_case ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A_ (__a , __a , __a , __a=None , __a=None , ): '''simple docstring''' if attention_mask is None: A_ = np.not_equal(__a , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: A_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case = True snake_case = False snake_case = False snake_case = False def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A_ = FlaxPegasusModelTester(self ) A_ = ConfigTester(self , config_class=_snake_case ) def lowerCamelCase__ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ) -> str: """simple docstring""" A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_snake_case , _snake_case , _snake_case ) def lowerCamelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_snake_case , _snake_case , _snake_case ) def lowerCamelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = self._prepare_for_class(_snake_case , _snake_case ) A_ = model_class(_snake_case ) @jax.jit def encode_jitted(_snake_case : Any , _snake_case : Tuple=None , **_snake_case : List[Any] ): return model.encode(input_ids=_snake_case , attention_mask=_snake_case ) with self.subTest("JIT Enabled" ): A_ = encode_jitted(**_snake_case ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A_ = encode_jitted(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) , len(_snake_case ) ) for jitted_output, output in zip(_snake_case , _snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : List[str] ) -> int: """simple docstring""" A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = model_class(_snake_case ) A_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) A_ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_snake_case : List[Any] , _snake_case : Any , _snake_case : str ): return model.decode( decoder_input_ids=_snake_case , decoder_attention_mask=_snake_case , encoder_outputs=_snake_case , ) with self.subTest("JIT Enabled" ): A_ = decode_jitted(**_snake_case ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A_ = decode_jitted(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) , len(_snake_case ) ) for jitted_output, output in zip(_snake_case , _snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: A_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=_snake_case ) A_ = np.ones((1, 1) ) A_ = model(_snake_case ) self.assertIsNotNone(_snake_case ) @slow def lowerCamelCase__ ( self : List[Any] ) -> int: """simple docstring""" A_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) A_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) A_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] A_ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] A_ = tokenizer(_snake_case , return_tensors="np" , truncation=_snake_case , max_length=512 , padding=_snake_case ) A_ = model.generate(**_snake_case , num_beams=2 ).sequences A_ = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) assert tgt_text == decoded
482
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCamelCase_ : int = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class __lowerCAmelCase ( unittest.TestCase , _lowercase ): """simple docstring""" def lowerCamelCase__ ( self : str ) -> Dict: """simple docstring""" A_ = load_tool("text-question-answering" ) self.tool.setup() A_ = load_tool("text-question-answering" , remote=_snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" A_ = self.tool(_snake_case , "What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" A_ = self.remote_tool(_snake_case , "What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A_ = self.tool(text=_snake_case , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" A_ = self.remote_tool(text=_snake_case , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" )
482
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCAmelCase = HfArgumentParser(InitializationArguments) lowerCAmelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCAmelCase = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) lowerCAmelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCAmelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
43
'''simple docstring''' import numpy as np def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] ): '''simple docstring''' A: Any = int(np.ceil((x_end - xa) / h ) ) A: Union[str, Any] = np.zeros((n + 1,) ) A: Optional[int] = ya A: int = xa for k in range(lowerCamelCase__ ): A: Optional[int] = f(lowerCamelCase__ , y[k] ) A: int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A: List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A: Optional[int] = f(x + h , y[k] + h * ka ) A: Optional[Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
135
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _lowerCamelCase ( a_ : List[Any] , a_ : List[str] , a_ : Optional[Any]): lowerCamelCase :List[Any] = 1.5 lowerCamelCase :Any = int(factor * num_class_images) lowerCamelCase :List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=a_ , aesthetic_weight=0.1) os.makedirs(F"{class_data_dir}/images" , exist_ok=a_) if len(list(Path(F"{class_data_dir}/images").iterdir())) >= num_class_images: return while True: lowerCamelCase :Dict = client.query(text=a_) if len(a_) >= factor * num_class_images or num_images > 1e4: break else: lowerCamelCase :Tuple = int(factor * num_images) lowerCamelCase :Optional[int] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=a_ , aesthetic_weight=0.1 , ) lowerCamelCase :List[str] = 0 lowerCamelCase :Tuple = 0 lowerCamelCase :Union[str, Any] = tqdm(desc='''downloading real regularization images''' , total=a_) with open(F"{class_data_dir}/caption.txt" , '''w''') as fa, open(F"{class_data_dir}/urls.txt" , '''w''') as fa, open( F"{class_data_dir}/images.txt" , '''w''') as fa: while total < num_class_images: lowerCamelCase :List[Any] = class_images[count] count += 1 try: lowerCamelCase :Dict = requests.get(images['''url''']) if img.status_code == 2_00: lowerCamelCase :Any = Image.open(BytesIO(img.content)) with open(F"{class_data_dir}/images/{total}.jpg" , '''wb''') as f: f.write(img.content) fa.write(images['''caption'''] + '''\n''') fa.write(images['''url'''] + '''\n''') fa.write(F"{class_data_dir}/images/{total}.jpg" + '''\n''') total += 1 pbar.update(1) else: continue except Exception: continue return def _lowerCamelCase ( ): lowerCamelCase :List[Any] = argparse.ArgumentParser('''''' , add_help=a_) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=a_ , type=a_) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=a_ , type=a_) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=a_) return parser.parse_args() if __name__ == "__main__": A__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
49
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = (DEISMultistepScheduler,) UpperCAmelCase__ = (('''num_inference_steps''', 25),) def snake_case__ ( self : int , **lowercase__ : Tuple ) ->List[str]: '''simple docstring''' _UpperCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, } config.update(**lowercase__ ) return config def snake_case__ ( self : int , lowercase__ : Optional[int]=0 , **lowercase__ : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : str = dict(self.forward_default_kwargs ) _UpperCamelCase : Any = kwargs.pop("num_inference_steps" , lowercase__ ) _UpperCamelCase : Union[str, Any] = self.dummy_sample _UpperCamelCase : Dict = 0.1 * sample _UpperCamelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCamelCase : Dict = self.get_scheduler_config(**lowercase__ ) _UpperCamelCase : str = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals _UpperCamelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) _UpperCamelCase : Dict = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals _UpperCamelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCamelCase , _UpperCamelCase : List[str] = sample, sample for t in range(lowercase__ , time_step + scheduler.config.solver_order + 1 ): _UpperCamelCase : Optional[Any] = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _UpperCamelCase : str = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : Tuple ) ->str: '''simple docstring''' pass def snake_case__ ( self : List[str] , lowercase__ : Optional[int]=0 , **lowercase__ : Any ) ->Tuple: '''simple docstring''' _UpperCamelCase : Optional[int] = dict(self.forward_default_kwargs ) _UpperCamelCase : Tuple = kwargs.pop("num_inference_steps" , lowercase__ ) _UpperCamelCase : Optional[int] = self.dummy_sample _UpperCamelCase : Dict = 0.1 * sample _UpperCamelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCamelCase : int = self.get_scheduler_config() _UpperCamelCase : Union[str, Any] = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCamelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) _UpperCamelCase : Any = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) _UpperCamelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCamelCase : Tuple = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _UpperCamelCase : Optional[Any] = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : Optional[Any] , lowercase__ : Union[str, Any]=None , **lowercase__ : int ) ->Any: '''simple docstring''' if scheduler is None: _UpperCamelCase : Any = self.scheduler_classes[0] _UpperCamelCase : Optional[Any] = self.get_scheduler_config(**lowercase__ ) _UpperCamelCase : Dict = scheduler_class(**lowercase__ ) _UpperCamelCase : Tuple = self.scheduler_classes[0] _UpperCamelCase : Any = self.get_scheduler_config(**lowercase__ ) _UpperCamelCase : Tuple = scheduler_class(**lowercase__ ) _UpperCamelCase : int = 10 _UpperCamelCase : List[str] = self.dummy_model() _UpperCamelCase : List[str] = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase : Optional[Any] = model(lowercase__ , lowercase__ ) _UpperCamelCase : List[Any] = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def snake_case__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = dict(self.forward_default_kwargs ) _UpperCamelCase : str = kwargs.pop("num_inference_steps" , lowercase__ ) for scheduler_class in self.scheduler_classes: _UpperCamelCase : Optional[int] = self.get_scheduler_config() _UpperCamelCase : int = scheduler_class(**lowercase__ ) _UpperCamelCase : List[str] = self.dummy_sample _UpperCamelCase : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , "set_timesteps" ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , "set_timesteps" ): _UpperCamelCase : int = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCamelCase : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _UpperCamelCase : str = dummy_past_residuals[: scheduler.config.solver_order] _UpperCamelCase : Any = scheduler.timesteps[5] _UpperCamelCase : List[str] = scheduler.timesteps[6] _UpperCamelCase : int = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _UpperCamelCase : List[Any] = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCamelCase : List[str] = DEISMultistepScheduler(**self.get_scheduler_config() ) _UpperCamelCase : Optional[int] = self.full_loop(scheduler=lowercase__ ) _UpperCamelCase : Optional[Any] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 _UpperCamelCase : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCamelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCamelCase : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCamelCase : Any = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCamelCase : Any = self.full_loop(scheduler=lowercase__ ) _UpperCamelCase : Any = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def snake_case__ ( self : List[str] ) ->int: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ ) def snake_case__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' self.check_over_configs(thresholding=lowercase__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , algorithm_type="deis" , solver_order=lowercase__ , solver_type=lowercase__ , ) def snake_case__ ( self : Any ) ->str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def snake_case__ ( self : int ) ->List[Any]: '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , algorithm_type=lowercase__ , ) _UpperCamelCase : List[str] = self.full_loop( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , algorithm_type=lowercase__ , ) assert not torch.isnan(lowercase__ ).any(), "Samples have nan numbers" def snake_case__ ( self : Dict ) ->Dict: '''simple docstring''' self.check_over_configs(lower_order_final=lowercase__ ) self.check_over_configs(lower_order_final=lowercase__ ) def snake_case__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowercase__ , time_step=0 ) def snake_case__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCamelCase : List[str] = self.full_loop() _UpperCamelCase : Dict = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def snake_case__ ( self : Optional[int] ) ->str: '''simple docstring''' _UpperCamelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) _UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def snake_case__ ( self : str ) ->Tuple: '''simple docstring''' _UpperCamelCase : Dict = self.scheduler_classes[0] _UpperCamelCase : Tuple = self.get_scheduler_config(thresholding=lowercase__ , dynamic_thresholding_ratio=0 ) _UpperCamelCase : List[Any] = scheduler_class(**lowercase__ ) _UpperCamelCase : Union[str, Any] = 10 _UpperCamelCase : int = self.dummy_model() _UpperCamelCase : str = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase : Union[str, Any] = model(lowercase__ , lowercase__ ) _UpperCamelCase : Tuple = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample assert sample.dtype == torch.floataa
435
'''simple docstring''' def __A ( UpperCAmelCase ,UpperCAmelCase ) -> str: '''simple docstring''' _UpperCamelCase : str = [0 for i in range(r + 1 )] # nc0 = 1 _UpperCamelCase : List[Any] = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. _UpperCamelCase : int = min(UpperCAmelCase ,UpperCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
435
1
from pathlib import Path import fire from tqdm import tqdm def _UpperCamelCase ( lowercase__="ro" , lowercase__="en" , lowercase__="wmt16" , lowercase__=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __SCREAMING_SNAKE_CASE : int = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = datasets.load_dataset(lowercase__ , lowercase__ ) if save_dir is None: __SCREAMING_SNAKE_CASE : Dict = F'''{dataset}-{pair}''' __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(lowercase__ ) save_dir.mkdir(exist_ok=lowercase__ ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __SCREAMING_SNAKE_CASE : str = '''val''' if split == '''validation''' else split __SCREAMING_SNAKE_CASE : str = save_dir.joinpath(F'''{fn}.source''' ) __SCREAMING_SNAKE_CASE : List[str] = save_dir.joinpath(F'''{fn}.target''' ) __SCREAMING_SNAKE_CASE : Dict = src_path.open('''w+''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __SCREAMING_SNAKE_CASE : Tuple = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
715
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[str] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __SCREAMING_SNAKE_CASE : str = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1E-3 ) ) @slow def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1E-3 ) )
260
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] UpperCAmelCase__ : Optional[Any] = grid[0] for row_n in range(1 , len(__UpperCamelCase ) ): UpperCAmelCase__ : str = grid[row_n] UpperCAmelCase__ : Optional[int] = fill_row(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Any = grid[row_n] return grid[-1][-1] def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase: def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> int: """simple docstring""" a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = ids_tensor([self.batch_size] , self.num_choices ) a__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self ) -> Any: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" a__ = LlamaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) a__ = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" a__ = True a__ = LlamaModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) a__ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) a__ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" a__ = LlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" a__ = True a__ = True a__ = LlamaForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # first forward pass a__ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , ) a__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a__ = torch.cat([input_ids, next_tokens] , dim=-1 ) a__ = torch.cat([input_mask, next_mask] , dim=-1 ) a__ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['hidden_states'][0] a__ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['hidden_states'][0] # select random slice a__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() a__ = output_from_no_past[:, -3:, random_slice_idx].detach() a__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def lowercase__ ( self ) -> Dict: """simple docstring""" a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase(_lowercase , _lowercase , _lowercase , unittest.TestCase ): __snake_case: Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __snake_case: Optional[int] = (LlamaForCausalLM,) if is_torch_available() else () __snake_case: List[Any] = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) __snake_case: List[Any] = False __snake_case: List[str] = False def lowercase__ ( self ) -> Any: """simple docstring""" a__ = LlamaModelTester(self ) a__ = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowercase__ ( self ) -> Any: """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowercase__ ( self ) -> int: """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = 3 a__ = input_dict['input_ids'] a__ = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) a__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a__ = LlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = 3 a__ = 'single_label_classification' a__ = input_dict['input_ids'] a__ = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) a__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a__ = LlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self ) -> int: """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = 3 a__ = 'multi_label_classification' a__ = input_dict['input_ids'] a__ = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) a__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a__ = LlamaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a__ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowercase__ ( self ) -> List[str]: """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = ids_tensor([1, 1_0] , config.vocab_size ) a__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights a__ = LlamaModel(__SCREAMING_SNAKE_CASE ) original_model.to(__SCREAMING_SNAKE_CASE ) original_model.eval() a__ = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state a__ = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights a__ = {'type': scaling_type, 'factor': 10.0} a__ = LlamaModel(__SCREAMING_SNAKE_CASE ) scaled_model.to(__SCREAMING_SNAKE_CASE ) scaled_model.eval() a__ = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state a__ = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) ) @require_torch class lowercase(unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowercase__ ( self ) -> Any: """simple docstring""" a__ = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) a__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 a__ = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , __SCREAMING_SNAKE_CASE , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a__ = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , __SCREAMING_SNAKE_CASE , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowercase__ ( self ) -> Optional[int]: """simple docstring""" a__ = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) a__ = model(torch.tensor(__SCREAMING_SNAKE_CASE ) ) # Expected mean on dim = -1 a__ = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , __SCREAMING_SNAKE_CASE , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a__ = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , __SCREAMING_SNAKE_CASE , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowercase__ ( self ) -> str: """simple docstring""" a__ = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) a__ = model(torch.tensor(__SCREAMING_SNAKE_CASE ) ) # Expected mean on dim = -1 a__ = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , __SCREAMING_SNAKE_CASE , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a__ = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __SCREAMING_SNAKE_CASE , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowercase__ ( self ) -> Tuple: """simple docstring""" a__ = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) a__ = model(torch.tensor(__SCREAMING_SNAKE_CASE ) ) a__ = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __SCREAMING_SNAKE_CASE , atol=1e-2 , rtol=1e-2 ) # fmt: off a__ = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , __SCREAMING_SNAKE_CASE , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowercase__ ( self ) -> List[str]: """simple docstring""" a__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' a__ = 'Simply put, the theory of relativity states that ' a__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) a__ = tokenizer.encode(__SCREAMING_SNAKE_CASE , return_tensors='pt' ) a__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=__SCREAMING_SNAKE_CASE ) # greedy generation outputs a__ = model.generate(__SCREAMING_SNAKE_CASE , max_new_tokens=6_4 , top_p=__SCREAMING_SNAKE_CASE , temperature=1 , do_sample=__SCREAMING_SNAKE_CASE ) a__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
273
0
def __lowerCAmelCase ( _UpperCamelCase : list[list[int | float]] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = len(matrix[0] ) SCREAMING_SNAKE_CASE = min(_UpperCamelCase , _UpperCamelCase ) for row in range(_UpperCamelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = matrix[col][row] / matrix[row][row] for i in range(_UpperCamelCase , _UpperCamelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows SCREAMING_SNAKE_CASE = True for i in range(row + 1 , _UpperCamelCase ): if matrix[i][row] != 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = matrix[i], matrix[row] SCREAMING_SNAKE_CASE = False break if reduce: rank -= 1 for i in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
673
import heapq import sys import numpy as np a_ : Optional[int] = tuple[int, int] class UpperCamelCase : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() def UpperCamelCase ( self : List[Any] ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.elements ) == 0 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case__ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" if item in self.set: self.set.remove(snake_case__ ) SCREAMING_SNAKE_CASE = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase ( self : str ): """simple docstring""" return self.elements[0][1] def UpperCamelCase ( self : Tuple ): """simple docstring""" ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(snake_case__ ) return (priority, item) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array(_UpperCamelCase ) return np.linalg.norm(a - b ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Dict: '''simple docstring''' return consistent_heuristic(_UpperCamelCase , _UpperCamelCase ) // t def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos ) -> Optional[int]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : int , _UpperCamelCase : TPos , _UpperCamelCase : dict[TPos, float] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](_UpperCamelCase , _UpperCamelCase ) return ans def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE = '*' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE = '#' SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = x # print(x) SCREAMING_SNAKE_CASE = '-' SCREAMING_SNAKE_CASE = back_pointer[x] SCREAMING_SNAKE_CASE = '-' for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(_UpperCamelCase , end=' ' ) SCREAMING_SNAKE_CASE = back_pointer[x] print(_UpperCamelCase ) sys.exit() def __lowerCAmelCase ( _UpperCamelCase : TPos ) -> Any: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(_UpperCamelCase ): open_list[itera].remove_element(_UpperCamelCase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = s SCREAMING_SNAKE_CASE = (x - 1, y) SCREAMING_SNAKE_CASE = (x + 1, y) SCREAMING_SNAKE_CASE = (x, y + 1) SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = float('inf' ) if valid(_UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE = g_function[s] + 1 SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCamelCase , key(_UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCamelCase ): if key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) <= Wa * key( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase ): open_list[j].put( _UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ : Union[str, Any] = make_common_ground() a_ : Tuple = blocks_blk # hyper parameters a_ : Any = 1 a_ : List[str] = 1 a_ : Union[str, Any] = 20 a_ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a_ : int = (0, 0) a_ : Optional[int] = (n - 1, n - 1) a_ : Union[str, Any] = 1 def __lowerCAmelCase ( _UpperCamelCase : TPos , _UpperCamelCase : TPos , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE = {start: -1, goal: -1} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set() for i in range(_UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCamelCase , key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_inad.append(_UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(_UpperCamelCase ) expand_state( _UpperCamelCase , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) close_list_anchor.append(_UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
673
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __A = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowercase : Union[str, Any] = 50003 lowercase : Optional[int] = 50002 @require_sentencepiece @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : List[str]= PLBartTokenizer _a : List[str]= None _a : str= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase : Dict = PLBartTokenizer(snake_case ,language_codes="""base""" ,keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = PLBartTokenizer(snake_case ,language_codes="""base""" ,keep_accents=snake_case ) lowercase : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowercase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowercase : Any = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) lowercase : List[Any] = tokenizer.vocab_size lowercase : Union[str, Any] = [tokenizer.convert_ids_to_tokens(snake_case ) for x in range(end - 4 ,snake_case )] self.assertListEqual(snake_case ,["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) lowercase : Optional[int] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" lowercase : Tuple = tokenizer(snake_case ).input_ids self.assertEqual( tokenizer.decode(snake_case ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case ) ,snake_case ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = PLBartTokenizer(snake_case ,language_codes="""multi""" ,keep_accents=snake_case ) lowercase : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowercase : Tuple = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) lowercase : List[Any] = tokenizer.vocab_size lowercase : int = [tokenizer.convert_ids_to_tokens(snake_case ) for x in range(end - 7 ,snake_case )] self.assertListEqual( snake_case ,["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) lowercase : int = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" lowercase : Optional[Any] = tokenizer(snake_case ).input_ids self.assertEqual( tokenizer.decode(snake_case ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case ) ,snake_case ,) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): _a : str= "uclanlp/plbart-python-en_XX" _a : Union[str, Any]= [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] _a : List[Any]= [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] _a : Optional[Any]= [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' lowercase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name ,language_codes="""base""" ,src_lang="""python""" ,tgt_lang="""en_XX""" ) lowercase : Union[str, Any] = 1 return cls def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] ,50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] ,50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] ,50003 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertIn(snake_case ,self.tokenizer.all_special_ids ) lowercase : List[str] = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] lowercase : int = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Tuple = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertNotIn(self.tokenizer.eos_token ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] ,snake_case ) lowercase : Tuple = 10 lowercase : List[str] = self.tokenizer(snake_case ,max_length=snake_case ,truncation=snake_case ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,snake_case ) self.assertEqual(len(snake_case ) ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) ,[50004, 50001] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = tempfile.mkdtemp() lowercase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case ) lowercase : Optional[Any] = PLBartTokenizer.from_pretrained(snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,snake_case ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=snake_case ,return_tensors="""pt""" ) lowercase : List[str] = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() ,[2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] ,snake_case ) self.assertEqual(batch.decoder_input_ids[1][-1] ,2 ) self.assertEqual(batch.labels[1][-2:].tolist() ,[2, EN_CODE] ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=snake_case ,truncation=snake_case ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) lowercase : str = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case ,snake_case ) self.assertEqual((2, 26) ,batch.input_ids.shape ) self.assertEqual((2, 26) ,batch.attention_mask.shape ) lowercase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,snake_case ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, PYTHON_CODE] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.tokenizer(self.src_text ,padding=snake_case ,truncation=snake_case ,max_length=3 ,return_tensors="""pt""" ) lowercase : str = self.tokenizer( text_target=self.tgt_text ,padding=snake_case ,truncation=snake_case ,max_length=10 ,return_tensors="""pt""" ) lowercase : int = targets["""input_ids"""] lowercase : Tuple = shift_tokens_right(snake_case ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""en_XX""" ,tgt_lang="""java""" ) self.assertEqual( nested_simplify(snake_case ) ,{ # A, test, EOS, en_XX """input_ids""": [[150, 242, 2, 50003]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 50001, } ,)
336
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase_ =FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=_lowerCAmelCase , cache_dir=_lowerCAmelCase ) UpperCAmelCase_ =[t[-1] for t in os.walk(os.path.join(_lowerCAmelCase , os.listdir(_lowerCAmelCase )[0] , "snapshots" ) )] UpperCAmelCase_ =[item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=_lowerCAmelCase ) UpperCAmelCase_ =( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ =jax.random.PRNGKey(0 ) UpperCAmelCase_ =4 UpperCAmelCase_ =jax.device_count() UpperCAmelCase_ =num_samples * [prompt] UpperCAmelCase_ =pipeline.prepare_inputs(_lowerCAmelCase ) # shard inputs and rng UpperCAmelCase_ =replicate(_lowerCAmelCase ) UpperCAmelCase_ =jax.random.split(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =shard(_lowerCAmelCase ) UpperCAmelCase_ =pipeline(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(_lowerCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 UpperCAmelCase_ =pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowerCAmelCase ) == num_samples def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=_lowerCAmelCase ) UpperCAmelCase_ =( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ =jax.random.PRNGKey(0 ) UpperCAmelCase_ =50 UpperCAmelCase_ =jax.device_count() UpperCAmelCase_ =num_samples * [prompt] UpperCAmelCase_ =pipeline.prepare_inputs(_lowerCAmelCase ) # shard inputs and rng UpperCAmelCase_ =replicate(_lowerCAmelCase ) UpperCAmelCase_ =jax.random.split(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =shard(_lowerCAmelCase ) UpperCAmelCase_ =pipeline(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(_lowerCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_lowerCAmelCase ) UpperCAmelCase_ =( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ =jax.random.PRNGKey(0 ) UpperCAmelCase_ =50 UpperCAmelCase_ =jax.device_count() UpperCAmelCase_ =num_samples * [prompt] UpperCAmelCase_ =pipeline.prepare_inputs(_lowerCAmelCase ) # shard inputs and rng UpperCAmelCase_ =replicate(_lowerCAmelCase ) UpperCAmelCase_ =jax.random.split(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =shard(_lowerCAmelCase ) UpperCAmelCase_ =pipeline(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(_lowerCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase_ =( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ =jax.random.PRNGKey(0 ) UpperCAmelCase_ =50 UpperCAmelCase_ =jax.device_count() UpperCAmelCase_ =num_samples * [prompt] UpperCAmelCase_ =pipeline.prepare_inputs(_lowerCAmelCase ) # shard inputs and rng UpperCAmelCase_ =replicate(_lowerCAmelCase ) UpperCAmelCase_ =jax.random.split(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =shard(_lowerCAmelCase ) UpperCAmelCase_ =pipeline(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(_lowerCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , ) UpperCAmelCase_ , UpperCAmelCase_ =FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , ) UpperCAmelCase_ =scheduler.create_state() UpperCAmelCase_ =scheduler_state UpperCAmelCase_ =( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ =jax.random.PRNGKey(0 ) UpperCAmelCase_ =50 UpperCAmelCase_ =jax.device_count() UpperCAmelCase_ =num_samples * [prompt] UpperCAmelCase_ =pipeline.prepare_inputs(_lowerCAmelCase ) # shard inputs and rng UpperCAmelCase_ =replicate(_lowerCAmelCase ) UpperCAmelCase_ =jax.random.split(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =shard(_lowerCAmelCase ) UpperCAmelCase_ =pipeline(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(_lowerCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def lowerCAmelCase__ ( self: Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase_ =jax.device_count() UpperCAmelCase_ =num_samples * [prompt] UpperCAmelCase_ =jax.random.split(jax.random.PRNGKey(0 ) , _lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_lowerCAmelCase , ) UpperCAmelCase_ =replicate(_lowerCAmelCase ) UpperCAmelCase_ =pipeline.prepare_inputs(_lowerCAmelCase ) UpperCAmelCase_ =shard(_lowerCAmelCase ) UpperCAmelCase_ =pipeline(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ =images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase_ , UpperCAmelCase_ =FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_lowerCAmelCase , use_memory_efficient_attention=_lowerCAmelCase , ) UpperCAmelCase_ =replicate(_lowerCAmelCase ) UpperCAmelCase_ =pipeline.prepare_inputs(_lowerCAmelCase ) UpperCAmelCase_ =shard(_lowerCAmelCase ) UpperCAmelCase_ =pipeline(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , jit=_lowerCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase_ =images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
550
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowercase : Union[str, Any] =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''input_features''', '''attention_mask'''] def __init__( self: Dict , _lowerCAmelCase: List[str]=80 , _lowerCAmelCase: Optional[Any]=1_6000 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: Optional[Any]=25 , _lowerCAmelCase: Union[str, Any]="hamming_window" , _lowerCAmelCase: Optional[int]=3_27_68.0 , _lowerCAmelCase: Optional[Any]=0.97 , _lowerCAmelCase: Any=1.0 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Any=False , **_lowerCAmelCase: Any , ) -> Dict: '''simple docstring''' super().__init__(feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =feature_size UpperCAmelCase_ =sampling_rate UpperCAmelCase_ =padding_value UpperCAmelCase_ =hop_length UpperCAmelCase_ =win_length UpperCAmelCase_ =frame_signal_scale UpperCAmelCase_ =preemphasis_coeff UpperCAmelCase_ =mel_floor UpperCAmelCase_ =normalize_means UpperCAmelCase_ =normalize_vars UpperCAmelCase_ =win_function UpperCAmelCase_ =return_attention_mask UpperCAmelCase_ =win_length * sampling_rate // 1000 UpperCAmelCase_ =hop_length * sampling_rate // 1000 UpperCAmelCase_ =optimal_fft_length(self.sample_size ) UpperCAmelCase_ =(self.n_fft // 2) + 1 def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: np.array ) -> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase_ =window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCAmelCase ) else: UpperCAmelCase_ =window_function(window_length=self.sample_size , name=self.win_function ) UpperCAmelCase_ =mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCAmelCase_ =spectrogram( one_waveform * self.frame_signal_scale , window=_lowerCAmelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowerCAmelCase , preemphasis=self.preemphasis_coeff , mel_filters=_lowerCAmelCase , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: Any ) -> Any: '''simple docstring''' if self.normalize_means: UpperCAmelCase_ =x[:input_length].mean(axis=0 ) UpperCAmelCase_ =np.subtract(_lowerCAmelCase , _lowerCAmelCase ) if self.normalize_vars: UpperCAmelCase_ =x[:input_length].std(axis=0 ) UpperCAmelCase_ =np.divide(_lowerCAmelCase , _lowerCAmelCase ) if input_length < x.shape[0]: UpperCAmelCase_ =padding_value # make sure array is in float32 UpperCAmelCase_ =x.astype(np.floataa ) return x def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[np.ndarray] , _lowerCAmelCase: Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' UpperCAmelCase_ =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowerCAmelCase , _lowerCAmelCase , self.padding_value ) for x, n in zip(_lowerCAmelCase , _lowerCAmelCase )] def __call__( self: int , _lowerCAmelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowerCAmelCase: Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: Optional[int] = None , **_lowerCAmelCase: List[Any] , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCAmelCase_ =isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) UpperCAmelCase_ =is_batched_numpy or ( isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ =[np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ): UpperCAmelCase_ =np.asarray(_lowerCAmelCase , dtype=np.floataa ) elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ =raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ =[raw_speech] # extract fbank features UpperCAmelCase_ =[self._extract_mfsc_features(_lowerCAmelCase ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase_ =BatchFeature({"input_features": features} ) UpperCAmelCase_ =self.pad( _lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) # make sure list is in array format UpperCAmelCase_ =padded_inputs.get("input_features" ) if isinstance(input_features[0] , _lowerCAmelCase ): UpperCAmelCase_ =[np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_features] UpperCAmelCase_ =padded_inputs.get("attention_mask" ) if attention_mask is not None: UpperCAmelCase_ =[np.asarray(_lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase_ =( np.array(_lowerCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(_lowerCAmelCase , max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase_ =self.normalize( padded_inputs["input_features"] , attention_mask=_lowerCAmelCase ) if return_tensors is not None: UpperCAmelCase_ =padded_inputs.convert_to_tensors(_lowerCAmelCase ) return padded_inputs
550
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() # fmt: off lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __UpperCAmelCase : List[str] =TypeVar("""KEY""") __UpperCAmelCase : str =TypeVar("""VAL""") @dataclass(frozen=_A , slots=_A ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): lowercase__ : Tuple = 42 lowercase__ : Union[str, Any] = 42 class lowerCAmelCase__ ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __bool__( self ): '''simple docstring''' return False __UpperCAmelCase : str =_DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self , UpperCamelCase__ = 8 , UpperCamelCase__ = 0.75 ): '''simple docstring''' A__ = initial_block_size A__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 A__ = capacity_factor A__ = 0 def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return hash(UpperCamelCase__ ) % len(self._buckets ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = self._buckets[ind] if not stored: A__ = _Item(UpperCamelCase__ , UpperCamelCase__ ) self._len += 1 return True elif stored.key == key: A__ = _Item(UpperCamelCase__ , UpperCamelCase__ ) return True else: return False def lowercase_ ( self ): '''simple docstring''' A__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False A__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = self._buckets A__ = [None] * new_size A__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowercase_ ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowercase_ ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = self._get_bucket_index(UpperCamelCase__ ) for _ in range(len(self._buckets ) ): yield ind A__ = self._get_next_ind(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for ind in self._iterate_buckets(UpperCamelCase__ ): if self._try_set(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): break def __setitem__( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(UpperCamelCase__ , UpperCamelCase__ ) def __delitem__( self , UpperCamelCase__ ): '''simple docstring''' for ind in self._iterate_buckets(UpperCamelCase__ ): A__ = self._buckets[ind] if item is None: raise KeyError(UpperCamelCase__ ) if item is _deleted: continue if item.key == key: A__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , UpperCamelCase__ ): '''simple docstring''' for ind in self._iterate_buckets(UpperCamelCase__ ): A__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(UpperCamelCase__ ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' A__ = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
710
"""simple docstring""" # Lint as: python3 import itertools import os import re __UpperCAmelCase =re.compile(r"""([A-Z]+)([A-Z][a-z])""") __UpperCAmelCase =re.compile(r"""([a-z\d])([A-Z])""") __UpperCAmelCase =re.compile(r"""(?<!_)_(?!_)""") __UpperCAmelCase =re.compile(r"""(_{2,})""") __UpperCAmelCase =r"""^\w+(\.\w+)*$""" __UpperCAmelCase =r"""<>:/\|?*""" def __a ( A ) -> Tuple: '''simple docstring''' A__ = _uppercase_uppercase_re.sub(R"\1_\2" , A ) A__ = _lowercase_uppercase_re.sub(R"\1_\2" , A ) return name.lower() def __a ( A ) -> int: '''simple docstring''' A__ = _single_underscore_re.split(A ) A__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != "" ) def __a ( A ) -> Optional[Any]: '''simple docstring''' if os.path.basename(A ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(A ) def __a ( A , A ) -> Optional[int]: '''simple docstring''' if os.path.basename(A ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , A ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(A )}-{split}""" def __a ( A , A , A , A=None ) -> List[Any]: '''simple docstring''' A__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f""".{filetype_suffix}""" A__ = os.path.join(A , A ) return f"""{filepath}*""" def __a ( A , A , A , A=None , A=None ) -> List[Any]: '''simple docstring''' A__ = filename_prefix_for_split(A , A ) A__ = os.path.join(A , A ) if shard_lengths: A__ = len(A ) A__ = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(A )] if filetype_suffix: A__ = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: A__ = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
261
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self : Optional[Any] , _A : List[Any] , _A : Union[str, Any]=13 , _A : List[Any]=10 , _A : Optional[int]=3 , _A : Optional[Any]=2 , _A : int=2 , _A : Optional[Any]=True , _A : str=True , _A : int=32 , _A : Tuple=5 , _A : Union[str, Any]=4 , _A : Tuple=37 , _A : Tuple="gelu" , _A : Union[str, Any]=0.1 , _A : List[str]=0.1 , _A : List[Any]=10 , _A : Optional[int]=0.02 , _A : Union[str, Any]="divided_space_time" , _A : Dict=None , ) -> Any: UpperCAmelCase_ : str = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Dict = num_frames UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = attention_type UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : str = scope UpperCAmelCase_ : List[str] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCAmelCase_ : Optional[int] = (image_size // patch_size) ** 2 UpperCAmelCase_ : Any = (num_frames) * self.num_patches_per_frame + 1 def A ( self : List[str] ) -> Tuple: UpperCAmelCase_ : Dict = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : Dict = self.get_config() return config, pixel_values, labels def A ( self : int ) -> Any: UpperCAmelCase_ : List[Any] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) UpperCAmelCase_ : Tuple = self.num_labels return config def A ( self : str , _A : int , _A : str , _A : Optional[Any] ) -> int: UpperCAmelCase_ : List[Any] = TimesformerModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[int] , _A : int , _A : Optional[int] , _A : int ) -> str: UpperCAmelCase_ : List[Any] = TimesformerForVideoClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) # verify the logits shape UpperCAmelCase_ : Tuple = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _A ) def A ( self : Dict ) -> str: UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () a_ = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def A ( self : Tuple ) -> str: UpperCAmelCase_ : Union[str, Any] = TimesformerModelTester(self ) UpperCAmelCase_ : Any = ConfigTester( self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Union[str, Any] , _A : str , _A : Dict , _A : str=False ) -> Optional[Any]: UpperCAmelCase_ : int = copy.deepcopy(_A ) if return_labels: if model_class in get_values(_A ): UpperCAmelCase_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def A ( self : Union[str, Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def A ( self : Optional[int] ) -> Optional[int]: pass def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(_A ) UpperCAmelCase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Optional[int] ) -> Dict: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_A ) @slow def A ( self : Optional[int] ) -> List[str]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TimesformerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def A ( self : Optional[Any] ) -> Union[str, Any]: if not self.has_attentions: pass else: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = True for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = self.model_tester.seq_length UpperCAmelCase_ : Tuple = self.model_tester.num_frames UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Any = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Optional[int] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) UpperCAmelCase_ : str = len(_A ) # Check attention is always last and order is fine UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : str = True UpperCAmelCase_ : List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Any = model(**self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + 1 , len(_A ) ) UpperCAmelCase_ : int = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def A ( self : Dict ) -> Union[str, Any]: def check_hidden_states_output(_A : Union[str, Any] , _A : str , _A : int ): UpperCAmelCase_ : Tuple = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[str] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_A ) , _A ) UpperCAmelCase_ : Tuple = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : int = True check_hidden_states_output(_A , _A , _A ) def __UpperCAmelCase ( ) -> List[str]: UpperCAmelCase_ : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) UpperCAmelCase_ : str = np.load(A ) return list(A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Tuple ) -> Tuple: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def A ( self : Tuple ) -> str: UpperCAmelCase_ : List[str] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( _A ) UpperCAmelCase_ : List[str] = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = prepare_video() UpperCAmelCase_ : Any = image_processor(video[:8] , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**_A ) # verify the logits UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : str = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
541
'''simple docstring''' def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return lst UpperCAmelCase_ : List[str] = 1 while i < len(A ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase_ , UpperCAmelCase_ : Dict = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase_ : Dict = 1 return lst if __name__ == "__main__": _UpperCamelCase : int = input('Enter numbers separated by a comma:\n').strip() _UpperCamelCase : Union[str, Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
541
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } UpperCamelCase__ = { "roberta-base": 5_12, "roberta-large": 5_12, "roberta-large-mnli": 5_12, "distilroberta-base": 5_12, "roberta-base-openai-detector": 5_12, "roberta-large-openai-detector": 5_12, } class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : Dict = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[Any] = ["""input_ids""", """attention_mask"""] lowercase__ : Tuple = RobertaTokenizer def __init__( self : Dict , lowercase : Optional[int]=None , lowercase : Union[str, Any]=None , lowercase : Tuple=None , lowercase : Optional[int]="replace" , lowercase : Union[str, Any]="<s>" , lowercase : Optional[Any]="</s>" , lowercase : Union[str, Any]="</s>" , lowercase : List[Any]="<s>" , lowercase : Optional[Any]="<unk>" , lowercase : List[Any]="<pad>" , lowercase : List[str]="<mask>" , lowercase : Optional[Any]=False , lowercase : Dict=True , **lowercase : str , ) -> Tuple: """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase ) != add_prefix_space: __lowercase = getattr(lowercase , pre_tok_state.pop("""type""" ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**lowercase ) __lowercase = add_prefix_space __lowercase = """post_processor""" __lowercase = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: __lowercase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowercase = tuple(state["""sep"""] ) if "cls" in state: __lowercase = tuple(state["""cls"""] ) __lowercase = False if state.get("""add_prefix_space""" , lowercase ) != add_prefix_space: __lowercase = add_prefix_space __lowercase = True if state.get("""trim_offsets""" , lowercase ) != trim_offsets: __lowercase = trim_offsets __lowercase = True if changes_to_apply: __lowercase = getattr(lowercase , state.pop("""type""" ) ) __lowercase = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def snake_case__ ( self : Any ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self : Any , lowercase : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value __lowercase = value def snake_case__ ( self : List[Any] , *lowercase : Tuple , **lowercase : Dict ) -> BatchEncoding: """simple docstring""" __lowercase = kwargs.get("""is_split_into_words""" , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def snake_case__ ( self : Any , *lowercase : int , **lowercase : Optional[int] ) -> BatchEncoding: """simple docstring""" __lowercase = kwargs.get("""is_split_into_words""" , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def snake_case__ ( self : int , lowercase : str , lowercase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def snake_case__ ( self : Tuple , lowercase : Dict , lowercase : Optional[Any]=None ) -> List[str]: """simple docstring""" __lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
634
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
634
1
import requests from bsa import BeautifulSoup def lowerCAmelCase_ (lowercase__ : str = "https://www.worldometers.info/coronavirus" ) -> dict: '''simple docstring''' lowerCAmelCase__ = BeautifulSoup(requests.get(lowercase__ ).text , '''html.parser''' ) lowerCAmelCase__ = soup.findAll('''h1''' ) lowerCAmelCase__ = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowercase__ , lowercase__ )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
668
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCAmelCase : List[Any] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } _UpperCAmelCase : Union[str, Any] = { "camembert-base": 512, } _UpperCAmelCase : Dict = "▁" class lowerCAmelCase_ ( snake_case__ ): UpperCamelCase_ :int = VOCAB_FILES_NAMES UpperCamelCase_ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ :Dict = ['input_ids', 'attention_mask'] def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : Tuple="</s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE_ : str="<mask>" , SCREAMING_SNAKE_CASE_ : int=["<s>NOTUSED", "</s>NOTUSED"] , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCAmelCase__ = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} lowerCAmelCase__ = len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case ( self : List[Any] ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __snake_case ( self : int ): lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ): return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase__ = [] lowerCAmelCase__ = '''''' lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self : Optional[Any] ): lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : str , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
668
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( UpperCamelCase_ , UpperCamelCase_=0.999 , UpperCamelCase_="cosine" , ) -> int: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) SCREAMING_SNAKE_CASE__ = [] for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase_ ) / alpha_bar_fn(UpperCamelCase_ ) , UpperCamelCase_ ) ) return torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ): A__ : Union[str, Any] =[e.name for e in KarrasDiffusionSchedulers] A__ : Tuple =2 @register_to_config def __init__( self : Any , UpperCAmelCase_ : int = 1000 , UpperCAmelCase_ : float = 0.00_085 , UpperCAmelCase_ : float = 0.012 , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : str = "linspace" , UpperCAmelCase_ : int = 0 , ): if trained_betas is not None: SCREAMING_SNAKE_CASE__ = torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE__ = torch.linspace(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE__ = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) SCREAMING_SNAKE_CASE__ = 1.0 - self.betas SCREAMING_SNAKE_CASE__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=None ): if schedule_timesteps is None: SCREAMING_SNAKE_CASE__ = self.timesteps SCREAMING_SNAKE_CASE__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: SCREAMING_SNAKE_CASE__ = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: SCREAMING_SNAKE_CASE__ = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep SCREAMING_SNAKE_CASE__ = self._index_counter[timestep_int] return indices[pos].item() @property def A_ ( self : Optional[Any] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def A_ ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[float, torch.FloatTensor] , ): SCREAMING_SNAKE_CASE__ = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: SCREAMING_SNAKE_CASE__ = self.sigmas[step_index] else: SCREAMING_SNAKE_CASE__ = self.sigmas_interpol[step_index] SCREAMING_SNAKE_CASE__ = sample / ((sigma**2 + 1) ** 0.5) return sample def A_ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None , UpperCAmelCase_ : Optional[int] = None , ): SCREAMING_SNAKE_CASE__ = num_inference_steps SCREAMING_SNAKE_CASE__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": SCREAMING_SNAKE_CASE__ = np.linspace(0 , num_train_timesteps - 1 , UpperCAmelCase_ , dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": SCREAMING_SNAKE_CASE__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ = (np.arange(0 , UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": SCREAMING_SNAKE_CASE__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ = (np.arange(UpperCAmelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) SCREAMING_SNAKE_CASE__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.interp(UpperCAmelCase_ , np.arange(0 , len(UpperCAmelCase_ ) ) , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas SCREAMING_SNAKE_CASE__ = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() SCREAMING_SNAKE_CASE__ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) SCREAMING_SNAKE_CASE__ = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith('mps' ): # mps does not support float64 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps SCREAMING_SNAKE_CASE__ = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ , dtype=timesteps.dtype ) SCREAMING_SNAKE_CASE__ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() SCREAMING_SNAKE_CASE__ = torch.cat([timesteps[:1], interleaved_timesteps] ) SCREAMING_SNAKE_CASE__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter SCREAMING_SNAKE_CASE__ = defaultdict(UpperCAmelCase_ ) def A_ ( self : Any , UpperCAmelCase_ : Union[str, Any] ): # get log sigma SCREAMING_SNAKE_CASE__ = sigma.log() # get distribution SCREAMING_SNAKE_CASE__ = log_sigma - self.log_sigmas[:, None] # get sigmas range SCREAMING_SNAKE_CASE__ = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) SCREAMING_SNAKE_CASE__ = low_idx + 1 SCREAMING_SNAKE_CASE__ = self.log_sigmas[low_idx] SCREAMING_SNAKE_CASE__ = self.log_sigmas[high_idx] # interpolate sigmas SCREAMING_SNAKE_CASE__ = (low - log_sigma) / (low - high) SCREAMING_SNAKE_CASE__ = w.clamp(0 , 1 ) # transform interpolation to time range SCREAMING_SNAKE_CASE__ = (1 - w) * low_idx + w * high_idx SCREAMING_SNAKE_CASE__ = t.view(sigma.shape ) return t @property def A_ ( self : Tuple ): return self.sample is None def A_ ( self : Tuple , UpperCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , UpperCAmelCase_ : Union[float, torch.FloatTensor] , UpperCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , UpperCAmelCase_ : bool = True , ): SCREAMING_SNAKE_CASE__ = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 SCREAMING_SNAKE_CASE__ = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: SCREAMING_SNAKE_CASE__ = self.sigmas[step_index] SCREAMING_SNAKE_CASE__ = self.sigmas_interpol[step_index + 1] SCREAMING_SNAKE_CASE__ = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method SCREAMING_SNAKE_CASE__ = self.sigmas[step_index - 1] SCREAMING_SNAKE_CASE__ = self.sigmas_interpol[step_index] SCREAMING_SNAKE_CASE__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE__ = sigma_hat if self.state_in_first_order else sigma_interpol SCREAMING_SNAKE_CASE__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE__ = sigma_hat if self.state_in_first_order else sigma_interpol SCREAMING_SNAKE_CASE__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order SCREAMING_SNAKE_CASE__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep SCREAMING_SNAKE_CASE__ = sigma_interpol - sigma_hat # store for 2nd order step SCREAMING_SNAKE_CASE__ = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order SCREAMING_SNAKE_CASE__ = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep SCREAMING_SNAKE_CASE__ = sigma_next - sigma_hat SCREAMING_SNAKE_CASE__ = self.sample SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples SCREAMING_SNAKE_CASE__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 SCREAMING_SNAKE_CASE__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE__ = self.timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE__ = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE__ = [self.index_for_timestep(UpperCAmelCase_ , UpperCAmelCase_ ) for t in timesteps] SCREAMING_SNAKE_CASE__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE__ = sigma.unsqueeze(-1 ) SCREAMING_SNAKE_CASE__ = original_samples + noise * sigma return noisy_samples def __len__( self : int ): return self.config.num_train_timesteps
709
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : def __init__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : List[Any]=[32, 64, 128] , UpperCAmelCase_ : Tuple=[1, 2, 1] , UpperCAmelCase_ : int=[2, 2, 4] , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Tuple=2.0 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Optional[int]=8 , UpperCAmelCase_ : int=["stage1", "stage2"] , UpperCAmelCase_ : Optional[int]=[1, 2] , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = window_size SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = use_absolute_embeddings SCREAMING_SNAKE_CASE__ = patch_norm SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = encoder_stride SCREAMING_SNAKE_CASE__ = out_features SCREAMING_SNAKE_CASE__ = out_indices def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def A_ ( self : Optional[int] ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A_ ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = FocalNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A_ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = FocalNetForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FocalNetForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ = FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : Any =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] =( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Union[str, Any] =False A__ : Dict =False A__ : Optional[Any] =False A__ : str =False A__ : Any =False def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = FocalNetModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 , has_text_modality=UpperCAmelCase_ ) def A_ ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : Union[str, Any] ): return def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def A_ ( self : Tuple ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def A_ ( self : Dict ): pass def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def A_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = outputs.hidden_states SCREAMING_SNAKE_CASE__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # FocalNet has a different seq_length SCREAMING_SNAKE_CASE__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE__ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE__ = ( reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE__ = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE__ = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) @slow def A_ ( self : int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FocalNetModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class lowercase__ ( unittest.TestCase ): @cached_property def A_ ( self : Any ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**UpperCAmelCase_ ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Union[str, Any] =(FocalNetBackbone,) if is_torch_available() else () A__ : Tuple =FocalNetConfig A__ : Optional[int] =False def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = FocalNetModelTester(self )
400
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_:int = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE_:Dict = { '''allenai/led-base-16384''': 16_384, } class SCREAMING_SNAKE_CASE__ ( _lowercase ): '''simple docstring''' __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Dict = LEDTokenizer __lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__="replace", lowerCamelCase__="<s>", lowerCamelCase__="</s>", lowerCamelCase__="</s>", lowerCamelCase__="<s>", lowerCamelCase__="<unk>", lowerCamelCase__="<pad>", lowerCamelCase__="<mask>", lowerCamelCase__=False, lowerCamelCase__=True, **lowerCamelCase__, ): super().__init__( __A, __A, tokenizer_file=__A, errors=__A, bos_token=__A, eos_token=__A, sep_token=__A, cls_token=__A, unk_token=__A, pad_token=__A, mask_token=__A, add_prefix_space=__A, trim_offsets=__A, **__A, ) A : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", __A ) != add_prefix_space: A : int = getattr(__A, pre_tok_state.pop("""type""" ) ) A : Optional[Any] = add_prefix_space A : Optional[int] = pre_tok_class(**__A ) A : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A : Optional[int] = """post_processor""" A : Tuple = getattr(self.backend_tokenizer, __A, __A ) if tokenizer_component_instance: A : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A : Dict = tuple(state["""sep"""] ) if "cls" in state: A : Optional[Any] = tuple(state["""cls"""] ) A : Optional[Any] = False if state.get("""add_prefix_space""", __A ) != add_prefix_space: A : Tuple = add_prefix_space A : Union[str, Any] = True if state.get("""trim_offsets""", __A ) != trim_offsets: A : int = trim_offsets A : Optional[Any] = True if changes_to_apply: A : Union[str, Any] = getattr(__A, state.pop("""type""" ) ) A : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer, __A, __A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCAmelCase ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[Any] = AddedToken(__A, lstrip=__A, rstrip=__A ) if isinstance(__A, __A ) else value A : List[Any] = value def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): A : Any = kwargs.get("""is_split_into_words""", __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__A, **__A ) def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): A : Tuple = kwargs.get("""is_split_into_words""", __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__A, **__A ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : List[Any] = self._tokenizer.model.save(__A, name=__A ) return tuple(__A ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None ): A : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : Dict = [self.sep_token_id] A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = PaddingStrategy.DO_NOT_PAD, lowerCamelCase__ = None, lowerCamelCase__ = None, ): A : Optional[Any] = super()._pad( encoded_inputs=__A, max_length=__A, padding_strategy=__A, pad_to_multiple_of=__A, return_attention_mask=__A, ) # Load from model defaults if return_attention_mask is None: A : Dict = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A : Dict = len(encoded_inputs["""global_attention_mask"""] ) != len(__A ) if needs_to_be_padded: A : Any = len(__A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A : int = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": A : List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
662
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : List[Any] = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=64 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = vocab_size - 1 def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = self.get_config() return config, input_ids, input_mask, token_labels def snake_case__ ( self ) -> List[str]: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.prepare_config_and_inputs() __lowercase = True return config, input_ids, input_mask, token_labels def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __lowercase = GPTNeoXModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __lowercase = True __lowercase = GPTNeoXModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = GPTNeoXForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __lowercase = self.num_labels __lowercase = GPTNeoXForQuestionAnswering(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = GPTNeoXForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = GPTNeoXForTokenClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __lowercase = True __lowercase = GPTNeoXForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) __lowercase = output_from_no_past["""hidden_states"""][0] __lowercase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice __lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase ,__lowercase = config_and_inputs __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( __A , __A , __A , unittest.TestCase ): snake_case_ : Optional[int] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ : str = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ : str = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ : List[Any] = False snake_case_ : Tuple = False snake_case_ : Any = False snake_case_ : int = False def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = GPTNeoXModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=64 , num_attention_heads=8 ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase ,__lowercase ,__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) def snake_case__ ( self ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def snake_case__ ( self ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def snake_case__ ( self ) -> List[str]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def snake_case__ ( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ids_tensor([1, 10] , config.vocab_size ) __lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = GPTNeoXModel(lowerCamelCase__ ) original_model.to(lowerCamelCase__ ) original_model.eval() __lowercase = original_model(lowerCamelCase__ ).last_hidden_state __lowercase = original_model(lowerCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = {"""type""": scaling_type, """factor""": 10.0} __lowercase = GPTNeoXModel(lowerCamelCase__ ) scaled_model.to(lowerCamelCase__ ) scaled_model.eval() __lowercase = scaled_model(lowerCamelCase__ ).last_hidden_state __lowercase = scaled_model(lowerCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: __lowercase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase__ ) __lowercase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(lowerCamelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowercase = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" __lowercase = model.generate(**lowerCamelCase__ , do_sample=lowerCamelCase__ , max_new_tokens=20 ) __lowercase = tokenizer.batch_decode(lowerCamelCase__ )[0] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
163
0
from math import sqrt def UpperCamelCase_ ( __a = 1_000_000 ) -> int: a__ : int = 0 a__ : int = 0 a__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__a , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
37
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=100 , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[int]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=10 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , ): a__ : Dict = parent a__ : Dict = 100 a__ : Optional[int] = batch_size a__ : Union[str, Any] = image_size a__ : Any = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : Optional[Any] = hidden_size a__ : List[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : str = intermediate_size a__ : int = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = type_sequence_label_size a__ : Optional[Any] = initializer_range a__ : List[str] = scope a__ : int = out_indices a__ : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def _UpperCamelCase( self : int ): a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Optional[Any] = None a__ : Tuple = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any ): a__ : str = BeitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): a__ : int = BeitForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ): a__ : List[str] = self.type_sequence_label_size a__ : Optional[Any] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Optional[Any] = 1 a__ : List[str] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): a__ : int = self.num_labels a__ : List[str] = BeitForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.prepare_config_and_inputs() a__, a__, a__, a__ : Union[str, Any] = config_and_inputs a__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Any ): a__ : int = BeitModelTester(self ) a__ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Dict ): pass def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : str ): a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowerCamelCase__ ) a__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]: continue a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Tuple ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ : List[Any] = False a__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a__ : Optional[Any] = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : int = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : List[str] ): a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Dict = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: a__ : str = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _UpperCamelCase( self : Optional[int] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = BeitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCamelCase( self : str ): a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase__ ) a__ : Optional[Any] = self.default_image_processor a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).pixel_values.to(lowerCamelCase__ ) # prepare bool_masked_pos a__ : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ ) a__ : Tuple = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1E-2 ) ) @slow def _UpperCamelCase( self : Dict ): a__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase__ ) a__ : int = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): a__ : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( lowerCamelCase__ ) a__ : str = self.default_image_processor a__ : List[str] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Dict = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Optional[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): a__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Tuple = model.to(lowerCamelCase__ ) a__ : List[Any] = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : Union[str, Any] = Image.open(ds[0]["file"] ) a__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: a__ : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCamelCase__ , ) else: a__ : Dict = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self : Tuple ): a__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : List[Any] = model.to(lowerCamelCase__ ) a__ : int = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : str = Image.open(ds[0]["file"] ) a__ : str = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) a__ : Any = outputs.logits.detach().cpu() a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) a__ : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) a__ : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
37
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=1_3 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=9_9 , UpperCAmelCase_ : Union[str, Any]=3_2 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Union[str, Any]=3_7 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Any=5_1_2 , UpperCAmelCase_ : List[str]=1_6 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=None , ): """simple docstring""" a : Dict = parent a : Tuple = batch_size a : Any = seq_length a : int = is_training a : Dict = use_input_mask a : Optional[Any] = use_token_type_ids a : int = use_labels a : Optional[int] = vocab_size a : Dict = hidden_size a : Any = num_hidden_layers a : str = num_attention_heads a : int = intermediate_size a : int = hidden_act a : Dict = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Any = type_vocab_size a : Any = type_sequence_label_size a : int = initializer_range a : str = num_labels a : Optional[Any] = num_choices a : Any = scope def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Union[str, Any] = None if self.use_input_mask: a : Dict = random_attention_mask([self.batch_size, self.seq_length]) a : List[str] = None if self.use_token_type_ids: a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a : List[Any] = None a : Dict = None a : Optional[Any] = None if self.use_labels: a : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : List[Any] = ids_tensor([self.batch_size] , self.num_choices) a : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int): """simple docstring""" a : int = NystromformerModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) a : List[str] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str): """simple docstring""" a : int = NystromformerForMaskedLM(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = NystromformerForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[int] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple): """simple docstring""" a : Any = self.num_labels a : Union[str, Any] = NystromformerForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Any): """simple docstring""" a : Optional[Any] = self.num_labels a : List[Any] = NystromformerForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : List[Any] = self.num_choices a : Optional[Any] = NystromformerForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Tuple = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Union[str, Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : str = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : List[Any] = self.prepare_config_and_inputs() ( a ) : Any = config_and_inputs a : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : List[str] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) A : Optional[int] = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) A : List[str] = False A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Dict = NystromformerModelTester(self) a : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : List[str] = type self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : str = NystromformerModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Dict = NystromformerModel.from_pretrained('uw-madison/nystromformer-512') a : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): a : List[str] = model(UpperCAmelCase_)[0] a : Union[str, Any] = torch.Size((1, 6, 7_6_8)) self.assertEqual(output.shape , UpperCAmelCase_) a : Optional[Any] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Optional[int] = 'the [MASK] of Belgium is Brussels' a : str = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512') a : Any = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512') a : Optional[Any] = tokenizer(UpperCAmelCase_ , return_tensors='pt') with torch.no_grad(): a : Dict = model(encoding.input_ids).logits a : str = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(UpperCAmelCase_) , 'capital')
715
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase : int = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ UpperCamelCase : List[str] = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ UpperCamelCase : Tuple = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Dict: """simple docstring""" return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" a : Optional[Any] = simple_accuracy(snake_case , snake_case ) a : Dict = float(fa_score(y_true=snake_case , y_pred=snake_case ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : int ) -> Optional[int]: """simple docstring""" a : Union[str, Any] = np.array(snake_case ) a : Any = np.array(snake_case ) a : Tuple = en_sentvecs.shape[0] # mean centering a : Tuple = en_sentvecs - np.mean(snake_case , axis=0 ) a : Optional[Any] = in_sentvecs - np.mean(snake_case , axis=0 ) a : Optional[int] = cdist(snake_case , snake_case , 'cosine' ) a : List[Any] = np.array(range(snake_case ) ) a : str = sim.argsort(axis=1 )[:, :10] a : int = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCAmelCase_ , UpperCAmelCase_)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
610
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = None def a__ ( snake_case , snake_case=0.999 , snake_case="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : Any = [] for i in range(snake_case ): __SCREAMING_SNAKE_CASE : int = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case ) / alpha_bar_fn(snake_case ) , snake_case ) ) return torch.tensor(snake_case , dtype=torch.floataa ) class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self : List[Any] , _A : int = 1000 , _A : str = "fixed_small_log" , _A : bool = True , _A : Optional[float] = 1.0 , _A : str = "epsilon" , _A : str = "squaredcos_cap_v2" , ): """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) __SCREAMING_SNAKE_CASE : List[Any] = betas_for_alpha_bar(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : List[Any] = torch.cumprod(self.alphas , dim=0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Tuple = 1.0 # setable values __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : Any = torch.from_numpy(np.arange(0 , _A )[::-1].copy() ) __SCREAMING_SNAKE_CASE : Tuple = variance_type def UpperCAmelCase__ ( self : int , _A : torch.FloatTensor , _A : Optional[int] = None ): """simple docstring""" return sample def UpperCAmelCase__ ( self : int , _A : int , _A : Union[str, torch.device] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = num_inference_steps __SCREAMING_SNAKE_CASE : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __SCREAMING_SNAKE_CASE : Optional[Any] = (np.arange(0 , _A ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(_A ).to(_A ) def UpperCAmelCase__ ( self : List[str] , _A : List[Any] , _A : List[str]=None , _A : List[Any]=None , _A : List[str]=None ): """simple docstring""" if prev_timestep is None: __SCREAMING_SNAKE_CASE : Optional[int] = t - 1 __SCREAMING_SNAKE_CASE : str = self.alphas_cumprod[t] __SCREAMING_SNAKE_CASE : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __SCREAMING_SNAKE_CASE : Dict = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE : Any = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __SCREAMING_SNAKE_CASE : List[Any] = self.betas[t] else: __SCREAMING_SNAKE_CASE : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __SCREAMING_SNAKE_CASE : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __SCREAMING_SNAKE_CASE : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __SCREAMING_SNAKE_CASE : Any = torch.log(torch.clamp(_A , min=1e-20 ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __SCREAMING_SNAKE_CASE : Optional[Any] = variance.log() __SCREAMING_SNAKE_CASE : Optional[int] = beta.log() __SCREAMING_SNAKE_CASE : Dict = (predicted_variance + 1) / 2 __SCREAMING_SNAKE_CASE : str = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self : Dict , _A : torch.FloatTensor , _A : int , _A : torch.FloatTensor , _A : Optional[int] = None , _A : List[str]=None , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , sample.shape[1] , dim=1 ) else: __SCREAMING_SNAKE_CASE : Tuple = None # 1. compute alphas, betas if prev_timestep is None: __SCREAMING_SNAKE_CASE : List[str] = t - 1 __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[t] __SCREAMING_SNAKE_CASE : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE : Optional[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __SCREAMING_SNAKE_CASE : str = self.betas[t] __SCREAMING_SNAKE_CASE : List[Any] = self.alphas[t] else: __SCREAMING_SNAKE_CASE : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev __SCREAMING_SNAKE_CASE : Any = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = torch.clamp( _A , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __SCREAMING_SNAKE_CASE : Tuple = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __SCREAMING_SNAKE_CASE : List[str] = 0 if t > 0: __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_A , device=model_output.device ) __SCREAMING_SNAKE_CASE : Any = self._get_variance( _A , predicted_variance=_A , prev_timestep=_A , ) if self.variance_type == "fixed_small_log": __SCREAMING_SNAKE_CASE : List[Any] = variance elif self.variance_type == "learned_range": __SCREAMING_SNAKE_CASE : str = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) __SCREAMING_SNAKE_CASE : List[Any] = variance * variance_noise __SCREAMING_SNAKE_CASE : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_A , pred_original_sample=_A ) def UpperCAmelCase__ ( self : str , _A : torch.FloatTensor , _A : torch.FloatTensor , _A : torch.IntTensor , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __SCREAMING_SNAKE_CASE : List[Any] = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 __SCREAMING_SNAKE_CASE : Dict = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE : Any = sqrt_alpha_prod.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE : List[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 __SCREAMING_SNAKE_CASE : Any = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE : Optional[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : str ={ 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] =[ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase__ : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
101
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a= [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def _UpperCamelCase ( _a : Dict ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: __UpperCamelCase : Union[str, Any] = k.replace(_a , _a ) return k def _UpperCamelCase ( _a : dict , _a : dict ): """simple docstring""" __UpperCamelCase : Optional[Any] = DEFAULTS.copy() cfg_kwargs.update(_a ) __UpperCamelCase : Any = PegasusConfig(**_a ) __UpperCamelCase : List[str] = PegasusForConditionalGeneration(_a ) __UpperCamelCase : int = torch_model.model.state_dict() __UpperCamelCase : List[Any] = {} for k, v in tf_weights.items(): __UpperCamelCase : List[str] = rename_state_dict_key(_a ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __UpperCamelCase : Optional[Any] = v.T __UpperCamelCase : List[Any] = torch.tensor(_a , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __UpperCamelCase : Any = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __UpperCamelCase : Any = mapping['shared.weight'] __UpperCamelCase : Optional[int] = mapping['shared.weight'] __UpperCamelCase : Dict = {k: torch.zeros_like(_a ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**_a ) __UpperCamelCase , __UpperCamelCase : Optional[int] = torch_model.model.load_state_dict(_a , strict=_a ) __UpperCamelCase : Any = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def _UpperCamelCase ( _a : int="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" __UpperCamelCase : str = tf.train.list_variables(_a ) __UpperCamelCase : str = {} __UpperCamelCase : Optional[Any] = ['Adafactor', 'global_step'] for name, shape in tqdm(_a , desc='converting tf checkpoint to dict' ): __UpperCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCamelCase : Tuple = tf.train.load_variable(_a , _a ) __UpperCamelCase : List[str] = array return tf_weights def _UpperCamelCase ( _a : str , _a : str ): """simple docstring""" __UpperCamelCase : Optional[int] = Path(_a ).parent.name __UpperCamelCase : List[str] = task_specific_params[f"""summarization_{dataset}"""]['max_position_embeddings'] __UpperCamelCase : Dict = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=_a ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_a ) # convert model __UpperCamelCase : int = get_tf_weights_as_numpy(_a ) __UpperCamelCase : List[str] = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __UpperCamelCase : Optional[int] = task_specific_params __UpperCamelCase : int = convert_pegasus(_a , _a ) torch_model.save_pretrained(_a ) __UpperCamelCase : int = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(_a , Path(_a ) / 'pytorch_model.bin' ) if __name__ == "__main__": a= argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a= parser.parse_args() if args.save_dir is None: a= Path(args.tf_ckpt_path).parent.name a= os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
287
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase : List[str] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __UpperCamelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def lowerCAmelCase ( self , _lowerCamelCase ): return "lower newer", "lower newer" def lowerCAmelCase ( self ): __UpperCamelCase : Dict = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __UpperCamelCase : List[Any] = 'lower' __UpperCamelCase : Union[str, Any] = ['low', 'er</w>'] __UpperCamelCase : Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : List[str] = tokens + ['<unk>'] __UpperCamelCase : Optional[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input __UpperCamelCase : int = 'This is a simple input' __UpperCamelCase : Any = ['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase : Union[str, Any] = ('This is a simple input', 'This is a pair') __UpperCamelCase : Any = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) def lowerCAmelCase ( self ): pass @require_ftfy @require_spacy @require_tokenizers class __lowercase ( _lowerCamelCase ): """simple docstring""" pass
287
1
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return EnvironmentCommand() def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class _a ( lowerCAmelCase): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : ArgumentParser )->Tuple: _UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=__UpperCamelCase ) download_parser.add_argument( '''--accelerate-config_file''' , default=__UpperCamelCase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=__UpperCamelCase ) def __init__( self : Optional[Any] , __UpperCamelCase : Any , *__UpperCamelCase : Any )->None: _UpperCAmelCase = accelerate_config_file def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors _UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors _UpperCAmelCase = F'{safetensors.__version__} but is ignored because of PyTorch version too old.' _UpperCAmelCase = '''not installed''' _UpperCAmelCase = _UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__UpperCamelCase ): _UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() _UpperCAmelCase = ( '''\n'''.join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else F'\t{accelerate_config}' ) _UpperCAmelCase = '''not installed''' _UpperCAmelCase = '''NA''' if is_torch_available(): import torch _UpperCAmelCase = torch.__version__ _UpperCAmelCase = torch.cuda.is_available() _UpperCAmelCase = '''not installed''' _UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf _UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 _UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) _UpperCAmelCase = '''not installed''' _UpperCAmelCase = '''not installed''' _UpperCAmelCase = '''not installed''' _UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib _UpperCAmelCase = flax.__version__ _UpperCAmelCase = jax.__version__ _UpperCAmelCase = jaxlib.__version__ _UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform _UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'{safetensors_version}', '''Accelerate version''': F'{accelerate_version}', '''Accelerate config''': F'{accelerate_config_str}', '''PyTorch version (GPU?)''': F'{pt_version} ({pt_cuda_available})', '''Tensorflow version (GPU?)''': F'{tf_version} ({tf_cuda_available})', '''Flax version (CPU?/GPU?/TPU?)''': F'{flax_version} ({jax_backend})', '''Jax version''': F'{jax_version}', '''JaxLib version''': F'{jaxlib_version}', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(__UpperCamelCase ) ) return info @staticmethod def lowercase__ ( __UpperCamelCase : Optional[int] )->Dict: return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
602
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __A : List[str] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __A : List[Any] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __A : int = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' def remove_articles(_SCREAMING_SNAKE_CASE : Optional[int] ): _UpperCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 100 def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _UpperCAmelCase = scount * numref _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _UpperCAmelCase = ccount * numref # KEEP _UpperCAmelCase = sgramcounter_rep & cgramcounter_rep _UpperCAmelCase = keepgramcounter_rep & rgramcounter _UpperCAmelCase = sgramcounter_rep & rgramcounter _UpperCAmelCase = 0 _UpperCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _UpperCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _UpperCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _UpperCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _UpperCAmelCase = sgramcounter_rep - cgramcounter_rep _UpperCAmelCase = delgramcounter_rep - rgramcounter _UpperCAmelCase = sgramcounter_rep - rgramcounter _UpperCAmelCase = 0 _UpperCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _UpperCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ssent.split(''' ''' ) _UpperCAmelCase = csent.split(''' ''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for rsent in rsents: _UpperCAmelCase = rsent.split(''' ''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _UpperCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _UpperCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _UpperCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' if lowercase: _UpperCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _UpperCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _UpperCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _UpperCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = sentence if not return_str: _UpperCAmelCase = normalized_sent.split() return normalized_sent def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _UpperCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _UpperCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 100 * sari_score def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str="exp" , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , ): '''simple docstring''' _UpperCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _UpperCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : Dict )->Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowercase__ ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] )->Any: _UpperCAmelCase = {} result.update({'''sari''': compute_sari(sources=__UpperCamelCase , predictions=__UpperCamelCase , references=__UpperCamelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCamelCase , references=__UpperCamelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCamelCase , references=__UpperCamelCase )} ) return result
602
1
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if numbers[j] < numbers[i]: lowercase__ , lowercase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
715
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCAmelCase ( ): lowercase__ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE_ ) lowercase__ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE_ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) # Let's go lowercase__ = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , "func" ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
37
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> Tuple: super().__init__(**lowercase ) lowerCAmelCase = size if size is not None else {"""shortest_edge""": 256} lowerCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase = get_size_dict(lowercase ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> str: lowerCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase = get_resize_output_image_size(lowercase , size=size["""shortest_edge"""] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Dict: lowerCAmelCase = get_size_dict(lowercase ) return center_crop(lowercase , size=(size["""height"""], size["""width"""]) , data_format=lowercase , **lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase = None , **lowercase ) -> Dict: return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> List[Any]: return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def _snake_case ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> Any: lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(lowercase ) lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] lowerCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
716
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowercase : _SCREAMING_SNAKE_CASE = PegasusConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = 'gelu' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=40 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = eos_token_id lowerCAmelCase = pad_token_id lowerCAmelCase = bos_token_id def _snake_case ( self ) -> str: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def _snake_case ( self , lowercase , lowercase ) -> Optional[int]: lowerCAmelCase = TFPegasusModel(config=lowercase ).get_decoder() lowerCAmelCase = inputs_dict["""input_ids"""] lowerCAmelCase = input_ids[:1, :] lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] lowerCAmelCase = inputs_dict["""head_mask"""] lowerCAmelCase = 1 # first forward pass lowerCAmelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) lowerCAmelCase , lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase = model(lowercase , attention_mask=lowercase )[0] lowerCAmelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1e-3 ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : List[str]=None , ): '''simple docstring''' if attention_mask is None: lowerCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> List[Any]: lowerCAmelCase = TFPegasusModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase ) def _snake_case ( self ) -> Dict: self.config_tester.run_common_tests() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] _SCREAMING_SNAKE_CASE = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers _SCREAMING_SNAKE_CASE = 'google/pegasus-xsum' @cached_property def _snake_case ( self ) -> str: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ) -> List[Any]: lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _snake_case ( self , **lowercase ) -> List[str]: lowerCAmelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def _snake_case ( self , **lowercase ) -> Optional[Any]: lowerCAmelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) lowerCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def _snake_case ( self ) -> str: self._assert_generated_batch_equal_expected()
393
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase ( __SCREAMING_SNAKE_CASE ): lowercase : List[str] = 'facebook/bart-large-mnli' lowercase : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) lowercase : int = 'text_classifier' lowercase : Tuple = AutoTokenizer lowercase : str = AutoModelForSequenceClassification lowercase : int = ['text', ['text']] lowercase : List[str] = ['text'] def a_ ( self ): super().setup() UpperCamelCase : Optional[int] = self.model.config UpperCamelCase : Any = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): UpperCamelCase : Union[str, Any] = int(UpperCAmelCase_ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = labels return self.pre_processor( [text] * len(UpperCAmelCase_ ) , [f'This example is {label}' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = outputs.logits UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
499
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = CustomTokenizer pass
59
0
from collections.abc import Callable def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =a UpperCAmelCase_ =b if function(lowercase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowercase__ ) == 0: return b elif ( function(lowercase__ ) * function(lowercase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: UpperCAmelCase_ =start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(lowercase__ ) == 0: return mid elif function(lowercase__ ) * function(lowercase__ ) < 0: UpperCAmelCase_ =mid else: UpperCAmelCase_ =mid UpperCAmelCase_ =start + (end - start) / 2.0 return mid def a__ ( lowercase__ ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
717
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowercase : Optional[int] ="""python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def a__ ( lowercase__ , lowercase__=None ): '''simple docstring''' require_version(deps[pkg] , lowercase__ )
550
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float , ): """simple docstring""" _snake_case : List[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _snake_case : Union[str, Any] = 1 - (matter_density + radiation_density + dark_energy) _snake_case : int = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _snake_case : Union[str, Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation A_ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
609
'''simple docstring''' from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """SpeechT5FeatureExtractor""" __SCREAMING_SNAKE_CASE = """SpeechT5Tokenizer""" def __init__( self : List[Any] , a_ : str , a_ : str ): """simple docstring""" super().__init__(a_ , a_ ) def __call__( self : Dict , *a_ : Tuple , **a_ : List[str] ): """simple docstring""" __snake_case = kwargs.pop("audio" , a_ ) __snake_case = kwargs.pop("text" , a_ ) __snake_case = kwargs.pop("text_target" , a_ ) __snake_case = kwargs.pop("audio_target" , a_ ) __snake_case = kwargs.pop("sampling_rate" , a_ ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: __snake_case = self.feature_extractor(a_ , *a_ , sampling_rate=a_ , **a_ ) elif text is not None: __snake_case = self.tokenizer(a_ , **a_ ) else: __snake_case = None if audio_target is not None: __snake_case = self.feature_extractor(audio_target=a_ , *a_ , sampling_rate=a_ , **a_ ) __snake_case = targets["input_values"] elif text_target is not None: __snake_case = self.tokenizer(a_ , **a_ ) __snake_case = targets["input_ids"] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get("attention_mask" ) if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def A ( self : List[str] , *a_ : str , **a_ : Dict ): """simple docstring""" __snake_case = kwargs.pop("input_values" , a_ ) __snake_case = kwargs.pop("input_ids" , a_ ) __snake_case = kwargs.pop("labels" , a_ ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: __snake_case = self.feature_extractor.pad(a_ , *a_ , **a_ ) elif input_ids is not None: __snake_case = self.tokenizer.pad(a_ , **a_ ) else: __snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(a_ , a_ ) and "input_ids" in labels[0]): __snake_case = self.tokenizer.pad(a_ , **a_ ) __snake_case = targets["input_ids"] else: __snake_case = self.feature_extractor.feature_size __snake_case = self.feature_extractor.num_mel_bins __snake_case = self.feature_extractor.pad(a_ , *a_ , **a_ ) __snake_case = feature_size_hack __snake_case = targets["input_values"] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get("attention_mask" ) if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def A ( self : List[str] , *a_ : Any , **a_ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def A ( self : Optional[int] , *a_ : Union[str, Any] , **a_ : str ): """simple docstring""" return self.tokenizer.decode(*a_ , **a_ )
69
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): _A = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: _A = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def lowercase_ ( A__ ) -> Optional[Any]: """simple docstring""" snake_case = (images / 2 + 0.5).clamp(0 , 1 ) snake_case = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case = numpy_to_pil(A__ ) return images def lowercase_ ( A__ ) -> Tuple: """simple docstring""" if images.ndim == 3: snake_case = images[None, ...] snake_case = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images snake_case = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: snake_case = [Image.fromarray(A__ ) for image in images] return pil_images
294
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowercase_ ( A__ , A__ , A__ ) -> str: """simple docstring""" if isinstance(A__ , torch.Tensor ): return image elif isinstance(A__ , PIL.Image.Image ): snake_case = [image] if isinstance(image[0] , PIL.Image.Image ): snake_case = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] snake_case = np.concatenate(A__ , axis=0 ) snake_case = np.array(A__ ).astype(np.floataa ) / 255.0 snake_case = image.transpose(0 , 3 , 1 , 2 ) snake_case = 2.0 * image - 1.0 snake_case = torch.from_numpy(A__ ) elif isinstance(image[0] , torch.Tensor ): snake_case = torch.cat(A__ , dim=0 ) return image def lowercase_ ( A__ , A__ , A__ , A__=0.9995 ) -> List[Any]: """simple docstring""" if not isinstance(A__ , np.ndarray ): snake_case = True snake_case = va.device snake_case = va.cpu().numpy() snake_case = va.cpu().numpy() snake_case = np.sum(va * va / (np.linalg.norm(A__ ) * np.linalg.norm(A__ )) ) if np.abs(A__ ) > DOT_THRESHOLD: snake_case = (1 - t) * va + t * va else: snake_case = np.arccos(A__ ) snake_case = np.sin(A__ ) snake_case = theta_a * t snake_case = np.sin(A__ ) snake_case = np.sin(theta_a - theta_t ) / sin_theta_a snake_case = sin_theta_t / sin_theta_a snake_case = sa * va + sa * va if inputs_are_torch: snake_case = torch.from_numpy(A__ ).to(A__ ) return va def lowercase_ ( A__ , A__ ) -> Any: """simple docstring""" snake_case = F.normalize(A__ , dim=-1 ) snake_case = F.normalize(A__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowercase_ ( A__ , A__ ) -> Optional[int]: """simple docstring""" for param in model.parameters(): snake_case = value class lowerCamelCase ( A_ ): def __init__(self : str , _A : AutoencoderKL , _A : CLIPTextModel , _A : CLIPModel , _A : CLIPTokenizer , _A : UNetaDConditionModel , _A : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _A : CLIPFeatureExtractor , _A : List[Any]=None , _A : Tuple=None , _A : Union[str, Any]=None , ) -> Dict: super().__init__() self.register_modules( vae=_A , text_encoder=_A , clip_model=_A , tokenizer=_A , unet=_A , scheduler=_A , feature_extractor=_A , coca_model=_A , coca_tokenizer=_A , coca_transform=_A , ) snake_case = ( feature_extractor.size if isinstance(feature_extractor.size , _A ) else feature_extractor.size["shortest_edge"] ) snake_case = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _A ) set_requires_grad(self.clip_model , _A ) def UpperCAmelCase(self : List[Any] , _A : Optional[Union[str, int]] = "auto" ) -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def UpperCAmelCase(self : str ) -> Any: self.enable_attention_slicing(_A ) def UpperCAmelCase(self : List[Any] ) -> int: set_requires_grad(self.vae , _A ) def UpperCAmelCase(self : Any ) -> Union[str, Any]: set_requires_grad(self.vae , _A ) def UpperCAmelCase(self : Optional[Any] ) -> int: set_requires_grad(self.unet , _A ) def UpperCAmelCase(self : str ) -> Tuple: set_requires_grad(self.unet , _A ) def UpperCAmelCase(self : Tuple , _A : str , _A : str , _A : List[str] ) -> Dict: # get the original timestep using init_timestep snake_case = min(int(num_inference_steps * strength ) , _A ) snake_case = max(num_inference_steps - init_timestep , 0 ) snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase(self : List[Any] , _A : Dict , _A : List[Any] , _A : Dict , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=None ) -> str: if not isinstance(_A , torch.Tensor ): raise ValueError(f'`image` has to be of type `torch.Tensor` but is {type(_A )}' ) snake_case = image.to(device=_A , dtype=_A ) if isinstance(_A , _A ): snake_case = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] snake_case = torch.cat(_A , dim=0 ) else: snake_case = self.vae.encode(_A ).latent_dist.sample(_A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case = 0.1_82_15 * init_latents snake_case = init_latents.repeat_interleave(_A , dim=0 ) snake_case = randn_tensor(init_latents.shape , generator=_A , device=_A , dtype=_A ) # get latents snake_case = self.scheduler.add_noise(_A , _A , _A ) snake_case = init_latents return latents def UpperCAmelCase(self : Dict , _A : Optional[int] ) -> Union[str, Any]: snake_case = self.coca_transform(_A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): snake_case = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) snake_case = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def UpperCAmelCase(self : int , _A : Union[str, Any] , _A : Optional[Any] ) -> Tuple: snake_case = self.feature_extractor.preprocess(_A ) snake_case = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() snake_case = self.clip_model.get_image_features(_A ) snake_case = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_A ) snake_case = image_embeddings_clip.repeat_interleave(_A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase(self : Union[str, Any] , _A : Tuple , _A : str , _A : Tuple , _A : Optional[Any] , _A : List[str] , _A : Any , _A : str , ) -> List[Any]: snake_case = latents.detach().requires_grad_() snake_case = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual snake_case = self.unet(_A , _A , encoder_hidden_states=_A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): snake_case = self.scheduler.alphas_cumprod[timestep] snake_case = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 snake_case = torch.sqrt(_A ) snake_case = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _A ): snake_case = self.scheduler.sigmas[index] snake_case = latents - sigma * noise_pred else: raise ValueError(f'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case = 1 / 0.1_82_15 * sample snake_case = self.vae.decode(_A ).sample snake_case = (image / 2 + 0.5).clamp(0 , 1 ) snake_case = transforms.Resize(self.feature_extractor_size )(_A ) snake_case = self.normalize(_A ).to(latents.dtype ) snake_case = self.clip_model.get_image_features(_A ) snake_case = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_A ) snake_case = spherical_dist_loss(_A , _A ).mean() * clip_guidance_scale snake_case = -torch.autograd.grad(_A , _A )[0] if isinstance(self.scheduler , _A ): snake_case = latents.detach() + grads * (sigma**2) snake_case = noise_pred_original else: snake_case = noise_pred_original - torch.sqrt(_A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self : str , _A : Union[torch.FloatTensor, PIL.Image.Image] , _A : Union[torch.FloatTensor, PIL.Image.Image] , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional[int] = 5_1_2 , _A : Optional[int] = 5_1_2 , _A : float = 0.6 , _A : Optional[int] = 5_0 , _A : Optional[float] = 7.5 , _A : Optional[int] = 1 , _A : float = 0.0 , _A : Optional[float] = 1_0_0 , _A : Optional[torch.Generator] = None , _A : Optional[str] = "pil" , _A : bool = True , _A : float = 0.8 , _A : float = 0.1 , _A : float = 0.1 , ) -> Any: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError(f'You have passed {batch_size} batch_size, but only {len(_A )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(_A , torch.Generator ) and batch_size > 1: snake_case = [generator] + [None] * (batch_size - 1) snake_case = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] snake_case = [x[0] for x in coca_is_none if x[1]] snake_case = ", ".join(_A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_A ): raise ValueError( f'Content prompt is None and CoCa [{coca_is_none_str}] is None.' f'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) snake_case = self.get_image_description(_A ) if style_prompt is None: if len(_A ): raise ValueError( f'Style prompt is None and CoCa [{coca_is_none_str}] is None.' f' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) snake_case = self.get_image_description(_A ) # get prompt text embeddings for content and style snake_case = self.tokenizer( _A , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=_A , return_tensors="pt" , ) snake_case = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] snake_case = self.tokenizer( _A , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=_A , return_tensors="pt" , ) snake_case = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] snake_case = slerp(_A , _A , _A ) # duplicate text embeddings for each generation per prompt snake_case = text_embeddings.repeat_interleave(_A , dim=0 ) # set timesteps snake_case = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) snake_case = {} if accepts_offset: snake_case = 1 self.scheduler.set_timesteps(_A , **_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) snake_case , snake_case = self.get_timesteps(_A , _A , self.device ) snake_case = timesteps[:1].repeat(_A ) # Preprocess image snake_case = preprocess(_A , _A , _A ) snake_case = self.prepare_latents( _A , _A , _A , text_embeddings.dtype , self.device , _A ) snake_case = preprocess(_A , _A , _A ) snake_case = self.prepare_latents( _A , _A , _A , text_embeddings.dtype , self.device , _A ) snake_case = slerp(_A , _A , _A ) if clip_guidance_scale > 0: snake_case = self.get_clip_image_embeddings(_A , _A ) snake_case = self.get_clip_image_embeddings(_A , _A ) snake_case = slerp( _A , _A , _A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case = content_text_input.input_ids.shape[-1] snake_case = self.tokenizer([""] , padding="max_length" , max_length=_A , return_tensors="pt" ) snake_case = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt snake_case = uncond_embeddings.repeat_interleave(_A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case = (batch_size, self.unet.config.in_channels, height // 8, width // 8) snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps snake_case = torch.randn(_A , generator=_A , device="cpu" , dtype=_A ).to( self.device ) else: snake_case = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) snake_case = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case = {} if accepts_eta: snake_case = eta # check if the scheduler accepts generator snake_case = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: snake_case = generator with self.progress_bar(total=_A ): for i, t in enumerate(_A ): # expand the latents if we are doing classifier free guidance snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual snake_case = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform classifier free guidance if do_classifier_free_guidance: snake_case , snake_case = noise_pred.chunk(2 ) snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: snake_case = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) snake_case , snake_case = self.cond_fn( _A , _A , _A , _A , _A , _A , _A , ) # compute the previous noisy sample x_t -> x_t-1 snake_case = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case = 1 / 0.1_82_15 * latents snake_case = self.vae.decode(_A ).sample snake_case = (image / 2 + 0.5).clamp(0 , 1 ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case = self.numpy_to_pil(_A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
294
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : """simple docstring""" def __init__( self : int, _UpperCAmelCase : List[Any], _UpperCAmelCase : int=1_3, _UpperCAmelCase : List[str]=7, _UpperCAmelCase : Any=True, _UpperCAmelCase : Dict=True, _UpperCAmelCase : Union[str, Any]=True, _UpperCAmelCase : Union[str, Any]=True, _UpperCAmelCase : Any=9_9, _UpperCAmelCase : List[str]=3_2, _UpperCAmelCase : Optional[int]=5, _UpperCAmelCase : List[Any]=4, _UpperCAmelCase : Optional[int]=3_7, _UpperCAmelCase : Any="gelu", _UpperCAmelCase : Union[str, Any]=0.1, _UpperCAmelCase : Dict=0.1, _UpperCAmelCase : Dict=1_2_8, _UpperCAmelCase : Optional[Any]=3_2, _UpperCAmelCase : Optional[Any]=1_6, _UpperCAmelCase : List[str]=2, _UpperCAmelCase : Optional[int]=0.02, _UpperCAmelCase : Optional[int]=3, _UpperCAmelCase : Union[str, Any]=4, _UpperCAmelCase : List[Any]=None, ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : List[str] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = seq_length SCREAMING_SNAKE_CASE__ : List[Any] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_input_mask SCREAMING_SNAKE_CASE__ : Any = use_token_type_ids SCREAMING_SNAKE_CASE__ : int = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : str = hidden_size SCREAMING_SNAKE_CASE__ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : Any = num_labels SCREAMING_SNAKE_CASE__ : Any = num_choices SCREAMING_SNAKE_CASE__ : Dict = scope def A_ ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size], self.num_choices ) SCREAMING_SNAKE_CASE__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_UpperCAmelCase, initializer_range=self.initializer_range, ) def A_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A_ ( self : Dict, _UpperCAmelCase : str, _UpperCAmelCase : List[str], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = NezhaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = model(_UpperCAmelCase, token_type_ids=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def A_ ( self : int, _UpperCAmelCase : List[Any], _UpperCAmelCase : Any, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : List[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Dict, ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : str = NezhaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model( _UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, encoder_hidden_states=_UpperCAmelCase, encoder_attention_mask=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : str = model( _UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, encoder_hidden_states=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Dict = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def A_ ( self : List[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Dict, _UpperCAmelCase : List[str], _UpperCAmelCase : Tuple, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = NezhaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : Any, _UpperCAmelCase : int, _UpperCAmelCase : str, _UpperCAmelCase : Optional[int], _UpperCAmelCase : Dict, _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = NezhaForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model( _UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def A_ ( self : str, _UpperCAmelCase : int, _UpperCAmelCase : List[str], _UpperCAmelCase : str, _UpperCAmelCase : List[str], _UpperCAmelCase : int, _UpperCAmelCase : str, _UpperCAmelCase : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = NezhaForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model( _UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, next_sentence_label=_UpperCAmelCase, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def A_ ( self : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : Optional[int], _UpperCAmelCase : str, _UpperCAmelCase : Optional[int], _UpperCAmelCase : List[str], _UpperCAmelCase : int, _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = NezhaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model( _UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, start_positions=_UpperCAmelCase, end_positions=_UpperCAmelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def A_ ( self : int, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : Any, _UpperCAmelCase : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.num_labels SCREAMING_SNAKE_CASE__ : Any = NezhaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def A_ ( self : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : List[str], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE__ : List[str] = NezhaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Tuple, _UpperCAmelCase : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : List[str], _UpperCAmelCase : Tuple, _UpperCAmelCase : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.num_choices SCREAMING_SNAKE_CASE__ : str = NezhaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : str = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Tuple = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Dict = model( _UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def A_ ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase_ = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ = True def A_ ( self : List[str], _UpperCAmelCase : Any, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = super()._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_UpperCAmelCase ) return inputs_dict def A_ ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = NezhaModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def A_ ( self : int ) -> Dict: """simple docstring""" # This regression test was failing with PyTorch < 1.3 ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE__ : List[str] = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) def A_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def A_ ( self : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def A_ ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def A_ ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def A_ ( self : Dict ) -> List[Any]: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[str] = NezhaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def A_ ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.jit.trace( _UpperCAmelCase, (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase, os.path.join(_UpperCAmelCase, "bert.pt" ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.jit.load(os.path.join(_UpperCAmelCase, "bert.pt" ), map_location=_UpperCAmelCase ) loaded(inputs_dict["input_ids"].to(_UpperCAmelCase ), inputs_dict["attention_mask"].to(_UpperCAmelCase ) ) @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def A_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : str = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] SCREAMING_SNAKE_CASE__ : str = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], _UpperCAmelCase, atol=1E-4 ) ) @slow def A_ ( self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : str = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] SCREAMING_SNAKE_CASE__ : int = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], _UpperCAmelCase, atol=1E-4 ) )
663
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : List[str] = '''▁''' _lowerCamelCase : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} _lowerCamelCase : Dict = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } _lowerCamelCase : Optional[Any] = {'''vinai/bartpho-syllable''': 1_0_2_4} class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["input_ids", "attention_mask"] def __init__( self : int, _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple, _UpperCAmelCase : Any="<s>", _UpperCAmelCase : List[str]="</s>", _UpperCAmelCase : List[str]="</s>", _UpperCAmelCase : List[Any]="<s>", _UpperCAmelCase : Dict="<unk>", _UpperCAmelCase : Tuple="<pad>", _UpperCAmelCase : int="<mask>", _UpperCAmelCase : Optional[Dict[str, Any]] = None, **_UpperCAmelCase : Any, ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : Any = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_file SCREAMING_SNAKE_CASE__ : Optional[int] = monolingual_vocab_file SCREAMING_SNAKE_CASE__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_UpperCAmelCase ) not in self.fairseq_tokens_to_ids: SCREAMING_SNAKE_CASE__ : Dict = cnt cnt += 1 with open(_UpperCAmelCase, "r", encoding="utf-8" ) as f: for line in f.readlines(): SCREAMING_SNAKE_CASE__ : int = line.strip().split()[0] SCREAMING_SNAKE_CASE__ : Tuple = len(self.fairseq_tokens_to_ids ) if str(_UpperCAmelCase ) not in self.fairseq_tokens_to_ids: SCREAMING_SNAKE_CASE__ : List[Any] = len(self.fairseq_tokens_to_ids ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self : int, _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A_ ( self : Optional[int], _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Any = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self : List[str], _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None, _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase, token_ids_a=_UpperCAmelCase, already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def A_ ( self : Optional[int], _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A_ ( self : Any ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def A_ ( self : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : Tuple, _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase, out_type=_UpperCAmelCase ) def A_ ( self : List[str], _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def A_ ( self : List[str], _UpperCAmelCase : str ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def A_ ( self : Optional[Any], _UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase, " " ).strip() return out_string def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"], ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase, "wb" ) as fi: SCREAMING_SNAKE_CASE__ : int = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file, _UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_UpperCAmelCase, "w", encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(_UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
663
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Tuple = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'gpt_neo' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : List[str] , lowerCamelCase : Any=5_02_57 , lowerCamelCase : Any=20_48 , lowerCamelCase : List[str]=20_48 , lowerCamelCase : List[str]=24 , lowerCamelCase : Dict=[[["global", "local"], 12]] , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Optional[Any]=2_56 , lowerCamelCase : Union[str, Any]="gelu_new" , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : List[Any]=0.0 , lowerCamelCase : Any=0.1 , lowerCamelCase : Optional[Any]=1E-5 , lowerCamelCase : List[str]=0.02 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Any=5_02_56 , lowerCamelCase : Union[str, Any]=5_02_56 , **lowerCamelCase : List[Any] , ) -> Optional[int]: lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : int = num_layers lowerCAmelCase_ : Union[str, Any] = num_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : List[Any] = window_size lowerCAmelCase_ : List[str] = activation_function lowerCAmelCase_ : Union[str, Any] = resid_dropout lowerCAmelCase_ : Dict = embed_dropout lowerCAmelCase_ : int = attention_dropout lowerCAmelCase_ : List[Any] = classifier_dropout lowerCAmelCase_ : List[Any] = layer_norm_epsilon lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Union[str, Any] = use_cache lowerCAmelCase_ : Dict = bos_token_id lowerCAmelCase_ : List[Any] = eos_token_id lowerCAmelCase_ : List[str] = attention_types lowerCAmelCase_ : List[str] = self.expand_attention_types_params(lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) @staticmethod def __lowercase ( lowerCamelCase : Tuple ) -> Optional[int]: lowerCAmelCase_ : Union[str, Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCamelCase_ ( A__ : Optional[Any] , A__ : str , A__ : int , A__ : List[Any] ): '''simple docstring''' import torch lowerCAmelCase_ : Union[str, Any] = input.size() lowerCAmelCase_ : List[str] = len(A__ ) lowerCAmelCase_ : Optional[int] = shape[dimension] lowerCAmelCase_ : Dict = torch.arange(0 , A__ , A__ ) lowerCAmelCase_ : Any = torch.div(sizedim - size , A__ , rounding_mode="""floor""" ) + 1 lowerCAmelCase_ : int = torch.arange(A__ ) + low_indices[:min_length][:, None] lowerCAmelCase_ : int = [slice(A__ )] * rank lowerCAmelCase_ : str = indices lowerCAmelCase_ : Optional[Any] = input[s] lowerCAmelCase_ : Tuple = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def UpperCamelCase_ ( A__ : List[Any] , A__ : Optional[Any] ): '''simple docstring''' import torch lowerCAmelCase_ : Any = torch.arange(1 , A__ ) lowerCAmelCase_ : int = torch.remainder(A__ , A__ ) lowerCAmelCase_ : Any = remainders == 0 lowerCAmelCase_ : Optional[int] = candidates[divisor_indices] lowerCAmelCase_ : Tuple = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="""floor""" ) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @property def __lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase_ : Union[str, Any] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction="""inputs""" ) lowerCAmelCase_ : int = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : Dict = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowercase ( self : Tuple ) -> int: return self._config.num_heads def __lowercase ( self : Union[str, Any] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowerCAmelCase_ : List[str] = super(lowerCamelCase , self ).generate_dummy_inputs( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : Dict = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_, lowerCAmelCase_ : Optional[int] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Any = seqlen + 2 lowerCAmelCase_ : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[Any] = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : List[Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) return ordered_inputs @property def __lowercase ( self : List[Any] ) -> int: return 13
398
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
398
1
'''simple docstring''' import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def _lowerCAmelCase ( __magic_name__ : int = 20 ) -> str: lowercase : Any =math.comb(__magic_name__ , __magic_name__ ) lowercase : Any =math.comb(NUM_BALLS - BALLS_PER_COLOUR , __magic_name__ ) lowercase : Optional[Any] =NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
92
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __SCREAMING_SNAKE_CASE : List[str] = Mapping[str, np.ndarray] __SCREAMING_SNAKE_CASE : List[Any] = Mapping[str, Any] # Is a nested dict. __SCREAMING_SNAKE_CASE : List[Any] = 0.01 @dataclasses.dataclass(frozen=__snake_case ) class lowercase_ : _lowerCamelCase = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _lowerCamelCase = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _lowerCamelCase = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _lowerCamelCase = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _lowerCamelCase = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions _lowerCamelCase = None # Optional remark about the protein. Included as a comment in output PDB # files _lowerCamelCase = None # Templates used to generate this protein (prediction-only) _lowerCamelCase = None # Chain corresponding to each parent _lowerCamelCase = None def snake_case (__lowercase ) -> Protein: '''simple docstring''' _snake_case : str = r"(\[[A-Z]+\]\n)" _snake_case : List[str] = [tag.strip() for tag in re.split(__lowercase , __lowercase ) if len(__lowercase ) > 0] _snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) _snake_case : List[str] = ["N", "CA", "C"] _snake_case : Any = None _snake_case : Union[str, Any] = None _snake_case : Optional[int] = None for g in groups: if "[PRIMARY]" == g[0]: _snake_case : Tuple = g[1][0].strip() for i in range(len(__lowercase ) ): if seq[i] not in residue_constants.restypes: _snake_case : Tuple = "X" # FIXME: strings are immutable _snake_case : int = np.array( [residue_constants.restype_order.get(__lowercase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowercase , g[1][axis].split() ) ) ) _snake_case : Dict = np.array(__lowercase ) _snake_case : Dict = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowercase ): _snake_case : List[Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) _snake_case : Any = np.zeros( ( len(__lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowercase ): _snake_case : Dict = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowercase , atom_mask=__lowercase , aatype=__lowercase , residue_index=np.arange(len(__lowercase ) ) , b_factors=__lowercase , ) def snake_case (__lowercase , __lowercase = 0 ) -> List[str]: '''simple docstring''' _snake_case : List[str] = [] _snake_case : Optional[Any] = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) _snake_case : str = prot.parents _snake_case : str = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _snake_case : int = [p for i, p in zip(__lowercase , __lowercase ) if i == chain_id] if parents is None or len(__lowercase ) == 0: _snake_case : Optional[int] = ["N/A"] pdb_headers.append(F"""PARENT {' '.join(__lowercase )}""" ) return pdb_headers def snake_case (__lowercase , __lowercase ) -> str: '''simple docstring''' _snake_case : List[str] = [] _snake_case : Optional[int] = pdb_str.split("\n" ) _snake_case : List[str] = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) _snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _snake_case : str = [] if prot.parents_chain_index is not None: _snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowercase ) , [] ) parent_dict[str(__lowercase )].append(__lowercase ) _snake_case : Any = max([int(__lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _snake_case : Tuple = parent_dict.get(str(__lowercase ) , ["N/A"] ) parents_per_chain.append(__lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: _snake_case : List[str] = [["N/A"]] def make_parent_line(__lowercase ) -> str: return F"""PARENT {' '.join(__lowercase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _snake_case : int = 0 for i, l in enumerate(__lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowercase ): _snake_case : Tuple = parents_per_chain[chain_counter] else: _snake_case : str = ["N/A"] out_pdb_lines.append(make_parent_line(__lowercase ) ) return "\n".join(__lowercase ) def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : Optional[Any] = residue_constants.restypes + ["X"] def res_atoa(__lowercase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) _snake_case : Optional[int] = residue_constants.atom_types _snake_case : List[str] = [] _snake_case : Tuple = prot.atom_mask _snake_case : List[str] = prot.aatype _snake_case : int = prot.atom_positions _snake_case : int = prot.residue_index.astype(np.intaa ) _snake_case : List[Any] = prot.b_factors _snake_case : str = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) _snake_case : Union[str, Any] = get_pdb_headers(__lowercase ) if len(__lowercase ) > 0: pdb_lines.extend(__lowercase ) _snake_case : Optional[Any] = aatype.shape[0] _snake_case : str = 1 _snake_case : Tuple = 0 _snake_case : int = string.ascii_uppercase _snake_case : Optional[Any] = None # Add all atom sites. for i in range(__lowercase ): _snake_case : Dict = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowercase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _snake_case : List[Any] = "ATOM" _snake_case : Union[str, Any] = atom_name if len(__lowercase ) == 4 else F""" {atom_name}""" _snake_case : str = "" _snake_case : str = "" _snake_case : Any = 1.00 _snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. _snake_case : Dict = "" _snake_case : Any = "A" if chain_index is not None: _snake_case : List[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _snake_case : Optional[int] = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowercase ) atom_index += 1 _snake_case : Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _snake_case : Optional[int] = True _snake_case : Union[str, Any] = chain_index[i + 1] if should_terminate: # Close the chain. _snake_case : List[str] = "TER" _snake_case : str = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowercase , __lowercase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowercase ) def snake_case (__lowercase ) -> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def snake_case (__lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Protein: '''simple docstring''' return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowercase , remark=__lowercase , parents=__lowercase , parents_chain_index=__lowercase , )
670
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Any = logging.get_logger(__name__) A__ : Tuple = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = '''speech_to_text''' UpperCamelCase_ = ['''past_key_values'''] UpperCamelCase_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , A_=1_0000 , A_=12 , A_=2048 , A_=4 , A_=6 , A_=2048 , A_=4 , A_=0.0 , A_=0.0 , A_=True , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=2 , A_=True , A_=1 , A_=0 , A_=2 , A_=6000 , A_=1024 , A_=2 , A_=(5, 5) , A_=1024 , A_=80 , A_=1 , **A_ , ) -> Optional[Any]: """simple docstring""" _lowercase: List[Any] = vocab_size _lowercase: Dict = d_model _lowercase: Optional[int] = encoder_ffn_dim _lowercase: Any = encoder_layers _lowercase: int = encoder_attention_heads _lowercase: Optional[Any] = decoder_ffn_dim _lowercase: int = decoder_layers _lowercase: Any = decoder_attention_heads _lowercase: Any = dropout _lowercase: int = attention_dropout _lowercase: Optional[Any] = activation_dropout _lowercase: Union[str, Any] = activation_function _lowercase: Optional[Any] = init_std _lowercase: List[Any] = encoder_layerdrop _lowercase: Optional[Any] = decoder_layerdrop _lowercase: Optional[int] = use_cache _lowercase: Optional[int] = encoder_layers _lowercase: str = scale_embedding # scale factor will be sqrt(d_model) if True _lowercase: Optional[Any] = max_source_positions _lowercase: Tuple = max_target_positions _lowercase: Optional[Any] = num_conv_layers _lowercase: int = list(A_ ) _lowercase: List[str] = conv_channels _lowercase: List[str] = input_feat_per_channel _lowercase: Union[str, Any] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , **A_ , )
272
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger A__ : Optional[Any] = '<<<<<<< This should probably be modified because it mentions: ' A__ : Any = '=======\n>>>>>>>\n' A__ : int = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] A__ : Union[str, Any] = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): @staticmethod def lowercase_ ( A_ ) -> Union[str, Any]: """simple docstring""" _lowercase: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=A_ , required=A_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=A_ , required=A_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=A_ ) def __init__( self , A_ , A_ , *A_ ) -> Tuple: """simple docstring""" _lowercase: Optional[Any] = get_logger('''datasets-cli/converting''' ) _lowercase: Optional[Any] = tfds_path _lowercase: Dict = datasets_directory def lowercase_ ( self ) -> Any: """simple docstring""" if os.path.isdir(self._tfds_path ): _lowercase: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _lowercase: Any = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) _lowercase: Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) _lowercase: Tuple = [] _lowercase: List[str] = [] _lowercase: int = {} if os.path.isdir(self._tfds_path ): _lowercase: str = os.listdir(A_ ) else: _lowercase: Tuple = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) _lowercase: Optional[int] = os.path.join(A_ , A_ ) _lowercase: Optional[Any] = os.path.join(A_ , A_ ) if not os.path.isfile(A_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(A_ , encoding='''utf-8''' ) as f: _lowercase: Any = f.readlines() _lowercase: str = [] _lowercase: Dict = False _lowercase: Any = False _lowercase: Tuple = [] for line in lines: _lowercase: str = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _lowercase: Optional[Any] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here _lowercase: Any = '''''' continue elif "from absl import logging" in out_line: _lowercase: Dict = '''from datasets import logging\n''' elif "getLogger" in out_line: _lowercase: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _lowercase: int = True _lowercase: List[str] = list(filter(lambda A_ : e in out_line , A_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(A_ ) + '''\n''' ) out_lines.append(A_ ) out_lines.append(A_ ) continue else: for pattern, replacement in TO_CONVERT: _lowercase: Tuple = re.sub(A_ , A_ , A_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _lowercase: Optional[int] = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , A_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) _lowercase: Dict = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _lowercase: Tuple = True out_lines.append(A_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _lowercase: List[str] = f_name.replace('''.py''' , '''''' ) _lowercase: Dict = os.path.join(A_ , A_ ) _lowercase: Dict = os.path.join(A_ , A_ ) os.makedirs(A_ , exist_ok=A_ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(A_ ) if needs_manual_update: with_manual_update.append(A_ ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(A_ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: _lowercase: Optional[int] = os.path.basename(A_ ) _lowercase: List[Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(A_ , A_ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
272
1
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCAmelCase_ )-> Tuple: """simple docstring""" UpperCamelCase = VideoMAEConfig() set_architecture_configs(_snake_case , _snake_case ) if "finetuned" not in model_name: UpperCamelCase = False if "finetuned" in model_name: UpperCamelCase = "huggingface/label-files" if "kinetics" in model_name: UpperCamelCase = 4_00 UpperCamelCase = "kinetics400-id2label.json" elif "ssv2" in model_name: UpperCamelCase = 1_74 UpperCamelCase = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) UpperCamelCase = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) UpperCamelCase = {int(_snake_case ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> Tuple: """simple docstring""" if "small" in model_name: UpperCamelCase = 3_84 UpperCamelCase = 15_36 UpperCamelCase = 12 UpperCamelCase = 16 UpperCamelCase = 12 UpperCamelCase = 3 UpperCamelCase = 1_92 UpperCamelCase = 7_68 elif "large" in model_name: UpperCamelCase = 10_24 UpperCamelCase = 40_96 UpperCamelCase = 24 UpperCamelCase = 16 UpperCamelCase = 12 UpperCamelCase = 8 UpperCamelCase = 5_12 UpperCamelCase = 20_48 elif "huge" in model_name: UpperCamelCase = 12_80 UpperCamelCase = 51_20 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = 12 UpperCamelCase = 8 UpperCamelCase = 6_40 UpperCamelCase = 25_60 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def lowerCamelCase__ ( UpperCAmelCase_ )-> str: """simple docstring""" if "encoder." in name: UpperCamelCase = name.replace("encoder." , "" ) if "cls_token" in name: UpperCamelCase = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCamelCase = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCamelCase = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: UpperCamelCase = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: UpperCamelCase = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: UpperCamelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: UpperCamelCase = name.replace("attn" , "attention.self" ) if "attn" in name: UpperCamelCase = name.replace("attn" , "attention.attention" ) if "norm1" in name: UpperCamelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCamelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCamelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCamelCase = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: UpperCamelCase = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: UpperCamelCase = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: UpperCamelCase = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: UpperCamelCase = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: UpperCamelCase = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: UpperCamelCase = name.replace("head" , "classifier" ) return name def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_snake_case ) if key.startswith("encoder." ): UpperCamelCase = key.replace("encoder." , "" ) if "qkv" in key: UpperCamelCase = key.split("." ) if key.startswith("decoder.blocks" ): UpperCamelCase = config.decoder_hidden_size UpperCamelCase = int(key_split[2] ) UpperCamelCase = "decoder.decoder_layers." if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = config.hidden_size UpperCamelCase = int(key_split[1] ) UpperCamelCase = "videomae.encoder.layer." if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val return orig_state_dict def lowerCamelCase__ ( )-> Optional[int]: """simple docstring""" UpperCamelCase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCamelCase = np.load(_snake_case ) return list(_snake_case ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase = get_videomae_config(_snake_case ) if "finetuned" in model_name: UpperCamelCase = VideoMAEForVideoClassification(_snake_case ) else: UpperCamelCase = VideoMAEForPreTraining(_snake_case ) # download original checkpoint, hosted on Google Drive UpperCamelCase = "pytorch_model.bin" gdown.cached_download(_snake_case , _snake_case , quiet=_snake_case ) UpperCamelCase = torch.load(_snake_case , map_location="cpu" ) if "model" in files: UpperCamelCase = files["model"] else: UpperCamelCase = files["module"] UpperCamelCase = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() # verify model on basic input UpperCamelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) UpperCamelCase = prepare_video() UpperCamelCase = image_processor(_snake_case , return_tensors="pt" ) if "finetuned" not in model_name: UpperCamelCase = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) UpperCamelCase = torch.load(_snake_case ) UpperCamelCase = model(**_snake_case ) UpperCamelCase = outputs.logits UpperCamelCase = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": UpperCamelCase = torch.Size([1, 4_00] ) UpperCamelCase = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": UpperCamelCase = torch.Size([1, 1_74] ) UpperCamelCase = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": UpperCamelCase = torch.Size([1, 14_08, 15_36] ) UpperCamelCase = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": UpperCamelCase = torch.Size([1, 14_08, 15_36] ) UpperCamelCase = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one UpperCamelCase = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": UpperCamelCase = torch.Size([1, 14_08, 15_36] ) UpperCamelCase = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": UpperCamelCase = torch.Size([1, 4_00] ) UpperCamelCase = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": UpperCamelCase = torch.Size([1, 4_00] ) UpperCamelCase = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": UpperCamelCase = torch.Size([1, 4_00] ) UpperCamelCase = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": UpperCamelCase = torch.Size([1, 4_00] ) UpperCamelCase = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": UpperCamelCase = torch.Size([1, 14_08, 15_36] ) UpperCamelCase = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": UpperCamelCase = torch.Size([1, 1_74] ) UpperCamelCase = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": UpperCamelCase = torch.Size([1, 14_08, 15_36] ) UpperCamelCase = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": UpperCamelCase = torch.Size([1, 1_74] ) UpperCamelCase = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _snake_case , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": UpperCamelCase = outputs.loss assert torch.allclose(_snake_case , _snake_case , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_snake_case ) model.save_pretrained(_snake_case ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(_snake_case , organization="nielsr" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
554
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 class _snake_case ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = (16, 32, 96, 256) UpperCamelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __magic_name__ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): __magic_name__ : Any = self.block_out_channels[i] __magic_name__ : Optional[int] = self.block_out_channels[i + 1] __magic_name__ : List[str] = nn.Conv( _a , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_a ) __magic_name__ : Optional[Any] = nn.Conv( _a , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_a ) __magic_name__ : Union[str, Any] = blocks __magic_name__ : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a ): __magic_name__ : List[Any] = self.conv_in(_a ) __magic_name__ : Dict = nn.silu(_a ) for block in self.blocks: __magic_name__ : Dict = block(_a ) __magic_name__ : int = nn.silu(_a ) __magic_name__ : str = self.conv_out(_a ) return embedding @flax_register_to_config class _snake_case ( nn.Module , snake_case , snake_case ): UpperCamelCase__ = 32 UpperCamelCase__ = 4 UpperCamelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ = False UpperCamelCase__ = (320, 640, 1280, 1280) UpperCamelCase__ = 2 UpperCamelCase__ = 8 UpperCamelCase__ = None UpperCamelCase__ = 1280 UpperCamelCase__ = 0.0 UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa UpperCamelCase__ = True UpperCamelCase__ = 0 UpperCamelCase__ = "rgb" UpperCamelCase__ = (16, 32, 96, 256) def SCREAMING_SNAKE_CASE ( self , _a ): # init input tensors __magic_name__ : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) __magic_name__ : Dict = jnp.zeros(_a , dtype=jnp.floataa ) __magic_name__ : int = jnp.ones((1,) , dtype=jnp.intaa ) __magic_name__ : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __magic_name__ : List[str] = (1, 3, self.sample_size * 8, self.sample_size * 8) __magic_name__ : Optional[int] = jnp.zeros(_a , dtype=jnp.floataa ) __magic_name__ , __magic_name__ : Dict = jax.random.split(_a ) __magic_name__ : str = {"params": params_rng, "dropout": dropout_rng} return self.init(_a , _a , _a , _a , _a )["params"] def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.block_out_channels __magic_name__ : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __magic_name__ : str = self.num_attention_heads or self.attention_head_dim # input __magic_name__ : Tuple = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __magic_name__ : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __magic_name__ : str = FlaxTimestepEmbedding(_a , dtype=self.dtype ) __magic_name__ : Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __magic_name__ : Tuple = self.only_cross_attention if isinstance(_a , _a ): __magic_name__ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_a , _a ): __magic_name__ : Union[str, Any] = (num_attention_heads,) * len(self.down_block_types ) # down __magic_name__ : List[Any] = [] __magic_name__ : Union[str, Any] = [] __magic_name__ : Any = block_out_channels[0] __magic_name__ : str = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) for i, down_block_type in enumerate(self.down_block_types ): __magic_name__ : Optional[int] = output_channel __magic_name__ : int = block_out_channels[i] __magic_name__ : List[str] = i == len(_a ) - 1 if down_block_type == "CrossAttnDownBlock2D": __magic_name__ : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __magic_name__ : List[Any] = FlaxDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_a ) for _ in range(self.layers_per_block ): __magic_name__ : List[Any] = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) if not is_final_block: __magic_name__ : str = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) __magic_name__ : Any = down_blocks __magic_name__ : Any = controlnet_down_blocks # mid __magic_name__ : Optional[int] = block_out_channels[-1] __magic_name__ : List[str] = FlaxUNetMidBlockaDCrossAttn( in_channels=_a , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __magic_name__ : Optional[int] = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a , _a , _a , _a , _a = 1.0 , _a = True , _a = False , ): __magic_name__ : List[str] = self.controlnet_conditioning_channel_order if channel_order == "bgr": __magic_name__ : int = jnp.flip(_a , axis=1 ) # 1. time if not isinstance(_a , jnp.ndarray ): __magic_name__ : Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_a , jnp.ndarray ) and len(timesteps.shape ) == 0: __magic_name__ : Optional[int] = timesteps.astype(dtype=jnp.floataa ) __magic_name__ : Dict = jnp.expand_dims(_a , 0 ) __magic_name__ : Any = self.time_proj(_a ) __magic_name__ : int = self.time_embedding(_a ) # 2. pre-process __magic_name__ : Dict = jnp.transpose(_a , (0, 2, 3, 1) ) __magic_name__ : Any = self.conv_in(_a ) __magic_name__ : List[str] = jnp.transpose(_a , (0, 2, 3, 1) ) __magic_name__ : Tuple = self.controlnet_cond_embedding(_a ) sample += controlnet_cond # 3. down __magic_name__ : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_a , _a ): __magic_name__ , __magic_name__ : List[str] = down_block(_a , _a , _a , deterministic=not train ) else: __magic_name__ , __magic_name__ : List[Any] = down_block(_a , _a , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __magic_name__ : int = self.mid_block(_a , _a , _a , deterministic=not train ) # 5. contronet blocks __magic_name__ : Any = () for down_block_res_sample, controlnet_block in zip(_a , self.controlnet_down_blocks ): __magic_name__ : Dict = controlnet_block(_a ) controlnet_down_block_res_samples += (down_block_res_sample,) __magic_name__ : Optional[Any] = controlnet_down_block_res_samples __magic_name__ : int = self.controlnet_mid_block(_a ) # 6. scaling __magic_name__ : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_a , mid_block_res_sample=_a )
124
0
'''simple docstring''' def snake_case__ ( a ) -> list[list[float]]: '''simple docstring''' snake_case__ = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def snake_case__ ( a , a ) -> list[list[float]]: '''simple docstring''' snake_case__ = [] for dlist, weight in zip(a , a ): snake_case__ = min(a ) snake_case__ = max(a ) snake_case__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: snake_case__ = F"""Invalid weight of {weight:f} provided""" raise ValueError(a ) score_lists.append(a ) return score_lists def snake_case__ ( a ) -> list[float]: '''simple docstring''' snake_case__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): snake_case__ = final_scores[j] + ele return final_scores def snake_case__ ( a , a ) -> list[list[float]]: '''simple docstring''' snake_case__ = get_data(a ) snake_case__ = calculate_each_score(a , a ) snake_case__ = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
566
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging a__ = logging.get_logger(__name__) def snake_case__ ( a , a ) -> Optional[int]: '''simple docstring''' snake_case__ = set() snake_case__ = [] def parse_line(a ): for line in fp: if isinstance(a , a ): snake_case__ = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(a ) > 0: snake_case__ = """\n""".join(a ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(a ) buffer.clear() continue else: snake_case__ = line.strip() buffer.append(a ) if from_gh: for filename in os.listdir(a ): snake_case__ = os.path.join(a , a ) if not os.path.isdir(a ): # read the file if filename != "warnings.txt": continue with open(a ) as fp: parse_line(a ) else: try: with zipfile.ZipFile(a ) as z: for filename in z.namelist(): if not os.path.isdir(a ): # read the file if filename != "warnings.txt": continue with z.open(a ) as fp: parse_line(a ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def snake_case__ ( a , a ) -> int: '''simple docstring''' snake_case__ = set() snake_case__ = [os.path.join(a , a ) for p in os.listdir(a ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a , a ) ) return selected_warnings if __name__ == "__main__": def snake_case__ ( a ) -> int: '''simple docstring''' return values.split(""",""" ) a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) a__ = parser.parse_args() a__ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links a__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts a__ = extract_warnings(args.output_dir, args.targets) a__ = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
566
1
# Function to print upper half of diamond (pyramid) def __snake_case ( lowerCAmelCase_ ) -> List[Any]: for i in range(0 , lowerCAmelCase_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __snake_case ( lowerCAmelCase_ ) -> Tuple: for i in range(lowerCAmelCase_ , 0 , -1 ): for _ in range(lowerCAmelCase_ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __snake_case ( lowerCAmelCase_ ) -> Tuple: if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") _A : str = 1 while K: _A : str = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) _A : Dict = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
100
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=30 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , ) -> List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = FlaxViTModel(config=snake_case ) _UpperCAmelCase = model(snake_case ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase = (self.patch_size, self.patch_size) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FlaxViTForImageClassification(config=snake_case ) _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FlaxViTForImageClassification(snake_case ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self ) -> None: _UpperCAmelCase = FlaxViTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(snake_case , snake_case ) _UpperCAmelCase = model_class(snake_case ) @jax.jit def model_jitted(snake_case , **snake_case ): return model(pixel_values=snake_case , **snake_case ) with self.subTest('JIT Enabled' ): _UpperCAmelCase = model_jitted(**snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _UpperCAmelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case )
573
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = (PNDMScheduler,) SCREAMING_SNAKE_CASE_ : Tuple = (('num_inference_steps', 5_0),) def lowerCamelCase__ ( self , **_lowercase ) -> Union[str, Any]: lowercase_ : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_lowercase ) return config def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> Dict: lowercase_ : Optional[int] = dict(self.forward_default_kwargs ) lowercase_ : Any = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : Any = self.dummy_sample lowercase_ : List[Any] = 0.1 * sample lowercase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase_ : Optional[int] = self.get_scheduler_config(**_lowercase ) lowercase_ : Union[str, Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : Optional[Any] = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : Dict = dummy_past_residuals[:] lowercase_ : List[Any] = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[Any] = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Dict = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ) -> Optional[int]: pass def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> Tuple: lowercase_ : Optional[Any] = dict(self.forward_default_kwargs ) lowercase_ : Union[str, Any] = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : Dict = self.dummy_sample lowercase_ : List[str] = 0.1 * sample lowercase_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase_ : int = self.get_scheduler_config() lowercase_ : List[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase_ : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : Optional[Any] = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase_ : Optional[Any] = dummy_past_residuals[:] lowercase_ : List[Any] = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[int] = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Any = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self , **_lowercase ) -> str: lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config(**_lowercase ) lowercase_ : Any = scheduler_class(**_lowercase ) lowercase_ : Optional[Any] = 10 lowercase_ : int = self.dummy_model() lowercase_ : str = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase_ : Optional[int] = model(_lowercase , _lowercase ) lowercase_ : Dict = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase_ : Tuple = model(_lowercase , _lowercase ) lowercase_ : Any = scheduler.step_plms(_lowercase , _lowercase , _lowercase ).prev_sample return sample def lowerCamelCase__ ( self ) -> str: lowercase_ : int = dict(self.forward_default_kwargs ) lowercase_ : Optional[Any] = kwargs.pop('num_inference_steps' , _lowercase ) for scheduler_class in self.scheduler_classes: lowercase_ : Dict = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**_lowercase ) lowercase_ : int = self.dummy_sample lowercase_ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , 'set_timesteps' ): scheduler.set_timesteps(_lowercase ) elif num_inference_steps is not None and not hasattr(_lowercase , 'set_timesteps' ): lowercase_ : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase_ : Optional[int] = dummy_past_residuals[:] lowercase_ : Any = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample lowercase_ : Optional[int] = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase_ : Optional[int] = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample lowercase_ : Any = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase__ ( self ) -> Optional[Any]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase ) lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config(steps_offset=1 ) lowercase_ : Optional[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowerCamelCase__ ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def lowerCamelCase__ ( self ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowerCamelCase__ ( self ) -> Any: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_lowercase ) def lowerCamelCase__ ( self ) -> Optional[int]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowercase_ : Optional[int] = 27 for scheduler_class in self.scheduler_classes: lowercase_ : Any = self.dummy_sample lowercase_ : List[Any] = 0.1 * sample lowercase_ : Optional[Any] = self.get_scheduler_config() lowercase_ : Dict = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase_ : int = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample def lowerCamelCase__ ( self ) -> Optional[Any]: with self.assertRaises(_lowercase ): lowercase_ : Any = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config() lowercase_ : Optional[int] = scheduler_class(**_lowercase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : List[Any] = self.full_loop() lowercase_ : Tuple = torch.sum(torch.abs(_lowercase ) ) lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Dict = self.full_loop(prediction_type='v_prediction' ) lowercase_ : List[str] = torch.sum(torch.abs(_lowercase ) ) lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def lowerCamelCase__ ( self ) -> int: # We specify different beta, so that the first alpha is 0.99 lowercase_ : List[str] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) lowercase_ : Tuple = torch.sum(torch.abs(_lowercase ) ) lowercase_ : List[str] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def lowerCamelCase__ ( self ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowercase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) lowercase_ : Optional[int] = torch.sum(torch.abs(_lowercase ) ) lowercase_ : List[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
700
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def __UpperCAmelCase ( ) -> Generator[int, None, None]: UpperCamelCase__ : dict[int, int] = {} UpperCamelCase__ : int = 2 while True: UpperCamelCase__ : int = factor_map.pop(lowerCamelCase_ , lowerCamelCase_) if factor: UpperCamelCase__ : Optional[int] = factor + prime while x in factor_map: x += factor UpperCamelCase__ : Dict = factor else: UpperCamelCase__ : int = prime yield prime prime += 1 def __UpperCAmelCase ( lowerCamelCase_ = 1e1_0) -> int: UpperCamelCase__ : str = sieve() UpperCamelCase__ : Optional[int] = 1 while True: UpperCamelCase__ : Tuple = next(lowerCamelCase_) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCamelCase_) n += 2 if __name__ == "__main__": print(solution())
596
from __future__ import annotations import bisect def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> int: """simple docstring""" if hi < 0: snake_case : Optional[int] = len(__magic_name__ ) while lo < hi: snake_case : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: snake_case : List[str] = mid + 1 else: snake_case : Tuple = mid return lo def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> int: """simple docstring""" if hi < 0: snake_case : Any = len(__magic_name__ ) while lo < hi: snake_case : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: snake_case : Optional[Any] = mid + 1 else: snake_case : List[Any] = mid return lo def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , __magic_name__ ) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , __magic_name__ ) def a_ ( __magic_name__ , __magic_name__ ) -> int | None: """simple docstring""" snake_case : List[str] = 0 snake_case : Optional[Any] = len(__magic_name__ ) - 1 while left <= right: snake_case : Optional[int] = left + (right - left) // 2 snake_case : Any = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: snake_case : Optional[Any] = midpoint - 1 else: snake_case : List[str] = midpoint + 1 return None def a_ ( __magic_name__ , __magic_name__ ) -> int | None: """simple docstring""" snake_case : Tuple = bisect.bisect_left(__magic_name__ , __magic_name__ ) if index != len(__magic_name__ ) and sorted_collection[index] == item: return index return None def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> int | None: """simple docstring""" if right < left: return None snake_case : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__magic_name__ , __magic_name__ , __magic_name__ , midpoint - 1 ) else: return binary_search_by_recursion(__magic_name__ , __magic_name__ , midpoint + 1 , __magic_name__ ) if __name__ == "__main__": _a : Optional[Any] = input('Enter numbers separated by comma:\n').strip() _a : List[str] = sorted(int(item) for item in user_input.split(',')) _a : str = int(input('Enter a single number to be found in the list:\n')) _a : Tuple = binary_search(collection, target) if result is None: print(f"{target} was not found in {collection}.") else: print(f"{target} was found at position {result} in {collection}.")
598
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" ,__UpperCAmelCase ,) super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase )
160
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" while a != 0: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = b % a, a return b def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if gcd(UpperCamelCase , UpperCamelCase ) != 1: lowerCAmelCase__ : List[Any] = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = 1, 0, a lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = 0, 1, m while va != 0: lowerCAmelCase__ : Optional[int] = ua // va lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
160
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCamelCase = parser.parse_args() UpperCamelCase = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCamelCase = CLIPImageProcessor() UpperCamelCase = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCamelCase = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
45
'''simple docstring''' import os import pytest from attr import dataclass _SCREAMING_SNAKE_CASE : Dict = "us-east-1" # defaults region @dataclass class _snake_case : lowerCAmelCase_ : str lowerCAmelCase_ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" lowerCAmelCase_ : Any = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } lowerCAmelCase_ : Any = {**hyperparameters, "max_steps": 1000} @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return F'{self.framework}-transfromers-test' @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return F'./tests/sagemaker/scripts/{self.framework}' @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def UpperCamelCase_( snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = SageMakerTestEnvironment(framework=request.cls.framework )
400
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __a = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
547
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict ='mgp-str' def __init__( self : Optional[Any] , __lowercase : Dict=[32, 128] , __lowercase : Tuple=4 , __lowercase : Optional[Any]=3 , __lowercase : str=27 , __lowercase : Any=38 , __lowercase : str=50257 , __lowercase : List[str]=30522 , __lowercase : Tuple=768 , __lowercase : str=12 , __lowercase : Optional[Any]=12 , __lowercase : str=4.0 , __lowercase : Union[str, Any]=True , __lowercase : List[Any]=False , __lowercase : Union[str, Any]=1E-5 , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.0 , __lowercase : Union[str, Any]=0.0 , __lowercase : List[str]=False , __lowercase : List[Any]=0.02 , **__lowercase : List[Any] , ): '''simple docstring''' super().__init__(**__lowercase ) __a = image_size __a = patch_size __a = num_channels __a = max_token_length __a = num_character_labels __a = num_bpe_labels __a = num_wordpiece_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = mlp_ratio __a = distilled __a = layer_norm_eps __a = drop_rate __a = qkv_bias __a = attn_drop_rate __a = drop_path_rate __a = output_aa_attentions __a = initializer_range
547
1