code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class __lowercase ( _lowercase ): lowerCamelCase : Union[str, Any] = ["image_processor", "feature_extractor"] lowerCamelCase : Dict = "TvltImageProcessor" lowerCamelCase : Optional[int] = "TvltFeatureExtractor" def __init__(self , A , A ): super().__init__(image_processor=A , feature_extractor=A ) lowerCamelCase_ : Union[str, Any] = image_processor lowerCamelCase_ : Union[str, Any] = feature_extractor def __call__(self , A=None , A=None , A=None , A=None , A=False , A=False , *A , **A , ): if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) lowerCamelCase_ : Union[str, Any] = None if images is not None: lowerCamelCase_ : Optional[int] = self.image_processor(A , mask_pixel=A , *A , **A ) if images_mixed is not None: lowerCamelCase_ : int = self.image_processor(A , is_mixed=A , *A , **A ) if audio is not None: lowerCamelCase_ : Dict = self.feature_extractor( A , *A , sampling_rate=A , mask_audio=A , **A ) lowerCamelCase_ : int = {} if audio is not None: output_dict.update(A ) if images is not None: output_dict.update(A ) if images_mixed_dict is not None: output_dict.update(A ) return output_dict @property def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = self.image_processor.model_input_names lowerCamelCase_ : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
318
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
1
def lowercase_ ( _lowerCamelCase : int): lowercase__ : List[str] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowercase_ ( _lowerCamelCase : int = 100): lowercase__ : Any = 1 lowercase__ : str = 2 for i in range(2 , max_n + 1): lowercase__ : List[str] = pre_numerator lowercase__ : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 lowercase__ : Any = cur_numerator lowercase__ : List[str] = e_cont * pre_numerator + temp return sum_digits(_lowerCamelCase) if __name__ == "__main__": print(f"{solution() = }")
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
"""simple docstring""" from __future__ import annotations from math import gcd def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 1 , __lowerCAmelCase = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: return (pow(__lowerCAmelCase , 2 ) + step) % modulus for _ in range(__lowerCAmelCase ): # These track the position within the cycle detection logic. SCREAMING_SNAKE_CASE__ : Union[str, Any] = seed SCREAMING_SNAKE_CASE__ : int = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. SCREAMING_SNAKE_CASE__ : str = rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. SCREAMING_SNAKE_CASE__ : Optional[Any] = gcd(hare - tortoise , __lowerCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. SCREAMING_SNAKE_CASE__ : Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse a :Any = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) a :Tuple = parser.parse_args() a :List[str] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'{args.num} is probably prime') else: a :Union[str, Any] = args.num // divisor print(f'{args.num} = {divisor} * {quotient}')
132
"""simple docstring""" a :dict[tuple[int, int, int], int] = {} def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : str = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , __lowerCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Optional[Any] = _calculate(days - 1 , __lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _lowercase ( __lowerCAmelCase = 30 ) -> int: return _calculate(__lowerCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
132
1
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = False if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } UpperCAmelCase__ = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } UpperCAmelCase__ = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: UpperCAmelCase__ = reader.read() UpperCAmelCase__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): UpperCAmelCase__ = UNetaDModel(**config) else: UpperCAmelCase__ = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel UpperCAmelCase__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCAmelCase__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCAmelCase__ = config[key] del config[key] UpperCAmelCase__ = [k.replace('UNetRes', '') for k in config['down_block_types']] UpperCAmelCase__ = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: UpperCAmelCase__ = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) UpperCAmelCase__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue UpperCAmelCase__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: UpperCAmelCase__ = param_value UpperCAmelCase__ = True if not has_changed: UpperCAmelCase__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
360
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase__ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase__ = { 'allenai/led-base-16384': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase , __lowerCamelCase ) ) def _UpperCAmelCase ( __lowerCamelCase : Any ) -> List[Any]: _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class lowerCAmelCase__ ( A_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] def __init__( self : str , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int]="replace" , _lowerCamelCase : Dict="<s>" , _lowerCamelCase : Optional[Any]="</s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : Any="<pad>" , _lowerCamelCase : Union[str, Any]="<mask>" , _lowerCamelCase : Optional[int]=False , **_lowerCamelCase : str , ): _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: _snake_case = json.load(_lowerCamelCase ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase , encoding='''utf-8''' ) as merges_handle: _snake_case = merges_handle.read().split('''\n''' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase ( self : Tuple ): return len(self.encoder ) def lowercase ( self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self : Dict , _lowerCamelCase : str ): if token in self.cache: return self.cache[token] _snake_case = tuple(_lowerCamelCase ) _snake_case = get_pairs(_lowerCamelCase ) if not pairs: return token while True: _snake_case = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(_lowerCamelCase ): try: _snake_case = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(_lowerCamelCase ) _snake_case = new_word if len(_lowerCamelCase ) == 1: break else: _snake_case = get_pairs(_lowerCamelCase ) _snake_case = ''' '''.join(_lowerCamelCase ) _snake_case = word return word def lowercase ( self : str , _lowerCamelCase : Dict ): _snake_case = [] for token in re.findall(self.pat , _lowerCamelCase ): _snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(''' ''' ) ) return bpe_tokens def lowercase ( self : Optional[Any] , _lowerCamelCase : List[str] ): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase ( self : Optional[int] , _lowerCamelCase : Dict ): return self.decoder.get(_lowerCamelCase ) def lowercase ( self : Dict , _lowerCamelCase : Union[str, Any] ): _snake_case = ''''''.join(_lowerCamelCase ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) _snake_case = 0 with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _snake_case = token_index writer.write(''' '''.join(_lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase ( self : str , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self : Tuple , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def lowercase ( self : Optional[int] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Any=False , **_lowerCamelCase : List[Any] ): _snake_case = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): _snake_case = ''' ''' + text return (text, kwargs) def lowercase ( self : int , _lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[bool] = None , ): _snake_case = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: _snake_case = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _snake_case = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: _snake_case = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _snake_case = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _snake_case = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
40
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class A__ ( A__ ): def __init__( self : str , *_a : Optional[int] , **_a : Dict ) -> None: '''simple docstring''' warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , _a , ) super().__init__(*_a , **_a )
47
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowercase_ = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase ( ): """simple docstring""" __A = '''https://pypi.org/pypi/diffusers/json''' __A = json.loads(request.urlopen(__UpperCamelCase ).read() )['''releases'''].keys() return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : version.Version(__UpperCamelCase ) ) def lowerCAmelCase ( ): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__UpperCamelCase ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __A = Path(__UpperCamelCase ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" init_hf_modules() __A = Path(__UpperCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __A = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: __A = f.read() # Imports of the form `import .xxx` __A = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __UpperCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__UpperCamelCase ) ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = False __A = [module_file] __A = [] # Let's recurse through all relative imports while not no_change: __A = [] for f in files_to_check: new_imports.extend(get_relative_imports(__UpperCamelCase ) ) __A = Path(__UpperCamelCase ).parent __A = [str(module_path / m ) for m in new_imports] __A = [f for f in new_import_files if f not in all_relative_imports] __A = [f'{f}.py' for f in new_import_files] __A = len(__UpperCamelCase ) == 0 all_relative_imports.extend(__UpperCamelCase ) return all_relative_imports def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: __A = f.read() # Imports of the form `import xxx` __A = re.findall('''^\s*import\s+(\S+)\s*$''' , __UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __UpperCamelCase , flags=re.MULTILINE ) # Only keep the top-level module __A = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __A = list(set(__UpperCamelCase ) ) __A = [] for imp in imports: try: importlib.import_module(__UpperCamelCase ) except ImportError: missing_packages.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f'{", ".join(__UpperCamelCase )}. Run `pip install {" ".join(__UpperCamelCase )}`' ) return get_relative_imports(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = module_path.replace(os.path.sep , '''.''' ) __A = importlib.import_module(__UpperCamelCase ) if class_name is None: return find_pipeline_class(__UpperCamelCase ) return getattr(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" from ..pipelines import DiffusionPipeline __A = dict(inspect.getmembers(__UpperCamelCase , inspect.isclass ) ) __A = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __UpperCamelCase ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' f' {loaded_module}.' ) __A = cls return pipeline_class def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , ): """simple docstring""" __A = str(__UpperCamelCase ) __A = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): __A = module_file_or_url __A = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __A = get_diffusers_versions() # cut ".dev0" __A = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __A = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: __A = f'v{revision}' elif revision == "main": __A = revision else: raise ValueError( f'`custom_revision`: {revision} does not exist. Please make sure to choose one of' f' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub __A = COMMUNITY_PIPELINES_URL.format(revision=__UpperCamelCase , pipeline=__UpperCamelCase ) try: __A = cached_download( __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , ) __A = '''git''' __A = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached __A = hf_hub_download( __UpperCamelCase , __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , ) __A = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment __A = check_imports(__UpperCamelCase ) # Now we move the module inside our cached dynamic modules. __A = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__UpperCamelCase ) __A = Path(__UpperCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__UpperCamelCase , submodule_path / module_file ) for module_needed in modules_needed: __A = f'{module_needed}.py' shutil.copy(os.path.join(__UpperCamelCase , __UpperCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__UpperCamelCase , __UpperCamelCase ): __A = use_auth_token elif use_auth_token is True: __A = HfFolder.get_token() else: __A = None __A = model_info(__UpperCamelCase , revision=__UpperCamelCase , token=__UpperCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __A = submodule_path / commit_hash __A = full_submodule + os.path.sep + commit_hash create_dynamic_module(__UpperCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__UpperCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __UpperCamelCase , f'{module_needed}.py' , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , resume_download=__UpperCamelCase , proxies=__UpperCamelCase , use_auth_token=__UpperCamelCase , revision=__UpperCamelCase , local_files_only=__UpperCamelCase , ) return os.path.join(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , **__UpperCamelCase , ): """simple docstring""" __A = get_cached_module_file( __UpperCamelCase , __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , resume_download=__UpperCamelCase , proxies=__UpperCamelCase , use_auth_token=__UpperCamelCase , revision=__UpperCamelCase , local_files_only=__UpperCamelCase , ) return get_class_in_module(__UpperCamelCase , final_module.replace('''.py''' , '''''' ) )
266
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __A = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] __A = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ' Hello world! cécé herlolip' __A = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def __a ( lowerCAmelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ ,lowerCamelCase_ ) def __a ( lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Any ,lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_= dct.pop(lowerCamelCase_ ) UpperCAmelCase_= val def __a ( lowerCAmelCase_ : int ) -> int: '''simple docstring''' UpperCAmelCase_= torch.load(lowerCamelCase_ ,map_location="""cpu""" ) UpperCAmelCase_= torch.hub.load("""pytorch/fairseq""" ,"""bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def __a ( lowerCAmelCase_ : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_= emb.weight.shape UpperCAmelCase_= nn.Linear(lowerCamelCase_ ,lowerCamelCase_ ,bias=lowerCamelCase_ ) UpperCAmelCase_= emb.weight.data return lin_layer @torch.no_grad() def __a ( lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Optional[Any]=None ) -> Optional[int]: '''simple docstring''' if not os.path.exists(lowerCamelCase_ ): UpperCAmelCase_= torch.hub.load("""pytorch/fairseq""" ,lowerCamelCase_ ).eval() else: UpperCAmelCase_= load_xsum_checkpoint(lowerCamelCase_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCAmelCase_= checkpoint_path.replace(""".""" ,"""-""" ) UpperCAmelCase_= BartConfig.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_= bart.encode(lowerCamelCase_ ).unsqueeze(0 ) UpperCAmelCase_= BartTokenizer.from_pretrained(lowerCamelCase_ ).encode(lowerCamelCase_ ,return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(lowerCamelCase_ ,lowerCamelCase_ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCAmelCase_= bart.state_dict() remove_ignore_keys_(lowerCamelCase_ ) UpperCAmelCase_= state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_= BartForSequenceClassification(lowerCamelCase_ ).eval() model.load_state_dict(lowerCamelCase_ ) UpperCAmelCase_= bart.predict("""mnli""" ,lowerCamelCase_ ,return_logits=lowerCamelCase_ ) UpperCAmelCase_= model(lowerCamelCase_ )[0] # logits else: # no classification heads to worry about UpperCAmelCase_= bart.model.state_dict() remove_ignore_keys_(lowerCamelCase_ ) UpperCAmelCase_= state_dict["""decoder.embed_tokens.weight"""] UpperCAmelCase_= bart.extract_features(lowerCamelCase_ ) if hf_checkpoint_name == "facebook/bart-large": UpperCAmelCase_= BartModel(lowerCamelCase_ ).eval() model.load_state_dict(lowerCamelCase_ ) UpperCAmelCase_= model(lowerCamelCase_ ).model[0] else: UpperCAmelCase_= BartForConditionalGeneration(lowerCamelCase_ ).eval() # an existing summarization ckpt model.model.load_state_dict(lowerCamelCase_ ) if hasattr(lowerCamelCase_ ,"""lm_head""" ): UpperCAmelCase_= make_linear_from_emb(model.model.shared ) UpperCAmelCase_= model.model(lowerCamelCase_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) __A = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
358
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase ( snake_case__): """simple docstring""" a__ : str = ["vqvae"] def __init__( self : List[Any] , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : Mel , __UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return 50 if isinstance(self.scheduler , __UpperCAmelCase ) else 1_000 @torch.no_grad() def __call__( self : List[Any] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = None , __UpperCAmelCase : np.ndarray = None , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = None , __UpperCAmelCase : torch.Generator = None , __UpperCAmelCase : float = 0 , __UpperCAmelCase : float = 0 , __UpperCAmelCase : torch.Generator = None , __UpperCAmelCase : float = 0 , __UpperCAmelCase : torch.Tensor = None , __UpperCAmelCase : torch.Tensor = None , __UpperCAmelCase : Union[str, Any]=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: UpperCAmelCase_= steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCAmelCase ) UpperCAmelCase_= step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase_= (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase_= randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCAmelCase , device=self.device , ) UpperCAmelCase_= noise UpperCAmelCase_= None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= self.mel.audio_slice_to_image(__UpperCAmelCase ) UpperCAmelCase_= np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase_= (input_image / 255) * 2 - 1 UpperCAmelCase_= torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase_= self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0 ) ).latent_dist.sample( generator=__UpperCAmelCase )[0] UpperCAmelCase_= self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase_= self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase_= ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase_= int(mask_start_secs * pixels_per_second ) UpperCAmelCase_= int(mask_end_secs * pixels_per_second ) UpperCAmelCase_= self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __UpperCAmelCase ): UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )["""sample"""] else: UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase )["""sample"""] if isinstance(self.scheduler , __UpperCAmelCase ): UpperCAmelCase_= self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )["""prev_sample"""] else: UpperCAmelCase_= self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )["""prev_sample"""] if mask is not None: if mask_start > 0: UpperCAmelCase_= mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase_= mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase_= 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase_= self.vqvae.decode(__UpperCAmelCase )["""sample"""] UpperCAmelCase_= (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_= images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase_= (images * 255).round().astype("""uint8""" ) UpperCAmelCase_= list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCAmelCase , mode="""RGB""" ).convert("""L""" ) for _ in images) ) UpperCAmelCase_= [self.mel.image_to_audio(__UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__UpperCAmelCase ) ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : List[Image.Image] , __UpperCAmelCase : int = 50 ) -> np.ndarray: assert isinstance(self.scheduler , __UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase ) UpperCAmelCase_= np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase_= (sample / 255) * 2 - 1 UpperCAmelCase_= torch.Tensor(__UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase_= t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase_= self.scheduler.alphas_cumprod[t] UpperCAmelCase_= ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase_= 1 - alpha_prod_t UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase )["""sample"""] UpperCAmelCase_= (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase_= (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase_= sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCAmelCase : torch.Tensor , __UpperCAmelCase : torch.Tensor , __UpperCAmelCase : float ) -> torch.Tensor: UpperCAmelCase_= acos(torch.dot(torch.flatten(__UpperCAmelCase ) , torch.flatten(__UpperCAmelCase ) ) / torch.norm(__UpperCAmelCase ) / torch.norm(__UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(__UpperCAmelCase )
277
0
"""simple docstring""" class a : def __init__( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] ={} def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(lowerCamelCase_ , """ -> """ , """ -> """.join([str(lowerCamelCase_ ) for j in self.vertex[i]] ) ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any ) -> Any: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase_ ) else: # else make a new vertex SCREAMING_SNAKE_CASE_: Optional[int] =[to_vertex] def lowerCamelCase__ ( self : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =[False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =True print(lowerCamelCase_ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": _UpperCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
173
def a( A : int ) -> str: """simple docstring""" if number > 0: raise ValueError("input must be a negative integer" ) a = len(bin(A )[3:] ) a = bin(abs(A ) - (1 << binary_number_length) )[3:] a = ( ( "1" + "0" * (binary_number_length - len(A )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
227
0
'''simple docstring''' import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __snake_case = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def a ( __a ) -> Optional[int]: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def a ( __a ) -> str: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase__ :Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
367
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __snake_case = get_logger() __snake_case = None class lowercase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): '''simple docstring''' super().__init__(features=UpperCamelCase_ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCamelCase_ )}, as `jaxlib.xla_extension.Device` ''' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCamelCase__ :Tuple = device if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ :Optional[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) UpperCamelCase__ :Optional[int] = str(jax.devices()[0] ) UpperCamelCase__ :Tuple = jnp_array_kwargs @staticmethod def lowerCAmelCase__ ( ): '''simple docstring''' import jax return {str(UpperCamelCase_ ): device for device in jax.devices()} def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase_ , axis=0 ) return column def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ :Optional[int] = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase__ :List[str] = {'''dtype''': jnp.intaa} else: UpperCamelCase__ :Union[str, Any] = {'''dtype''': jnp.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ :Optional[Any] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase__ :str = np.asarray(UpperCamelCase_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ :Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase_ , '''__array__''' ) and not isinstance(UpperCamelCase_ , jax.Array ): UpperCamelCase__ :int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) UpperCamelCase__ :Dict = self.recursive_tensorize(UpperCamelCase_ ) UpperCamelCase__ :str = self._consolidate(UpperCamelCase_ ) return column def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = self.python_features_decoder.decode_batch(UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: UpperCamelCase__ :Optional[int] = self._consolidate(batch[column_name] ) return batch
219
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __A( _a ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (KDPMaDiscreteScheduler,) SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowercase__ ) return config def UpperCAmelCase_ (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase__ ) def UpperCAmelCase_ (self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ ) def UpperCAmelCase_ (self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase__ ) def UpperCAmelCase_ (self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase__ = scheduler_class(**lowercase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase__ = sample.to(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = scheduler.scale_model_input(lowercase__ , lowercase__ ) UpperCamelCase__ = model(lowercase__ , lowercase__ ) UpperCamelCase__ = scheduler.step(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(lowercase__ ) ) UpperCamelCase__ = torch.mean(torch.abs(lowercase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def UpperCAmelCase_ (self ): if torch_device == "mps": return UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**lowercase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase__ = sample.to(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = scheduler.scale_model_input(lowercase__ , lowercase__ ) UpperCamelCase__ = model(lowercase__ , lowercase__ ) UpperCamelCase__ = scheduler.step(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(lowercase__ ) ) UpperCamelCase__ = torch.mean(torch.abs(lowercase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def UpperCAmelCase_ (self ): if torch_device == "mps": return UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**lowercase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase__ ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter.to(lowercase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCamelCase__ = scheduler.scale_model_input(lowercase__ , lowercase__ ) UpperCamelCase__ = model(lowercase__ , lowercase__ ) UpperCamelCase__ = scheduler.step(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(lowercase__ ) ) UpperCamelCase__ = torch.mean(torch.abs(lowercase__ ) ) if str(lowercase__ ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
244
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" snake_case__ : Optional[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" snake_case__ , snake_case__ : str = emb.weight.shape snake_case__ : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) snake_case__ : int = emb.weight.data return lin_layer def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase="facebook/mbart-large-en-ro" , __lowerCAmelCase=False , __lowerCAmelCase=False ) -> Optional[Any]: """simple docstring""" snake_case__ : int = torch.load(__lowerCAmelCase , map_location='''cpu''' )['''model'''] remove_ignore_keys_(__lowerCAmelCase ) snake_case__ : int = state_dict['''encoder.embed_tokens.weight'''].shape[0] snake_case__ : str = MBartConfig.from_pretrained(__lowerCAmelCase , vocab_size=__lowerCAmelCase ) if mbart_aa and finetuned: snake_case__ : str = '''relu''' snake_case__ : int = state_dict['''decoder.embed_tokens.weight'''] snake_case__ : int = MBartForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase ) if finetuned: snake_case__ : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') A__ = parser.parse_args() A__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
44
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A__ = logging.get_logger(__name__) A__ = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = """bart""" __lowerCAmelCase : Any = ["""past_key_values"""] __lowerCAmelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :int ,__lowercase :Union[str, Any]=5_0_2_6_5 ,__lowercase :Optional[int]=1_0_2_4 ,__lowercase :int=1_2 ,__lowercase :Tuple=4_0_9_6 ,__lowercase :str=1_6 ,__lowercase :List[Any]=1_2 ,__lowercase :str=4_0_9_6 ,__lowercase :List[str]=1_6 ,__lowercase :Optional[int]=0.0 ,__lowercase :List[str]=0.0 ,__lowercase :int="gelu" ,__lowercase :int=1_0_2_4 ,__lowercase :Any=0.1 ,__lowercase :Optional[Any]=0.0 ,__lowercase :List[Any]=0.0 ,__lowercase :Tuple=0.02 ,__lowercase :List[str]=0.0 ,__lowercase :int=False ,__lowercase :Any=True ,__lowercase :List[str]=3 ,__lowercase :List[Any]=1 ,__lowercase :List[str]=0 ,__lowercase :List[str]=2 ,__lowercase :Union[str, Any]=True ,__lowercase :List[Any]=2 ,__lowercase :Dict=2 ,**__lowercase :List[str] ,): snake_case__ : Union[str, Any] = vocab_size snake_case__ : Tuple = max_position_embeddings snake_case__ : List[Any] = d_model snake_case__ : Any = encoder_ffn_dim snake_case__ : int = encoder_layers snake_case__ : Union[str, Any] = encoder_attention_heads snake_case__ : List[str] = decoder_ffn_dim snake_case__ : Any = decoder_layers snake_case__ : Union[str, Any] = decoder_attention_heads snake_case__ : int = dropout snake_case__ : Optional[int] = attention_dropout snake_case__ : str = activation_dropout snake_case__ : List[Any] = activation_function snake_case__ : Any = init_std snake_case__ : Union[str, Any] = encoder_layerdrop snake_case__ : Optional[int] = decoder_layerdrop snake_case__ : List[Any] = classifier_dropout snake_case__ : Tuple = use_cache snake_case__ : List[str] = encoder_layers snake_case__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__lowercase ,pad_token_id=__lowercase ,bos_token_id=__lowercase ,eos_token_id=__lowercase ,is_encoder_decoder=__lowercase ,decoder_start_token_id=__lowercase ,forced_eos_token_id=__lowercase ,**__lowercase ,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' ,__lowercase ): snake_case__ : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class a ( __lowerCamelCase ): @property def __lowerCamelCase ( self :Optional[int] ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ : Union[str, Any] = {0: '''batch'''} snake_case__ : Any = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case__ : Any = {0: '''batch''', 1: '''decoder_sequence'''} snake_case__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case__ : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ , snake_case__ : Dict = self.num_layers for i in range(__lowercase ): snake_case__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCamelCase ( self :Dict ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : List[str] = super().outputs else: snake_case__ : List[str] = super(__lowercase ,self ).outputs if self.use_past: snake_case__ , snake_case__ : Any = self.num_layers for i in range(__lowercase ): snake_case__ : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCamelCase ( self :Optional[Any] ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): snake_case__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) # Generate decoder inputs snake_case__ : List[Any] = seq_length if not self.use_past else 1 snake_case__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) snake_case__ : Any = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case__ : List[str] = dict(**__lowercase ,**__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : Union[str, Any] = common_inputs['''input_ids'''].shape snake_case__ : List[str] = common_inputs['''decoder_input_ids'''].shape[1] snake_case__ , snake_case__ : Dict = self.num_attention_heads snake_case__ : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : Optional[int] = decoder_seq_length + 3 snake_case__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case__ : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase ,__lowercase )] ,dim=1 ) snake_case__ : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case__ , snake_case__ : List[Any] = self.num_layers snake_case__ : List[Any] = min(__lowercase ,__lowercase ) snake_case__ : Dict = max(__lowercase ,__lowercase ) - min_num_layers snake_case__ : Union[str, Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. snake_case__ : Optional[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase ,__lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def __lowerCamelCase ( self :List[Any] ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): snake_case__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case__ : Dict = seqlen + 2 snake_case__ , snake_case__ : Tuple = self.num_layers snake_case__ , snake_case__ : List[str] = self.num_attention_heads snake_case__ : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : int = common_inputs['''attention_mask'''].dtype snake_case__ : int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase ,__lowercase ,dtype=__lowercase )] ,dim=1 ) snake_case__ : Union[str, Any] = [ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def __lowerCamelCase ( self :str ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case__ : Optional[int] = compute_effective_axis_dimension( __lowercase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : str = tokenizer.num_special_tokens_to_add(__lowercase ) snake_case__ : int = compute_effective_axis_dimension( __lowercase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence snake_case__ : Union[str, Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case__ : Optional[Any] = dict(tokenizer(__lowercase ,return_tensors=__lowercase ) ) return common_inputs def __lowerCamelCase ( self :int ,__lowercase :PreTrainedTokenizer ,__lowercase :int = -1 ,__lowercase :int = -1 ,__lowercase :bool = False ,__lowercase :Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: snake_case__ : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) elif self.task == "causal-lm": snake_case__ : int = self._generate_dummy_inputs_for_causal_lm( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) else: snake_case__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase ,batch_size=__lowercase ,seq_length=__lowercase ,is_pair=__lowercase ,framework=__lowercase ) return common_inputs def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :Tuple ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = super()._flatten_past_key_values_(__lowercase ,__lowercase ,__lowercase ,__lowercase ) else: snake_case__ : int = super(__lowercase ,self )._flatten_past_key_values_( __lowercase ,__lowercase ,__lowercase ,__lowercase )
44
1
"""simple docstring""" from typing import Any class snake_case_: def __init__( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Optional[Any] = data lowerCAmelCase : Optional[int] = None def __repr__( self : str ): return F'''Node({self.data})''' class snake_case_: def __init__( self : str ): lowerCAmelCase : Dict = None def __iter__( self : int ): lowerCAmelCase : str = self.head while node: yield node.data lowerCAmelCase : Union[str, Any] = node.next def __len__( self : Any ): return sum(1 for _ in self ) def __repr__( self : Any ): return "->".join([str(__UpperCAmelCase ) for item in self] ) def __getitem__( self : int , UpperCamelCase_ : int ): if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any ): if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) lowerCAmelCase : List[Any] = self.head for _ in range(__UpperCAmelCase ): lowerCAmelCase : Dict = current.next lowerCAmelCase : Optional[Any] = data def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any ): self.insert_nth(len(self ) , __UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Any ): self.insert_nth(0 , __UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Any ): if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) lowerCAmelCase : Any = Node(__UpperCAmelCase ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : Dict = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : Optional[int] = temp.next lowerCAmelCase : int = new_node def lowerCamelCase__ ( self : int ): # print every node data print(self ) def lowerCamelCase__ ( self : Optional[Any] ): return self.delete_nth(0 ) def lowerCamelCase__ ( self : Any ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) lowerCAmelCase : Optional[Any] = self.head # default first node if index == 0: lowerCAmelCase : int = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = temp.next.next return delete_node.data def lowerCamelCase__ ( self : int ): return self.head is None def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = None lowerCAmelCase : Tuple = self.head while current: # Store the current node's next node. lowerCAmelCase : Any = current.next # Make the current node's next point backwards lowerCAmelCase : Any = prev # Make the previous node be the current node lowerCAmelCase : Optional[int] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Dict = prev def _snake_case ( ): lowerCAmelCase : Any = LinkedList() assert linked_list.is_empty() is True assert str(A_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(A_ ) == i linked_list.insert_nth(A_ , i + 1 ) assert str(A_ ) == "->".join(str(A_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(A_ ) == "->".join(str(A_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(A_ ) == 9 assert str(A_ ) == "->".join(str(A_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(A_ ) == "->".join(str(A_ ) for i in range(-8 , 1 ) ) def _snake_case ( ): lowerCAmelCase : str = [ -9, 100, Node(77345112 ), "dlrow olleH", 7, 5555, 0, -192.55555, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : str = LinkedList() for i in test_input: linked_list.insert_tail(A_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(A_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : int = linked_list.delete_head() assert result == -9 assert ( str(A_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : int = linked_list.delete_tail() assert result == 12.2 assert ( str(A_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : Union[str, Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(A_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(A_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(A_ ) assert ( str(A_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(A_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _snake_case ( ): from doctest import testmod testmod() lowerCAmelCase : int = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(A_ ) print('''\nReading/changing Node data using indexing:''' ) print(f'''Element at Position 1: {linked_list[1]}''' ) lowerCAmelCase : Tuple = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(A_ ) print(f'''length of linked_list is : {len(A_ )}''' ) if __name__ == "__main__": main()
60
"""simple docstring""" def lowercase ( A_ )-> str: '''simple docstring''' if isinstance(A_ , A_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(A_ , A_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" a : Optional[Any] = False if num < 0: a : Tuple = True a : str = -num a : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A_ ) for e in binary ) return "0b" + "".join(str(A_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : Any = r'''\w+[.]\d+''' UpperCAmelCase : Optional[Any] = re.findall(UpperCAmelCase , UpperCAmelCase ) for pat in pats: UpperCAmelCase : Optional[Any] = key.replace(UpperCAmelCase , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ ( UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : str = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase : Any = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase : List[str] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase : Any = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=42 ) -> Optional[Any]: # Step 1: Convert pytorch tensor to numpy UpperCAmelCase : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase : Optional[int] = flax_model.init_weights(PRNGKey(UpperCAmelCase ) ) UpperCAmelCase : List[str] = flatten_dict(UpperCAmelCase ) UpperCAmelCase : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Optional[Any] = rename_key(UpperCAmelCase ) UpperCAmelCase : Any = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : Dict = rename_key_and_reshape_tensor(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase : str = jnp.asarray(UpperCAmelCase ) return unflatten_dict(UpperCAmelCase )
99
from __future__ import annotations import queue class __UpperCAmelCase : def __init__( self : str, __A : Union[str, Any] ): UpperCAmelCase : Dict = data UpperCAmelCase : Tuple = None UpperCAmelCase : Any = None def a__ ( ) -> TreeNode: print('''\n********Press N to stop entering at any point of time********\n''' ) UpperCAmelCase : Any = input('''Enter the value of the root node: ''' ).strip().lower() UpperCAmelCase : queue.Queue = queue.Queue() UpperCAmelCase : Tuple = TreeNode(int(UpperCAmelCase ) ) q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = q.get() UpperCAmelCase : Union[str, Any] = f'''Enter the left node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : List[str] = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : List[str] = left_node q.put(UpperCAmelCase ) UpperCAmelCase : List[Any] = f'''Enter the right node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : Dict = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : Dict = right_node q.put(UpperCAmelCase ) raise def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : List[Any] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = [] while not q.empty(): UpperCAmelCase : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(UpperCAmelCase ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left # end of while means current node doesn't have left child UpperCAmelCase : Union[str, Any] = stack.pop() # start to traverse its right child UpperCAmelCase : List[str] = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : Any = node while n or stack: while n: stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left UpperCAmelCase : Optional[int] = stack.pop() print(n.data , end=''',''' ) UpperCAmelCase : Any = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase , UpperCAmelCase : Dict = [], [] UpperCAmelCase : Any = node stacka.append(UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def a__ ( UpperCAmelCase : str = "" , UpperCAmelCase : int=50 , UpperCAmelCase : Union[str, Any]="*" ) -> str: if not s: return "\n" + width * char UpperCAmelCase , UpperCAmelCase : int = divmod(width - len(UpperCAmelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowerCamelCase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
99
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: str =[ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE_: List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ :Optional[int] = logging.get_logger(__name__) a_ :Dict = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """openai-gpt""" _SCREAMING_SNAKE_CASE = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int], _snake_case : Dict=4_0_4_7_8, _snake_case : str=5_1_2, _snake_case : int=7_6_8, _snake_case : Tuple=1_2, _snake_case : Any=1_2, _snake_case : str="gelu", _snake_case : List[str]=0.1, _snake_case : Any=0.1, _snake_case : Dict=0.1, _snake_case : int=1e-5, _snake_case : Optional[Any]=0.0_2, _snake_case : List[Any]="cls_index", _snake_case : Any=True, _snake_case : Any=None, _snake_case : int=True, _snake_case : Optional[Any]=0.1, **_snake_case : List[Any], ) ->Optional[int]: snake_case__ : int = vocab_size snake_case__ : Dict = n_positions snake_case__ : str = n_embd snake_case__ : str = n_layer snake_case__ : List[Any] = n_head snake_case__ : List[Any] = afn snake_case__ : Optional[Any] = resid_pdrop snake_case__ : List[str] = embd_pdrop snake_case__ : List[Any] = attn_pdrop snake_case__ : Optional[int] = layer_norm_epsilon snake_case__ : str = initializer_range snake_case__ : List[str] = summary_type snake_case__ : Optional[int] = summary_use_proj snake_case__ : List[str] = summary_activation snake_case__ : Optional[Any] = summary_first_dropout snake_case__ : int = summary_proj_to_labels super().__init__(**_snake_case )
277
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : int , __A : List[str]=10_24 , __A : Tuple=10_24 , __A : int=False , **__A : Dict ) -> Tuple: """simple docstring""" a_ : Any = AutoTokenizer.from_pretrained(__A ) a_ : Union[str, Any] = SeqaSeqDataset(__A , __A , __A , __A , type_path='train' , **__A ) a_ : int = tok.pad_token_id def get_lens(__A : Optional[int] ): a_ : int = tqdm( DataLoader(__A , batch_size=5_12 , num_workers=8 , shuffle=__A , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) a_ : Union[str, Any] = [] for batch in dl: a_ : Optional[int] = batch['input_ids'].ne(__A ).sum(1 ).tolist() a_ : Dict = batch['labels'].ne(__A ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__A , __A ): max_lens.append(max(__A , __A ) ) else: max_lens.extend(__A ) return max_lens a_ : List[str] = get_lens(__A ) a_ : Dict = SeqaSeqDataset(__A , __A , __A , __A , type_path='val' , **__A ) a_ : int = get_lens(__A ) pickle_save(__A , train_ds.len_file ) pickle_save(__A , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
355
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Optional[int]: """simple docstring""" a_ : str = filter(lambda __A : p.requires_grad , model.parameters() ) a_ : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase_ : Dict = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int ) -> List[str]: """simple docstring""" if metric == "rouge2": a_ : Dict = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": a_ : Dict = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": a_ : Union[str, Any] = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": a_ : str = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) a_ : Dict = ModelCheckpoint( dirpath=__A , filename=__A , monitor=F"""val_{metric}""" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE_ ( __A : int , __A : List[Any] ) -> int: """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=__A , verbose=__A , ) class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: a_ : int = {F"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=True ) -> None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) a_ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results a_ : Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": a_ : Tuple = od / 'test_results.txt' a_ : Optional[int] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a_ : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" a_ : Optional[Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'a+' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE__ ): if key in ["log", "progress_bar", "preds"]: continue a_ : int = metrics[key] if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): a_ : List[str] = val.item() a_ : int = F"""{key}: {val:.6f}\n""" writer.write(SCREAMING_SNAKE_CASE__ ) if not save_generations: return if "preds" in metrics: a_ : Optional[Any] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: try: a_ : Any = pl_module.model.model.num_parameters() except AttributeError: a_ : List[str] = pl_module.model.num_parameters() a_ : Any = count_trainable_parameters(SCREAMING_SNAKE_CASE__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'test' ) @rank_zero_only def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
120
0
'''simple docstring''' from numpy import exp, pi, sqrt def __UpperCAmelCase ( a_: Any, a_: float = 0.0, a_: float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
145
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __snake_case : def __init__( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[Any]=13 , _lowercase : List[Any]=7 , _lowercase : Optional[int]=True , _lowercase : str=True , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : List[str]=99 , _lowercase : List[str]=32 , _lowercase : str=5 , _lowercase : str=4 , _lowercase : str=4 , _lowercase : Union[str, Any]="gelu" , _lowercase : str=0.0 , _lowercase : Union[str, Any]=0.1 , _lowercase : List[str]=True , _lowercase : Union[str, Any]=5_12 , _lowercase : List[str]=16 , _lowercase : Dict=2 , _lowercase : int=0.02 , _lowercase : Any=3 , _lowercase : int=4 , _lowercase : List[str]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_multiple_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = weight_tying SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self : Optional[int] ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = True return config, input_ids, input_mask, token_labels def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Dict , _lowercase : int , _lowercase : str , _lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : int , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) SCREAMING_SNAKE_CASE__ = output_from_no_past["""hidden_states"""][0] SCREAMING_SNAKE_CASE__ = model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCAmelCase_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __a ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE__ = None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """abeja/gpt-neox-japanese-2.7b""" SCREAMING_SNAKE_CASE__ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] SCREAMING_SNAKE_CASE__ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = [] for prompt in prompts: SCREAMING_SNAKE_CASE__ = tokenizer(_lowercase , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(_lowercase , max_length=50 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
219
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """megatron-bert""" def __init__( self : str , _lowerCAmelCase : Dict=2_9_0_5_6 , _lowerCAmelCase : str=1_0_2_4 , _lowerCAmelCase : List[str]=2_4 , _lowerCAmelCase : Optional[int]=1_6 , _lowerCAmelCase : Tuple=4_0_9_6 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Any=5_1_2 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : str=1e-12 , _lowerCAmelCase : List[Any]=0 , _lowerCAmelCase : int="absolute" , _lowerCAmelCase : Dict=True , **_lowerCAmelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase) __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =hidden_act __lowercase =intermediate_size __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =initializer_range __lowercase =layer_norm_eps __lowercase =position_embedding_type __lowercase =use_cache
363
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ): """simple docstring""" if config_name_or_path is None: __lowercase ='facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __lowercase =generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowercase =question_encoder_name_or_path __lowercase =RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __lowercase =RagConfig.from_pretrained(_lowerCAmelCase ) __lowercase =AutoConfig.from_pretrained(_lowerCAmelCase ) __lowercase =AutoConfig.from_pretrained(_lowerCAmelCase ) __lowercase =gen_config __lowercase =question_encoder_config __lowercase =model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __lowercase =AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) lowerCamelCase = parser.parse_args() lowerCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
48
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _a : Dict = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ['BeitFeatureExtractor'] _a : Dict = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Optional[int] = """ylacombe/bark-small""" _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : int = """en_speaker_1""" _lowerCAmelCase : List[Any] = """This is a test string""" _lowerCAmelCase : Any = """speaker_embeddings_path.json""" _lowerCAmelCase : List[Any] = """speaker_embeddings""" def __A ( self , **a__ ): return AutoTokenizer.from_pretrained(self.checkpoint , **a__ ) def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : int = BarkProcessor(tokenizer=a__ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : str = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __A ( self ): _lowerCAmelCase : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __A ( self ): _lowerCAmelCase : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase : Union[str, Any] = 35 _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : Dict = { """semantic_prompt""": np.ones(a__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase : Dict = processor(text=self.input_string , voice_preset=a__ ) _lowerCAmelCase : Tuple = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(a__ , **a__ ) _lowerCAmelCase : List[Any] = processor(text=self.input_string , voice_preset=a__ ) _lowerCAmelCase : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase : str = processor(text=self.input_string , voice_preset=self.voice_preset ) def __A ( self ): _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : List[Any] = BarkProcessor(tokenizer=a__ ) _lowerCAmelCase : Dict = processor(text=self.input_string ) _lowerCAmelCase : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=a__ , return_attention_mask=a__ , return_token_type_ids=a__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
44
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Tuple = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = ['CLIPFeatureExtractor'] _lowercase : Any = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
362
"""simple docstring""" class _UpperCAmelCase : def __init__( self : str , _lowercase : list ): __UpperCAmelCase = set_counts __UpperCAmelCase = max(_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = [1] * num_sets __UpperCAmelCase = list(range(_lowercase ) ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): __UpperCAmelCase = self.get_parent(_lowercase ) __UpperCAmelCase = self.get_parent(_lowercase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase = 0 __UpperCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase = 0 __UpperCAmelCase = src_parent __UpperCAmelCase = self.set_counts[src_parent] __UpperCAmelCase = max(self.max_set , _lowercase ) return True def a ( self : Optional[Any] , _lowercase : int ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
86
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase : Union[str, Any] = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Tuple = ['''input_features'''] def __init__( self , lowercase=80 , lowercase=1_6000 , lowercase=160 , lowercase=30 , lowercase=400 , lowercase=0.0 , lowercase=False , **lowercase , ) -> Any: '''simple docstring''' super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) a__ : Union[str, Any] = n_fft a__ : Dict = hop_length a__ : List[str] = chunk_length a__ : str = chunk_length * sampling_rate a__ : List[Any] = self.n_samples // hop_length a__ : List[str] = sampling_rate a__ : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=lowercase , norm='slaney' , mel_scale='slaney' , ) def __lowercase ( self , lowercase) -> np.ndarray: '''simple docstring''' a__ : Union[str, Any] = spectrogram( lowercase , window_function(self.n_fft , 'hann') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) a__ : Optional[Any] = log_spec[:, :-1] a__ : Optional[int] = np.maximum(lowercase , log_spec.max() - 8.0) a__ : Optional[int] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __lowercase ( lowercase , lowercase , lowercase = 0.0) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: a__ : List[Any] = np.array(lowercase , np.intaa) a__ : int = [] for vector, length in zip(lowercase , attention_mask.sum(-1)): a__ : List[str] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: a__ : int = padding_value normed_input_values.append(lowercase) else: a__ : Optional[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self , lowercase , lowercase = True , lowercase = None , lowercase = None , lowercase = None , lowercase = "max_length" , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') a__ : List[Any] = isinstance(lowercase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') a__ : Optional[int] = is_batched_numpy or ( isinstance(lowercase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: a__ : Optional[Any] = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray): a__ : Optional[int] = np.asarray(lowercase , dtype=np.floataa) elif isinstance(lowercase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): a__ : List[Any] = raw_speech.astype(np.floataa) # always return batch if not is_batched: a__ : List[Any] = [np.asarray([raw_speech]).T] a__ : Optional[int] = BatchFeature({'input_features': raw_speech}) # convert into correct format for padding a__ : Dict = self.pad( lowercase , padding=lowercase , max_length=max_length if max_length else self.n_samples , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: a__ : List[str] = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) a__ : Tuple = np.stack(padded_inputs['input_features'] , axis=0) # make sure list is in array format a__ : Tuple = padded_inputs.get('input_features').transpose(2 , 0 , 1) a__ : Tuple = [self._np_extract_fbank_features(lowercase) for waveform in input_features[0]] if isinstance(input_features[0] , lowercase): a__ : Optional[Any] = [np.asarray(lowercase , dtype=np.floataa) for feature in input_features] else: a__ : int = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) a__ : List[Any] = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: a__ : Tuple = padded_inputs.convert_to_tensors(lowercase) return padded_inputs def __lowercase ( self) -> Dict[str, Any]: '''simple docstring''' a__ : Tuple = copy.deepcopy(self.__dict__) a__ : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
99
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase , 'hidden_sizes')) self.parent.assertTrue(hasattr(lowercase , 'num_attention_heads')) self.parent.assertTrue(hasattr(lowercase , 'num_encoder_blocks')) class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[16, 32, 64, 128] , lowercase=[1, 4, 8, 16] , lowercase=[1, 2, 4, 8] , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=3 , lowercase=None , ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = parent a__ : int = batch_size a__ : Tuple = image_size a__ : Union[str, Any] = num_channels a__ : str = num_encoder_blocks a__ : Dict = sr_ratios a__ : Dict = depths a__ : Union[str, Any] = hidden_sizes a__ : str = downsampling_rates a__ : Tuple = num_attention_heads a__ : Optional[Any] = is_training a__ : Union[str, Any] = use_labels a__ : Any = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : Optional[Any] = initializer_range a__ : Tuple = num_labels a__ : Union[str, Any] = scope def __lowercase ( self) -> Any: '''simple docstring''' a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : str = None if self.use_labels: a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a__ : Any = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Any: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__ : Dict = SegformerModel(config=lowercase) model.to(lowercase) model.eval() a__ : Optional[Any] = model(lowercase) a__ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def __lowercase ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : Optional[Any] = self.num_labels a__ : List[str] = SegformerForSemanticSegmentation(lowercase) model.to(lowercase) model.eval() a__ : List[str] = model(lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) a__ : int = model(lowercase , labels=lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = 1 a__ : Optional[int] = SegformerForSemanticSegmentation(config=lowercase) model.to(lowercase) model.eval() a__ : Union[str, Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowercase) a__ : Optional[Any] = model(lowercase , labels=lowercase) self.parent.assertGreater(result.loss , 0.0) def __lowercase ( self) -> int: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() a__ , a__ , a__ : str = config_and_inputs a__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __A : List[str] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __A : List[str] = True __A : Any = False __A : Any = False __A : str = False def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = SegformerModelTester(self) a__ : Optional[Any] = SegformerConfigTester(self , config_class=lowercase) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase) @unittest.skip('SegFormer does not use inputs_embeds') def __lowercase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def __lowercase ( self) -> str: '''simple docstring''' pass def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowercase) a__ : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ , a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: a__ : str = True a__ : List[str] = False a__ : int = True a__ : List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[Any] = outputs.attentions a__ : Dict = sum(self.model_tester.depths) self.assertEqual(len(lowercase) , lowercase) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ : Dict = True a__ : int = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[Any] = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__ : Tuple = (self.model_tester.image_size // 4) ** 2 a__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a__ : str = (self.model_tester.image_size // 32) ** 2 a__ : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a__ : Dict = len(lowercase) # Check attention is always last and order is fine a__ : List[Any] = True a__ : Any = True a__ : Dict = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__ : int = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__ : List[Any] = (self.model_tester.image_size // 4) ** 2 a__ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __lowercase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__ : Optional[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Union[str, Any] = outputs.hidden_states a__ : Any = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase) , lowercase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : int = True check_hidden_states_output(lowercase , lowercase , lowercase) def __lowercase ( self) -> Any: '''simple docstring''' if not self.model_tester.is_training: return a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(lowercase): continue a__ : Dict = model_class(lowercase) model.to(lowercase) model.train() a__ : str = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase) a__ : Optional[int] = model(**lowercase).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' pass @slow def __lowercase ( self) -> Tuple: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = SegformerModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : int = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__ : Optional[int] = prepare_img() a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt') a__ : List[str] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Optional[int] = model(lowercase) a__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Dict = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-4)) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(lowercase) a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt') a__ : List[str] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Optional[Any] = model(lowercase) a__ : List[Any] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Optional[Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-1)) @slow def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__ : Any = prepare_img() a__ : Optional[Any] = image_processor(images=lowercase , return_tensors='pt') a__ : Optional[int] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Union[str, Any] = model(lowercase) a__ : int = outputs.logits.detach().cpu() a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(500, 300)]) a__ : Optional[Any] = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , lowercase) a__ : Any = image_processor.post_process_semantic_segmentation(outputs=lowercase) a__ : Union[str, Any] = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , lowercase)
99
1
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Dict: '''simple docstring''' snake_case : List[Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: snake_case : str = 128 elif "12-12" in model_name: snake_case : int = 12 snake_case : str = 12 elif "14-14" in model_name: snake_case : Optional[int] = 14 snake_case : Any = 14 elif "16-16" in model_name: snake_case : int = 16 snake_case : int = 16 else: raise ValueError('''Model not supported''' ) snake_case : List[Any] = '''huggingface/label-files''' if "speech-commands" in model_name: snake_case : Dict = 35 snake_case : Union[str, Any] = '''speech-commands-v2-id2label.json''' else: snake_case : Dict = 527 snake_case : Union[str, Any] = '''audioset-id2label.json''' snake_case : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case : Optional[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case : int = idalabel snake_case : int = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Dict: '''simple docstring''' if "module.v" in name: snake_case : Union[str, Any] = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: snake_case : Optional[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: snake_case : List[str] = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: snake_case : Any = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: snake_case : Tuple = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: snake_case : Union[str, Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: snake_case : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: snake_case : List[Any] = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: snake_case : List[Any] = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: snake_case : str = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case : Any = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: snake_case : int = key.split('''.''' ) snake_case : List[Any] = int(key_split[3] ) snake_case : Optional[Any] = config.hidden_size if "weight" in key: snake_case : Optional[Any] = val[:dim, :] snake_case : List[Any] = val[dim : dim * 2, :] snake_case : int = val[-dim:, :] else: snake_case : List[Any] = val[:dim] snake_case : Union[str, Any] = val[dim : dim * 2] snake_case : Dict = val[-dim:] else: snake_case : Tuple = val return orig_state_dict def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Any: '''simple docstring''' snake_case : int = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict snake_case : Optional[Any] = model_name_to_url[model_name] snake_case : List[str] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE__ ) # rename some keys snake_case : Union[str, Any] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load 🤗 model snake_case : Any = ASTForAudioClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 snake_case : Dict = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 snake_case : int = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 snake_case : Union[str, Any] = 1024 if '''speech-commands''' not in model_name else 128 snake_case : List[Any] = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) if "speech-commands" in model_name: snake_case : Union[str, Any] = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) snake_case : str = dataset[0]['''audio''']['''array'''] else: snake_case : Dict = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) snake_case ,snake_case : Optional[int] = torchaudio.load(SCREAMING_SNAKE_CASE__ ) snake_case : int = waveform.squeeze().numpy() snake_case : List[Any] = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=1_6000 , return_tensors='''pt''' ) # forward pass snake_case : int = model(**SCREAMING_SNAKE_CASE__ ) snake_case : Any = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": snake_case : Union[str, Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": snake_case : str = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": snake_case : Any = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": snake_case : Dict = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": snake_case : str = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": snake_case : Dict = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": snake_case : str = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": snake_case : Dict = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
83
'''simple docstring''' class snake_case__ : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : list[int] ) -> None: """simple docstring""" snake_case : List[Any] = len(UpperCamelCase__ ) snake_case : Tuple = [0] * len_array if len_array > 0: snake_case : List[str] = array[0] for i in range(1 , UpperCamelCase__ ): snake_case : Tuple = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase ( self : str , UpperCamelCase__ : int ) -> bool: """simple docstring""" snake_case : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
83
1
"""simple docstring""" from typing import List import numpy as np def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[Any] = {key: len(A__ ) for key, value in gen_kwargs.items() if isinstance(A__, A__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) snake_case_ :Tuple = max(lists_lengths.values(), default=0 ) return max(1, A__ ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = [] for group_idx in range(A__ ): snake_case_ :List[str] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break snake_case_ :List[str] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 snake_case_ :Any = range(A__, start + num_shards_to_add ) shards_indices_per_group.append(A__ ) return shards_indices_per_group def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = _number_of_shards_in_gen_kwargs(A__ ) if num_shards == 1: return [dict(A__ )] else: snake_case_ :Tuple = _distribute_shards(num_shards=A__, max_num_jobs=A__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(A__, A__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(A__ ) ) ] def A_ ( _lowercase ): '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], A__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[str] = {len(A__ ) for value in gen_kwargs.values() if isinstance(A__, A__ )} snake_case_ :List[str] = {} for size in list_sizes: snake_case_ :Optional[int] = list(range(A__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes snake_case_ :int = dict(A__ ) for key, value in shuffled_kwargs.items(): if isinstance(A__, A__ ): snake_case_ :int = [value[i] for i in indices_per_size[len(A__ )]] return shuffled_kwargs
66
'''simple docstring''' def UpperCamelCase_ ( A__ : int ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase_ ( A__ : int = 50_00 ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , A__ )] for i, pentagonal_i in enumerate(A__ ): for j in range(A__ , len(A__ ) ): lowerCAmelCase_ : int = pentagonal_nums[j] lowerCAmelCase_ : Union[str, Any] = pentagonal_i + pentagonal_j lowerCAmelCase_ : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(A__ ) and is_pentagonal(A__ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
120
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = args.pruning_method lowerCAmelCase__ = args.threshold lowerCAmelCase__ = args.model_name_or_path.rstrip('/' ) lowerCAmelCase__ = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) lowerCAmelCase__ = torch.load(os.path.join(lowerCAmelCase__ , 'pytorch_model.bin' ) ) lowerCAmelCase__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase__ = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase__ = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: lowerCAmelCase__ = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowerCAmelCase__ = MagnitudeBinarizer.apply(inputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ ) lowerCAmelCase__ = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[F"""{prefix_}mask_scores"""] lowerCAmelCase__ = TopKBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[F"""{prefix_}mask_scores"""] lowerCAmelCase__ = ThresholdBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase__ = name[:-6] lowerCAmelCase__ = model[F"""{prefix_}mask_scores"""] lowerCAmelCase__ , lowerCAmelCase__ = -0.1, 1.1 lowerCAmelCase__ = torch.sigmoid(lowerCAmelCase__ ) lowerCAmelCase__ = s * (r - l) + l lowerCAmelCase__ = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase__ = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowerCAmelCase__ = os.path.join( os.path.dirname(lowerCAmelCase__ ) , F"""bertarized_{os.path.basename(lowerCAmelCase__ )}""" ) if not os.path.isdir(lowerCAmelCase__ ): shutil.copytree(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) lowerCAmelCase__ = parser.parse_args() main(args)
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
119
0
def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
333
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE__ : Any = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def A ( _SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : int = EfficientNetConfig() lowerCamelCase : List[str] = CONFIG_MAP[model_name]["hidden_dim"] lowerCamelCase : List[str] = CONFIG_MAP[model_name]["width_coef"] lowerCamelCase : Any = CONFIG_MAP[model_name]["depth_coef"] lowerCamelCase : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : Optional[int] = CONFIG_MAP[model_name]["dropout_rate"] lowerCamelCase : str = CONFIG_MAP[model_name]["dw_padding"] lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : List[str] = "imagenet-1k-id2label.json" lowerCamelCase : Any = 1000 lowerCamelCase : Any = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) ) lowerCamelCase : List[str] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Tuple = idalabel lowerCamelCase : Any = {v: k for k, v in idalabel.items()} return config def A ( ) -> int: lowerCamelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) return im def A ( _SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : List[Any] = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : str = EfficientNetImageProcessor( size={"height": size, "width": size} ,image_mean=[0.485, 0.456, 0.406] ,image_std=[0.47853944, 0.4732864, 0.47434163] ,do_center_crop=_SCREAMING_SNAKE_CASE ,) return preprocessor def A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowerCamelCase : Any = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[Any] = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE ,range(_SCREAMING_SNAKE_CASE ) )} lowerCamelCase : List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowerCamelCase : Dict = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowerCamelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: lowerCamelCase : List[str] = "efficientnet." + item[1] lowerCamelCase : int = "classifier.weight" lowerCamelCase : Union[str, Any] = "classifier.bias" return key_mapping def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: for key, value in tf_params.items(): if "normalization" in key: continue lowerCamelCase : Tuple = key_mapping[key] if "_conv" in key and "kernel" in key: lowerCamelCase : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: lowerCamelCase : int = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: lowerCamelCase : List[str] = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowerCamelCase : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCamelCase : Optional[int] = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE ,weights="imagenet" ,input_tensor=_SCREAMING_SNAKE_CASE ,input_shape=_SCREAMING_SNAKE_CASE ,pooling=_SCREAMING_SNAKE_CASE ,classes=1000 ,classifier_activation="softmax" ,) lowerCamelCase : List[Any] = original_model.trainable_variables lowerCamelCase : Tuple = original_model.non_trainable_variables lowerCamelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowerCamelCase : List[str] = param.numpy() lowerCamelCase : int = list(tf_params.keys() ) # Load HuggingFace model lowerCamelCase : Union[str, Any] = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowerCamelCase : Tuple = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowerCamelCase : Union[str, Any] = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowerCamelCase : int = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowerCamelCase : int = preprocessor(images=prepare_img() ,return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowerCamelCase : Optional[Any] = hf_model(**_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = outputs.logits.detach().numpy() # Original model inference lowerCamelCase : Optional[Any] = False lowerCamelCase : Any = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : Optional[int] = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) lowerCamelCase : Union[str, Any] = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = np.expand_dims(_SCREAMING_SNAKE_CASE ,axis=0 ) lowerCamelCase : Dict = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) lowerCamelCase : int = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
48
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self : str ,_UpperCAmelCase : Any ,_UpperCAmelCase : int=7 ,_UpperCAmelCase : int=3 ,_UpperCAmelCase : List[str]=18 ,_UpperCAmelCase : str=30 ,_UpperCAmelCase : Tuple=400 ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : Optional[Any]=None ,): _a : int = size if size is not None else {'height': 20, 'width': 20} _a : List[Any] = parent _a : List[Any] = batch_size _a : List[Any] = num_channels _a : str = image_size _a : Optional[Any] = min_resolution _a : str = max_resolution _a : List[Any] = size _a : int = do_normalize _a : Any = do_convert_rgb _a : Tuple = [512, 1024, 2048, 4096] _a : Tuple = patch_size if patch_size is not None else {'height': 16, 'width': 16} def __lowercase ( self : List[Any] ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowercase ( self : List[Any] ): _a : List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _a : Any = Image.open(requests.get(_UpperCAmelCase ,stream=_UpperCAmelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def __lowercase ( self : List[Any] ): _a : Dict = PixaStructImageProcessingTester(self ) @property def __lowercase ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : str ): _a : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase ,'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase ,'do_convert_rgb' ) ) def __lowercase ( self : Dict ): _a : List[Any] = self.image_processor_tester.prepare_dummy_image() _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _a : List[str] = 2048 _a : Dict = image_processor(_UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() ,torch.tensor(0.06_06 ) ,atol=1E-3 ,rtol=1E-3 ) ) def __lowercase ( self : Dict ): # Initialize image_processor _a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,Image.Image ) # Test not batched input _a : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Union[str, Any] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : Union[str, Any] = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : int ): # Initialize image_processor _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,Image.Image ) # Test not batched input _a : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _a : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCAmelCase ): _a : str = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches _a : Union[str, Any] = 'Hello' _a : str = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ,header_text=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : Union[str, Any] = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ,header_text=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : int ): # Initialize image_processor _a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ,numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,np.ndarray ) _a : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Dict = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : str = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : Union[str, Any] ): # Initialize image_processor _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ,torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,torch.Tensor ) # Test not batched input _a : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Optional[int] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : Union[str, Any] = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def __lowercase ( self : Tuple ): _a : Tuple = PixaStructImageProcessingTester(self ,num_channels=4 ) _a : Tuple = 3 @property def __lowercase ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Union[str, Any] ): _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase ,'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase ,'do_convert_rgb' ) ) def __lowercase ( self : Tuple ): # Initialize image_processor _a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase ,Image.Image ) # Test not batched input _a : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Optional[int] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched _a : Optional[Any] = image_processor( _UpperCAmelCase ,return_tensors='pt' ,max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,)
107
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __magic_name__ : lowerCAmelCase : str = field( metadata={'help': 'The output directory where the model will be written.'} , ) lowerCAmelCase : str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) lowerCAmelCase : str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def __lowerCamelCase ( ) -> Union[str, Any]: _a : Any = HfArgumentParser((ModelArguments,) ) ((_a) , ) : Dict = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _a : Optional[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _a : Optional[Any] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _a : List[str] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _a : Optional[int] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _a : List[Any] = True _a : int = True _a : Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCAmelCase_ , decoder_config=lowerCAmelCase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _a : List[str] = decoder_config.decoder_start_token_id _a : Optional[int] = decoder_config.pad_token_id if decoder_start_token_id is None: _a : Tuple = decoder_config.bos_token_id if pad_token_id is None: _a : List[Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _a : Any = decoder_config.eos_token_id _a : Tuple = decoder_start_token_id _a : Any = pad_token_id _a : Dict = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _a : Dict = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _a : int = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
107
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = KandinskyVaaPipeline UpperCamelCase_ : Union[str, Any] = [ 'image_embeds', 'negative_image_embeds', ] UpperCamelCase_ : Any = ['image_embeds', 'negative_image_embeds'] UpperCamelCase_ : Optional[Any] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCamelCase_ : Optional[Any] = False @property def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return 3_2 @property def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return 3_2 @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return self.time_input_dim @property def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return 1_0_0 @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Dict = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCAmelCase : str = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = self.dummy_unet _UpperCAmelCase : Tuple = self.dummy_movq _UpperCAmelCase : Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type="epsilon" , thresholding=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str=0 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): _UpperCAmelCase : str = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = 'cpu' _UpperCAmelCase : int = self.get_dummy_components() _UpperCAmelCase : Optional[int] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Any = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : List[Any] = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) _UpperCAmelCase : Dict = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) _UpperCAmelCase : Union[str, Any] = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = 'red cat, 4k photo' _UpperCAmelCase : Union[str, Any] = torch.Generator(device="cuda" ).manual_seed(0 ) _UpperCAmelCase : Tuple = pipe_prior( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _UpperCAmelCase : Optional[int] = torch.Generator(device="cuda" ).manual_seed(0 ) _UpperCAmelCase : str = pipeline( image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , output_type="np" , ) _UpperCAmelCase : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
145
"""simple docstring""" from __future__ import annotations import bisect def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): if hi < 0: __lowerCAmelCase : Tuple = len(_UpperCamelCase ) while lo < hi: __lowerCAmelCase : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowerCAmelCase : int = mid + 1 else: __lowerCAmelCase : List[str] = mid return lo def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): if hi < 0: __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) while lo < hi: __lowerCAmelCase : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowerCAmelCase : Dict = mid + 1 else: __lowerCAmelCase : str = mid return lo def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): sorted_collection.insert(bisect_left(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 , _UpperCamelCase = -1 ): sorted_collection.insert(bisect_right(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : int = len(_UpperCamelCase ) - 1 while left <= right: __lowerCAmelCase : List[Any] = left + (right - left) // 2 __lowerCAmelCase : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowerCAmelCase : Tuple = midpoint - 1 else: __lowerCAmelCase : str = midpoint + 1 return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = bisect.bisect_left(_UpperCamelCase , _UpperCamelCase ) if index != len(_UpperCamelCase ) and sorted_collection[index] == item: return index return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if right < left: return None __lowerCAmelCase : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_UpperCamelCase , _UpperCamelCase , midpoint + 1 , _UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by comma:\n""").strip() lowerCamelCase__ = sorted(int(item) for item in user_input.split(""",""")) lowerCamelCase__ = int(input("""Enter a single number to be found in the list:\n""")) lowerCamelCase__ = binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
86
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
0
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' ,revision='bf16' ,dtype=jnp.bfloataa ,) _UpperCamelCase : Dict = 'A painting of a squirrel eating a burger' _UpperCamelCase : Any = jax.device_count() _UpperCamelCase : Any = num_samples * [prompt] _UpperCamelCase : Tuple = sd_pipe.prepare_inputs(lowerCamelCase__ ) _UpperCamelCase : List[Any] = replicate(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = shard(lowerCamelCase__ ) _UpperCamelCase : str = jax.random.PRNGKey(0 ) _UpperCamelCase : int = jax.random.split(lowerCamelCase__ ,jax.device_count() ) _UpperCamelCase : List[Any] = sd_pipe(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,num_inference_steps=25 ,jit=lowerCamelCase__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCamelCase : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase : List[str] = images[0, 253:256, 253:256, -1] _UpperCamelCase : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase : Dict = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = 'stabilityai/stable-diffusion-2' _UpperCamelCase , _UpperCamelCase : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCamelCase__ ,subfolder='scheduler' ) _UpperCamelCase , _UpperCamelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( lowerCamelCase__ ,scheduler=lowerCamelCase__ ,revision='bf16' ,dtype=jnp.bfloataa ,) _UpperCamelCase : Tuple = scheduler_params _UpperCamelCase : str = 'A painting of a squirrel eating a burger' _UpperCamelCase : Optional[int] = jax.device_count() _UpperCamelCase : Optional[int] = num_samples * [prompt] _UpperCamelCase : Dict = sd_pipe.prepare_inputs(lowerCamelCase__ ) _UpperCamelCase : Dict = replicate(lowerCamelCase__ ) _UpperCamelCase : Dict = shard(lowerCamelCase__ ) _UpperCamelCase : Tuple = jax.random.PRNGKey(0 ) _UpperCamelCase : int = jax.random.split(lowerCamelCase__ ,jax.device_count() ) _UpperCamelCase : Optional[Any] = sd_pipe(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,num_inference_steps=25 ,jit=lowerCamelCase__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCamelCase : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase : Any = images[0, 253:256, 253:256, -1] _UpperCamelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase : List[str] = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
83
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if num < 0: return False _UpperCamelCase : int = num _UpperCamelCase : int = 0 while num > 0: _UpperCamelCase : str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
83
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __SCREAMING_SNAKE_CASE ( _a ): snake_case : str = """M-CLIP""" def __init__( self , __lowerCAmelCase=1024 , __lowerCAmelCase=768 , **__lowerCAmelCase ): UpperCamelCase__ = transformerDimSize UpperCamelCase__ = imageDimSize super().__init__(**__lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : int = MCLIPConfig def __init__( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = XLMRobertaModel(__lowerCAmelCase ) UpperCamelCase__ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = self.transformer(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] UpperCamelCase__ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__lowerCAmelCase ), embs
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
87
0
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( UpperCAmelCase ): if not isinstance(snake_case__ , snake_case__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) lowercase__ : Any = precision lowercase__ : Optional[int] = ceil(precision / 14 ) lowercase__ : Union[str, Any] = 42_6880 * Decimal(1_0005 ).sqrt() lowercase__ : int = 1 lowercase__ : Union[str, Any] = 1359_1409 lowercase__ : Dict = Decimal(snake_case__ ) for k in range(1 , snake_case__ ): lowercase__ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(snake_case__ ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __a: Dict = 50 print(F'The first {n} digits of pi is: {pi(n)}')
198
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
0
'''simple docstring''' import re from filelock import FileLock try: import nltk lowercase__ = True except (ImportError, ModuleNotFoundError): lowercase__ = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> str: re.sub('''<n>''' , '''''' , __lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCamelCase ) )
368
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = ["""image_processor""", """tokenizer"""] lowerCamelCase = """CLIPImageProcessor""" lowerCamelCase = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Optional[int] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) snake_case : Optional[Any] = kwargs.pop('''feature_extractor''' ) snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Dict , UpperCamelCase__ : str=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Any ) -> Any: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case : List[str] = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: snake_case : List[Any] = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: snake_case : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def lowerCAmelCase ( self : Any , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] , *UpperCamelCase__ : str , **UpperCamelCase__ : Any ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case : int = self.tokenizer.model_input_names snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
83
0
# Function to print upper half of diamond (pyramid) def __magic_name__ ( A : Dict ): '''simple docstring''' for i in range(0, A ): for _ in range(0, n - i - 1 ): # printing spaces print(" ", end="" ) for _ in range(0, i + 1 ): # printing stars print("* ", end="" ) print() def __magic_name__ ( A : List[Any] ): '''simple docstring''' for i in range(A, 0, -1 ): for _ in range(A, 0, -1 ): # printing stars print("* ", end="" ) print() for _ in range(n - i + 1, 0, -1 ): # printing spaces print(" ", end="" ) def __magic_name__ ( A : List[Any] ): '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(A ) # upper half reverse_floyd(A ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') __lowerCAmelCase : Dict = 1 while K: __lowerCAmelCase : List[str] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __lowerCAmelCase : int = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
107
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"""help""": """The output directory where the model will be written."""} , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments,) ) ((a) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: a = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: a = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: a = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: a = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed a = True a = True a = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=A, decoder_config=A, ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens a = decoder_config.decoder_start_token_id a = decoder_config.pad_token_id if decoder_start_token_id is None: a = decoder_config.bos_token_id if pad_token_id is None: a = decoder_config.eos_token_id # This is necessary to make Flax's generate() work a = decoder_config.eos_token_id a = decoder_start_token_id a = pad_token_id a = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) a = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) a = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
107
1
'''simple docstring''' def A (__lowerCamelCase :list , __lowerCamelCase :list , __lowerCamelCase :int ): if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCAmelCase = [p / w for p, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCAmelCase = sorted(lowerCAmelCase__ ) # declaring useful variables _lowerCAmelCase = len(lowerCAmelCase__ ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCAmelCase = sorted_profit_by_weight[length - i - 1] _lowerCAmelCase = profit_by_weight.index(lowerCAmelCase__ ) _lowerCAmelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) _lowercase = [int(x) for x in input("""Input profits separated by spaces: """).split()] _lowercase = [int(x) for x in input("""Input weights separated by spaces: """).split()] _lowercase = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
361
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = 13 _lowerCAmelCase = 7 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = 99 _lowerCAmelCase = 384 _lowerCAmelCase = 2 _lowerCAmelCase = 4 _lowerCAmelCase = 37 _lowerCAmelCase = """gelu""" _lowerCAmelCase = 0.1 _lowerCAmelCase = 0.1 _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 2 _lowerCAmelCase = 0.02 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = 2 _lowerCAmelCase = 9 _lowerCAmelCase = 1 _lowerCAmelCase = None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertModel(config=_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForMaskedLM(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForSequenceClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFConvBertForMultipleChoice(config=_lowercase ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForTokenClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase : Optional[Any] = False _lowercase : Dict = False _lowercase : Any = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = True if hasattr(_lowercase , """use_cache""" ): _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) for model_class in self.all_model_classes: _lowerCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) _lowerCAmelCase = os.path.join(_lowercase , """saved_model""" , """1""" ) _lowerCAmelCase = tf.keras.models.load_model(_lowercase ) _lowerCAmelCase = model(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = outputs["""encoder_hidden_states"""] _lowerCAmelCase = outputs["""encoder_attentions"""] else: _lowerCAmelCase = outputs["""hidden_states"""] _lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(_lowercase ) , _lowercase ) _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) def check_decoder_attentions_output(_lowercase ): _lowerCAmelCase = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) _lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowercase ): _lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowercase )[0] _lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
229
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =ComputeEnvironment.AMAZON_SAGEMAKER SCREAMING_SNAKE_CASE_ : str =True SCREAMING_SNAKE_CASE_ : Dict ="ml.p3.2xlarge" SCREAMING_SNAKE_CASE_ : Dict ="accelerate_sagemaker_execution_role" SCREAMING_SNAKE_CASE_ : Any ="hf-sm" SCREAMING_SNAKE_CASE_ : List[Any] ="us-east-1" SCREAMING_SNAKE_CASE_ : Any =1 SCREAMING_SNAKE_CASE_ : List[Any] ="accelerate-sagemaker-1" SCREAMING_SNAKE_CASE_ : Optional[Any] ="1.6" SCREAMING_SNAKE_CASE_ : Dict ="4.4" SCREAMING_SNAKE_CASE_ : Optional[Any] ="train.py" SCREAMING_SNAKE_CASE_ : List[Any] =[ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] SCREAMING_SNAKE_CASE_ : Tuple =[ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Tuple ): # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , __A ) assert isinstance(converted_args['do_train'] , __A ) assert isinstance(converted_args['epochs'] , __A ) assert isinstance(converted_args['learning_rate'] , __A ) assert isinstance(converted_args['max_steps'] , __A ) with pytest.raises(__A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
53
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase ( a_ , a_ , **a_ ) -> Tuple: """simple docstring""" __A = AutoConfig.from_pretrained(a_ , **a_ ) __A = AutoModelForSeqaSeqLM.from_config(a_ ) model.save_pretrained(a_ ) AutoTokenizer.from_pretrained(a_ ).save_pretrained(a_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
124
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,*A : Dict ,**A : Dict ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." ,A ,) super().__init__(*A ,**A )
124
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : List[Any] ={ 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase_ ( _lowerCamelCase : Dict[str, torch.Tensor]): lowercase__ : Any = [] lowercase__ : Optional[int] = [] lowercase__ : Tuple = [] for rt in rc.restypes: lowercase__ : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) lowercase__ : str = {name: i for i, name in enumerate(_lowerCamelCase)} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types]) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14) restype_atomaa_to_atomaa_list.append([0] * 37) restype_atomaa_mask_list.append([0.0] * 14) lowercase__ : Union[str, Any] = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) lowercase__ : str = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) lowercase__ : List[str] = torch.tensor( _lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) lowercase__ : str = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ : Dict = restype_atomaa_to_atomaa[protein_aatype] lowercase__ : str = restype_atomaa_mask[protein_aatype] lowercase__ : List[Any] = residx_atomaa_mask lowercase__ : Optional[Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ : str = restype_atomaa_to_atomaa[protein_aatype] lowercase__ : str = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ : Optional[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): lowercase__ : Tuple = rc.restype_atoa[restype_letter] lowercase__ : List[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ : Optional[int] = rc.atom_order[atom_name] lowercase__ : Tuple = 1 lowercase__ : Dict = restype_atomaa_mask[protein_aatype] lowercase__ : Any = residx_atomaa_mask return protein def lowercase_ ( _lowerCamelCase : Dict[str, torch.Tensor]): lowercase__ : Tuple = tree_map(lambda _lowerCamelCase: torch.tensor(_lowerCamelCase , device=batch["aatype"].device) , _lowerCamelCase , np.ndarray) lowercase__ : List[str] = tensor_tree_map(lambda _lowerCamelCase: np.array(_lowerCamelCase) , make_atomaa_masks(_lowerCamelCase)) return out
87
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCAmelCase = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def _lowerCamelCase( lowercase__=True ) -> List[Any]: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A_ ) ) class A ( A_ ): UpperCamelCase_ : Optional[int] =None UpperCamelCase_ : str =None def _A (self , lowerCAmelCase , lowerCAmelCase ): with TemporaryDirectory() as tmp_dir: __lowercase= dataset_module_factory(lowerCAmelCase , cache_dir=lowerCAmelCase ) __lowercase= import_main_class(dataset_module.module_path , dataset=lowerCAmelCase ) __lowercase= builder_cls( cache_dir=lowerCAmelCase , config_name=lowerCAmelCase , hash=dataset_module.hash , ) __lowercase= '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) __lowercase= cached_path(lowerCAmelCase , cache_dir=lowerCAmelCase ) self.assertTrue(os.path.exists(lowerCAmelCase ) ) @pytest.mark.integration def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' __lowercase= dataset_module_factory('wikipedia' , cache_dir=lowercase__ ) __lowercase= import_main_class(dataset_module.module_path ) __lowercase= builder_cls( cache_dir=lowercase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __lowercase= None builder_instance.download_and_prepare() __lowercase= builder_instance.as_dataset() assert ds @pytest.mark.integration def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= dataset_module_factory('wikipedia' , cache_dir=lowercase__ ) __lowercase= import_main_class(dataset_module.module_path , dataset=lowercase__ ) __lowercase= builder_cls( cache_dir=lowercase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) __lowercase= builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase__ , lowercase__ ) assert "train" in ds assert isinstance(ds['train'] , lowercase__ ) assert next(iter(ds['train'] ) )
304
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Dict ): super().__init__() UpperCamelCase :List[str] = nn.Linear(3 , 4 ) UpperCamelCase :Dict = nn.BatchNormad(4 ) UpperCamelCase :Optional[Any] = nn.Linear(4 , 5 ) def _A ( self : Tuple , __lowerCamelCase : List[str] ): return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Tuple ): UpperCamelCase :List[Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , model.state_dict() ) UpperCamelCase :Dict = os.path.join(__lowerCamelCase , """index.json""" ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCamelCase :Union[str, Any] = os.path.join(__lowerCamelCase , F"""{key}.dat""" ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) # TODO: add tests on the fact weights are properly loaded def _A ( self : Optional[Any] ): UpperCamelCase :List[str] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCamelCase :Optional[Any] = torch.randn(2 , 3 , dtype=__lowerCamelCase ) with TemporaryDirectory() as tmp_dir: UpperCamelCase :Dict = offload_weight(__lowerCamelCase , """weight""" , __lowerCamelCase , {} ) UpperCamelCase :Optional[Any] = os.path.join(__lowerCamelCase , """weight.dat""" ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) self.assertDictEqual(__lowerCamelCase , {"""weight""": {"""shape""": [2, 3], """dtype""": str(__lowerCamelCase ).split(""".""" )[1]}} ) UpperCamelCase :str = load_offloaded_weight(__lowerCamelCase , index["""weight"""] ) self.assertTrue(torch.equal(__lowerCamelCase , __lowerCamelCase ) ) def _A ( self : str ): UpperCamelCase :List[str] = ModelForTest() UpperCamelCase :Optional[int] = model.state_dict() UpperCamelCase :Optional[Any] = {k: v for k, v in state_dict.items() if """linear2""" not in k} UpperCamelCase :List[str] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) UpperCamelCase :Tuple = {k: v for k, v in state_dict.items() if """weight""" in k} UpperCamelCase :List[Any] = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) # Duplicates are removed UpperCamelCase :Optional[int] = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) def _A ( self : int ): UpperCamelCase :str = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} UpperCamelCase :Optional[int] = extract_submodules_state_dict(__lowerCamelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(__lowerCamelCase , {"""a.1""": 0, """a.2""": 2} ) UpperCamelCase :List[Any] = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} UpperCamelCase :List[Any] = extract_submodules_state_dict(__lowerCamelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(__lowerCamelCase , {"""a.1.a""": 0, """a.2.a""": 2} )
38
'''simple docstring''' def A__ ( UpperCAmelCase_ = 1_0_0_0 ): _UpperCamelCase : Dict = 3 _UpperCamelCase : Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
83
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> List[str]: snake_case_ = tempfile.mkdtemp() snake_case_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file, 'w', encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) snake_case_ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } snake_case_ = os.path.join(self.tmpdirname, lowerCAmelCase__) with open(self.image_processor_file, 'w', encoding='utf-8') as fp: json.dump(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> Tuple: return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> List[Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def a_ ( self) -> str: snake_case_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] snake_case_ = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1)) for x in image_inputs] return image_inputs def a_ ( self) -> Any: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = AlignProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) processor_slow.save_pretrained(self.tmpdirname) snake_case_ = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__) snake_case_ = AlignProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) processor_fast.save_pretrained(self.tmpdirname) snake_case_ = AlignProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, lowerCAmelCase__) self.assertIsInstance(processor_fast.tokenizer, lowerCAmelCase__) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, lowerCAmelCase__) self.assertIsInstance(processor_fast.image_processor, lowerCAmelCase__) def a_ ( self) -> Union[str, Any]: snake_case_ = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') snake_case_ = self.get_image_processor(do_normalize=lowerCAmelCase__, padding_value=1.0) snake_case_ = AlignProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCAmelCase__, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = AlignProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowerCAmelCase__, return_tensors='np') snake_case_ = processor(images=lowerCAmelCase__, return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def a_ ( self) -> Optional[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = AlignProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'lower newer' snake_case_ = processor(text=lowerCAmelCase__) snake_case_ = tokenizer(lowerCAmelCase__, padding='max_length', max_length=64) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def a_ ( self) -> Any: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = AlignProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'lower newer' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()), ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__): processor() def a_ ( self) -> Optional[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = AlignProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowerCAmelCase__) snake_case_ = tokenizer.batch_decode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = AlignProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'lower newer' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
312
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
1
from __future__ import annotations import numpy as np def __lowerCAmelCase ( a__ ) -> tuple[np.ndarray, np.ndarray]: __a , __a = np.shape(a__ ) if rows != columns: __a = ( '''\'table\' has to be of square shaped array but got a ''' F"""{rows}x{columns} array:\n{table}""" ) raise ValueError(a__ ) __a = np.zeros((rows, columns) ) __a = np.zeros((rows, columns) ) for i in range(a__ ): for j in range(a__ ): __a = sum(lower[i][k] * upper[k][j] for k in range(a__ ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) __a = (table[i][j] - total) / upper[j][j] __a = 1 for j in range(a__ , a__ ): __a = sum(lower[i][k] * upper[k][j] for k in range(a__ ) ) __a = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _A : Optional[Any] = logging.get_logger(__name__) # General docstring _A : Optional[Any] = '''ResNetConfig''' # Base docstring _A : Tuple = '''microsoft/resnet-50''' _A : List[str] = [1, 2048, 7, 7] # Image classification docstring _A : str = '''microsoft/resnet-50''' _A : Dict = '''tiger cat''' _A : List[Any] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" ) -> Any: super().__init__() __lowerCAmelCase = nn.Convad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=kernel_size // 2 , bias=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = self.convolution(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.normalization(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig ) -> List[str]: super().__init__() __lowerCAmelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __lowerCAmelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __lowerCAmelCase = config.num_channels def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.pooler(SCREAMING_SNAKE_CASE__ ) return embedding class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 ) -> Dict: super().__init__() __lowerCAmelCase = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = self.convolution(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.normalization(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" ) -> Dict: super().__init__() __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , activation=SCREAMING_SNAKE_CASE__ ) , ) __lowerCAmelCase = ACTaFN[activation] def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: __lowerCAmelCase = hidden_state __lowerCAmelCase = self.layer(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 4 ) -> int: super().__init__() __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = out_channels // reduction __lowerCAmelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE__ ) , ) __lowerCAmelCase = ACTaFN[activation] def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: __lowerCAmelCase = hidden_state __lowerCAmelCase = self.layer(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , ) -> int: super().__init__() __lowerCAmelCase = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer __lowerCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) , *[layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = input for layer in self.layers: __lowerCAmelCase = layer(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig ) -> Optional[int]: super().__init__() __lowerCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( SCREAMING_SNAKE_CASE__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE__ , config.depths[1:] ): self.stages.append(ResNetStage(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , depth=SCREAMING_SNAKE_CASE__ ) ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ) -> BaseModelOutputWithNoAttention: __lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) __lowerCAmelCase = stage_module(SCREAMING_SNAKE_CASE__ ) if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = ResNetConfig _SCREAMING_SNAKE_CASE : Union[str, Any] = """resnet""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """pixel_values""" _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> int: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = value _A : Dict = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _A : Optional[int] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = config __lowerCAmelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ResNetEncoder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , pooler_output=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = ResNetModel(SCREAMING_SNAKE_CASE__ ) # classification head __lowerCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.resnet(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCAmelCase = self.classifier(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase = """single_label_classification""" else: __lowerCAmelCase = """multi_label_classification""" if self.config.problem_type == "regression": __lowerCAmelCase = MSELoss() if self.num_labels == 1: __lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCAmelCase = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase = BCEWithLogitsLoss() __lowerCAmelCase = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: __lowerCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: super().__init__(SCREAMING_SNAKE_CASE__ ) super()._init_backbone(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = [config.embedding_size] + config.hidden_sizes __lowerCAmelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ResNetEncoder(SCREAMING_SNAKE_CASE__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BackboneOutput: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.encoder(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=SCREAMING_SNAKE_CASE__ , )
229
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' lowercase__ : Union[str, Any] = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = val def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' lowercase__ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ : Dict = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) lowercase__ : Optional[Any] = value else: lowercase__ : Optional[Any] = value return new_state_dict def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' lowercase__ : int = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ : List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : Optional[Any] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Dict = in_proj_weight[:256, :] lowercase__ : str = in_proj_bias[:256] lowercase__ : Union[str, Any] = in_proj_weight[256:512, :] lowercase__ : Tuple = in_proj_bias[256:512] lowercase__ : Any = in_proj_weight[-256:, :] lowercase__ : List[str] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ : Optional[int] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : List[str] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[Any] = in_proj_weight[:256, :] lowercase__ : Optional[Any] = in_proj_bias[:256] lowercase__ : Dict = in_proj_weight[256:512, :] lowercase__ : Optional[int] = in_proj_bias[256:512] lowercase__ : List[Any] = in_proj_weight[-256:, :] lowercase__ : List[str] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowercase__ : Any = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowercase__ : str = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ : Tuple = in_proj_weight_cross_attn[:256, :] lowercase__ : Union[str, Any] = in_proj_bias_cross_attn[:256] lowercase__ : Optional[Any] = in_proj_weight_cross_attn[256:512, :] lowercase__ : int = in_proj_bias_cross_attn[256:512] lowercase__ : Tuple = in_proj_weight_cross_attn[-256:, :] lowercase__ : List[Any] = in_proj_bias_cross_attn[-256:] def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ : Union[str, Any] = image.size lowercase__ : Tuple = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = 800 if 'detection' in checkpoint_url else 1_000 lowercase__ : List[Any] = target_max_size / current_max_size lowercase__ : Union[str, Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' lowercase__ : str = F.to_tensor(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = F.normalize(SCREAMING_SNAKE_CASE_ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' logger.info('Converting model...' ) # load original state dict lowercase__ : Optional[int] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = rename_backbone_keys(SCREAMING_SNAKE_CASE_ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ : List[Any] = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowercase__ : Dict = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = val # create HuggingFace model and load state dict lowercase__ : Union[str, Any] = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowercase__ : Any = 15 lowercase__ : List[Any] = 2 lowercase__ : Any = {0: 'table', 1: 'table rotated'} lowercase__ : Tuple = idalabel lowercase__ : Dict = {v: k for k, v in idalabel.items()} else: lowercase__ : Tuple = 125 lowercase__ : int = 6 lowercase__ : Any = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } lowercase__ : List[Any] = idalabel lowercase__ : Any = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1_000 ) lowercase__ : Tuple = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # verify our conversion lowercase__ : Tuple = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' lowercase__ : Dict = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = Image.open(SCREAMING_SNAKE_CASE_ ).convert('RGB' ) lowercase__ : Any = normalize(resize(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ).unsqueeze(0 ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_ ) if "detection" in checkpoint_url: lowercase__ : int = (1, 15, 3) lowercase__ : Dict = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) lowercase__ : Optional[Any] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: lowercase__ : Optional[int] = (1, 125, 7) lowercase__ : Tuple = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) lowercase__ : Optional[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) lowercase__ : Optional[int] = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
216
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } snake_case_ = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } snake_case_ = '''</w>''' snake_case_ = '''@@ ''' def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = set() lowercase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Optional[int] = char return pairs # Speech2Text2 has no max input length snake_case_ = {'''facebook/s2t-wav2vec2-large-en-de''': 1_024} class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , a , a="<s>" , a="<pad>" , a="</s>" , a="<unk>" , a=False , a=None , **a , ): super().__init__( unk_token=a , bos_token=a , eos_token=a , pad_token=a , do_lower_case=a , **a , ) lowercase__ : str = do_lower_case with open(a , encoding='utf-8') as vocab_handle: lowercase__ : Tuple = json.load(a) lowercase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""") lowercase__ : int = None lowercase__ : List[Any] = None else: with open(a , encoding='utf-8') as merges_handle: lowercase__ : List[Any] = merges_handle.read().split('\n')[:-1] lowercase__ : Optional[int] = [tuple(merge.split()[:2]) for merge in merges] lowercase__ : Tuple = dict(zip(a , range(len(a)))) lowercase__ : List[str] = {} @property def snake_case_ ( self): return len(self.decoder) def snake_case_ ( self): return dict(self.encoder , **self.added_tokens_encoder) def snake_case_ ( self , a): lowercase__ : int = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase__ : Any = get_pairs(a) if not pairs: return token while True: lowercase__ : List[str] = min(a , key=lambda a: self.bpe_ranks.get(a , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Dict = bigram lowercase__ : Union[str, Any] = [] lowercase__ : int = 0 while i < len(a): try: lowercase__ : Dict = word.index(a , a) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) lowercase__ : Optional[int] = j if word[i] == first and i < len(a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ : str = tuple(a) lowercase__ : Union[str, Any] = new_word if len(a) == 1: break else: lowercase__ : Optional[Any] = get_pairs(a) lowercase__ : List[str] = ' '.join(a) if word == "\n " + BPE_TOKEN_MERGES: lowercase__ : Optional[int] = '\n' + BPE_TOKEN_MERGES if word.endswith(a): lowercase__ : Dict = word.replace(a , '') lowercase__ : int = word.replace(' ' , a) lowercase__ : List[str] = word return word def snake_case_ ( self , a): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.') if self.do_lower_case: lowercase__ : int = text.lower() lowercase__ : Optional[int] = text.split() lowercase__ : Optional[int] = [] for token in text: if token: split_tokens.extend(list(self.bpe(a).split(' '))) return split_tokens def snake_case_ ( self , a): return self.encoder.get(a , self.encoder.get(self.unk_token)) def snake_case_ ( self , a): lowercase__ : Union[str, Any] = self.decoder.get(a , self.unk_token) return result def snake_case_ ( self , a): lowercase__ : Union[str, Any] = ' '.join(a) # make sure @@ tokens are concatenated lowercase__ : Optional[int] = ''.join(string.split(a)) return string def snake_case_ ( self , a , a = None): if not os.path.isdir(a): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return lowercase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ : List[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(a , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a) + '\n') lowercase__ : Optional[Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(a , 'w' , encoding='utf-8') as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!') lowercase__ : Dict = token_index writer.write(' '.join(a) + '\n') index += 1 return (vocab_file, merges_file)
216
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , A , A = None , A = None ) -> Optional[int]: super().__init__() snake_case : Optional[int] = pad_token_id snake_case : Optional[Any] = max_length snake_case : Optional[int] = vocab snake_case : Any = merges snake_case : Tuple = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase ( cls , A , *A , **A ) -> Union[str, Any]: snake_case : Optional[int] = [""" """.join(A ) for m in tokenizer.bpe_ranks.keys()] snake_case : Union[str, Any] = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase ( cls , A , *A , **A ) -> List[Any]: snake_case : Tuple = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase ( cls , A ) -> Dict: return cls(**A ) def UpperCAmelCase ( self ) -> Tuple: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase ( self , A , A = None ) -> List[Any]: snake_case : List[str] = self.tf_tokenizer(A ) snake_case : Optional[Any] = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length snake_case : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: snake_case , snake_case : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
124
from jiwer import compute_measures import datasets lowerCamelCase : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCamelCase : int = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCamelCase : str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def UpperCAmelCase ( self , A=None , A=None , A=False ) -> List[Any]: if concatenate_texts: return compute_measures(A , A )["wer"] else: snake_case : Any = 0 snake_case : Any = 0 for prediction, reference in zip(A , A ): snake_case : Tuple = compute_measures(A , A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
124
1
__A : Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : Optional[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
363
from string import ascii_uppercase __A : int = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase ( _A : int , _A : int ) ->str: """simple docstring""" if isinstance(_A , _A ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(_A , _A ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(_A , _A ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) lowerCamelCase_ ="""""" lowerCamelCase_ =0 lowerCamelCase_ =0 while div != 1: lowerCamelCase_ , lowerCamelCase_ =divmod(_A , _A ) if base >= 11 and 9 < mod < 36: lowerCamelCase_ =ALPHABET_VALUES[str(_A )] else: lowerCamelCase_ =str(_A ) new_value += actual_value lowerCamelCase_ =num // base lowerCamelCase_ =div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_A ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
49
0
'''simple docstring''' import math from datetime import datetime, timedelta def __UpperCAmelCase ( A : int ) -> datetime: UpperCAmelCase_ : List[str] = year % 1_9 UpperCAmelCase_ : Dict = year % 4 UpperCAmelCase_ : int = year % 7 UpperCAmelCase_ : str = math.floor(year / 1_0_0 ) UpperCAmelCase_ : Union[str, Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) UpperCAmelCase_ : str = leap_day_inhibits / 4 UpperCAmelCase_ : Optional[Any] = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 UpperCAmelCase_ : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase_ : str = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon UpperCAmelCase_ : Tuple = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(A , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(A , 4 , 1_8 ) else: return datetime(A , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): _UpperCamelCase : List[str] = 'will be' if year > datetime.now().year else 'was' print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
304
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Any: A_ : Dict = data A_ : Optional[int] = [0x67_45_23_01, 0xEF_CD_AB_89, 0x98_BA_DC_FE, 0x10_32_54_76, 0xC3_D2_E1_F0] @staticmethod def UpperCAmelCase_ ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: return ((n << b) | (n >> (32 - b))) & 0xFF_FF_FF_FF def UpperCAmelCase_ ( self ) -> str: A_ : int = b"\x80" + b"\x00" * (63 - (len(self.data ) + 8) % 64) A_ : Optional[int] = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCAmelCase_ ( self ) -> List[Any]: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[Any]: A_ : Optional[Any] = list(struct.unpack(""">16L""" , _lowerCamelCase ) ) + [0] * 64 for i in range(16 , 80 ): A_ : Any = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.padding() A_ : List[Any] = self.split_blocks() for block in self.blocks: A_ : List[Any] = self.expand_block(_lowerCamelCase ) A_ : str = self.h for i in range(0 , 80 ): if 0 <= i < 20: A_ : List[Any] = (b & c) | ((~b) & d) A_ : Any = 0x5A_82_79_99 elif 20 <= i < 40: A_ : Tuple = b ^ c ^ d A_ : List[Any] = 0x6E_D9_EB_A1 elif 40 <= i < 60: A_ : Union[str, Any] = (b & c) | (b & d) | (c & d) A_ : List[str] = 0x8F_1B_BC_DC elif 60 <= i < 80: A_ : List[Any] = b ^ c ^ d A_ : Optional[int] = 0xCA_62_C1_D6 A_ : Any = ( self.rotate(_lowerCamelCase , 5 ) + f + e + k + expanded_block[i] & 0xFF_FF_FF_FF, a, self.rotate(_lowerCamelCase , 30 ), c, d, ) A_ : Optional[int] = ( self.h[0] + a & 0xFF_FF_FF_FF, self.h[1] + b & 0xFF_FF_FF_FF, self.h[2] + c & 0xFF_FF_FF_FF, self.h[3] + d & 0xFF_FF_FF_FF, self.h[4] + e & 0xFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = B"Test String" assert SHAaHash(_lowerCamelCase ).final_hash() == hashlib.shaa(_lowerCamelCase ).hexdigest() # noqa: S324 def UpperCAmelCase ( ) -> str: """simple docstring""" A_ : str = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) A_ : int = parser.parse_args() A_ : List[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: A_ : Optional[int] = f.read() else: A_ : str = bytes(_lowerCamelCase , """utf-8""" ) print(SHAaHash(_lowerCamelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
370
'''simple docstring''' def UpperCAmelCase ( a_ = 5_0_0_0_0_0_0_0 ) -> int: """simple docstring""" A_ : Union[str, Any] = set() A_ : List[str] = int((limit - 2_4) ** (1 / 2) ) A_ : Dict = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a_ ) ) ) for primea in primes: A_ : Union[str, Any] = primea * primea for primea in primes: A_ : Optional[int] = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: A_ : Tuple = primea * primea * primea * primea A_ : List[str] = square + cube + tetr if total >= limit: break ret.add(a_ ) return len(a_ ) if __name__ == "__main__": print(f'{solution() = }')
164
0
import numpy as np def __snake_case ( __UpperCamelCase : np.ndarray ): """simple docstring""" return 1 / (1 + np.exp(-vector )) def __snake_case ( __UpperCamelCase : np.ndarray ): """simple docstring""" return vector * sigmoid(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
312
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()} ) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def __A ( self : str , UpperCAmelCase : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def __A ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
312
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
361
import doctest from collections import deque import numpy as np class lowercase__ : def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(UpperCAmelCase_ , UpperCAmelCase_ ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(UpperCAmelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(UpperCAmelCase_ ) for j, item in enumerate(UpperCAmelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(UpperCAmelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCAmelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
169
0
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase__ =WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] ): __a : List[str] = test_results.split(''' ''' ) __a : Dict = 0 __a : str = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __a : int = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCAmelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = {} __a : Optional[Any] = None __a : Any = False for line in failures_short_lines.split('''\n''' ): if re.search(R'''_ \[doctest\]''' , lowerCAmelCase__ ): __a : Union[str, Any] = True __a : Union[str, Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __a : Optional[Any] = line __a : List[Any] = False return failures class UpperCamelCase__ : def __init__(self : str , snake_case_ : str , snake_case_ : Dict ): __a : Union[str, Any] = title __a : Optional[Any] = doc_test_results['''time_spent'''].split(''',''' )[0] __a : Tuple = doc_test_results['''success'''] __a : List[str] = doc_test_results['''failures'''] __a : str = self.n_success + self.n_failures # Failures and success of the modeling tests __a : Any = doc_test_results @property def lowerCAmelCase (self : Tuple ): __a : Dict = [self._time_spent] __a : Dict = 0 for time in time_spent: __a : List[str] = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(snake_case_ ) == 1: __a : Optional[int] = [0, 0, time_parts[0]] __a , __a , __a : Optional[int] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds __a , __a , __a : List[str] = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return f"{int(snake_case_ )}h{int(snake_case_ )}m{int(snake_case_ )}s" @property def lowerCAmelCase (self : Any ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase (self : Union[str, Any] ): return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def lowerCAmelCase (self : Optional[int] ): return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def lowerCAmelCase (self : List[Any] ): __a : List[str] = 4_0 __a : List[str] = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(snake_case_ , snake_case_ )} __a : int = '''''' for category, failures in category_failures.items(): if len(snake_case_ ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(snake_case_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def lowerCAmelCase (self : Dict ): __a : List[Any] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(snake_case_ ) @staticmethod def lowerCAmelCase (): __a : Optional[int] = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(snake_case_ )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=snake_case_ , ) def lowerCAmelCase (self : str ): print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __a : Any = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __a : Dict = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=snake_case_ , ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : Dict , snake_case_ : str , snake_case_ : str , snake_case_ : Dict ): __a : List[str] = '''''' for key, value in failures.items(): __a : Any = value[:2_0_0] + ''' [Truncated]''' if len(snake_case_ ) > 2_5_0 else value failures_text += f"*{key}*\n_{value}_\n\n" __a : Dict = job_name __a : Dict = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __a : List[str] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase (self : Dict ): if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __a : Any = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __a : str = sorted(self.doc_test_results.items() , key=lambda snake_case_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __a : Optional[Any] = f"*Num failures* :{len(job_result['failed'] )} \n" __a : List[Any] = job_result['''failures'''] __a : int = self.get_reply_blocks(snake_case_ , snake_case_ , snake_case_ , text=snake_case_ ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=f"Results for {job}" , blocks=snake_case_ , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def __UpperCamelCase ( ): __a : int = os.environ['''GITHUB_RUN_ID'''] __a : Union[str, Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __a : Optional[int] = requests.get(lowerCAmelCase__ ).json() __a : List[Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __a : Optional[Any] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCAmelCase__ ): __a : Any = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCAmelCase__ ) return {} def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = {} if os.path.exists(lowerCAmelCase__ ): __a : List[Any] = os.listdir(lowerCAmelCase__ ) for file in files: try: with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , encoding='''utf-8''' ) as f: __a : Optional[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )}." ) from e return _artifact def __UpperCamelCase ( ): class UpperCamelCase__ : def __init__(self : Optional[Any] , snake_case_ : str ): __a : Optional[int] = name __a : int = [] def __str__(self : Dict ): return self.name def lowerCAmelCase (self : Any , snake_case_ : str ): self.paths.append({'''name''': self.name, '''path''': path} ) __a : Dict[str, Artifact] = {} __a : Tuple = filter(os.path.isdir , os.listdir() ) for directory in directories: __a : Tuple = directory if artifact_name not in _available_artifacts: __a : str = Artifact(lowerCAmelCase__ ) _available_artifacts[artifact_name].add_path(lowerCAmelCase__ ) return _available_artifacts if __name__ == "__main__": lowercase__ =get_job_links() lowercase__ =retrieve_available_artifacts() lowercase__ =collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase__ ={ v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job lowercase__ =github_actions_job_links.get('run_doctests') lowercase__ =available_artifacts['doc_tests_gpu_test_reports'].paths[0] lowercase__ =retrieve_artifact(artifact_path['name']) if "stats" in artifact: lowercase__ , lowercase__ , lowercase__ =handle_test_results(artifact['stats']) lowercase__ =failed lowercase__ =success lowercase__ =time_spent[1:-1] + ', ' lowercase__ =extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): lowercase__ =line.replace('FAILED ', '') lowercase__ =line.split()[0].replace('\n', '') if "::" in line: lowercase__ , lowercase__ =line.split('::') else: lowercase__ , lowercase__ =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase__ =docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase__ =all_failures[test] if test in all_failures else 'N/A' lowercase__ =failure break lowercase__ =Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
216
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __UpperCamelCase ( lowerCAmelCase__ : Any ): # vision encoder if "img_encoder.pos_embed" in name: __a : Any = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: __a : str = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: __a : int = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: __a : Union[str, Any] = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: __a : List[Any] = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: __a : Tuple = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: __a : List[Any] = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: __a : Any = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: __a : Union[str, Any] = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: __a : Optional[int] = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: __a : Union[str, Any] = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: __a : List[Any] = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: __a : Any = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: __a : Any = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: __a : str = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __a : Union[str, Any] = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __a : Union[str, Any] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __a : Union[str, Any] = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: __a : Optional[int] = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: __a : str = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: __a : List[str] = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: __a : str = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: __a : int = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: __a : List[str] = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ): for key in orig_state_dict.copy().keys(): __a : List[Any] = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __a : Tuple = key.split('''.''' ) __a , __a : List[Any] = int(key_split[2] ), int(key_split[4] ) __a : List[Any] = config.vision_config.hidden_size if "weight" in key: __a : int = val[:dim, :] __a : List[str] = val[dim : dim * 2, :] __a : List[Any] = val[-dim:, :] else: __a : List[str] = val[:dim] __a : int = val[dim : dim * 2] __a : Any = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __a : int = key.split('''.''' ) __a : str = int(key_split[3] ) __a : List[Any] = config.text_config.hidden_size if "weight" in key: __a : List[str] = val[:dim, :] __a : Any = val[ dim : dim * 2, : ] __a : Dict = val[-dim:, :] else: __a : List[str] = val[:dim] __a : Any = val[dim : dim * 2] __a : Any = val[-dim:] else: __a : Union[str, Any] = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __a : List[Any] = val.squeeze_() else: __a : Dict = val return orig_state_dict def __UpperCamelCase ( ): __a : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : str = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]="groupvit-gcc-yfcc" , lowerCAmelCase__ : int=False ): __a : Union[str, Any] = GroupViTConfig() __a : int = GroupViTModel(lowerCAmelCase__ ).eval() __a : Any = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''model'''] __a : Optional[Any] = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) __a , __a : Dict = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result __a : Any = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) __a : Optional[Any] = prepare_img() __a : Optional[int] = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''pt''' ) with torch.no_grad(): __a : Tuple = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": __a : List[str] = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __a : List[str] = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print('''Successfully saved processor and model to''' , lowerCAmelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' ) model.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) lowercase__ =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
216
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE ) return flax_params def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowercase__ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase__ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase__ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE ) lowercase__ = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase__ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE ) lowercase__ = flax_dict[key] lowercase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase__ = torch.from_numpy(converted_dict[key].T ) else: lowercase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = get_flax_param(SCREAMING_SNAKE_CASE ) if not use_large: lowercase__ = PixaStructVisionConfig() lowercase__ = PixaStructTextConfig() else: lowercase__ = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase__ = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) lowercase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE ) lowercase__ = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE ) lowercase__ = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) lowercase__ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowercase__ = PixaStructImageProcessor() lowercase__ = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) if use_large: lowercase__ = 40_96 lowercase__ = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') lowerCAmelCase = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
93
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : str ={ '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] =[ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
170
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _A ( __UpperCAmelCase ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : NestedDataStructureLike[PathLike] , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' super().__init__( __SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = path_or_paths if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else {self.split: path_or_paths} __a = Text( cache_dir=__SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : List[str]): '''simple docstring''' if self.streaming: __a = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: __a = None __a = None __a = None __a = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) __a = self.builder.as_dataset( split=self.split , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory) return dataset
49
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[Any] = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : int = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def _SCREAMING_SNAKE_CASE ( ): A_ : Dict = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[Any] = '''imagenet-1k-id2label.json''' A_ : int = 1_000 A_ : int = '''huggingface/label-files''' A_ : Optional[Any] = num_labels A_ : List[str] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) A_ : List[str] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Dict = {v: k for k, v in idalabel.items()} A_ : int = CvtConfig(num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": A_ : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": A_ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A_ : Union[str, Any] = [2, 2, 20] A_ : Union[str, Any] = [3, 12, 16] A_ : int = [192, 768, 1_024] A_ : Any = CvtForImageClassification(SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) A_ : Dict = image_size A_ : Tuple = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) A_ : Optional[int] = OrderedDict() A_ : str = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A_ : Any = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE ) A_ : Dict = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE ) for cnt in range(config.depth[idx] ): A_ : Union[str, Any] = list_of_state_dict + attention(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Tuple = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): A_ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
65
from manim import * class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A_ : Any = [mem.copy() for i in range(6 )] A_ : Tuple = [mem.copy() for i in range(6 )] A_ : str = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Optional[Any] = Text('''CPU''' , font_size=24 ) A_ : Union[str, Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = [mem.copy() for i in range(1 )] A_ : Any = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Dict = Text('''GPU''' , font_size=24 ) A_ : List[str] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.align_to(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = Text('''Model''' , font_size=24 ) A_ : List[Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , ) A_ : int = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) A_ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(_SCREAMING_SNAKE_CASE ) , Write(_SCREAMING_SNAKE_CASE ) ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Dict = [] A_ : int = [] A_ : Optional[Any] = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(_SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A_ : Union[str, Any] = 0.4_6 / 4 A_ : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(_SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*_SCREAMING_SNAKE_CASE ) self.play(*_SCREAMING_SNAKE_CASE ) self.wait()
65
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, ): output_path.parent.mkdir(parents=__lowerCamelCase, exist_ok=__lowerCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowerCamelCase, __lowerCamelCase, f=output_path.as_posix(), input_names=__lowerCamelCase, output_names=__lowerCamelCase, dynamic_axes=__lowerCamelCase, do_constant_folding=__lowerCamelCase, use_external_data_format=__lowerCamelCase, enable_onnx_checker=__lowerCamelCase, opset_version=__lowerCamelCase, ) else: export( __lowerCamelCase, __lowerCamelCase, f=output_path.as_posix(), input_names=__lowerCamelCase, output_names=__lowerCamelCase, dynamic_axes=__lowerCamelCase, do_constant_folding=__lowerCamelCase, opset_version=__lowerCamelCase, ) @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): UpperCAmelCase_ : Optional[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase_ : Optional[Any] = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: UpperCAmelCase_ : Any = "cpu" UpperCAmelCase_ : Optional[Any] = Path(__lowerCamelCase ) # VAE DECODER UpperCAmelCase_ : List[Any] = AutoencoderKL.from_pretrained(model_path + "/vae" ) UpperCAmelCase_ : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase_ : List[Any] = vae_decoder.decode onnx_export( __lowerCamelCase, model_args=( torch.randn(1, __lowerCamelCase, 25, 25 ).to(device=__lowerCamelCase, dtype=__lowerCamelCase ), False, ), output_path=output_path / "vae_decoder" / "model.onnx", ordered_input_names=["latent_sample", "return_dict"], output_names=["sample"], dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, }, opset=__lowerCamelCase, ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
61
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): snake_case : Tuple = True from torch.cuda.amp import autocast snake_case : Optional[int] = logging.getLogger(__name__) def __lowerCamelCase ( UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[Any]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=UpperCAmelCase_ ) @dataclass class _snake_case : SCREAMING_SNAKE_CASE__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) SCREAMING_SNAKE_CASE__ = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) SCREAMING_SNAKE_CASE__ = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) SCREAMING_SNAKE_CASE__ = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) SCREAMING_SNAKE_CASE__ = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) SCREAMING_SNAKE_CASE__ = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) SCREAMING_SNAKE_CASE__ = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class _snake_case : SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE__ = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=_snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE__ = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class _snake_case : SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __call__( self , _lowerCamelCase ): # split inputs and labels since they have to be of different lenghts and need # different padding methods a :Any = [{'''input_values''': feature['''input_values''']} for feature in features] a :List[str] = [{'''input_ids''': feature['''labels''']} for feature in features] a :Dict = self.processor.pad( _lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) a :Union[str, Any] = self.processor.pad( labels=_lowerCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly a :Any = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) a :Optional[Any] = labels return batch class _snake_case ( _snake_case ): def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): model.train() a :Union[str, Any] = self._prepare_inputs(_lowerCamelCase ) if self.use_amp: with autocast(): a :Any = self.compute_loss(_lowerCamelCase , _lowerCamelCase ) else: a :List[Any] = self.compute_loss(_lowerCamelCase , _lowerCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": a :Optional[int] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": a :Optional[Any] = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: a :Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_lowerCamelCase ) else: loss.backward() return loss.detach() def __lowerCamelCase ( ): """simple docstring""" a :str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a :List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a :Tuple = parser.parse_args_into_dataclasses() # Detecting last checkpoint. a :int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a :Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , UpperCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: a :List[Any] = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) a :Union[str, Any] = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer a :Any = F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(UpperCAmelCase_ : Tuple ): a :Union[str, Any] = re.sub(UpperCAmelCase_ , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch a :Dict = train_dataset.map(UpperCAmelCase_ , remove_columns=['''sentence'''] ) a :str = eval_dataset.map(UpperCAmelCase_ , remove_columns=['''sentence'''] ) def extract_all_chars(UpperCAmelCase_ : Optional[int] ): a :List[Any] = ''' '''.join(batch['''text'''] ) a :int = list(set(UpperCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} a :Tuple = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , batch_size=-1 , keep_in_memory=UpperCAmelCase_ , remove_columns=train_dataset.column_names , ) a :Optional[int] = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , batch_size=-1 , keep_in_memory=UpperCAmelCase_ , remove_columns=eval_dataset.column_names , ) a :Dict = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) a :List[Any] = {v: k for k, v in enumerate(UpperCAmelCase_ )} a :Dict = vocab_dict[''' '''] del vocab_dict[" "] a :str = len(UpperCAmelCase_ ) a :Dict = len(UpperCAmelCase_ ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a :Optional[Any] = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) a :str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ ) a :Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) a :Optional[int] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: a :List[Any] = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) a :Dict = train_dataset.select(range(UpperCAmelCase_ ) ) if data_args.max_val_samples is not None: a :Dict = eval_dataset.select(range(data_args.max_val_samples ) ) a :Dict = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCAmelCase_ : List[Any] ): a :Tuple = torchaudio.load(batch['''path'''] ) a :Optional[Any] = resampler(UpperCAmelCase_ ).squeeze().numpy() a :List[Any] = 1_6000 a :str = batch['''text'''] return batch a :List[str] = train_dataset.map( UpperCAmelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) a :Optional[Any] = eval_dataset.map( UpperCAmelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCAmelCase_ : List[str] ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' a :Dict = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(UpperCAmelCase_ ) return batch a :Optional[Any] = train_dataset.map( UpperCAmelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) a :List[str] = eval_dataset.map( UpperCAmelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric a :Optional[Any] = datasets.load_metric('''wer''' ) def compute_metrics(UpperCAmelCase_ : List[Any] ): a :List[str] = pred.predictions a :Dict = np.argmax(UpperCAmelCase_ , axis=-1 ) a :Dict = processor.tokenizer.pad_token_id a :int = processor.batch_decode(UpperCAmelCase_ ) # we do not want to group tokens when computing the metrics a :Dict = processor.batch_decode(pred.label_ids , group_tokens=UpperCAmelCase_ ) a :Optional[Any] = wer_metric.compute(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator a :int = DataCollatorCTCWithPadding(processor=UpperCAmelCase_ , padding=UpperCAmelCase_ ) # Initialize our Trainer a :Tuple = CTCTrainer( model=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: a :int = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): a :Tuple = model_args.model_name_or_path else: a :Optional[int] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) a :int = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() a :Optional[int] = train_result.metrics a :int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) a :Optional[Any] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('''train''' , UpperCAmelCase_ ) trainer.save_metrics('''train''' , UpperCAmelCase_ ) trainer.save_state() # Evaluation a :Dict = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) a :Optional[int] = trainer.evaluate() a :Tuple = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCAmelCase_ ) a :Optional[Any] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('''eval''' , UpperCAmelCase_ ) trainer.save_metrics('''eval''' , UpperCAmelCase_ ) return results if __name__ == "__main__": main()
370
import math def __lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): """simple docstring""" return math.pow(UpperCAmelCase_ , 2 ) - a def __lowerCamelCase ( UpperCAmelCase_ : float ): """simple docstring""" return 2 * x def __lowerCamelCase ( UpperCAmelCase_ : float ): """simple docstring""" a :int = 2.0 while start <= a: a :int = math.pow(UpperCAmelCase_ , 2 ) return start def __lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00000000000001 ): """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) a :List[Any] = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): a :Optional[int] = value a :int = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
281
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): def __init__( self : Optional[Any] , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
181
from ...processing_utils import ProcessorMixin class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = ["""image_processor""", """feature_extractor"""] UpperCAmelCase_ = """TvltImageProcessor""" UpperCAmelCase_ = """TvltFeatureExtractor""" def __init__( self :List[str] , lowerCamelCase :Dict , lowerCamelCase :Tuple ) -> Any: super().__init__(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) UpperCAmelCase__ = image_processor UpperCAmelCase__ = feature_extractor def __call__( self :Union[str, Any] , lowerCamelCase :List[str]=None , lowerCamelCase :int=None , lowerCamelCase :List[Any]=None , lowerCamelCase :Dict=None , lowerCamelCase :List[str]=False , lowerCamelCase :Optional[Any]=False , *lowerCamelCase :List[Any] , **lowerCamelCase :Dict , ) -> List[str]: if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) UpperCAmelCase__ = None if images is not None: UpperCAmelCase__ = self.image_processor(lowerCamelCase , mask_pixel=lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if images_mixed is not None: UpperCAmelCase__ = self.image_processor(lowerCamelCase , is_mixed=lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if audio is not None: UpperCAmelCase__ = self.feature_extractor( lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , mask_audio=lowerCamelCase , **lowerCamelCase ) UpperCAmelCase__ = {} if audio is not None: output_dict.update(lowerCamelCase ) if images is not None: output_dict.update(lowerCamelCase ) if images_mixed_dict is not None: output_dict.update(lowerCamelCase ) return output_dict @property def UpperCAmelCase_ ( self :Dict ) -> Optional[Any]: UpperCAmelCase__ = self.image_processor.model_input_names UpperCAmelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
169
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowercase : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 2_55 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = size if size is not None else {'''shortest_edge''': 2_24} lowercase_ : Any = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase_ : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) lowercase_ : Optional[Any] = do_resize lowercase_ : int = size lowercase_ : Tuple = resample lowercase_ : str = do_center_crop lowercase_ : Optional[Any] = crop_size lowercase_ : Dict = do_rescale lowercase_ : Union[str, Any] = rescale_factor lowercase_ : Optional[int] = do_normalize lowercase_ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase_ : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase_ : List[str] = do_convert_rgb def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : int = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase_ : Union[str, Any] = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[int] = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : int = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : int = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''size''' , default_to_square=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = resample if resample is not None else self.resample lowercase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : str = crop_size if crop_size is not None else self.crop_size lowercase_ : Any = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' , default_to_square=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : str = image_mean if image_mean is not None else self.image_mean lowercase_ : Optional[Any] = image_std if image_std is not None else self.image_std lowercase_ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ : Any = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ : Optional[Any] = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. lowercase_ : Optional[int] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowercase_ : Optional[int] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowercase_ : List[Any] = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowercase_ : str = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowercase_ : Optional[Any] = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] lowercase_ : List[Any] = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] lowercase_ : int = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
264
'''simple docstring''' from PIL import Image def snake_case_ ( __SCREAMING_SNAKE_CASE : Image , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Optional[int] = (259 * (level + 255)) / (255 * (259 - level)) def contrast(__SCREAMING_SNAKE_CASE : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 _lowercase : Union[str, Any] = change_contrast(img, 1_7_0) cont_img.save("image_data/lena_high_contrast.png", format="png")
264
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "ChineseCLIPImageProcessor" __UpperCamelCase = ("BertTokenizer", "BertTokenizerFast") def __init__( self : List[str] , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , **lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''feature_extractor''') SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = self.image_processor def __call__( self : Tuple , lowercase_ : List[str]=None , lowercase_ : int=None , lowercase_ : Union[str, Any]=None , **lowercase_ : List[str]): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_) if images is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_) if text is not None and images is not None: SCREAMING_SNAKE_CASE_ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any , *lowercase_ : str , **lowercase_ : Dict): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase_ : int , **lowercase_ : int): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class
91
'''simple docstring''' import argparse import copy def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : List[Any] = {} with open(__SCREAMING_SNAKE_CASE ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase_ : Union[str, Any] = [] _list.append([line.split()[1], line.split()[2]] ) lowercase_ : str = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase_ : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) lowercase_ : Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE ) as f: lowercase_ : List[str] = f.read(1 ) lowercase_ : Optional[int] = start_node lowercase_ : Any = [] lowercase_ : List[str] = start_node lowercase_ : Optional[Any] = 0 while visiting not in first_solution: lowercase_ : Any = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__SCREAMING_SNAKE_CASE ) and k[0] not in first_solution: lowercase_ : List[Any] = k[1] lowercase_ : List[Any] = k[0] first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = distance_of_first_solution + int(__SCREAMING_SNAKE_CASE ) lowercase_ : int = best_node first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase_ : Optional[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" lowercase_ : Tuple = [] for n in solution[1:-1]: lowercase_ : List[str] = solution.index(__SCREAMING_SNAKE_CASE ) for kn in solution[1:-1]: lowercase_ : Any = solution.index(__SCREAMING_SNAKE_CASE ) if n == kn: continue lowercase_ : Dict = copy.deepcopy(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = kn lowercase_ : List[Any] = n lowercase_ : str = 0 for k in _tmp[:-1]: lowercase_ : Tuple = _tmp[_tmp.index(__SCREAMING_SNAKE_CASE ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase_ : Optional[Any] = distance + int(i[1] ) _tmp.append(__SCREAMING_SNAKE_CASE ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase_ : Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __SCREAMING_SNAKE_CASE : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" lowercase_ : Optional[int] = 1 lowercase_ : List[str] = first_solution lowercase_ : Dict = [] lowercase_ : List[str] = distance_of_first_solution lowercase_ : Optional[Any] = solution while count <= iters: lowercase_ : int = find_neighborhood(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = 0 lowercase_ : Dict = neighborhood[index_of_best_solution] lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Tuple = False while not found: lowercase_ : Optional[int] = 0 while i < len(__SCREAMING_SNAKE_CASE ): if best_solution[i] != solution[i]: lowercase_ : Tuple = best_solution[i] lowercase_ : Optional[int] = solution[i] break lowercase_ : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase_ : Tuple = True lowercase_ : Optional[int] = best_solution[:-1] lowercase_ : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase_ : Optional[Any] = cost lowercase_ : int = solution else: lowercase_ : Any = index_of_best_solution + 1 lowercase_ : Any = neighborhood[index_of_best_solution] if len(__SCREAMING_SNAKE_CASE ) >= size: tabu_list.pop(0 ) lowercase_ : List[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str]=None ): """simple docstring""" lowercase_ : Any = generate_neighbours(args.File ) lowercase_ , lowercase_ : Union[str, Any] = generate_first_solution( args.File , __SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = tabu_search( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
93
0
"""simple docstring""" import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "https://www.worldometers.info/coronavirus" ) -> dict: lowercase__: List[str] = BeautifulSoup(requests.get(__UpperCAmelCase ).text , '''html.parser''' ) lowercase__: List[Any] = soup.findAll('''h1''' ) lowercase__: int = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__UpperCAmelCase , __UpperCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
2
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } UpperCamelCase__ = { 'facebook/mbart-large-en-ro': 1_0_2_4, 'facebook/mbart-large-cc25': 1_0_2_4, } # fmt: off UpperCamelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : str = ['input_ids', 'attention_mask'] __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__(self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : str="<s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Union[str, Any]="<pad>" , __UpperCAmelCase : Optional[int]="<mask>" , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[Dict[str, Any]] = None , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : str , ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) UpperCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ = 1 UpperCAmelCase__ = len(self.sp_model ) UpperCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } UpperCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase__ = src_lang if src_lang is not None else "en_XX" UpperCAmelCase__ = self.lang_code_to_id[self._src_lang] UpperCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None UpperCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__(self : int , __UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase_ (self : int ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase_ (self : str ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowercase_ (self : Any , __UpperCAmelCase : str ) -> None: """simple docstring""" UpperCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ (self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ = [1] * len(self.prefix_tokens ) UpperCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def lowercase_ (self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ (self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[str] , **__UpperCAmelCase : int ) -> str: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase__ = src_lang UpperCAmelCase__ = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = self.convert_tokens_to_ids(__UpperCAmelCase ) UpperCAmelCase__ = tgt_lang_id return inputs def lowercase_ (self : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ (self : List[Any] , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def lowercase_ (self : List[str] , __UpperCAmelCase : str ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ (self : str , __UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = "".join(__UpperCAmelCase ).replace(__UpperCAmelCase , " " ).strip() return out_string def lowercase_ (self : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def lowercase_ (self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str = "en_XX" , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "ro_RO" , **__UpperCAmelCase : Union[str, Any] , ) -> BatchEncoding: """simple docstring""" UpperCAmelCase__ = src_lang UpperCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Any ) -> List[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase__ = self.lang_code_to_id[src_lang] UpperCAmelCase__ = [] UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code] def lowercase_ (self : int , __UpperCAmelCase : str ) -> None: """simple docstring""" UpperCAmelCase__ = self.lang_code_to_id[lang] UpperCAmelCase__ = [] UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code]
65
import math import random def lowerCAmelCase_ ( __A, __A = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCamelCase__ = 0.0_2 def lowerCAmelCase_ ( __A, __A ) -> float: '''simple docstring''' UpperCAmelCase__ = float(2 * (random.randint(1, 100 )) - 1 ) for _ in range(__A ): # Forward propagation UpperCAmelCase__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCAmelCase__ = (expected / 100) - layer_a # Error delta UpperCAmelCase__ = layer_1_error * sigmoid_function(__A, __A ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = int(input('Expected value: ')) UpperCamelCase__ = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
65
1
def __lowerCAmelCase ( a__ , a__ ) -> int: __a = [1] for i in range(2 , UpperCAmelCase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __a = [] __a = list(range(UpperCAmelCase_ ) ) # Find permutation while factorials: __a = factorials.pop() __a = divmod(UpperCAmelCase_ , UpperCAmelCase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
356
import os # Precomputes a list of the 100 first triangular numbers A : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __lowerCAmelCase ( ) -> Tuple: __a = os.path.dirname(os.path.realpath(a__ ) ) __a = os.path.join(a__ , '''words.txt''' ) __a = '''''' with open(a__ ) as f: __a = f.readline() __a = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __a = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
33
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class lowercase ( A__ ): """simple docstring""" _a = 'bert-generation' def __init__( self , UpperCamelCase_=50358 , UpperCamelCase_=1024 , UpperCamelCase_=24 , UpperCamelCase_=16 , UpperCamelCase_=4096 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-12 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_="absolute" , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) UpperCamelCase__ :str = vocab_size UpperCamelCase__ :Dict = hidden_size UpperCamelCase__ :str = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Optional[int] = hidden_act UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Dict = hidden_dropout_prob UpperCamelCase__ :List[Any] = attention_probs_dropout_prob UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = position_embedding_type UpperCamelCase__ :List[Any] = use_cache
97
def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> bool: '''simple docstring''' __magic_name__ : Union[str, Any] = len(_snake_case ) + 1 __magic_name__ : List[str] = len(_snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __magic_name__ : str = [[0 for i in range(_snake_case )] for j in range(_snake_case )] # since string of zero length match pattern of zero length __magic_name__ : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _snake_case ): __magic_name__ : Optional[int] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _snake_case ): __magic_name__ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _snake_case ): for j in range(1 , _snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __magic_name__ : Optional[int] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __magic_name__ : Optional[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __magic_name__ : List[Any] = dp[i - 1][j] else: __magic_name__ : Union[str, Any] = 0 else: __magic_name__ : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") snake_case : Optional[Any] = "aab" snake_case : List[str] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"{input_string} matches the given pattern {pattern}") else: print(F"{input_string} does not match with the given pattern {pattern}")
281
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[Any] , __snake_case : List[str] , __snake_case : int=7 , __snake_case : Optional[Any]=3 , __snake_case : Optional[int]=18 , __snake_case : Optional[int]=30 , __snake_case : Tuple=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : str=True , ) -> List[Any]: _lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = apply_ocr def lowercase__ ( self : str ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowercase__ ( self : Any ) -> Union[str, Any]: _lowerCAmelCase = LayoutLMvaImageProcessingTester(self ) @property def lowercase__ ( self : Tuple ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Optional[int] ) -> Optional[int]: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowercase__ ( self : Any ) -> Optional[int]: _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowercase__ ( self : List[str] ) -> Dict: pass def lowercase__ ( self : List[str] ) -> List[Any]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched _lowerCAmelCase = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowercase__ ( self : Optional[int] ) -> int: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowercase__ ( self : Optional[int] ) -> List[Any]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowercase__ ( self : Tuple ) -> Optional[int]: # with apply_OCR = True _lowerCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset _lowerCAmelCase = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) _lowerCAmelCase = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) _lowerCAmelCase = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _lowerCAmelCase = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 _lowerCAmelCase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False _lowerCAmelCase = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) _lowerCAmelCase = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
356
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _lowerCAmelCase = test_metrics @require_cpu def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self : Tuple ) -> Tuple: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self : Union[str, Any] ) -> str: self.test_metrics.main() @require_multi_gpu def lowercase__ ( self : str ) -> List[str]: print(f"Found {torch.cuda.device_count()} devices." ) _lowerCAmelCase = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
220
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase__ : List[str] = imread(r'''digital_image_processing/image_data/lena_small.jpg''') lowercase__ : Any = cvtColor(img, COLOR_BGR2GRAY) def __lowercase ( ): snake_case_ : Optional[int] = cn.convert_to_negative(_a ) # assert negative_img array for at least one True assert negative_img.any() def __lowercase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(_a , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def __lowercase ( ): snake_case_ : Any = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowercase ( ): snake_case_ : Any = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case_ : Union[str, Any] = canny.canny(_a ) # assert canny array for at least one True assert canny_array.any() def __lowercase ( ): assert gg.gaussian_filter(_a , 5 , sigma=0.9 ).all() def __lowercase ( ): # laplace diagonals snake_case_ : Tuple = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case_ : Optional[int] = conv.img_convolve(_a , _a ).astype(_a ) assert res.any() def __lowercase ( ): assert med.median_filter(_a , 3 ).any() def __lowercase ( ): snake_case_, snake_case_ : Any = sob.sobel_filter(_a ) assert grad.any() and theta.any() def __lowercase ( ): snake_case_ : Union[str, Any] = sp.make_sepia(_a , 20 ) assert sepia.all() def __lowercase ( _a = "digital_image_processing/image_data/lena_small.jpg" ): snake_case_ : Union[str, Any] = bs.Burkes(imread(_a , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __lowercase ( _a = "digital_image_processing/image_data/lena_small.jpg" , ): snake_case_ : Optional[Any] = rs.NearestNeighbour(imread(_a , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __lowercase ( ): snake_case_ : Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. snake_case_ : Dict = imread(_a , 0 ) # Test for get_neighbors_pixel function() return not None snake_case_ : List[Any] = 0 snake_case_ : List[Any] = 0 snake_case_ : Optional[int] = image[x_coordinate][y_coordinate] snake_case_ : Any = lbp.get_neighbors_pixel( _a , _a , _a , _a ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case_ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case_ : int = lbp.local_binary_value(_a , _a , _a ) assert lbp_image.any()
264
"""simple docstring""" from functools import lru_cache @lru_cache def __lowercase ( _a ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
264
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __A ) -> str: _snake_case = torch.load(__A , map_location='cpu' ) if "model" in sd.keys(): _snake_case = torch.load(__A , map_location='cpu' )['model'] # pop unnecessary weights _snake_case = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__A ) _snake_case = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _snake_case = sd.pop(__A ) _snake_case = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _snake_case = sd[key] # We split QKV in separate Q,K,V _snake_case = key.replace('.qkv_proj.' , '.q_proj.' ) _snake_case = key.replace('.qkv_proj.' , '.k_proj.' ) _snake_case = key.replace('.qkv_proj.' , '.v_proj.' ) _snake_case = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _snake_case , _snake_case , _snake_case = torch.split(__A , depth // 3 , dim=0 ) _snake_case = q _snake_case = k _snake_case = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=None ) -> Optional[int]: _snake_case = load_checkpoint(__A ) if config is not None: _snake_case = OPTConfig.from_pretrained(__A ) else: _snake_case = OPTConfig() _snake_case = OPTModel(__A ).half().eval() model.load_state_dict(__A ) # Check results Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowercase : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
160
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """gptj""" __lowercase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase_=5_04_00 , lowerCAmelCase_=20_48 , lowerCAmelCase_=40_96 , lowerCAmelCase_=28 , lowerCAmelCase_=16 , lowerCAmelCase_=64 , lowerCAmelCase_=None , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_02_56 , lowerCAmelCase_=5_02_56 , lowerCAmelCase_=False , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = n_positions _snake_case = n_embd _snake_case = n_layer _snake_case = n_head _snake_case = n_inner _snake_case = rotary_dim _snake_case = activation_function _snake_case = resid_pdrop _snake_case = embd_pdrop _snake_case = attn_pdrop _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id super().__init__( bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_ ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = "default" , lowerCAmelCase_ = None , lowerCAmelCase_ = False , ): """simple docstring""" super().__init__(lowerCAmelCase_ , task=lowerCAmelCase_ , patching_specs=lowerCAmelCase_ , use_past=lowerCAmelCase_ ) if not getattr(self._config , 'pad_token_id' , lowerCAmelCase_ ): # TODO: how to do that better? _snake_case = 0 @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCamelCase ( self ): """simple docstring""" return self._config.n_layer @property def lowerCamelCase ( self ): """simple docstring""" return self._config.n_head def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self ): """simple docstring""" return 13
160
1
'''simple docstring''' import requests from bsa import BeautifulSoup def _SCREAMING_SNAKE_CASE (A = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" lowercase__ = BeautifulSoup(requests.get(A ).text , '''html.parser''' ) lowercase__ = soup.findAll('''h1''' ) lowercase__ = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(A , A )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
2
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Union[str, Any] = [1] for i in range(2 , __lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __snake_case : List[Any] = [] __snake_case : Tuple = list(range(__lowerCamelCase ) ) # Find permutation while factorials: __snake_case : List[str] = factorials.pop() __snake_case , __snake_case : str = divmod(__lowerCamelCase , __lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
134
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _snake_case : int = "scheduler_config.json" class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Tuple = 5 @dataclass class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : jnp.ndarray class a : """simple docstring""" __UpperCAmelCase : Dict = SCHEDULER_CONFIG_NAME __UpperCAmelCase : Union[str, Any] = ["dtype"] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : int = True @classmethod def __snake_case ( cls : List[str] , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : List[str]=False , **lowerCamelCase : Union[str, Any] , ) -> List[str]: __snake_case , __snake_case : List[str] = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) __snake_case , __snake_case : Dict = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): __snake_case : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __snake_case ( self : Any , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[Any] ) -> int: self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Tuple ) -> List[Any]: return self._get_compatibles() @classmethod def __snake_case ( cls : int ) -> Dict: __snake_case : Tuple = list(set([cls.__name__] + cls._compatibles ) ) __snake_case : int = importlib.import_module(__name__.split("." )[0] ) __snake_case : Tuple = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): assert len(__lowerCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCamelCase ) - x.ndim) ) , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase=jnp.floataa ): def alpha_bar(__lowerCamelCase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __snake_case : List[Any] = [] for i in range(__lowerCamelCase ): __snake_case : Dict = i / num_diffusion_timesteps __snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCamelCase ) / alpha_bar(__lowerCamelCase ) , __lowerCamelCase ) ) return jnp.array(__lowerCamelCase , dtype=__lowerCamelCase ) @flax.struct.dataclass class a : """simple docstring""" __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray @classmethod def __snake_case ( cls : Union[str, Any] , lowerCamelCase : int ) -> List[Any]: __snake_case : Dict = scheduler.config if config.trained_betas is not None: __snake_case : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case : Optional[int] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Optional[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __snake_case : Any = 1.0 - betas __snake_case : int = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = state.alphas_cumprod __snake_case : str = alphas_cumprod[timesteps] ** 0.5 __snake_case : Dict = sqrt_alpha_prod.flatten() __snake_case : str = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) __snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : str = sqrt_one_minus_alpha_prod.flatten() __snake_case : Tuple = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Union[str, Any] = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Dict = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : Optional[int] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
134
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : int = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys snake_case : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
94
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , A : Any , A : Tuple=7 , A : Tuple=3 , A : Optional[Any]=30 , A : List[Any]=4_00 , A : Tuple=True , A : Dict=None , A : List[str]=True , A : Optional[int]=[0.5, 0.5, 0.5] , A : Tuple=[0.5, 0.5, 0.5] , A : List[str]=True , A : List[Any]=1 / 2_55 , A : Union[str, Any]=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase_ : Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} lowercase_ : Optional[int] = parent lowercase_ : str = batch_size lowercase_ : Tuple = num_channels lowercase_ : str = min_resolution lowercase_ : Any = max_resolution lowercase_ : str = do_resize lowercase_ : Any = size lowercase_ : Optional[int] = do_normalize lowercase_ : List[str] = image_mean lowercase_ : Optional[Any] = image_std lowercase_ : int = do_rescale lowercase_ : List[str] = rescale_factor lowercase_ : int = do_pad def A ( self : Any ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self : Optional[Any] , A : int , A : int=False ) -> Tuple: if not batched: lowercase_ : Optional[int] = image_inputs[0] if isinstance(A , Image.Image ): lowercase_ , lowercase_ : int = image.size else: lowercase_ , lowercase_ : Tuple = image.shape[1], image.shape[2] if w < h: lowercase_ : int = int(self.size['''shortest_edge'''] * h / w ) lowercase_ : Optional[Any] = self.size['''shortest_edge'''] elif w > h: lowercase_ : Optional[Any] = self.size['''shortest_edge'''] lowercase_ : Optional[int] = int(self.size['''shortest_edge'''] * w / h ) else: lowercase_ : Any = self.size['''shortest_edge'''] lowercase_ : Any = self.size['''shortest_edge'''] else: lowercase_ : Tuple = [] for image in image_inputs: lowercase_ , lowercase_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase_ : Union[str, Any] = max(A , key=lambda A : item[0] )[0] lowercase_ : Optional[Any] = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = YolosImageProcessor if is_vision_available() else None def A ( self : Optional[int] ) -> Optional[int]: lowercase_ : Optional[Any] = YolosImageProcessingTester(self ) @property def A ( self : str ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Optional[int] ) -> List[str]: lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def A ( self : Dict ) -> Tuple: lowercase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A ) lowercase_ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A ) def A ( self : Optional[int] ) -> Tuple: pass def A ( self : Tuple ) -> int: # Initialize image_processing lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowercase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ , lowercase_ : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) lowercase_ : str = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : str ) -> Any: # Initialize image_processing lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowercase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : int = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ : Optional[int] = image_processing(A , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : List[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Optional[int]: # Initialize image_processing lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowercase_ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ : Any = image_processing(A , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : List[str] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Optional[Any]: # Initialize image_processings lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Tuple = self.image_processing_class(do_resize=A , do_normalize=A , do_rescale=A ) # create random PyTorch tensors lowercase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase_ : Union[str, Any] = image_processing_a.pad(A , return_tensors='''pt''' ) lowercase_ : List[Any] = image_processing_a(A , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def A ( self : str ) -> List[Any]: # prepare image and target lowercase_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase_ : List[Any] = json.loads(f.read() ) lowercase_ : Tuple = {'''image_id''': 3_97_69, '''annotations''': target} # encode them lowercase_ : Union[str, Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowercase_ : List[Any] = image_processing(images=A , annotations=A , return_tensors='''pt''' ) # verify pixel values lowercase_ : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowercase_ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowercase_ : Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowercase_ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowercase_ : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowercase_ : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowercase_ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowercase_ : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify orig_size lowercase_ : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowercase_ : Optional[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) ) @slow def A ( self : List[Any] ) -> Dict: # prepare image, target and masks_path lowercase_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase_ : str = json.loads(f.read() ) lowercase_ : int = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} lowercase_ : List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase_ : int = YolosImageProcessor(format='''coco_panoptic''' ) lowercase_ : Any = image_processing(images=A , annotations=A , masks_path=A , return_tensors='''pt''' ) # verify pixel values lowercase_ : Optional[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowercase_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowercase_ : List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowercase_ : str = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowercase_ : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowercase_ : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowercase_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowercase_ : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify masks lowercase_ : Dict = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A ) # verify orig_size lowercase_ : Tuple = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowercase_ : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) )
33
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = inspect.getfile(accelerate.test_utils ) lowercase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) lowercase_ = ["accelerate", "launch"] lowercase_ = Path.home() / ".cache/huggingface/accelerate" lowercase_ = "default_config.yaml" lowercase_ = config_folder / config_file lowercase_ = config_folder / "_default_config.yaml" lowercase_ = Path("tests/test_configs" ) @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[str]) ->Optional[int]: '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Union[str, Any]) ->int: '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy()) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' for config in sorted(self.test_config_path.glob("**/*.yaml")): with self.subTest(config_file=UpperCAmelCase_): execute_subprocess_async( self.base_cmd + ["--config_file", str(UpperCAmelCase_), self.test_file_path] , env=os.environ.copy()) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy()) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = "test-tpu" lowercase_ = "us-central1-a" lowercase_ = "ls" lowercase_ = ["accelerate", "tpu-config"] lowercase_ = "cd /usr/share" lowercase_ = "tests/test_samples/test_command_file.sh" lowercase_ = "Running gcloud compute tpus tpu-vm ssh" def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=UpperCAmelCase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: int =run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=UpperCAmelCase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] =run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=UpperCAmelCase_) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=UpperCAmelCase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' lowerCamelCase__: Optional[int] =run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=UpperCAmelCase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=UpperCAmelCase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' lowerCamelCase__: str =run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=UpperCAmelCase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: int =run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=UpperCAmelCase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[int] =run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=UpperCAmelCase_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCAmelCase_ , )
273
def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" assert x is not None assert y is not None lowerCamelCase__: Any =len(__a ) lowerCamelCase__: int =len(__a ) # declaring the array for storing the dp values lowerCamelCase__: List[Any] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowerCamelCase__: str =1 if x[i - 1] == y[j - 1] else 0 lowerCamelCase__: str =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowerCamelCase__: Any ="" lowerCamelCase__ , lowerCamelCase__: str =m, n while i > 0 and j > 0: lowerCamelCase__: Union[str, Any] =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowerCamelCase__: Any =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A , __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
273
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a ( unittest.TestCase ): def __lowerCamelCase ( self :Dict ): snake_case__ : Any = 0 def __lowerCamelCase ( self :Dict ): snake_case__ : List[str] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) def __lowerCamelCase ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Any = Path(_lowerCamelCase ) / '''preprocessor_config.json''' snake_case__ : Optional[int] = Path(_lowerCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} ,open(_lowerCamelCase ,'''w''' ) ,) json.dump({'''model_type''': '''clip'''} ,open(_lowerCamelCase ,'''w''' ) ) snake_case__ : List[str] = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) def __lowerCamelCase ( self :Any ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Any = Path(_lowerCamelCase ) / '''preprocessor_config.json''' snake_case__ : List[str] = Path(_lowerCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} ,open(_lowerCamelCase ,'''w''' ) ,) json.dump({'''model_type''': '''clip'''} ,open(_lowerCamelCase ,'''w''' ) ) snake_case__ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) def __lowerCamelCase ( self :Any ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : List[Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ : Union[str, Any] = Path(_lowerCamelCase ) / '''preprocessor_config.json''' snake_case__ : Dict = Path(_lowerCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} ,open(_lowerCamelCase ,'''w''' ) ,) json.dump({'''model_type''': '''clip'''} ,open(_lowerCamelCase ,'''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ : Optional[Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ : Optional[Any] = CLIPImageProcessor(**_lowerCamelCase ) # save in new folder model_config.save_pretrained(_lowerCamelCase ) config.save_pretrained(_lowerCamelCase ) snake_case__ : int = AutoImageProcessor.from_pretrained(_lowerCamelCase ) # make sure private variable is not incorrectly saved snake_case__ : List[str] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) def __lowerCamelCase ( self :Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Any = Path(_lowerCamelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} ,open(_lowerCamelCase ,'''w''' ) ,) snake_case__ : Tuple = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) def __lowerCamelCase ( self :Dict ): with self.assertRaisesRegex( _lowerCamelCase ,'''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCamelCase ( self :List[str] ): with self.assertRaisesRegex( _lowerCamelCase ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ : str = AutoImageProcessor.from_pretrained(_lowerCamelCase ,revision='''aaaaaa''' ) def __lowerCamelCase ( self :List[Any] ): with self.assertRaisesRegex( _lowerCamelCase ,'''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' ,): snake_case__ : List[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCamelCase ( self :int ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCamelCase ): snake_case__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCamelCase ): snake_case__ : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' ,trust_remote_code=_lowerCamelCase ) snake_case__ : Any = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' ,trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,'''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) snake_case__ : Any = AutoImageProcessor.from_pretrained(_lowerCamelCase ,trust_remote_code=_lowerCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,'''NewImageProcessor''' ) def __lowerCamelCase ( self :Any ): try: AutoConfig.register('''custom''' ,_lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase ,_lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCamelCase ): AutoImageProcessor.register(_lowerCamelCase ,_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Optional[int] = Path(_lowerCamelCase ) / '''preprocessor_config.json''' snake_case__ : Union[str, Any] = Path(_lowerCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} ,open(_lowerCamelCase ,'''w''' ) ,) json.dump({'''model_type''': '''clip'''} ,open(_lowerCamelCase ,'''w''' ) ) snake_case__ : int = CustomImageProcessor.from_pretrained(_lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCamelCase ) snake_case__ : List[Any] = AutoImageProcessor.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self :List[Any] ): class a ( a_ ): __lowerCAmelCase : Union[str, Any] = True try: AutoConfig.register('''custom''' ,_lowerCamelCase ) AutoImageProcessor.register(_lowerCamelCase ,_lowerCamelCase ) # If remote code is not set, the default is to use local snake_case__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ ,'''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' ,trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,'''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' ,trust_remote_code=_lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,'''NewImageProcessor''' ) self.assertTrue(not hasattr(_lowerCamelCase ,'''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
230
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCamelCase : Optional[Any] = TypeVar('T') class a ( Generic[T] ): def __init__( self , _lowerCamelCase = True ): lowercase = {} # dictionary of lists lowercase = directed def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) self.adj_list[destination_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_lowerCamelCase ) lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase = [destination_vertex] lowercase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase = [destination_vertex] lowercase = [] return self def __repr__( self ): return pformat(self.adj_list )
220
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=False ): A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=False ): for i in range(config.num_hidden_layers ): if base_model: A__ = """""" else: A__ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) A__ = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def _snake_case ( UpperCAmelCase_ : int ): A__ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. A__ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ): A__ = dct.pop(UpperCAmelCase_ ) A__ = val def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ): A__ = ViTMSNConfig() A__ = 1000 A__ = """datasets/huggingface/label-files""" A__ = """imagenet-1k-id2label.json""" A__ = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ ) , """r""" ) ) A__ = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: A__ = 384 A__ = 1536 A__ = 6 elif "l16" in checkpoint_url: A__ = 1024 A__ = 4096 A__ = 24 A__ = 16 A__ = 0.1 elif "b4" in checkpoint_url: A__ = 4 elif "l7" in checkpoint_url: A__ = 7 A__ = 1024 A__ = 4096 A__ = 24 A__ = 16 A__ = 0.1 A__ = ViTMSNModel(UpperCAmelCase_ ) A__ = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location="""cpu""" )["""target_encoder"""] A__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCAmelCase_ ) A__ = create_rename_keys(UpperCAmelCase_ , base_model=UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ , base_model=UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() A__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) A__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) A__ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) A__ = model(**UpperCAmelCase_ ) A__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: A__ = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: A__ = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: A__ = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: A__ = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: A__ = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCAmelCase_ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
69
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : str = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "funnel" UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self: str , UpperCamelCase: List[Any]=3_05_22 , UpperCamelCase: Any=[4, 4, 4] , UpperCamelCase: Dict=None , UpperCamelCase: Dict=2 , UpperCamelCase: Optional[int]=7_68 , UpperCamelCase: List[str]=12 , UpperCamelCase: Optional[Any]=64 , UpperCamelCase: str=30_72 , UpperCamelCase: Any="gelu_new" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: List[str]=0.0 , UpperCamelCase: Tuple=0.1 , UpperCamelCase: Union[str, Any]=None , UpperCamelCase: Tuple=1e-9 , UpperCamelCase: Tuple="mean" , UpperCamelCase: str="relative_shift" , UpperCamelCase: Any=True , UpperCamelCase: List[Any]=True , UpperCamelCase: int=True , **UpperCamelCase: List[str] , ): """simple docstring""" A__ = vocab_size A__ = block_sizes A__ = [1] * len(UpperCamelCase ) if block_repeats is None else block_repeats assert len(UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." A__ = num_decoder_layers A__ = d_model A__ = n_head A__ = d_head A__ = d_inner A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = initializer_range A__ = initializer_std A__ = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" A__ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" A__ = attention_type A__ = separate_cls A__ = truncate_seq A__ = pool_q_only super().__init__(**UpperCamelCase ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Tuple ): """simple docstring""" raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def UpperCamelCase ( self: Any , UpperCamelCase: Dict ): """simple docstring""" raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
69
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , ): __a : List[str] = size if size is not None else {'''shortest_edge''': 20} __a : Any = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __a : Optional[Any] = parent __a : Tuple = batch_size __a : List[str] = num_channels __a : Optional[int] = image_size __a : str = min_resolution __a : List[str] = max_resolution __a : List[str] = do_resize __a : int = size __a : Optional[Any] = do_center_crop __a : Tuple = crop_size __a : str = do_flip_channel_order def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = MobileViTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Any = MobileViTImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_flip_channel_order''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __a : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processing __a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : List[Any] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processing __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : List[Any] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processing __a : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
160
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger() def __A ( a_ :int , a_ :str , a_ :LevitConfig , a_ :Path , a_ :bool = True) -> Union[str, Any]: print(F"""Converting {name}...""") with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __a : Optional[int] = timm.create_model('''levit_128s''' , pretrained=a_) else: __a : List[Any] = timm.create_model('''levit_128''' , pretrained=a_) if hidden_sizes == 1_92: __a : List[Any] = timm.create_model('''levit_192''' , pretrained=a_) if hidden_sizes == 2_56: __a : Any = timm.create_model('''levit_256''' , pretrained=a_) if hidden_sizes == 3_84: __a : Optional[int] = timm.create_model('''levit_384''' , pretrained=a_) from_model.eval() __a : Dict = LevitForImageClassificationWithTeacher(a_).eval() __a : Optional[int] = OrderedDict() __a : Tuple = from_model.state_dict() __a : Dict = list(from_model.state_dict().keys()) __a : str = list(our_model.state_dict().keys()) print(len(a_) , len(a_)) for i in range(len(a_)): __a : int = weights[og_keys[i]] our_model.load_state_dict(a_) __a : Union[str, Any] = torch.randn((2, 3, 2_24, 2_24)) __a : Union[str, Any] = from_model(a_) __a : Optional[int] = our_model(a_).logits assert torch.allclose(a_ , a_), "The model logits don't match the original one." __a : List[Any] = name print(a_) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name) __a : Tuple = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name) print(F"""Pushed {checkpoint_name}""") def __A ( a_ :Path , a_ :str = None , a_ :bool = True) -> Optional[Any]: __a : List[Any] = '''imagenet-1k-id2label.json''' __a : Tuple = 10_00 __a : List[str] = (1, num_labels) __a : Union[str, Any] = '''huggingface/label-files''' __a : Dict = num_labels __a : List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : str = {int(a_): v for k, v in idalabel.items()} __a : int = idalabel __a : List[str] = {v: k for k, v in idalabel.items()} __a : Optional[int] = partial(a_ , num_labels=a_ , idalabel=a_ , labelaid=a_) __a : Optional[int] = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } __a : int = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , a_ , names_to_config[model_name] , a_ , a_) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , a_ , a_ , a_ , a_) return config, expected_shape if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) A = parser.parse_args() A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
160
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(__a ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self , **__a ): return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): __lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=__a ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__a , return_tensors="np" ) __lowerCAmelCase = processor(images=__a , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=__a ) __lowerCAmelCase = [torch.ones((1, 3, 5, 5) )] __lowerCAmelCase = [[17_64, 26_46]] __lowerCAmelCase = [[6_83, 10_24]] __lowerCAmelCase = processor.post_process_masks(__a , __a , __a ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCAmelCase = processor.post_process_masks( __a , torch.tensor(__a ) , torch.tensor(__a ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowerCAmelCase = [np.ones((1, 3, 5, 5) )] __lowerCAmelCase = processor.post_process_masks(__a , np.array(__a ) , np.array(__a ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(__a ): __lowerCAmelCase = processor.post_process_masks(__a , np.array(__a ) , np.array(__a ) ) @require_vision @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(__a ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self , **__a ): return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): __lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=__a ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__a , return_tensors="np" ) __lowerCAmelCase = processor(images=__a , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=__a ) __lowerCAmelCase = [tf.ones((1, 3, 5, 5) )] __lowerCAmelCase = [[17_64, 26_46]] __lowerCAmelCase = [[6_83, 10_24]] __lowerCAmelCase = processor.post_process_masks(__a , __a , __a , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCAmelCase = processor.post_process_masks( __a , tf.convert_to_tensor(__a ) , tf.convert_to_tensor(__a ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowerCAmelCase = [np.ones((1, 3, 5, 5) )] __lowerCAmelCase = processor.post_process_masks( __a , np.array(__a ) , np.array(__a ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowerCAmelCase = processor.post_process_masks( __a , np.array(__a ) , np.array(__a ) , return_tensors="tf" ) @require_vision @require_torchvision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(__a ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self , **__a ): return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=__a ) __lowerCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowerCAmelCase = [tf.convert_to_tensor(__a )] __lowerCAmelCase = [torch.tensor(__a )] __lowerCAmelCase = [[17_64, 26_46]] __lowerCAmelCase = [[6_83, 10_24]] __lowerCAmelCase = processor.post_process_masks( __a , __a , __a , return_tensors="tf" ) __lowerCAmelCase = processor.post_process_masks( __a , __a , __a , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=__a ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__a , return_tensors="pt" )["pixel_values"].numpy() __lowerCAmelCase = processor(images=__a , return_tensors="pt" )["pixel_values"].numpy() __lowerCAmelCase = image_processor(__a , return_tensors="tf" )["pixel_values"].numpy() __lowerCAmelCase = processor(images=__a , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(__a , __a ) ) self.assertTrue(np.allclose(__a , __a ) ) self.assertTrue(np.allclose(__a , __a ) )
259
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *__a , **__a ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
259
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : List[Any] = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
134
'''simple docstring''' import os from math import logaa def __lowerCamelCase ( __snake_case : str = "base_exp.txt" ) -> int: """simple docstring""" A__ : float =0 A__ : Optional[int] =0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ), __snake_case ) ) ): A__ , A__ : Union[str, Any] =list(map(__snake_case, line.split(""",""" ) ) ) if x * logaa(__snake_case ) > largest: A__ : List[str] =x * logaa(__snake_case ) A__ : Any =i + 1 return result if __name__ == "__main__": print(solution())
134
1
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a_ = logging.get_logger(__name__) # pylint: disable=invalid-name def a__ ( __lowercase ) -> Optional[int]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE_ ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def a__ ( __lowercase ) -> Union[str, Any]: _A = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _A = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format _A = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class snake_case ( lowerCamelCase_): def __init__( self : List[str] , a__ : List[Any] , a__ : List[str] ) -> List[str]: '''simple docstring''' _A = nlp _A = reader @staticmethod def a_ ( a__ : str ) -> Optional[Any]: '''simple docstring''' _A = parser.add_parser("run" , help="Run a pipeline through the CLI" ) run_parser.add_argument("--task" , choices=get_supported_tasks() , help="Task to run" ) run_parser.add_argument("--input" , type=lowerCAmelCase__ , help="Path to the file to use for inference" ) run_parser.add_argument("--output" , type=lowerCAmelCase__ , help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model" , type=lowerCAmelCase__ , help="Name or path to the model to instantiate." ) run_parser.add_argument("--config" , type=lowerCAmelCase__ , help="Name or path to the model\'s config to instantiate." ) run_parser.add_argument( "--tokenizer" , type=lowerCAmelCase__ , help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column" , type=lowerCAmelCase__ , help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" , ) run_parser.add_argument( "--format" , type=lowerCAmelCase__ , default="infer" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="Input format to read from" , ) run_parser.add_argument( "--device" , type=lowerCAmelCase__ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) run_parser.add_argument("--overwrite" , action="store_true" , help="Allow overwriting the output file." ) run_parser.set_defaults(func=lowerCAmelCase__ ) def a_ ( self : int ) -> Any: '''simple docstring''' _A , _A = self._nlp, [] for entry in self._reader: _A = nlp(**lowerCAmelCase__ ) if self._reader.is_multi_columns else nlp(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): outputs.append(lowerCAmelCase__ ) else: outputs += output # Saving data if self._nlp.binary_output: _A = self._reader.save_binary(lowerCAmelCase__ ) logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(lowerCAmelCase__ )
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
163
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' UpperCAmelCase = TaConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase = TaForConditionalGeneration(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
273
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def _lowercase ( self , _A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _lowercase ( self , _A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
273
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = FlaxAutoencoderKL @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 lowerCAmelCase_ = (32, 32) lowerCAmelCase_ = jax.random.PRNGKey(0 ) lowerCAmelCase_ = jax.random.uniform(UpperCamelCase__, ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCAmelCase_ = self.dummy_input return init_dict, inputs_dict
362
_A = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def __UpperCamelCase ( _A , _A , _A ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase_ = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(_A )}" ) raise ValueError(_A ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
167
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: if digit_amount > 0: return round(number - int(UpperCAmelCase ) , UpperCAmelCase ) return number - int(UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
69
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> list: if len(UpperCAmelCase ) <= 1: return [tuple(UpperCAmelCase )] snake_case_ = [] def generate(UpperCAmelCase , UpperCAmelCase ): snake_case_ = [0] * n res.append(tuple(UpperCAmelCase ) ) snake_case_ = 0 while i < n: if c[i] < i: if i % 2 == 0: snake_case_ , snake_case_ = arr[i], arr[0] else: snake_case_ , snake_case_ = arr[i], arr[c[i]] res.append(tuple(UpperCAmelCase ) ) c[i] += 1 snake_case_ = 0 else: snake_case_ = 0 i += 1 generate(len(UpperCAmelCase ) , UpperCAmelCase ) return res if __name__ == "__main__": __UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
69
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __UpperCAmelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __UpperCAmelCase = { '''allenai/longformer-base-4096''': 4_096, '''allenai/longformer-large-4096''': 4_096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ) -> Union[str, Any]: UpperCamelCase : Dict = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCamelCase : Tuple = bs[:] UpperCamelCase : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 UpperCamelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__ , snake_case__ ) ) def UpperCamelCase ( snake_case__ : Tuple ) -> Tuple: UpperCamelCase : int = set() UpperCamelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase : str = char return pairs class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Dict: UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else bos_token UpperCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else eos_token UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else sep_token UpperCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else cls_token UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else unk_token UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase : Any = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) with open(SCREAMING_SNAKE_CASE_, encoding='utf-8' ) as vocab_handle: UpperCamelCase : Union[str, Any] = json.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase : Tuple = errors # how to handle errors in decoding UpperCamelCase : Optional[int] = bytes_to_unicode() UpperCamelCase : Any = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_, encoding='utf-8' ) as merges_handle: UpperCamelCase : Optional[int] = merges_handle.read().split('\n' )[1:-1] UpperCamelCase : Any = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase : List[str] = dict(zip(SCREAMING_SNAKE_CASE_, range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase : int = {} UpperCamelCase : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase : int = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def snake_case_ ( self ) -> Optional[Any]: return len(self.encoder ) def snake_case_ ( self ) -> Any: return dict(self.encoder, **self.added_tokens_encoder ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: if token in self.cache: return self.cache[token] UpperCamelCase : int = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: UpperCamelCase : Dict = min(SCREAMING_SNAKE_CASE_, key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_, float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase : Any = bigram UpperCamelCase : Dict = [] UpperCamelCase : Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: UpperCamelCase : Any = word.index(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase : int = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase : Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: UpperCamelCase : Optional[Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = ' '.join(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = word return word def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : Dict = [] for token in re.findall(self.pat, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: return self.encoder.get(SCREAMING_SNAKE_CASE_, self.encoder.get(self.unk_token ) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : int = ''.join(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8', errors=self.errors ) return text def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : str = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase : Any = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=SCREAMING_SNAKE_CASE_, ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) UpperCamelCase : Dict = 0 with open(SCREAMING_SNAKE_CASE_, 'w', encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase : Tuple = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : List[Any] = [self.sep_token_id] UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Tuple = kwargs.pop('add_prefix_space', self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): UpperCamelCase : Dict = ' ' + text return (text, kwargs)
103
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) return image def UpperCamelCase ( snake_case__ : int ) -> List[Any]: UpperCamelCase : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[int] ) -> Optional[int]: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : str = val def UpperCamelCase ( snake_case__ : str , snake_case__ : Union[str, Any] ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase : Optional[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCamelCase : int = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) UpperCamelCase : Tuple = qkv_bias def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> Dict: UpperCamelCase : str = 364 if 'coco' in model_name else 224 UpperCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase : List[Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase : int = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: UpperCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase : int = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCamelCase : Any = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCamelCase ( snake_case__ : int , snake_case__ : Dict=None , snake_case__ : int=False ) -> List[Any]: UpperCamelCase : str = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCamelCase : int = tokenizer('\n' , add_special_tokens=snake_case__ ).input_ids[0] UpperCamelCase , UpperCamelCase : Union[str, Any] = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) UpperCamelCase : Dict = BlipaForConditionalGeneration(snake_case__ ).eval() UpperCamelCase : Optional[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase , UpperCamelCase : Optional[Any] = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase : List[Any] = original_model.state_dict() UpperCamelCase : Tuple = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ ) if key.startswith('Qformer.bert' ): UpperCamelCase : List[str] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase : Tuple = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCamelCase : Union[str, Any] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCamelCase : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCamelCase : Dict = key.replace('t5' , 'language' ) UpperCamelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) UpperCamelCase , UpperCamelCase : Any = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase : List[str] = load_demo_image() UpperCamelCase : str = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) UpperCamelCase : Any = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(snake_case__ ) # create processor UpperCamelCase : Optional[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case__ , image_std=snake_case__ ) UpperCamelCase : Any = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCamelCase : Optional[int] = processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase : Tuple = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCamelCase : str = hf_model(snake_case__ , snake_case__ ).logits else: UpperCamelCase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase : Optional[int] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase : List[str] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase : Union[str, Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=snake_case__ ) else: # cast to same type UpperCamelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCamelCase : Optional[int] = '' UpperCamelCase : Union[str, Any] = tokenizer(snake_case__ , return_tensors='pt' ).input_ids.to(snake_case__ ) UpperCamelCase : str = original_model.generate({'image': original_pixel_values} ) UpperCamelCase : str = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , snake_case__ ) UpperCamelCase : Optional[int] = input_ids.shape[1] UpperCamelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) UpperCamelCase : Dict = [text.strip() for text in output_text] print('HF generation:' , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
103
1
from __future__ import annotations def _A ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[str]] , SCREAMING_SNAKE_CASE__ : int , ): UpperCamelCase :Dict = len(SCREAMING_SNAKE_CASE__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(SCREAMING_SNAKE_CASE__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) def _A ( SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :list[list[str]] = [] depth_first_search([] , [] , [] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Print all the boards for board in boards: for column in board: print(SCREAMING_SNAKE_CASE__ ) print('''''' ) print(len(SCREAMING_SNAKE_CASE__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
259
import sys def _A ( SCREAMING_SNAKE_CASE__ : List[str] ): UpperCamelCase :Any = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = [[0 for x in range(SCREAMING_SNAKE_CASE__ )] for x in range(SCREAMING_SNAKE_CASE__ )] UpperCamelCase :List[Any] = [[0 for x in range(SCREAMING_SNAKE_CASE__ )] for x in range(SCREAMING_SNAKE_CASE__ )] for chain_length in range(2 , SCREAMING_SNAKE_CASE__ ): for a in range(1 , n - chain_length + 1 ): UpperCamelCase :Optional[Any] = a + chain_length - 1 UpperCamelCase :int = sys.maxsize for c in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Any = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCamelCase :int = cost UpperCamelCase :List[str] = c return matrix, sol def _A ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): if i == j: print('''A''' + str(SCREAMING_SNAKE_CASE__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , optimal_solution[i][j] ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , optimal_solution[i][j] + 1 , SCREAMING_SNAKE_CASE__ ) print(''')''' , end=''' ''' ) def _A ( ): UpperCamelCase :Optional[int] = [30, 35, 15, 5, 10, 20, 25] UpperCamelCase :Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCamelCase , UpperCamelCase :Dict = matrix_chain_order(SCREAMING_SNAKE_CASE__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(SCREAMING_SNAKE_CASE__ , 1 , n - 1 ) if __name__ == "__main__": main()
259
1
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( a , a , a ) -> float: _A: List[str] = x _A: Any = y for step in range(a ): # noqa: B007 _A: List[Any] = a * a - b * b + x _A: Tuple = 2 * a * b + y _A: Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def lowerCamelCase__ ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(a , 1 , 1 ) ) def lowerCamelCase__ ( a = 8_00 , a = 6_00 , a = -0.6 , a = 0 , a = 3.2 , a = 50 , a = True , ) -> Image.Image: _A: List[str] = Image.new('''RGB''' , (image_width, image_height) ) _A: int = img.load() # loop through the image-coordinates for image_x in range(a ): for image_y in range(a ): # determine the figure-coordinates based on the image-coordinates _A: List[str] = figure_width / image_width * image_height _A: List[str] = figure_center_x + (image_x / image_width - 0.5) * figure_width _A: Optional[int] = figure_center_y + (image_y / image_height - 0.5) * figure_height _A: str = get_distance(a , a , a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _A: Optional[Any] = get_color_coded_rgb(a ) else: _A: str = get_black_and_white_rgb(a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase__ : List[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
301
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[Any] = split_dict._to_yaml_list() assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) snake_case__ : List[Any] = SplitDict._from_yaml_list(_lowerCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case__ : Optional[int] = None # the split name of split_dict takes over the name of the split info object snake_case__ : List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowerCAmelCase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __snake_case( _lowerCAmelCase ) -> Dict: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files snake_case__ : Any = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
35
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = 3_8_4 if "tiny" in model_name: UpperCAmelCase__ : int = [3, 3, 9, 3] UpperCAmelCase__ : Union[str, Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: UpperCAmelCase__ : Optional[int] = [3, 3, 2_7, 3] UpperCAmelCase__ : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: UpperCAmelCase__ : List[str] = [3, 3, 2_7, 3] UpperCAmelCase__ : str = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] UpperCAmelCase__ : Optional[int] = 5_1_2 if "large" in model_name: UpperCAmelCase__ : Optional[Any] = [3, 3, 2_7, 3] UpperCAmelCase__ : Optional[int] = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] UpperCAmelCase__ : Optional[int] = 7_6_8 if "xlarge" in model_name: UpperCAmelCase__ : Tuple = [3, 3, 2_7, 3] UpperCAmelCase__ : int = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] UpperCAmelCase__ : int = 1_0_2_4 # set label information UpperCAmelCase__ : Tuple = 1_5_0 UpperCAmelCase__ : Union[str, Any] = """huggingface/label-files""" UpperCAmelCase__ : Tuple = """ade20k-id2label.json""" UpperCAmelCase__ : Dict = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase__ : str = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase__ : str = ConvNextConfig( depths=UpperCamelCase__ , hidden_sizes=UpperCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) UpperCAmelCase__ : Union[str, Any] = UperNetConfig( backbone_config=UpperCamelCase__ , auxiliary_in_channels=UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , ) return config def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : str = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Tuple = dct.pop(UpperCamelCase__ ) UpperCAmelCase__ : Dict = val def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : List[str] = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } UpperCAmelCase__ : Tuple = model_name_to_url[model_name] UpperCAmelCase__ : int = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" )["""state_dict"""] UpperCAmelCase__ : int = get_upernet_config(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = UperNetForSemanticSegmentation(UpperCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase__ : Optional[Any] = state_dict.pop(UpperCamelCase__ ) if "bn" in key: UpperCAmelCase__ : List[str] = key.replace("""bn""" , """batch_norm""" ) UpperCAmelCase__ : List[Any] = val # rename keys UpperCAmelCase__ : Any = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify on image UpperCAmelCase__ : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" UpperCAmelCase__ : Optional[Any] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) UpperCAmelCase__ : Optional[int] = SegformerImageProcessor() UpperCAmelCase__ : Dict = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(UpperCamelCase__ ) if model_name == "upernet-convnext-tiny": UpperCAmelCase__ : Any = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase__ : Dict = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase__ : Optional[Any] = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase__ : str = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase__ : List[str] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A =parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
163
0
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_SCREAMING_SNAKE_CASE) for s in shape])}.npy""" def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str]=0 , _SCREAMING_SNAKE_CASE: str=(4, 4, 64, 64) , _SCREAMING_SNAKE_CASE: Union[str, Any]=False) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) , dtype=_SCREAMING_SNAKE_CASE) return image def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]=False , _SCREAMING_SNAKE_CASE: Any="CompVis/stable-diffusion-v1-4") -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase : Union[str, Any] = "bf16" if fpaa else None __lowerCAmelCase , __lowerCAmelCase : List[str] = FlaxUNetaDConditionModel.from_pretrained( _SCREAMING_SNAKE_CASE , subfolder="unet" , dtype=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE) return model, params def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Tuple=0 , _SCREAMING_SNAKE_CASE: Optional[int]=(4, 77, 768) , _SCREAMING_SNAKE_CASE: int=False) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase : str = jnp.array(load_hf_numpy(self.get_file_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) , dtype=_SCREAMING_SNAKE_CASE) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ]) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : str = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = self.get_latents(_SCREAMING_SNAKE_CASE , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.get_encoder_hidden_states(_SCREAMING_SNAKE_CASE , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model.apply( {"params": params} , _SCREAMING_SNAKE_CASE , jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa) , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ).sample assert sample.shape == latents.shape __lowerCAmelCase : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) __lowerCAmelCase : List[Any] = jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-2) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ]) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict) -> int: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Any = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.get_latents(_SCREAMING_SNAKE_CASE , shape=(4, 4, 96, 96) , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = self.get_encoder_hidden_states(_SCREAMING_SNAKE_CASE , shape=(4, 77, 1024) , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = model.apply( {"params": params} , _SCREAMING_SNAKE_CASE , jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa) , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ).sample assert sample.shape == latents.shape __lowerCAmelCase : int = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) __lowerCAmelCase : Optional[int] = jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-2)
58
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) # TODO Update this __snake_case : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'esm' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: int=768 , _SCREAMING_SNAKE_CASE: Any=12 , _SCREAMING_SNAKE_CASE: Optional[Any]=12 , _SCREAMING_SNAKE_CASE: Optional[int]=3072 , _SCREAMING_SNAKE_CASE: List[Any]=0.1 , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: Optional[Any]=1026 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=1e-12 , _SCREAMING_SNAKE_CASE: List[Any]="absolute" , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=False , _SCREAMING_SNAKE_CASE: List[Any]=False , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Tuple=None , **_SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , mask_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : List[Any] = intermediate_size __lowerCAmelCase : List[Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : int = initializer_range __lowerCAmelCase : List[Any] = layer_norm_eps __lowerCAmelCase : List[Any] = position_embedding_type __lowerCAmelCase : Optional[Any] = use_cache __lowerCAmelCase : List[str] = emb_layer_norm_before __lowerCAmelCase : Tuple = token_dropout __lowerCAmelCase : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values.") __lowerCAmelCase : str = EsmFoldConfig() elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = EsmFoldConfig(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!") __lowerCAmelCase : List[Any] = get_default_vocab_list() else: __lowerCAmelCase : Tuple = vocab_list else: __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , _SCREAMING_SNAKE_CASE): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!") def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict: """simple docstring""" __lowerCAmelCase : List[str] = super().to_dict() if isinstance(self.esmfold_config , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[str] = self.esmfold_config.to_dict() return output @dataclass class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = None def _SCREAMING_SNAKE_CASE ( self: Dict) -> Any: """simple docstring""" if self.trunk is None: __lowerCAmelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[str] = TrunkConfig(**self.trunk) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = asdict(self) __lowerCAmelCase : Tuple = self.trunk.to_dict() return output @dataclass class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = 4_8 SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = None def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[int]: """simple docstring""" if self.structure_module is None: __lowerCAmelCase : Optional[Any] = StructureModuleConfig() elif isinstance(self.structure_module , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Any = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""") if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""") if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""") __lowerCAmelCase : int = self.sequence_state_dim // self.sequence_head_width __lowerCAmelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""") if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""") if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""") if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""") def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" __lowerCAmelCase : int = asdict(self) __lowerCAmelCase : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class A__ : '''simple docstring''' SCREAMING_SNAKE_CASE = 3_8_4 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = 1_2 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = 1_0 SCREAMING_SNAKE_CASE = 1e-8 SCREAMING_SNAKE_CASE = 1e5 def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Union[str, Any]: """simple docstring""" return asdict(self) def _lowercase ( ) -> List[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
58
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters a__ : Any =False a__ : Union[str, Any] =False def lowercase__ ( __lowercase : str ) -> Optional[Any]: """simple docstring""" return TrainCommand(_UpperCAmelCase ) class snake_case ( __UpperCAmelCase ): """simple docstring""" @staticmethod def _lowerCamelCase ( __A : ArgumentParser ): __UpperCamelCase = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=_lowerCamelCase , required=_lowerCamelCase , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_lowerCamelCase , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=_lowerCamelCase , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=_lowerCamelCase , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=_lowerCamelCase , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=_lowerCamelCase , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_lowerCamelCase , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=_lowerCamelCase , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=_lowerCamelCase , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=_lowerCamelCase , default=3_2 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=_lowerCamelCase , default=6_4 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=_lowerCamelCase , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=_lowerCamelCase , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__( self : Any , __A : Namespace ): __UpperCamelCase = logging.get_logger('transformers-cli/training' ) __UpperCamelCase = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowerCamelCase ) __UpperCamelCase = args.output __UpperCamelCase = args.column_label __UpperCamelCase = args.column_text __UpperCamelCase = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": __UpperCamelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) __UpperCamelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __UpperCamelCase = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) __UpperCamelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __UpperCamelCase = args.validation_split __UpperCamelCase = args.train_batch_size __UpperCamelCase = args.valid_batch_size __UpperCamelCase = args.learning_rate __UpperCamelCase = args.adam_epsilon def _lowerCamelCase ( self : Optional[Any] ): if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowerCamelCase ( self : Optional[Any] ): raise NotImplementedError def _lowerCamelCase ( self : Any ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
53
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class lowercase ( __UpperCAmelCase , __UpperCAmelCase): __lowerCAmelCase : List[Any] = """convnextv2""" def __init__( self : int , _lowerCamelCase : str=3 , _lowerCamelCase : str=4 , _lowerCamelCase : List[Any]=4 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : Union[str, Any]=0.02 , _lowerCamelCase : List[str]=1E-12 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=2_24 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Optional[Any]=None , **_lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : str = num_channels A_ : int = patch_size A_ : Union[str, Any] = num_stages A_ : Any = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes A_ : Any = [3, 3, 9, 3] if depths is None else depths A_ : Optional[int] = hidden_act A_ : Tuple = initializer_range A_ : int = layer_norm_eps A_ : List[Any] = drop_path_rate A_ : Union[str, Any] = image_size A_ : Any = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] A_ , A_ : Tuple = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
167
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=13 , UpperCAmelCase__=30 , UpperCAmelCase__=2 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=32 , UpperCAmelCase__=2 , UpperCAmelCase__=4 , UpperCAmelCase__=37 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=10 , UpperCAmelCase__=0.02 , UpperCAmelCase__=3 , UpperCAmelCase__=0.6 , UpperCAmelCase__=None , ): A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = mask_ratio A__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ): A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def __A ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = TFViTMAEModel(config=UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = TFViTMAEForPreTraining(UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__ ) # expected sequence length = num_patches A__ = (self.image_size // self.patch_size) ** 2 A__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A__ = 1 A__ = TFViTMAEForPreTraining(UpperCAmelCase__ ) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__ ) A__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ): A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__)) = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowerCAmelCase : List[str] = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} lowerCAmelCase : Tuple = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Tuple = False lowerCAmelCase : List[Any] = False def __A ( self ): A__ = TFViTMAEModelTester(self ) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __A ( self ): pass def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , tf.keras.layers.Layer ) ) def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__ ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ ) def __A ( self ): # make the mask reproducible np.random.seed(2 ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__ ) A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , noise=UpperCAmelCase__ ) A__ = copy.deepcopy(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) A__ = model(**UpperCAmelCase__ , noise=UpperCAmelCase__ ) A__ = outputs_dict[0].numpy() A__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __A ( self ): # make the mask reproducible np.random.seed(2 ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCAmelCase__ ): A__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCAmelCase__ ): A__ = v.numpy() else: A__ = np.array(UpperCAmelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__ ) A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = prepare_numpy_arrays(UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , noise=UpperCAmelCase__ ) A__ = model(**UpperCAmelCase__ , noise=UpperCAmelCase__ ) self.assert_outputs_same(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): # make masks reproducible np.random.seed(2 ) A__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A__ = tf.constant(UpperCAmelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A__ = tf_noise super().check_pt_tf_models(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ): # make mask reproducible np.random.seed(2 ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCAmelCase__ ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(UpperCAmelCase__ , UpperCAmelCase__ ),) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCAmelCase__ , "_keras_serializable" , UpperCAmelCase__ ) } A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A__ = tf.convert_to_tensor(UpperCAmelCase__ ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: A__ = main_layer_class(UpperCAmelCase__ ) A__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } A__ = tf.keras.Model(UpperCAmelCase__ , outputs=main_layer(UpperCAmelCase__ ) ) A__ = model(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(UpperCAmelCase__ , "keras_model.h5" ) model.save(UpperCAmelCase__ ) A__ = tf.keras.models.load_model( UpperCAmelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCAmelCase__ , tf.keras.Model ) A__ = model(UpperCAmelCase__ ) self.assert_outputs_same(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __A ( self ): # make mask reproducible np.random.seed(2 ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__ ) A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , noise=UpperCAmelCase__ ) if model_class.__name__ == "TFViTMAEModel": A__ = outputs.last_hidden_state.numpy() A__ = 0 else: A__ = outputs.logits.numpy() A__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase__ , saved_model=UpperCAmelCase__ ) A__ = model_class.from_pretrained(UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , noise=UpperCAmelCase__ ) if model_class.__name__ == "TFViTMAEModel": A__ = after_outputs["last_hidden_state"].numpy() A__ = 0 else: A__ = after_outputs["logits"].numpy() A__ = 0 A__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase__ , 1e-5 ) def __A ( self ): # make mask reproducible np.random.seed(2 ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__ ) A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , noise=UpperCAmelCase__ ) A__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCAmelCase__ ) A__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config A__ = model_class.from_config(model.config ) A__ = new_model(UpperCAmelCase__ ) # Build model new_model.set_weights(model.get_weights() ) A__ = new_model(UpperCAmelCase__ , noise=UpperCAmelCase__ ) self.assert_outputs_same(UpperCAmelCase__ , UpperCAmelCase__ ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __A ( self ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __A ( self ): pass @slow def __A ( self ): A__ = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(UpperCAmelCase__ ) def UpperCamelCase ( )-> Optional[Any]: """simple docstring""" A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def __A ( self ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __A ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) A__ = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A__ = ViTMAEConfig() A__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A__ = np.random.uniform(size=(1, num_patches) ) # forward pass A__ = model(**UpperCAmelCase__ , noise=UpperCAmelCase__ ) # verify the logits A__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) A__ = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 )
350
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ : List[Any] = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCamelCase ( _A : List[Any] , _A : int=None )-> Optional[int]: """simple docstring""" require_version(deps[pkg] , _A )
198
0
def UpperCamelCase( __UpperCamelCase : list[list[float]] ): lowerCAmelCase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(__UpperCamelCase ): if len(__UpperCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__UpperCamelCase ) ) return data_lists def UpperCamelCase( __UpperCamelCase : list[list[float]] ,__UpperCamelCase : list[int] ): lowerCAmelCase_ : list[list[float]] = [] for dlist, weight in zip(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase_ : int = min(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = max(__UpperCamelCase ) lowerCAmelCase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase_ : str = f"""Invalid weight of {weight:f} provided""" raise ValueError(__UpperCamelCase ) score_lists.append(__UpperCamelCase ) return score_lists def UpperCamelCase( __UpperCamelCase : list[list[float]] ): lowerCAmelCase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__UpperCamelCase ): lowerCAmelCase_ : List[str] = final_scores[j] + ele return final_scores def UpperCamelCase( __UpperCamelCase : list[list[float]] ,__UpperCamelCase : list[int] ): lowerCAmelCase_ : Optional[Any] = get_data(__UpperCamelCase ) lowerCAmelCase_ : Tuple = calculate_each_score(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = generate_final_scores(__UpperCamelCase ) # append scores to source data for i, ele in enumerate(__UpperCamelCase ): source_data[i].append(__UpperCamelCase ) return source_data
103
import argparse import os import re import packaging.version A__ : Dict = '''examples/''' A__ : Any = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } A__ : Any = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } A__ : Any = '''README.md''' def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any] ,__UpperCamelCase : List[Any] ): with open(__UpperCamelCase ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: lowerCAmelCase_ : Tuple = f.read() lowerCAmelCase_ , lowerCAmelCase_ : Dict = REPLACE_PATTERNS[pattern] lowerCAmelCase_ : Tuple = replace.replace('''VERSION''' ,__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = re_pattern.sub(__UpperCamelCase ,__UpperCamelCase ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ,pattern='''examples''' ) def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def UpperCamelCase( ): lowerCAmelCase_ : List[str] = '''🤗 Transformers currently provides the following architectures''' lowerCAmelCase_ : List[Any] = '''1. Want to contribute a new model?''' with open(__UpperCamelCase ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: lowerCAmelCase_ : Union[str, Any] = f.readlines() # Find the start of the list. lowerCAmelCase_ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase_ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCAmelCase_ : int = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__UpperCamelCase ) def UpperCamelCase( ): with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: lowerCAmelCase_ : Optional[Any] = f.read() lowerCAmelCase_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : Dict=False ): lowerCAmelCase_ : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCAmelCase_ : List[str] = default_version.base_version elif patch: lowerCAmelCase_ : int = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: lowerCAmelCase_ : int = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. lowerCAmelCase_ : Optional[Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(__UpperCamelCase ) == 0: lowerCAmelCase_ : List[str] = default_version print(f"""Updating version to {version}.""" ) global_version_update(__UpperCamelCase ,patch=__UpperCamelCase ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def UpperCamelCase( ): lowerCAmelCase_ : Any = get_version() lowerCAmelCase_ : int = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" lowerCAmelCase_ : Optional[Any] = current_version.base_version # Check with the user we got that right. lowerCAmelCase_ : Optional[Any] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(__UpperCamelCase ) == 0: lowerCAmelCase_ : int = dev_version print(f"""Updating version to {version}.""" ) global_version_update(__UpperCamelCase ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') A__ : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
103
1
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : def __init__( self : Tuple , A : str , A : Dict=2 , A : List[Any]=3_2 , A : Optional[Any]=1_6 , A : Tuple=3 , A : Optional[Any]=True , A : List[Any]=True , A : Optional[int]=3_2 , A : Optional[int]=4 , A : Tuple=[0, 1, 2, 3] , A : Optional[int]=4 , A : Tuple=3_7 , A : List[Any]="gelu" , A : List[Any]=0.1 , A : List[str]=0.1 , A : Union[str, Any]=0.02 , A : Optional[int]=3 , A : Optional[Any]=[1, 3_8_4, 2_4, 2_4] , A : Union[str, Any]=True , A : Any=None , ): _UpperCAmelCase : str = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = backbone_out_indices _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : str = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : Tuple = backbone_featmap_shape _UpperCAmelCase : Optional[Any] = scope _UpperCAmelCase : Union[str, Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCAmelCase : int = num_patches + 1 def snake_case_ ( self : List[str] ): _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def snake_case_ ( self : str ): _UpperCAmelCase : Tuple = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [9_6, 1_9_2, 3_8_4, 7_6_8], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A , backbone_featmap_shape=self.backbone_featmap_shape , ) def snake_case_ ( self : Any , A : Optional[Any] , A : str , A : Dict ): _UpperCAmelCase : List[str] = DPTModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : List[str] , A : str , A : Any , A : List[Any] ): _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Any = DPTForDepthEstimation(A ) model.to(A ) model.eval() _UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def snake_case_ ( self : List[Any] , A : Any , A : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : List[Any] = self.num_labels _UpperCAmelCase : Union[str, Any] = DPTForSemanticSegmentation(A ) model.to(A ) model.eval() _UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = config_and_inputs _UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Any = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def snake_case_ ( self : int ): _UpperCAmelCase : List[str] = DPTModelTester(self ) _UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def snake_case_ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def snake_case_ ( self : Union[str, Any] ): pass def snake_case_ ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(A ) _UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def snake_case_ ( self : Dict ): _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A ) def snake_case_ ( self : Dict ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) def snake_case_ ( self : Optional[int] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[int] = True if model_class in get_values(A ): continue _UpperCAmelCase : int = model_class(A ) model.to(A ) model.train() _UpperCAmelCase : Optional[Any] = self._prepare_for_class(A , A , return_labels=A ) _UpperCAmelCase : Optional[Any] = model(**A ).loss loss.backward() def snake_case_ ( self : Dict ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Tuple = False _UpperCAmelCase : Tuple = True if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue _UpperCAmelCase : int = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase : str = self._prepare_for_class(A , A , return_labels=A ) _UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : int = _config_zero_init(A ) for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(config=A ) # Skip the check for the backbone _UpperCAmelCase : Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCAmelCase : List[str] = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case_ ( self : int ): pass @slow def snake_case_ ( self : Dict ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCAmelCase : Any = DPTModel.from_pretrained(A ) self.assertIsNotNone(A ) def snake_case_ ( self : Tuple ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[Any] = "add" with self.assertRaises(A ): _UpperCAmelCase : List[Any] = DPTForDepthEstimation(A ) def __snake_case ( ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[int] = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) _UpperCAmelCase : Any = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(A ) _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=A , return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): _UpperCAmelCase : int = model(**A ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify the predicted depth _UpperCAmelCase : int = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , A ) _UpperCAmelCase : int = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , A , atol=1e-4 ) )
202
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowerCAmelCase : Tuple = spec.loader.load_module() _lowerCAmelCase : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCAmelCase : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") _lowerCAmelCase : Optional[int] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __snake_case ( ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase : Union[str, Any] = False # source code of `config_class` _UpperCAmelCase : Optional[int] = inspect.getsource(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase : List[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Optional[Any] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Optional[Any] = True break _UpperCAmelCase : int = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : List[str] = "\n".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
202
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
113
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = BertTokenizer UpperCAmelCase__ : Tuple = BertTokenizerFast UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = True UpperCAmelCase__ : Union[str, Any] = filter_non_english def snake_case_ ( self ) -> Dict: super().setUp() UpperCamelCase : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCamelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : List[Any] = 'UNwant\u00E9d,running' UpperCamelCase : List[Any] = 'unwanted, running' return input_text, output_text def snake_case_ ( self ) -> Any: UpperCamelCase : str = self.tokenizer_class(self.vocab_file ) UpperCamelCase : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(SCREAMING_SNAKE_CASE_, ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ), [9, 6, 7, 12, 10, 11] ) def snake_case_ ( self ) -> List[str]: if not self.test_rust_tokenizer: return UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : Any = self.get_rust_tokenizer() UpperCamelCase : Any = 'UNwant\u00E9d,running' UpperCamelCase : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # With lower casing UpperCamelCase : Optional[Any] = self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_rust_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 'UNwant\u00E9d,running' UpperCamelCase : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_rust_tokenizer() UpperCamelCase : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ), ['ah', '\u535A', '\u63A8', 'zz'] ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ), ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['h\u00E9llo'] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : Dict = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : List[str] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_, never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : str = BasicTokenizer() UpperCamelCase : Optional[int] = 'a\n\'ll !!to?\'d of, can\'t.' UpperCamelCase : List[str] = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] UpperCamelCase : str = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = i UpperCamelCase : Tuple = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_, unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ), [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ), ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ), ['[UNK]', 'runn', '##ing'] ) def snake_case_ ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def snake_case_ ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def snake_case_ ( self ) -> Optional[int]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Dict = self.get_tokenizer() UpperCamelCase : Optional[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']], [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']], [['[UNK]'], [], ['[UNK]']] ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = self.tokenizer_class.from_pretrained('bert-base-uncased' ) UpperCamelCase : Optional[Any] = tokenizer.encode('sequence builders', add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = tokenizer.encode('multi-sequence build', add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def snake_case_ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCamelCase : int = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_, return_offsets_mapping=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Dict = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_, 'do_lower_case' ) else False UpperCamelCase : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results], tokens['offset_mapping'] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = ['的', '人', '有'] UpperCamelCase : str = ''.join(SCREAMING_SNAKE_CASE_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : str = True UpperCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = tokenizer_p.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = False UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tokenizer_p.encode(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase : int = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
103
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=19, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCamelCase : Any = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : List[str] = use_input_mask UpperCamelCase : Optional[int] = use_token_type_ids UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : int = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : str = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : List[Any] = num_labels UpperCamelCase : Any = num_choices UpperCamelCase : Tuple = scope def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Optional[Any] = None if self.use_input_mask: UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None if self.use_labels: UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=SCREAMING_SNAKE_CASE_, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Union[str, Any] = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE_ ).float() model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : int = () UpperCAmelCase__ : List[str] = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = EsmFoldModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> int: self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Does not support attention outputs' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('ESMFold only has one output format.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support input chunking.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Optional[Any]: pass @require_torch class lowerCAmelCase_ ( a__ ): @slow def snake_case_ ( self ) -> str: UpperCamelCase : Union[str, Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCamelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )['positions'] UpperCamelCase : int = torch.tensor([2.58_28, 0.79_93, -10.93_34], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
103
1
'''simple docstring''' def lowerCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) ->float: if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def lowerCamelCase ( __lowerCamelCase : str ) ->str: if not sentence: return "" _SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , __lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
58
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCAmelCase_ = imread(R'digital_image_processing/image_data/lena_small.jpg') UpperCAmelCase_ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase_ ( ) -> str: UpperCamelCase__ : List[str] = cn.convert_to_negative(__UpperCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase_ ( ) -> List[Any]: with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(__UpperCAmelCase , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase__ : Optional[int] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase_ ( ) -> Optional[Any]: UpperCamelCase__ : Any = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() UpperCamelCase__ : str = canny.canny(__UpperCAmelCase ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase_ ( ) -> Tuple: assert gg.gaussian_filter(__UpperCAmelCase , 5 , sigma=0.9 ).all() def lowerCAmelCase_ ( ) -> List[Any]: # laplace diagonals UpperCamelCase__ : Tuple = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) UpperCamelCase__ : Dict = conv.img_convolve(__UpperCAmelCase , __UpperCAmelCase ).astype(__UpperCAmelCase ) assert res.any() def lowerCAmelCase_ ( ) -> List[str]: assert med.median_filter(__UpperCAmelCase , 3 ).any() def lowerCAmelCase_ ( ) -> int: UpperCamelCase__ ,UpperCamelCase__ : List[Any] = sob.sobel_filter(__UpperCAmelCase ) assert grad.any() and theta.any() def lowerCAmelCase_ ( ) -> Optional[Any]: UpperCamelCase__ : int = sp.make_sepia(__UpperCAmelCase , 20 ) assert sepia.all() def lowerCAmelCase_ ( __UpperCAmelCase: str = "digital_image_processing/image_data/lena_small.jpg" ) -> Any: UpperCamelCase__ : Union[str, Any] = bs.Burkes(imread(__UpperCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase_ ( __UpperCAmelCase: str = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: UpperCamelCase__ : Optional[int] = rs.NearestNeighbour(imread(__UpperCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase_ ( ) -> List[Any]: UpperCamelCase__ : Optional[Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. UpperCamelCase__ : List[str] = imread(__UpperCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Union[str, Any] = image[x_coordinate][y_coordinate] UpperCamelCase__ : List[str] = lbp.get_neighbors_pixel( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image UpperCamelCase__ : Union[str, Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): UpperCamelCase__ : List[str] = lbp.local_binary_value(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) assert lbp_image.any()
247
from manim import * class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : int = Rectangle(height=0.5, width=0.5 ) UpperCamelCase__ : Optional[int] = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) UpperCamelCase__ : Dict = [mem.copy() for i in range(6 )] UpperCamelCase__ : Any = [mem.copy() for i in range(6 )] UpperCamelCase__ : int = VGroup(*__magic_name__ ).arrange(__magic_name__, buff=0 ) UpperCamelCase__ : Tuple = VGroup(*__magic_name__ ).arrange(__magic_name__, buff=0 ) UpperCamelCase__ : int = VGroup(__magic_name__, __magic_name__ ).arrange(__magic_name__, buff=0 ) UpperCamelCase__ : Optional[int] = Text('''CPU''', font_size=24 ) UpperCamelCase__ : Any = Group(__magic_name__, __magic_name__ ).arrange(__magic_name__, buff=0.5, aligned_edge=__magic_name__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__magic_name__ ) UpperCamelCase__ : Any = [mem.copy() for i in range(1 )] UpperCamelCase__ : Optional[int] = VGroup(*__magic_name__ ).arrange(__magic_name__, buff=0 ) UpperCamelCase__ : Union[str, Any] = Text('''GPU''', font_size=24 ) UpperCamelCase__ : List[Any] = Group(__magic_name__, __magic_name__ ).arrange(__magic_name__, buff=0.5, aligned_edge=__magic_name__ ) gpu.align_to(__magic_name__, __magic_name__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(__magic_name__ ) UpperCamelCase__ : str = [mem.copy() for i in range(6 )] UpperCamelCase__ : Optional[int] = VGroup(*__magic_name__ ).arrange(__magic_name__, buff=0 ) UpperCamelCase__ : Optional[int] = Text('''Model''', font_size=24 ) UpperCamelCase__ : int = Group(__magic_name__, __magic_name__ ).arrange(__magic_name__, buff=0.5, aligned_edge=__magic_name__ ) model.move_to([3, -1.0, 0] ) self.play( Create(__magic_name__, run_time=1 ), Create(__magic_name__, run_time=1 ), Create(__magic_name__, run_time=1 ), ) UpperCamelCase__ : Optional[int] = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.", font_size=24, ) UpperCamelCase__ : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase__ : Union[str, Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model", font_size=18, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__magic_name__, run_time=2.5 ), Write(__magic_name__ ), Write(__magic_name__ ) ) self.add(__magic_name__ ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : int = [] for i, rect in enumerate(__magic_name__ ): UpperCamelCase__ : Union[str, Any] = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(__magic_name__, opacity=0.7 ) cpu_target.move_to(__magic_name__ ) cpu_target.generate_target() UpperCamelCase__ : Tuple = 0.46 / 4 UpperCamelCase__ : Optional[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=__magic_name__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=__magic_name__, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=__magic_name__, buff=0.0 ) cpu_targs.append(__magic_name__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__magic_name__ ) ) second_animations.append(MoveToTarget(__magic_name__, run_time=1.5 ) ) self.play(*__magic_name__ ) self.play(*__magic_name__ ) self.wait()
247
1
import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( a__): SCREAMING_SNAKE_CASE : Optional[Any] = '''naver-clova-ix/donut-base-finetuned-docvqa''' SCREAMING_SNAKE_CASE : Dict = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) SCREAMING_SNAKE_CASE : Dict = '''document_qa''' SCREAMING_SNAKE_CASE : str = AutoProcessor SCREAMING_SNAKE_CASE : int = VisionEncoderDecoderModel SCREAMING_SNAKE_CASE : List[str] = ['''image''', '''text'''] SCREAMING_SNAKE_CASE : List[str] = ['''text'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' SCREAMING_SNAKE_CASE_ : str = task_prompt.replace('{user_input}' , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = self.pre_processor.tokenizer( __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors='pt' ).input_ids SCREAMING_SNAKE_CASE_ : Dict = self.pre_processor(__lowerCAmelCase , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCAmelCase , ).sequences def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.pre_processor.batch_decode(__lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) SCREAMING_SNAKE_CASE_ : List[str] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) SCREAMING_SNAKE_CASE_ : Optional[int] = re.sub(r'<.*?>' , '' , __lowerCAmelCase , count=1 ).strip() # remove first task start token SCREAMING_SNAKE_CASE_ : Tuple = self.pre_processor.tokenajson(__lowerCAmelCase ) return sequence["answer"]
253
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __a: Tuple = None __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a: Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 __a: Tuple = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = TaTokenizer SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=100 , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> Union[str, Any]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(__lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ : Dict = len(set(filter(lambda __lowerCAmelCase : bool('''extra_id_''' in str(__lowerCAmelCase ) ) , __lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , extra_ids=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Union[str, Any] = vocab_file lowercase__ : Optional[int] = False if not self.vocab_file else True lowercase__ : Any = extra_ids @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __lowerCAmelCase , ) return max_model_length def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCAmelCase( self ) -> List[Any]: return list( set(filter(lambda __lowerCAmelCase : bool(re.search(r'''<extra_id_\d+>''' , __lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCAmelCase( self ) -> Tuple: return [self.convert_tokens_to_ids(__lowerCAmelCase ) for token in self.get_sentinel_tokens()]
198
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase_ = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""question""": Value("""string"""), """context""": Value("""string""")}) lowerCAmelCase_ = Features( { """answers""": Sequence( { """text""": Value("""string"""), """answer_start""": Value("""int32"""), }) }) lowerCAmelCase_ = "question" lowerCAmelCase_ = "context" lowerCAmelCase_ = "answers" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
251
'''simple docstring''' from itertools import product def A_( A : int , A : int): UpperCamelCase = sides_number UpperCamelCase = max_face_number * dice_number UpperCamelCase = [0] * (max_total + 1) UpperCamelCase = 1 UpperCamelCase = range(A , max_face_number + 1) for dice_numbers in product(A , repeat=A): UpperCamelCase = sum(A) totals_frequencies[total] += 1 return totals_frequencies def A_( ): UpperCamelCase = total_frequency_distribution( sides_number=4 , dice_number=9) UpperCamelCase = total_frequency_distribution( sides_number=6 , dice_number=6) UpperCamelCase = 0 UpperCamelCase = 9 UpperCamelCase = 4 * 9 UpperCamelCase = 6 for peter_total in range(A , max_peter_total + 1): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total]) UpperCamelCase = (4**9) * (6**6) UpperCamelCase = peter_wins_count / total_games_number UpperCamelCase = round(A , ndigits=7) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
251
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCamelCase : """simple docstring""" lowerCamelCase__ = BlenderbotConfig lowerCamelCase__ = {} lowerCamelCase__ = "gelu" def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any]=13 , __magic_name__ : List[Any]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=False , __magic_name__ : Any=99 , __magic_name__ : Union[str, Any]=32 , __magic_name__ : int=2 , __magic_name__ : str=4 , __magic_name__ : str=37 , __magic_name__ : Any=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[Any]=20 , __magic_name__ : Dict=2 , __magic_name__ : List[str]=1 , __magic_name__ : List[str]=0 , ) -> List[Any]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE_ = prepare_blenderbot_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def __A ( self : Any , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFBlenderbotModel(config=__magic_name__ ).get_decoder() SCREAMING_SNAKE_CASE_ = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ = input_ids[:1, :] SCREAMING_SNAKE_CASE_ = inputs_dict['''attention_mask'''][:1, :] SCREAMING_SNAKE_CASE_ = inputs_dict['''head_mask'''] SCREAMING_SNAKE_CASE_ = 1 # first forward pass SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1e-3 ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE_ = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCamelCase__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = TFBlenderbotModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ ) def __A ( self : Tuple ) -> int: self.config_tester.run_common_tests() def __A ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) @require_tokenizers @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ["My friends are cool but they eat too many carbs."] lowerCamelCase__ = "facebook/blenderbot-400M-distill" @cached_property def __A ( self : List[Any] ) -> Tuple: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer(self.src_text , return_tensors="tf" ) SCREAMING_SNAKE_CASE_ = self.model.generate( model_inputs.input_ids , ) SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
118
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> list[list[int]]: UpperCamelCase__ : list[list[int]] = [] create_all_state(1 , __UpperCAmelCase , __UpperCAmelCase , [] , __UpperCAmelCase ) return result def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: list[int] , __UpperCAmelCase: list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(__UpperCAmelCase , total_number - level + 2 ): current_list.append(__UpperCAmelCase ) create_all_state(i + 1 , __UpperCAmelCase , level - 1 , __UpperCAmelCase , __UpperCAmelCase ) current_list.pop() def lowerCAmelCase_ ( __UpperCAmelCase: list[list[int]] ) -> None: for i in total_list: print(*__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = 4 UpperCAmelCase_ = 2 UpperCAmelCase_ = generate_all_combinations(n, k) print_all_state(total_list)
201
0
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = arr.split("," ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = [int(self.array[0] )] * len(self.array ) lowercase_ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowercase_ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowercase_ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("""please input some numbers:""") SCREAMING_SNAKE_CASE__ = SubArray(whole_array) SCREAMING_SNAKE_CASE__ = array.solve_sub_array() print(("""the results is:""", re))
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCamelCase( __UpperCamelCase : Tuple ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = image.size lowerCAmelCase_ , lowerCAmelCase_ : int = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase_ : Optional[Any] = image.resize((w, h) ,resample=PIL_INTERPOLATION['''lanczos'''] ) lowerCAmelCase_ : List[Any] = np.array(__UpperCamelCase ).astype(np.floataa ) / 2_5_5.0 lowerCAmelCase_ : Union[str, Any] = image[None].transpose(0 ,3 ,1 ,2 ) lowerCAmelCase_ : int = torch.from_numpy(__UpperCamelCase ) return 2.0 * image - 1.0 class __snake_case ( UpperCamelCase_ ): def __init__( self : List[Any] , A_ : VQModel , A_ : UNetaDModel , A_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=A_ , unet=A_ , scheduler=A_) @torch.no_grad() def __call__( self : Union[str, Any] , A_ : Union[torch.Tensor, PIL.Image.Image] = None , A_ : Optional[int] = 1 , A_ : Optional[int] = 1_0_0 , A_ : Optional[float] = 0.0 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[str] = "pil" , A_ : bool = True , ): if isinstance(A_ , PIL.Image.Image): lowerCAmelCase_ : Dict = 1 elif isinstance(A_ , torch.Tensor): lowerCAmelCase_ : Dict = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A_)}""") if isinstance(A_ , PIL.Image.Image): lowerCAmelCase_ : int = preprocess(A_) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase_ : List[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase_ : Tuple = next(self.unet.parameters()).dtype lowerCAmelCase_ : List[str] = randn_tensor(A_ , generator=A_ , device=self.device , dtype=A_) lowerCAmelCase_ : int = image.to(device=self.device , dtype=A_) # set timesteps and move to the correct device self.scheduler.set_timesteps(A_ , device=self.device) lowerCAmelCase_ : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase_ : Optional[Any] = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) lowerCAmelCase_ : Dict = {} if accepts_eta: lowerCAmelCase_ : Union[str, Any] = eta for t in self.progress_bar(A_): # concat latents and low resolution image in the channel dimension. lowerCAmelCase_ : str = torch.cat([latents, image] , dim=1) lowerCAmelCase_ : str = self.scheduler.scale_model_input(A_ , A_) # predict the noise residual lowerCAmelCase_ : Union[str, Any] = self.unet(A_ , A_).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : Any = self.scheduler.step(A_ , A_ , A_ , **A_).prev_sample # decode the image latents with the VQVAE lowerCAmelCase_ : List[Any] = self.vqvae.decode(A_).sample lowerCAmelCase_ : Tuple = torch.clamp(A_ , -1.0 , 1.0) lowerCAmelCase_ : Union[str, Any] = image / 2 + 0.5 lowerCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": lowerCAmelCase_ : int = self.numpy_to_pil(A_) if not return_dict: return (image,) return ImagePipelineOutput(images=A_)
103
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __snake_case : def __init__( self : Tuple , A_ : Any , A_ : Tuple=1_3 , A_ : str=7 , A_ : Any=True , A_ : Union[str, Any]=True , A_ : int=False , A_ : int=True , A_ : List[Any]=9_9 , A_ : Dict=6_4 , A_ : int=5 , A_ : List[Any]=4 , A_ : Optional[Any]=6_4 , A_ : str="gelu" , A_ : Union[str, Any]=0.1 , A_ : List[Any]=0.1 , A_ : Any=5_1_2 , A_ : Union[str, Any]=1_6 , A_ : str=2 , A_ : Any=0.02 , A_ : str=3 , A_ : Optional[int]=4 , A_ : int=None , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : List[Any] = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : Union[str, Any] = use_input_mask lowerCAmelCase_ : Tuple = use_token_type_ids lowerCAmelCase_ : List[Any] = use_labels lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : str = num_labels lowerCAmelCase_ : List[str] = num_choices lowerCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self : Dict): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''') def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase_ : int = None if self.use_input_mask: lowerCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase_ : Any = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Dict , A_ : Dict , A_ : int , A_ : Tuple , A_ : List[str] , A_ : str , A_ : List[Any]): lowerCAmelCase_ : int = MPNetModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Any = model(A_ , A_) lowerCAmelCase_ : Union[str, Any] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self : List[str] , A_ : Union[str, Any] , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any): lowerCAmelCase_ : Any = MPNetForQuestionAnswering(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : int = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Tuple , A_ : List[str] , A_ : Optional[Any] , A_ : Dict , A_ : Union[str, Any] , A_ : Tuple): lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : Any = MPNetForSequenceClassification(A_) model.to(A_) model.eval() lowerCAmelCase_ : Dict = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple , A_ : Dict , A_ : Tuple , A_ : Dict , A_ : List[str] , A_ : List[Any]): lowerCAmelCase_ : int = self.num_choices lowerCAmelCase_ : List[str] = MPNetForMultipleChoice(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : int = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : Optional[int] = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Any , A_ : int , A_ : Any , A_ : List[Any] , A_ : Any , A_ : Union[str, Any]): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Tuple = MPNetForTokenClassification(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[int] = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) : Union[str, Any] = config_and_inputs lowerCAmelCase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _a = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = True def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = MPNetModelTester(self) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=A_ , hidden_size=3_7) def UpperCAmelCase__ ( self : Any): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*A_) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*A_) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*A_) @require_torch class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = MPNetModel.from_pretrained('''microsoft/mpnet-base''') lowerCAmelCase_ : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) lowerCAmelCase_ : Union[str, Any] = model(A_)[0] lowerCAmelCase_ : Optional[int] = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , A_) lowerCAmelCase_ : Tuple = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]]) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4))
103
1
"""simple docstring""" import math import os import sys def __A ( a_ :str) -> str: __a : List[str] = '''''' try: with open(a_ , '''rb''') as binary_file: __a : List[Any] = binary_file.read() for dat in data: __a : List[str] = F"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''') sys.exit() def __A ( a_ :dict[str, str] , a_ :str , a_ :int , a_ :str) -> None: lexicon.pop(a_) __a : int = last_match_id if math.loga(a_).is_integer(): for curr_key in lexicon: __a : Optional[Any] = '''0''' + lexicon[curr_key] __a : int = bin(a_)[2:] def __A ( a_ :str) -> str: __a : Optional[int] = {'''0''': '''0''', '''1''': '''1'''} __a , __a : int = '''''', '''''' __a : Any = len(a_) for i in range(len(a_)): curr_string += data_bits[i] if curr_string not in lexicon: continue __a : Union[str, Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(a_ , a_ , a_ , a_) index += 1 __a : str = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __a : str = lexicon[curr_string] result += last_match_id return result def __A ( a_ :str , a_ :str) -> str: __a : Optional[Any] = os.path.getsize(a_) __a : str = bin(a_)[2:] __a : Optional[Any] = len(a_) return "0" * (length_length - 1) + file_length_binary + compressed def __A ( a_ :str , a_ :str) -> None: __a : Tuple = 8 try: with open(a_ , '''wb''') as opened_file: __a : Dict = [ to_write[i : i + byte_length] for i in range(0 , len(a_) , a_) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append('''10000000''') else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array: opened_file.write(int(a_ , 2).to_bytes(1 , byteorder='''big''')) except OSError: print('''File not accessible''') sys.exit() def __A ( a_ :str , a_ :str) -> None: __a : Dict = read_file_binary(a_) __a : List[str] = compress_data(a_) __a : int = add_file_length(a_ , a_) write_file_binary(a_ , a_) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
188
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __A ( a_ :List[Any]=None , a_ :Tuple=None) -> List[Any]: return field(default_factory=lambda: default , metadata=a_) @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field( metadata={'''help''': '''The csv file to plot.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) __lowerCAmelCase = list_field( default=_UpperCamelCase , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def __A ( a_ :Optional[Any]) -> Any: try: int(a_) return True except ValueError: return False def __A ( a_ :List[Any]) -> Any: try: float(a_) return True except ValueError: return False class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : Dict = args __a : Tuple = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __a : int = csv.DictReader(_UpperCAmelCase ) for row in reader: __a : Union[str, Any] = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __a : Optional[int] = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __a : Optional[Any] = float(row['''result'''] ) def _lowerCamelCase ( self ): __a , __a : Optional[int] = plt.subplots() __a : str = '''Time usage''' if self.args.is_time else '''Memory usage''' __a : str = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __a : str = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __a : Dict = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __a : Dict = self.result_dict[model_name]['''result'''] ((__a) , (__a)) : List[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __a : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __a : Optional[int] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_UpperCAmelCase , ) else: __a : Dict = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__a) , (__a)) : Union[str, Any] = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __a : Any = np.asarray(_UpperCAmelCase , _UpperCAmelCase )[: len(_UpperCAmelCase )] plt.scatter( _UpperCAmelCase , _UpperCAmelCase , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(_UpperCAmelCase , _UpperCAmelCase , '''--''' ) title_str += f""" {label_model_name} vs.""" __a : Optional[Any] = title_str[:-4] __a : Optional[int] = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_UpperCAmelCase ) plt.xlabel(_UpperCAmelCase ) plt.ylabel(_UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __A ( ) -> List[str]: __a : List[str] = HfArgumentParser(a_) __a : Optional[int] = parser.parse_args_into_dataclasses()[0] __a : Tuple = Plot(args=a_) plot.plot() if __name__ == "__main__": main()
188
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : int ) -> str: '''simple docstring''' A__ = mock.Mock() A__ = 500 A__ = {} A__ = HTTPError A__ = {} # Download this model to make sure it's in the cache. A__ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case_ ) as mock_head: A__ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__ ( self : Tuple ) -> str: '''simple docstring''' A__ = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def __magic_name__ ( self : Any ) -> Any: '''simple docstring''' with self.assertRaises(snake_case_ ): # config is in subfolder, the following should not work without specifying the subfolder A__ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) A__ = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(snake_case_ ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): @classmethod def __magic_name__ ( cls : str ) -> Optional[Any]: '''simple docstring''' A__ = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def __magic_name__ ( cls : Optional[int] ) -> List[str]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def __magic_name__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ = ViTImageProcessor.from_pretrained(snake_case_ ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) A__ = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( snake_case_ , repo_id="test-image-processor" , push_to_hub=snake_case_ , use_auth_token=self._token ) A__ = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def __magic_name__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ = ViTImageProcessor.from_pretrained(snake_case_ ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) A__ = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( snake_case_ , repo_id="valid_org/test-image-processor-org" , push_to_hub=snake_case_ , use_auth_token=self._token ) A__ = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def __magic_name__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' CustomImageProcessor.register_for_auto_class() A__ = CustomImageProcessor.from_pretrained(snake_case_ ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) A__ = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=snake_case_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
247
"""simple docstring""" import qiskit def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> qiskit.result.counts.Counts: A__ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register A__ = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A__ = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
247
1
'''simple docstring''' def a ( __a = 100 ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Optional[int] = set() UpperCamelCase__ :Dict = 0 UpperCamelCase__ :List[str] = n + 1 # maximum limit for a in range(2 , lowerCAmelCase__ ): for b in range(2 , lowerCAmelCase__ ): UpperCamelCase__ :Tuple = a**b # calculates the current power collect_powers.add(lowerCAmelCase__ ) # adds the result to the set return len(lowerCAmelCase__ ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
366
'''simple docstring''' from __future__ import annotations import math def a ( __a ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :List[Any] = str(__a ) UpperCamelCase__ :Dict = [n] for i in range(1 , len(__a ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def a ( __a ) -> bool: '''simple docstring''' if len(str(__a ) ) > 3: if not is_prime(int(str(__a )[-3:] ) ) or not is_prime(int(str(__a )[:3] ) ): return False return True def a ( __a = 11 ) -> list[int]: '''simple docstring''' UpperCamelCase__ :list[int] = [] UpperCamelCase__ :int = 13 while len(__a ) != count: if validate(__a ): UpperCamelCase__ :Optional[int] = list_truncated_nums(__a ) if all(is_prime(__a ) for i in list_nums ): list_truncated_primes.append(__a ) num += 2 return list_truncated_primes def a ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
219
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase_ = logging.get_logger(__name__) # General docstring UpperCamelCase_ = "MobileNetV1Config" # Base docstring UpperCamelCase_ = "google/mobilenet_v1_1.0_224" UpperCamelCase_ = [1, 1_0_2_4, 7, 7] # Image classification docstring UpperCamelCase_ = "google/mobilenet_v1_1.0_224" UpperCamelCase_ = "tabby, tabby cat" UpperCamelCase_ = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE : int = {} if isinstance(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Dict = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : List[str] = 'MobilenetV1/Conv2d_0/' SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : str = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Dict = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Optional[int] = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Tuple = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : str = pointer.normalization.bias SCREAMING_SNAKE_CASE : str = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[str] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : Dict = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : List[Any] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE : Optional[int] = pointer.convolution.weight SCREAMING_SNAKE_CASE : str = pointer.normalization.bias SCREAMING_SNAKE_CASE : str = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : Optional[int] = pointer.normalization.running_var if isinstance(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = 'MobilenetV1/Logits/Conv2d_1c_1x1/' SCREAMING_SNAKE_CASE : Dict = model.classifier.weight SCREAMING_SNAKE_CASE : int = model.classifier.bias return tf_to_pt_map def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Optional[int] ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : List[Any] = tf.train.list_variables(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : List[str] = _build_tf_to_pytorch_map(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE : List[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) SCREAMING_SNAKE_CASE : int = np.transpose(__UpperCamelCase ,(2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : List[Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Any = np.transpose(__UpperCamelCase ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(__UpperCamelCase ) tf_weights.pop(__UpperCamelCase ,__UpperCamelCase ) tf_weights.pop(name + '/RMSProp' ,__UpperCamelCase ) tf_weights.pop(name + '/RMSProp_1' ,__UpperCamelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' ,__UpperCamelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def lowercase__( __UpperCamelCase: torch.Tensor ,__UpperCamelCase: nn.Convad ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : int = max(kernel_height - stride_height ,0 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : Optional[int] = max(kernel_width - stride_width ,0 ) else: SCREAMING_SNAKE_CASE : int = max(kernel_width - (in_width % stride_width) ,0 ) SCREAMING_SNAKE_CASE : Optional[int] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Optional[Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE : Union[str, Any] = pad_along_height // 2 SCREAMING_SNAKE_CASE : Any = pad_along_height - pad_top SCREAMING_SNAKE_CASE : Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__UpperCamelCase ,__UpperCamelCase ,'constant' ,0.0 ) class _a ( nn.Module ): '''simple docstring''' def __init__( self, A, A, A, A, A = 1, A = 1, A = False, A = True, A = True, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups." ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( in_channels=A, out_channels=A, kernel_size=A, stride=A, padding=A, groups=A, bias=A, padding_mode='zeros', ) if use_normalization: SCREAMING_SNAKE_CASE : Union[str, Any] = nn.BatchNormad( num_features=A, eps=config.layer_norm_eps, momentum=0.99_97, affine=A, track_running_stats=A, ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(A, A ): SCREAMING_SNAKE_CASE : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act, A ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : Tuple = config.hidden_act else: SCREAMING_SNAKE_CASE : List[str] = None def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.config.tf_padding: SCREAMING_SNAKE_CASE : Optional[Any] = apply_tf_padding(A, self.convolution ) SCREAMING_SNAKE_CASE : str = self.convolution(A ) if self.normalization is not None: SCREAMING_SNAKE_CASE : Dict = self.normalization(A ) if self.activation is not None: SCREAMING_SNAKE_CASE : int = self.activation(A ) return features class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = MobileNetVaConfig A : Tuple = load_tf_weights_in_mobilenet_va A : Any = '''mobilenet_v1''' A : List[Any] = '''pixel_values''' A : Dict = False def UpperCamelCase_ ( self, A ): '''simple docstring''' if isinstance(A, (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A, nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase_ = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCamelCase_ = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , SCREAMING_SNAKE_CASE , ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A = True ): '''simple docstring''' super().__init__(A ) SCREAMING_SNAKE_CASE : int = config SCREAMING_SNAKE_CASE : List[str] = 32 SCREAMING_SNAKE_CASE : Optional[int] = max(int(depth * config.depth_multiplier ), config.min_depth ) SCREAMING_SNAKE_CASE : Union[str, Any] = MobileNetVaConvLayer( A, in_channels=config.num_channels, out_channels=A, kernel_size=3, stride=2, ) SCREAMING_SNAKE_CASE : Tuple = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : Optional[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Optional[int] = max(int(depth * config.depth_multiplier ), config.min_depth ) self.layer.append( MobileNetVaConvLayer( A, in_channels=A, out_channels=A, kernel_size=3, stride=strides[i], groups=A, ) ) self.layer.append( MobileNetVaConvLayer( A, in_channels=A, out_channels=A, kernel_size=1, ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=A, config_class=_CONFIG_FOR_DOC, modality='vision', expected_output=_EXPECTED_OUTPUT_SHAPE, ) def UpperCamelCase_ ( self, A = None, A = None, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) SCREAMING_SNAKE_CASE : int = self.conv_stem(A ) SCREAMING_SNAKE_CASE : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : str = layer_module(A ) if output_hidden_states: SCREAMING_SNAKE_CASE : Tuple = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : Dict = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Optional[int] = torch.flatten(self.pooler(A ), start_dim=1 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A, pooler_output=A, hidden_states=A, ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , SCREAMING_SNAKE_CASE , ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__(A ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : Any = MobileNetVaModel(A ) SCREAMING_SNAKE_CASE : Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Tuple = nn.Dropout(config.classifier_dropout_prob, inplace=A ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(A, config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=A, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def UpperCamelCase_ ( self, A = None, A = None, A = None, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Tuple = self.mobilenet_va(A, output_hidden_states=A, return_dict=A ) SCREAMING_SNAKE_CASE : Any = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Optional[int] = self.classifier(self.dropout(A ) ) SCREAMING_SNAKE_CASE : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Union[str, Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : str = 'single_label_classification' else: SCREAMING_SNAKE_CASE : str = 'multi_label_classification' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : str = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(logits.squeeze(), labels.squeeze() ) else: SCREAMING_SNAKE_CASE : List[str] = loss_fct(A, A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : Tuple = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : str = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(A, A ) if not return_dict: SCREAMING_SNAKE_CASE : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=A, logits=A, hidden_states=outputs.hidden_states, )
251
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' ,[ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] ,) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) SCREAMING_SNAKE_CASE : int = DatasetInfosDict.from_directory(__UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' ,[ DatasetInfo(), DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,), ] ,) def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: DatasetInfo ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) dataset_info.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = DatasetInfo.from_directory(__UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCamelCase ,'dataset_info.json' ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = DatasetInfo( description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) SCREAMING_SNAKE_CASE : List[Any] = dataset_info._to_yaml_dict() assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) SCREAMING_SNAKE_CASE : Dict = yaml.safe_dump(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = yaml.safe_load(__UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = DatasetInfo() SCREAMING_SNAKE_CASE : Optional[int] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' ,[ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] ,) def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: DatasetInfosDict ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(__UpperCamelCase ) dataset_infos_dict.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = DatasetInfosDict.from_directory(__UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE : Optional[int] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCamelCase ,'README.md' ) )
251
1
'''simple docstring''' from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCAmelCase ( snake_case_ ): snake_case = '''Salesforce/blip-image-captioning-base''' snake_case = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) snake_case = '''image_captioner''' snake_case = AutoModelForVisionaSeq snake_case = ['''image'''] snake_case = ['''text'''] def __init__( self : Union[str, Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Dict ): '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : int , __UpperCAmelCase : "Image" ): '''simple docstring''' return self.pre_processor(images=__UpperCAmelCase , return_tensors="pt" ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tuple ): '''simple docstring''' return self.model.generate(**__UpperCAmelCase ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str ): '''simple docstring''' return self.pre_processor.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )[0].strip()
356
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : Union[str, Any]="" , __UpperCAmelCase : List[str]="train" ): '''simple docstring''' assert os.path.isdir(__UpperCAmelCase ) _A = [] _A = os.listdir(__UpperCAmelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue _A = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if not os.path.isfile(__UpperCAmelCase ): continue self.documents.append(__UpperCAmelCase ) def __len__( self : str ): '''simple docstring''' return len(self.documents ) def __getitem__( self : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = self.documents[idx] _A = document_path.split("/" )[-1] with open(__UpperCAmelCase , encoding="utf-8" ) as source: _A = source.read() _A , _A = process_story(__UpperCAmelCase ) return document_name, story_lines, summary_lines def __lowercase ( __lowercase ) -> Optional[Any]: '''simple docstring''' _A = list(filter(lambda __lowercase : len(__lowercase ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it _A = [_add_missing_period(__lowercase ) for line in nonempty_lines] # gather article lines _A = [] _A = deque(__lowercase ) while True: try: _A = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(__lowercase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines _A = list(filter(lambda __lowercase : not t.startswith("@highlight" ) , __lowercase ) ) return story_lines, summary_lines def __lowercase ( __lowercase ) -> Optional[int]: '''simple docstring''' _A = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def __lowercase ( __lowercase , __lowercase , __lowercase ) -> str: '''simple docstring''' if len(__lowercase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowercase )) ) return sequence def __lowercase ( __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' _A = torch.ones_like(__lowercase ) _A = sequence == pad_token_id _A = 0 return mask def __lowercase ( __lowercase , __lowercase , __lowercase ) -> str: '''simple docstring''' _A = [tokenizer.encode(__lowercase ) for line in story_lines] _A = [token for sentence in story_lines_token_ids for token in sentence] _A = [tokenizer.encode(__lowercase ) for line in summary_lines] _A = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __lowercase ( __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A = [] for sequence in batch: _A = -1 _A = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowercase ) return torch.tensor(__lowercase )
174
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 100 ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
100
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a__: def __init__( self : str , __snake_case : Union[str, Any] , __snake_case : List[str]=13 , __snake_case : Tuple=7 , __snake_case : Optional[Any]=False , __snake_case : Dict=True , __snake_case : List[Any]=False , __snake_case : Optional[int]=False , __snake_case : Optional[Any]=19 , __snake_case : Any=32 , __snake_case : Union[str, Any]=5 , __snake_case : Union[str, Any]=4 , __snake_case : int=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : int=5_12 , __snake_case : int=16 , __snake_case : Tuple=2 , __snake_case : str=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : List[Any]=None , ): a : Tuple = parent a : List[str] = batch_size a : Optional[Any] = seq_length a : Tuple = is_training a : Optional[Any] = use_input_mask a : List[Any] = use_token_type_ids a : List[Any] = use_labels a : int = vocab_size a : Union[str, Any] = hidden_size a : Any = num_hidden_layers a : List[str] = num_attention_heads a : int = intermediate_size a : str = hidden_act a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[str] = max_position_embeddings a : Any = type_vocab_size a : List[str] = type_sequence_label_size a : Union[str, Any] = initializer_range a : Optional[int] = num_labels a : Optional[Any] = num_choices a : Optional[int] = scope def lowercase_ ( self : List[Any] ): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Dict = None if self.use_input_mask: a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Optional[Any] = None a : Optional[int] = None a : Dict = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : List[Any] ): a : Any = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__snake_case , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Any ): a : Tuple = EsmForProteinFolding(config=__snake_case ).float() model.to(__snake_case ) model.eval() a : Dict = model(__snake_case , attention_mask=__snake_case ) a : Union[str, Any] = model(__snake_case ) a : List[Any] = model(__snake_case ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase_ ( self : Optional[Any] ): a : Tuple = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = False lowercase__ = (EsmForProteinFolding,) if is_torch_available() else () lowercase__ = () lowercase__ = {} if is_torch_available() else {} lowercase__ = False def lowercase_ ( self : int ): a : Tuple = EsmFoldModelTester(self ) a : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase_ ( self : Union[str, Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @unittest.skip('Does not support attention outputs' ) def lowercase_ ( self : str ): pass @unittest.skip def lowercase_ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMFold only has one output format.' ) def lowercase_ ( self : Dict ): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase_ ( self : Tuple ): pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase_ ( self : Dict ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self : Union[str, Any] ): pass @require_torch class a__( lowerCamelCase__ ): @slow def lowercase_ ( self : Optional[int] ): a : Optional[Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() a : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a : Any = model(__snake_case )['positions'] a : Dict = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __snake_case , atol=1e-4 ) )
297
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = torch.device("""cpu""") def a__ ( ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : int = dct.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = val def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = [] for k in state_dict.keys(): UpperCAmelCase_ : Dict = k if ".pwconv" in k: UpperCAmelCase_ : int = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: UpperCAmelCase_ : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: UpperCAmelCase_ : Any = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: UpperCAmelCase_ : List[str] = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCAmelCase_ : List[Any] = k_new.split("." ) if ls[2].isdigit(): UpperCAmelCase_ : str = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: UpperCAmelCase_ : int = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Any = 10_00 UpperCAmelCase_ : Any = '''huggingface/label-files''' UpperCAmelCase_ : List[str] = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : Dict = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ : Any = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Dict = idalabel UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase_ : List[Any] = [3, 3, 6, 4] UpperCAmelCase_ : str = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": UpperCAmelCase_ : List[Any] = [3, 3, 9, 6] UpperCAmelCase_ : Optional[Any] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase_ : Optional[int] = [4, 3, 10, 5] UpperCAmelCase_ : Optional[int] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase_ : Union[str, Any] = [4, 4, 12, 6] UpperCAmelCase_ : List[Any] = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCAmelCase_ : Tuple = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="cpu" , check_hash=SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase_ : int = torch.load(SCREAMING_SNAKE_CASE__ , map_location="cpu" ) UpperCAmelCase_ : Any = checkpoint UpperCAmelCase_ : Union[str, Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load HuggingFace model UpperCAmelCase_ : int = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # prepare test inputs UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCAmelCase_ : Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ) # compare outputs from both models UpperCAmelCase_ : Union[str, Any] = get_expected_output(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") _lowerCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
366
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val def a__ ( _SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : Optional[int] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ : Union[str, Any] = value else: UpperCAmelCase_ : int = value return new_state_dict def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : List[Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Dict = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : Dict = in_proj_bias[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight[-2_56:, :] UpperCAmelCase_ : Dict = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Optional[Any] = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : List[str] = in_proj_bias[2_56:5_12] UpperCAmelCase_ : Optional[int] = in_proj_weight[-2_56:, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : int = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:2_56, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[:2_56] UpperCAmelCase_ : List[Any] = in_proj_weight_cross_attn[2_56:5_12, :] UpperCAmelCase_ : int = in_proj_bias_cross_attn[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight_cross_attn[-2_56:, :] UpperCAmelCase_ : str = in_proj_bias_cross_attn[-2_56:] def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image.size UpperCAmelCase_ : int = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = 8_00 if "detection" in checkpoint_url else 10_00 UpperCAmelCase_ : str = target_max_size / current_max_size UpperCAmelCase_ : Tuple = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = F.to_tensor(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" logger.info("Converting model..." ) # load original state dict UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : Any = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ : Optional[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val # create HuggingFace model and load state dict UpperCAmelCase_ : str = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ : str = 15 UpperCAmelCase_ : str = 2 UpperCAmelCase_ : Union[str, Any] = {0: "table", 1: "table rotated"} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Tuple = 1_25 UpperCAmelCase_ : Tuple = 6 UpperCAmelCase_ : Union[str, Any] = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) UpperCAmelCase_ : Optional[int] = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion UpperCAmelCase_ : Optional[Any] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" UpperCAmelCase_ : Dict = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = Image.open(_SCREAMING_SNAKE_CASE ).convert("RGB" ) UpperCAmelCase_ : int = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = (1, 15, 3) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCAmelCase_ : Dict = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCAmelCase_ : Union[str, Any] = (1, 1_25, 7) UpperCAmelCase_ : List[str] = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) UpperCAmelCase_ : List[str] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
67
0