code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = '''audio-spectrogram-transformer''' def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : int=3_0_7_2 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Dict=1E-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_6 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=1_0 , SCREAMING_SNAKE_CASE__ : int=1_0 , SCREAMING_SNAKE_CASE__ : Any=1_0_2_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , **SCREAMING_SNAKE_CASE__ : str , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : Dict = hidden_size a_ : Any = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : Optional[Any] = intermediate_size a_ : Optional[Any] = hidden_act a_ : Dict = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : List[str] = initializer_range a_ : List[Any] = layer_norm_eps a_ : int = patch_size a_ : int = qkv_bias a_ : int = frequency_stride a_ : Union[str, Any] = time_stride a_ : str = max_length a_ : List[Any] = num_mel_bins
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = '''switch_transformers''' snake_case__ : Optional[int] = ['''past_key_values'''] snake_case__ : Optional[Any] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=3_2_1_2_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE__ : List[str]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : Dict=6_4 , SCREAMING_SNAKE_CASE__ : List[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Tuple=1_2 , SCREAMING_SNAKE_CASE__ : Tuple=8 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.01 , SCREAMING_SNAKE_CASE__ : str="float32" , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE__ : Dict=1_2_8 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=1E-6 , SCREAMING_SNAKE_CASE__ : Dict=0.001 , SCREAMING_SNAKE_CASE__ : Any=0.001 , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : Any="relu" , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: a_ : Optional[int] = vocab_size a_ : List[str] = d_model a_ : Tuple = d_kv a_ : Optional[Any] = d_ff a_ : List[Any] = num_sparse_encoder_layers a_ : Any = num_layers a_ : str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a_ : List[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: a_ : Optional[int] = self.num_layers // self.num_sparse_encoder_layers else: a_ : List[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: a_ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: a_ : List[str] = self.num_decoder_layers # HACK: this will create 0 sparse layers a_ : Dict = num_heads a_ : str = num_experts a_ : Any = expert_capacity a_ : List[Any] = router_bias a_ : str = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) a_ : Optional[int] = router_dtype a_ : int = router_ignore_padding_tokens a_ : Any = relative_attention_num_buckets a_ : List[str] = relative_attention_max_distance a_ : Optional[Any] = dropout_rate a_ : Tuple = layer_norm_epsilon a_ : Dict = initializer_factor a_ : Any = feed_forward_proj a_ : Tuple = use_cache a_ : str = add_router_probs a_ : Optional[int] = router_z_loss_coef a_ : List[str] = router_aux_loss_coef a_ : int = self.feed_forward_proj.split('-' ) a_ : int = act_info[-1] a_ : Optional[int] = act_info[0] == 'gated' if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a_ : Any = 'gelu_new' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
32
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : int = "vit" def __init__( self : Any , _lowerCAmelCase : Optional[int]=7_68 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=30_72 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : str=1e-12 , _lowerCAmelCase : int=2_24 , _lowerCAmelCase : int=16 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=16 , **_lowerCAmelCase : Dict , ): super().__init__(**_lowerCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Tuple = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : str = image_size __snake_case : str = patch_size __snake_case : Optional[Any] = num_channels __snake_case : List[Any] = qkv_bias __snake_case : Dict = encoder_stride class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : str = version.parse("1.11" ) @property def snake_case__ ( self : Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case__ ( self : Optional[Any] ): return 1e-4
350
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : list[list[int]] = [[0 for _ in range(UpperCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCAmelCase__ : Tuple = 1 for n in range(m + 1 ): for k in range(1 , UpperCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCAmelCase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: _lowerCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
37
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =StableDiffusionControlNetImgaImgPipeline a_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a_ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) a_ =IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __lowerCamelCase : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Union[str, Any] = CLIPTextModel(_a ) __lowerCamelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : int = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self : Union[str, Any] , _a : Any , _a : List[str]=0 ) -> List[str]: if str(_a ).startswith('mps' ): __lowerCamelCase : Any = torch.manual_seed(_a ) else: __lowerCamelCase : Any = torch.Generator(device=_a ).manual_seed(_a ) __lowerCamelCase : Union[str, Any] = 2 __lowerCamelCase : Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ) __lowerCamelCase : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(_a ) ).to(_a ) __lowerCamelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : int = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((64, 64) ) __lowerCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowercase ( self : List[str] ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase ( self : str ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowercase ( self : Any ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =StableDiffusionControlNetImgaImgPipeline a_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a_ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowercase ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_a : str ): if isinstance(_a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) __lowerCamelCase : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) __lowerCamelCase : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) __lowerCamelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Dict = CLIPTextModel(_a ) __lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : List[str] = MultiControlNetModel([controlneta, controlneta] ) __lowerCamelCase : str = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self : Dict , _a : int , _a : Union[str, Any]=0 ) -> Union[str, Any]: if str(_a ).startswith('mps' ): __lowerCamelCase : Optional[Any] = torch.manual_seed(_a ) else: __lowerCamelCase : Union[str, Any] = torch.Generator(device=_a ).manual_seed(_a ) __lowerCamelCase : Any = 2 __lowerCamelCase : Any = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), ] __lowerCamelCase : List[Any] = floats_tensor(control_image[0].shape , rng=random.Random(_a ) ).to(_a ) __lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : Dict = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((64, 64) ) __lowerCamelCase : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCamelCase : Any = self.get_dummy_components() __lowerCamelCase : Any = self.pipeline_class(**_a ) pipe.to(_a ) __lowerCamelCase : Optional[int] = 10.0 __lowerCamelCase : Tuple = 4 __lowerCamelCase : str = self.get_dummy_inputs(_a ) __lowerCamelCase : int = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : Optional[Any] = pipe(**_a )[0] __lowerCamelCase : Dict = self.get_dummy_inputs(_a ) __lowerCamelCase : List[str] = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : Dict = pipe(**_a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __lowerCamelCase : Any = self.get_dummy_inputs(_a ) __lowerCamelCase : Union[str, Any] = steps __lowerCamelCase : Any = scale __lowerCamelCase : Optional[int] = pipe(**_a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __lowerCamelCase : Any = self.get_dummy_inputs(_a ) __lowerCamelCase : Tuple = steps __lowerCamelCase : List[Any] = scale __lowerCamelCase : List[str] = pipe(**_a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _lowercase ( self : Optional[Any] ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase ( self : Dict ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowercase ( self : str ) -> int: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _lowercase ( self : List[Any] ) -> str: __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : List[Any] = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str] ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) __lowerCamelCase : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=_a , controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase : List[Any] = 'evil space-punk bird' __lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) __lowerCamelCase : Any = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) __lowerCamelCase : Dict = pipe( _a , _a , control_image=_a , generator=_a , output_type='np' , num_inference_steps=50 , strength=0.6 , ) __lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) __lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
208
0
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _A : str ={ '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Union[str, Any] ={ '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : str ={ '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : int ={ '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if isinstance(UpperCamelCase , UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ) -> Any: lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] lowerCamelCase__ : Optional[Any] = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.skip_connection.weight'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ) -> str: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.norm.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.norm.bias'''] lowerCamelCase__ : List[Any] = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : List[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCamelCase__ : str = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Optional[int] = checkpoint["""time_embed.0.weight"""] lowerCamelCase__ : List[Any] = checkpoint["""time_embed.0.bias"""] lowerCamelCase__ : int = checkpoint["""time_embed.2.weight"""] lowerCamelCase__ : Optional[Any] = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowerCamelCase__ : Optional[Any] = checkpoint["""label_emb.weight"""] lowerCamelCase__ : Tuple = checkpoint["""input_blocks.0.0.weight"""] lowerCamelCase__ : List[str] = checkpoint["""input_blocks.0.0.bias"""] lowerCamelCase__ : Optional[Any] = unet_config["""down_block_types"""] lowerCamelCase__ : Any = unet_config["""layers_per_block"""] lowerCamelCase__ : Any = unet_config["""attention_head_dim"""] lowerCamelCase__ : List[Any] = unet_config["""block_out_channels"""] lowerCamelCase__ : str = 1 lowerCamelCase__ : str = channels_list[0] for i, layer_type in enumerate(UpperCamelCase ): lowerCamelCase__ : List[Any] = channels_list[i] lowerCamelCase__ : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : int = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Tuple = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : List[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : Tuple = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : str = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Any = f'''down_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.1''' lowerCamelCase__ : Tuple = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''down_blocks.{i}.downsamplers.0''' lowerCamelCase__ : str = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 lowerCamelCase__ : Union[str, Any] = current_channels # hardcoded the mid-block for now lowerCamelCase__ : Any = """mid_block.resnets.0""" lowerCamelCase__ : Optional[Any] = """middle_block.0""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[Any] = """mid_block.attentions.0""" lowerCamelCase__ : Dict = """middle_block.1""" lowerCamelCase__ : int = convert_attention(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = """mid_block.resnets.1""" lowerCamelCase__ : Tuple = """middle_block.2""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Any = unet_config["""up_block_types"""] for i, layer_type in enumerate(UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : int = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Any = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Dict = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : List[str] = f'''output_blocks.{current_layer-1}.1''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : str = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : List[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Optional[Any] = f'''up_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Any = f'''output_blocks.{current_layer}.1''' lowerCamelCase__ : Optional[int] = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : Tuple = f'''output_blocks.{current_layer-1}.2''' lowerCamelCase__ : List[str] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Dict = checkpoint["""out.0.weight"""] lowerCamelCase__ : Dict = checkpoint["""out.0.bias"""] lowerCamelCase__ : Dict = checkpoint["""out.2.weight"""] lowerCamelCase__ : Tuple = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _A : Tuple =argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _A : Tuple =parser.parse_args() _A : Optional[int] =strabool(args.class_cond) _A : List[str] =os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: _A : int =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Tuple =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _A : Any =TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: _A : str =None _A : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) _A : Optional[int] =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _A : Tuple =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _A : int =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Union[str, Any] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') _A : str =CMStochasticIterativeScheduler(**scheduler_config) _A : Optional[Any] =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
129
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _A : Optional[int] =pd.read_csv('''sample_data.csv''', header=None) _A : Any =df.shape[:1][0] # If you're using some other dataset input the target column _A : List[str] =df.iloc[:, 1:2] _A : int =actual_data.values.reshape(len_data, 1) _A : Union[str, Any] =MinMaxScaler().fit_transform(actual_data) _A : Optional[int] =10 _A : Union[str, Any] =5 _A : Union[str, Any] =20 _A : str =len_data - periods * look_back _A : List[Any] =actual_data[:division] _A : Optional[Any] =actual_data[division - look_back :] _A , _A : Tuple =[], [] _A , _A : List[str] =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _A : List[Any] =np.array(train_x) _A : str =np.array(test_x) _A : List[Any] =np.array([list(i.ravel()) for i in train_y]) _A : Any =np.array([list(i.ravel()) for i in test_y]) _A : Optional[Any] =Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _A : Dict =model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _A : List[str] =model.predict(x_test)
129
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = SMALL_MODEL_IDENTIFIER a = '''pt''' a = '''tf''' def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ) ->Union[str, Any]: """simple docstring""" a = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->List[str]: """simple docstring""" a = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase ) model_tf.save_pretrained(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = '''mock_framework''' # Framework provided - return whatever the user provides a = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) a = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCAmelCase ): a = FeaturesManager.determine_framework(__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch a = MagicMock(return_value=__UpperCAmelCase ) a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error a = MagicMock(return_value=__UpperCAmelCase ) a = MagicMock(return_value=__UpperCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , __UpperCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , __UpperCAmelCase ): with self.assertRaises(__UpperCAmelCase ): a = FeaturesManager.determine_framework(self.test_model )
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __magic_name__ ( __lowerCAmelCase): A: torch.FloatTensor class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase): @register_to_config def __init__( self : Union[str, Any] , lowerCamelCase__ : int = 32 , lowerCamelCase__ : int = 64 , lowerCamelCase__ : int = 20 , lowerCamelCase__ : int = 768 , lowerCamelCase__ : Optional[Any]=77 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : str = "silu" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = "linear" , lowerCamelCase__ : Optional[str] = "prd" , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , ) -> Optional[Any]: '''simple docstring''' super().__init__() UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : Optional[Any] = attention_head_dim UpperCamelCase__ : List[str] = num_attention_heads * attention_head_dim UpperCamelCase__ : Union[str, Any] = additional_embeddings UpperCamelCase__ : Union[str, Any] = time_embed_dim or inner_dim UpperCamelCase__ : int = embedding_proj_dim or embedding_dim UpperCamelCase__ : Optional[Any] = clip_embed_dim or embedding_dim UpperCamelCase__ : Dict = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) UpperCamelCase__ : List[Any] = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: UpperCamelCase__ : int = None elif embedding_proj_norm_type == "layer": UpperCamelCase__ : Optional[int] = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) UpperCamelCase__ : Dict = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: UpperCamelCase__ : List[Any] = None elif encoder_hid_proj_type == "linear": UpperCamelCase__ : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) UpperCamelCase__ : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": UpperCamelCase__ : Any = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: UpperCamelCase__ : Union[str, Any] = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) UpperCamelCase__ : str = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='''gelu''' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": UpperCamelCase__ : int = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: UpperCamelCase__ : int = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) UpperCamelCase__ : Optional[Any] = nn.LayerNorm(lowerCamelCase__ ) UpperCamelCase__ : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) UpperCamelCase__ : Union[str, Any] = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , lowerCamelCase__ , persistent=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) UpperCamelCase__ : Optional[int] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = {} def fn_recursive_add_processors(lowerCamelCase__ : str , lowerCamelCase__ : torch.nn.Module , lowerCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(lowerCamelCase__ , '''set_processor''' ): UpperCamelCase__ : Optional[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(lowerCamelCase__ : str , lowerCamelCase__ : torch.nn.Module , lowerCamelCase__ : Dict ): if hasattr(lowerCamelCase__ , '''set_processor''' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Union[torch.Tensor, float, int] , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[torch.BoolTensor] = None , lowerCamelCase__ : bool = True , ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = hidden_states.shape[0] UpperCamelCase__ : List[Any] = timestep if not torch.is_tensor(lowerCamelCase__ ): UpperCamelCase__ : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: UpperCamelCase__ : Optional[int] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ : List[str] = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase__ : int = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCamelCase__ : List[str] = timesteps_projected.to(dtype=self.dtype ) UpperCamelCase__ : Optional[Any] = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: UpperCamelCase__ : Dict = self.embedding_proj_norm(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCamelCase__ : int = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) UpperCamelCase__ : Optional[int] = self.proj_in(lowerCamelCase__ ) UpperCamelCase__ : int = self.positional_embedding.to(hidden_states.dtype ) UpperCamelCase__ : Tuple = [] UpperCamelCase__ : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCamelCase__ : Tuple = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCamelCase__ : Dict = hidden_states[:, None, :] UpperCamelCase__ : Optional[int] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCamelCase__ : int = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCamelCase__ : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCamelCase__ : List[str] = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCamelCase__ : int = hidden_states + positional_embeddings if attention_mask is not None: UpperCamelCase__ : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 UpperCamelCase__ : Any = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) UpperCamelCase__ : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCamelCase__ : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCamelCase__ : List[str] = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: UpperCamelCase__ : Any = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: UpperCamelCase__ : Optional[int] = hidden_states[:, -1] else: UpperCamelCase__ : int = hidden_states[:, additional_embeddings_len:] UpperCamelCase__ : List[str] = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Tuple = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
146
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCamelCase : int = TypeVar('''T''') class __snake_case ( Generic[T] ): def __init__( self : List[Any] , _lowercase : T ): """simple docstring""" SCREAMING_SNAKE_CASE__ = data SCREAMING_SNAKE_CASE__ = None def __str__( self : Optional[Any] ): """simple docstring""" return f"""{self.data}""" class __snake_case ( Generic[T] ): def __init__( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None def __iter__( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.top while node: yield node.data SCREAMING_SNAKE_CASE__ = node.next def __str__( self : str ): """simple docstring""" return "->".join([str(_lowercase ) for item in self] ) def __len__( self : str ): """simple docstring""" return len(tuple(iter(self ) ) ) def __a ( self : Dict ): """simple docstring""" return self.top is None def __a ( self : Union[str, Any] , _lowercase : T ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Node(_lowercase ) if not self.is_empty(): SCREAMING_SNAKE_CASE__ = self.top SCREAMING_SNAKE_CASE__ = node def __a ( self : Tuple ): """simple docstring""" if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , _lowercase ) SCREAMING_SNAKE_CASE__ = self.top SCREAMING_SNAKE_CASE__ = self.top.next return pop_node.data def __a ( self : List[Any] ): """simple docstring""" if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None if __name__ == "__main__": from doctest import testmod testmod()
371
from __future__ import annotations __lowerCamelCase : Tuple = list[list[int]] # assigning initial values to the grid __lowerCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowerCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = digit if sudoku(__UpperCamelCase ) is not None: return grid SCREAMING_SNAKE_CASE__ = 0 return None def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__UpperCamelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __lowerCamelCase : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
204
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCAmelCase_ : int = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCAmelCase_ : str = typing.Union[np.floataa, int, float] # noqa: UP007 def _A (__a , __a ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(__a ) - np.asarray(__a )) ** 2 ) ) def _A (__a , __a ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(__a , __a ) ) ** (1 / 2) if __name__ == "__main__": def _A () -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) benchmark()
91
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase = mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: lowercase = max( mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , mf_knapsack(i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , j - wt[i - 1] ) + val[i - 1] , ) lowercase = val return f[i][j] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase = dp[i - 1][w_] return dp[n][w_], dp def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if not (isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) lowercase = len(__SCREAMING_SNAKE_CASE ) if num_items != len(__SCREAMING_SNAKE_CASE ): lowercase = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(__SCREAMING_SNAKE_CASE )} values''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): if not isinstance(wt[i] , __SCREAMING_SNAKE_CASE ): lowercase = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(__SCREAMING_SNAKE_CASE ) lowercase , lowercase = knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = set() _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return optimal_val, example_optional_set def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: optimal_set.add(__SCREAMING_SNAKE_CASE ) _construct_solution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i - 1 , j - wt[i - 1] , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = [3, 2, 4, 4] UpperCAmelCase = [4, 3, 2, 3] UpperCAmelCase = 4 UpperCAmelCase = 6 UpperCAmelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase , UpperCAmelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase , UpperCAmelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
195
0
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase :Any = [] UpperCamelCase :int = 1 while len(lowercase__ ) < 1E6: constant.append(str(lowercase__ ) ) i += 1 UpperCamelCase :Union[str, Any] = """""".join(lowercase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
363
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Tuple="attention" ) -> Optional[int]: """simple docstring""" UpperCamelCase :Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) UpperCamelCase :Any = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCamelCase :Optional[Any] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) UpperCamelCase :Tuple = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCamelCase :Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) UpperCamelCase :List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCamelCase :int = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) UpperCamelCase :Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=False ) -> Optional[int]: """simple docstring""" if split_mlp_wi: UpperCamelCase :Tuple = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] UpperCamelCase :Optional[int] = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] UpperCamelCase :Union[str, Any] = (wi_a, wi_a) else: UpperCamelCase :Union[str, Any] = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] UpperCamelCase :List[str] = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str ) -> List[Any]: """simple docstring""" return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : dict , *, __magic_name__ : int , __magic_name__ : bool , __magic_name__ : bool = False ) -> List[str]: """simple docstring""" UpperCamelCase :str = traverse_util.flatten_dict(variables["""target"""] ) UpperCamelCase :int = {"""/""".join(__magic_name__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase :Union[str, Any] = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , __magic_name__ ) UpperCamelCase :Tuple = collections.OrderedDict() # Shared embeddings. UpperCamelCase :Optional[int] = old["""token_embedder/embedding"""] # Encoder. for i in range(__magic_name__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :List[Any] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Union[str, Any] = tax_attention_lookup(__magic_name__ , __magic_name__ , """encoder""" , """attention""" ) UpperCamelCase :Dict = layer_norm UpperCamelCase :str = k.T UpperCamelCase :int = o.T UpperCamelCase :Optional[int] = q.T UpperCamelCase :List[str] = v.T # Block i, layer 1 (MLP). UpperCamelCase :Union[str, Any] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase , UpperCamelCase :List[Any] = tax_mlp_lookup(__magic_name__ , __magic_name__ , """encoder""" , __magic_name__ ) UpperCamelCase :Dict = layer_norm if split_mlp_wi: UpperCamelCase :Union[str, Any] = wi[0].T UpperCamelCase :List[str] = wi[1].T else: UpperCamelCase :str = wi.T UpperCamelCase :Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :List[Any] = tax_relpos_bias_lookup( __magic_name__ , __magic_name__ , """encoder""" ).T UpperCamelCase :Dict = old["""encoder/encoder_norm/scale"""] if not scalable_attention: UpperCamelCase :Optional[Any] = tax_relpos_bias_lookup( __magic_name__ , 0 , """encoder""" ).T UpperCamelCase :str = tax_relpos_bias_lookup( __magic_name__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(__magic_name__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :Tuple = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_self_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """self_attention""" ) UpperCamelCase :Any = layer_norm UpperCamelCase :Tuple = k.T UpperCamelCase :Optional[Any] = o.T UpperCamelCase :List[Any] = q.T UpperCamelCase :Optional[Any] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase :List[str] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_cross_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :int = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """encoder_decoder_attention""" ) UpperCamelCase :Union[str, Any] = layer_norm UpperCamelCase :int = k.T UpperCamelCase :Union[str, Any] = o.T UpperCamelCase :Optional[Any] = q.T UpperCamelCase :List[str] = v.T # Block i, layer 2 (MLP). UpperCamelCase :Tuple = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase , UpperCamelCase :Optional[int] = tax_mlp_lookup(__magic_name__ , __magic_name__ , """decoder""" , __magic_name__ ) UpperCamelCase :Optional[int] = layer_norm if split_mlp_wi: UpperCamelCase :List[Any] = wi[0].T UpperCamelCase :Tuple = wi[1].T else: UpperCamelCase :Any = wi.T UpperCamelCase :List[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :Optional[int] = tax_relpos_bias_lookup(__magic_name__ , __magic_name__ , """decoder""" ).T UpperCamelCase :int = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase :Dict = old["""decoder/logits_dense/kernel"""].T return new def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : bool ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase :str = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) UpperCamelCase :Dict = state_dict["""shared.weight"""] return state_dict def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int ) -> List[str]: """simple docstring""" UpperCamelCase :Union[str, Any] = checkpoints.load_tax_checkpoint(__magic_name__ ) UpperCamelCase :Optional[Any] = convert_tax_to_pytorch( __magic_name__ , num_layers=config.num_layers , is_encoder_only=__magic_name__ , scalable_attention=__magic_name__ ) UpperCamelCase :Optional[int] = make_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ , strict=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : bool = False , __magic_name__ : bool = False , ) -> List[str]: """simple docstring""" UpperCamelCase :Tuple = MTaConfig.from_json_file(__magic_name__ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase :Optional[Any] = UMTaEncoderModel(__magic_name__ ) else: UpperCamelCase :Tuple = UMTaForConditionalGeneration(__magic_name__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__magic_name__ ) # Verify that we can load the checkpoint. model.from_pretrained(__magic_name__ ) print("""Done""" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCAmelCase_ : str = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
62
0
a_ :str = 256 # Modulus to hash a string a_ :List[Any] = 1_000_003 def lowercase_ (A : Optional[Any] , A : str ): snake_case__ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) snake_case__ : int = len(SCREAMING_SNAKE_CASE__ ) if p_len > t_len: return False snake_case__ : Dict = 0 snake_case__ : List[Any] = 0 snake_case__ : str = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE__ ): snake_case__ : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case__ : Any = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case__ : Optional[int] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case__ : Optional[int] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase_ (): snake_case__ : Optional[int] = """abc1abc12""" snake_case__ : Optional[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" snake_case__ : Optional[Any] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 2) snake_case__ : Dict = """ABABX""" snake_case__ : List[str] = """ABABZABABYABABX""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 3) snake_case__ : List[Any] = """AAAB""" snake_case__ : int = """ABAAAAAB""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 4) snake_case__ : Optional[int] = """abcdabcy""" snake_case__ : Optional[Any] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 5) snake_case__ : Optional[Any] = """Lü""" snake_case__ : Optional[int] = """Lüsai""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case__ : List[str] = """Lue""" assert not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
277
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : str = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase : Dict = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase : int = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Any = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = float(pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) lowercase : Dict = float(spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm A_ = logging.get_logger(__name__) @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self: Tuple, **a_: List[Any] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : Tuple = deprecated_arg[3:] setattr(self, a_, not kwargs.pop(a_ ) ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) _snake_case : Tuple = kwargs.pop("""torchscript""", self.torchscript ) _snake_case : str = kwargs.pop("""torch_xla_tpu_print_metrics""", self.torch_xla_tpu_print_metrics ) _snake_case : str = kwargs.pop("""fp16_opt_level""", self.fpaa_opt_level ) super().__init__(**a_ ) lowercase__ = field(default=__a , metadata={"help": "Trace the models using torchscript"} ) lowercase__ = field(default=__a , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) lowercase__ = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' requires_backends(self, ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: _snake_case : Any = torch.device("""cpu""" ) _snake_case : int = 0 elif is_torch_tpu_available(): _snake_case : Optional[Any] = xm.xla_device() _snake_case : int = 0 else: _snake_case : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) _snake_case : Optional[int] = torch.cuda.device_count() return device, n_gpu @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def UpperCamelCase_ ( self: int ): '''simple docstring''' requires_backends(self, ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' requires_backends(self, ["""torch"""] ) return self._setup_devices[0] @property def UpperCamelCase_ ( self: int ): '''simple docstring''' requires_backends(self, ["""torch"""] ) return self._setup_devices[1] @property def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return self.n_gpu > 0
132
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = WavaVecaPhonemeCTCTokenizer lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' super().setUp() _snake_case : List[Any] = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _snake_case : List[str] = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : Union[str, Any] = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: List[str]=False, a_: str=20, a_: Optional[int]=5 ): '''simple docstring''' _snake_case : Union[str, Any] = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=a_ )) for i in range(len(a_ ) )] _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], do_phonemize=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Dict = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[Any] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : str = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Optional[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : str = """ """ + output_txt _snake_case : Tuple = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int, **a_: List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _snake_case : Optional[Any] = tokenizer("""m xxx ɪ""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _snake_case : Union[str, Any] = tokenizer("""m aaa ɪ ccc""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa _snake_case : Any = tokenizer("""maɪ c""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [3, 200] ) # mai should be <unk> (=3) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Tuple = """Hello how are you""" _snake_case : Optional[int] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(a_, """h ə l oʊ h aʊ ɑːɹ j uː""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : int = """Hello how are you""" _snake_case : int = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a_ ).input_ids, tokenizer(a_, do_phonemize=a_ ).input_ids ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Tuple = """Hello how are you""" _snake_case : List[str] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Optional[Any] = tokenizer.decode(tokenizer(a_ ).input_ids ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _snake_case : List[Any] = tokenizer.decode(sample_ids[0] ) _snake_case : str = tokenizer.batch_decode(a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : Union[str, Any] = """Hello how are you""" _snake_case : Tuple = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(a_, """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : int = """Hello how are you""" _snake_case : Dict = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a_ ).input_ids, tokenizer(a_, do_phonemize=a_ ).input_ids ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _snake_case : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _snake_case : List[str] = tokenizer.decode(sample_ids[0] ) _snake_case : Optional[int] = tokenizer.batch_decode(a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _snake_case : int = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=a_ ) _snake_case : Dict = tokenizer.batch_decode(a_, filter_word_delimiter_token=a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : str = """Hello how are you""" _snake_case : List[Any] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Union[str, Any] = tokenizer.decode(tokenizer(a_ ).input_ids, filter_word_delimiter_token=a_ ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : Any = """Hello how are you""" _snake_case : Any = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Any = tokenizer.decode(tokenizer(a_ ).input_ids, filter_word_delimiter_token=a_ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip(), a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token=a_ ) _snake_case : str = """Hello how are you""" _snake_case : str = tokenizer(a_, phonemizer_lang="""en-us""" ).input_ids _snake_case : List[str] = tokenizer(a_, phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(a_, a_ ) _snake_case : Dict = tokenizer.decode(a_ ) _snake_case : Union[str, Any] = tokenizer.decode(a_ ) self.assertEqual(a_, """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(a_, """ɛ l o h aʊ a ʁ j u""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Optional[Any] = """Hello how Are you""" _snake_case : Optional[int] = """hello how are you""" _snake_case : List[str] = tokenizer(a_ ).input_ids _snake_case : int = tokenizer(a_ ).input_ids self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on _snake_case : List[Any] = tokenizer.batch_decode(a_ ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def UpperCamelCase_ ( a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _snake_case : Optional[int] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _snake_case : Any = tokenizer.decode(a_, output_char_offsets=a_, filter_word_delimiter_token=a_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ), 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(a_, a_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""], """char""" ) ), outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """char""" ), ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """start_offset""" ), [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """end_offset""" ), [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(a_: List[str], a_: Optional[Any] ): self.assertTrue(isinstance(a_, a_ ) ) self.assertTrue(isinstance(outputs_list[0], a_ ) ) # transform list to ModelOutput _snake_case : int = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""], outputs_batch_a["""text"""] ) def recursive_check(a_: Union[str, Any], a_: Optional[Any] ): if isinstance(a_, a_ ): [recursive_check(a_, a_ ) for la, la in zip(a_, a_ )] self.assertEqual(a_, a_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""], outputs_batch_a["""char_offsets"""] ) # fmt: off _snake_case : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _snake_case : int = tokenizer.batch_decode(a_, output_char_offsets=a_ ) _snake_case : Union[str, Any] = [tokenizer.decode(a_, output_char_offsets=a_ ) for ids in sample_ids] check_list_tuples_equal(a_, a_ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : int = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[Any] = tokenizer.vocab_size _snake_case : int = len(a_ ) self.assertNotEqual(a_, 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case : Optional[int] = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _snake_case : Any = tokenizer.add_tokens(a_ ) _snake_case : Tuple = tokenizer.vocab_size _snake_case : List[str] = len(a_ ) self.assertNotEqual(a_, 0 ) self.assertEqual(a_, a_ ) self.assertEqual(a_, len(a_ ) ) self.assertEqual(a_, all_size + len(a_ ) ) _snake_case : Optional[Any] = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""", add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ), 4 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) _snake_case : Optional[int] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _snake_case : Dict = tokenizer.add_special_tokens(a_ ) _snake_case : List[str] = tokenizer.vocab_size _snake_case : List[Any] = len(a_ ) self.assertNotEqual(a_, 0 ) self.assertEqual(a_, a_ ) self.assertEqual(a_, len(a_ ) ) self.assertEqual(a_, all_size_a + len(a_ ) ) _snake_case : Dict = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""", add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ), 6 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0], tokens[1] ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokens[-4] ) self.assertEqual(tokens[0], tokenizer.eos_token_id ) self.assertEqual(tokens[-3], tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : str = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : str = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _snake_case : Optional[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(output["""text"""], a_ )
132
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case : Any =logging.get_logger(__name__) __snake_case : str ='▁' __snake_case : int ={'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __snake_case : int ={ 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __snake_case : Any ={'vinai/bartpho-syllable': 1_0_2_4} class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =["""input_ids""", """attention_mask"""] def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase="<s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="</s>" ,__lowerCamelCase="<s>" ,__lowerCamelCase="<unk>" ,__lowerCamelCase="<pad>" ,__lowerCamelCase="<mask>" ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> None: """simple docstring""" lowerCAmelCase__ : List[Any] = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token lowerCAmelCase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCamelCase ,) lowerCAmelCase__ : List[Any] = vocab_file lowerCAmelCase__ : int = monolingual_vocab_file lowerCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCAmelCase__ : Any = {} lowerCAmelCase__ : Tuple = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : int = cnt cnt += 1 with open(__lowerCamelCase ,'''r''' ,encoding='''utf-8''' ) as f: for line in f.readlines(): lowerCAmelCase__ : Optional[int] = line.strip().split()[0] lowerCAmelCase__ : Union[str, Any] = len(self.fairseq_tokens_to_ids ) if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : List[Any] = len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = self.__dict__.copy() lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__(self ,__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : str = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowerCAmelCase__ : int = {} lowerCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : int = [self.cls_token_id] lowerCAmelCase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : Tuple = [self.sep_token_id] lowerCAmelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowerCamelCase ,out_type=__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : Tuple = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase ,''' ''' ).strip() return out_string def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Any = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Tuple = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase ,'''wb''' ) as fi: lowerCAmelCase__ : Dict = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(__lowerCamelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
129
# Function to print upper half of diamond (pyramid) def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' for i in range(0 ,lowerCamelCase_): for _ in range(0 ,n - i - 1): # printing spaces print(''' ''' ,end='''''') for _ in range(0 ,i + 1): # printing stars print('''* ''' ,end='''''') print() def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' for i in range(lowerCamelCase_ ,0 ,-1): for _ in range(lowerCamelCase_ ,0 ,-1): # printing stars print('''* ''' ,end='''''') print() for _ in range(n - i + 1 ,0 ,-1): # printing spaces print(''' ''' ,end='''''') def lowerCAmelCase__ ( lowerCamelCase_ : Tuple): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''') return floyd(lowerCamelCase_) # upper half reverse_floyd(lowerCamelCase_) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') __snake_case : int =1 while K: __snake_case : Optional[int] =int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __snake_case : str =int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
129
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : List[str] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : List[Any] ='''vivit''' def __init__( self , _lowerCamelCase=2_2_4 , _lowerCamelCase=3_2 , _lowerCamelCase=[2, 1_6, 1_6] , _lowerCamelCase=3 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu_fast" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-06 , _lowerCamelCase=True , **_lowerCamelCase , ): UpperCamelCase_: int = hidden_size UpperCamelCase_: List[str] = num_hidden_layers UpperCamelCase_: Union[str, Any] = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: int = hidden_act UpperCamelCase_: Any = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: Dict = image_size UpperCamelCase_: Optional[int] = num_frames UpperCamelCase_: Optional[Any] = tubelet_size UpperCamelCase_: List[str] = num_channels UpperCamelCase_: Optional[int] = qkv_bias super().__init__(**_lowerCamelCase )
366
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params A_ : Tuple = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def snake_case (UpperCAmelCase__ ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCamelCase_: List[str] = k.replace(UpperCAmelCase__ , UpperCAmelCase__ ) return k def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> PegasusForConditionalGeneration: UpperCamelCase_: List[str] = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase__ ) UpperCamelCase_: Tuple = PegasusConfig(**UpperCAmelCase__ ) UpperCamelCase_: Tuple = PegasusForConditionalGeneration(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = torch_model.model.state_dict() UpperCamelCase_: str = {} for k, v in tf_weights.items(): UpperCamelCase_: Dict = rename_state_dict_key(UpperCAmelCase__ ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: UpperCamelCase_: int = v.T UpperCamelCase_: Union[str, Any] = torch.tensor(UpperCAmelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected UpperCamelCase_: Tuple = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCamelCase_: int = mapping['shared.weight'] UpperCamelCase_: Union[str, Any] = mapping['shared.weight'] UpperCamelCase_: Dict = {k: torch.zeros_like(UpperCAmelCase__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_: Optional[int] = torch_model.model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) UpperCamelCase_: List[str] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def snake_case (UpperCAmelCase__="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCamelCase_: Union[str, Any] = tf.train.list_variables(UpperCAmelCase__ ) UpperCamelCase_: Tuple = {} UpperCamelCase_: Dict = ['Adafactor', 'global_step'] for name, shape in tqdm(UpperCAmelCase__ , desc='converting tf checkpoint to dict' ): UpperCamelCase_: Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase_: Dict = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = array return tf_weights def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # save tokenizer first UpperCamelCase_: Any = Path(UpperCAmelCase__ ).parent.name UpperCamelCase_: Tuple = task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] UpperCamelCase_: Optional[Any] = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=UpperCAmelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase__ ) # convert model UpperCamelCase_: Optional[Any] = get_tf_weights_as_numpy(UpperCAmelCase__ ) UpperCamelCase_: Any = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": UpperCamelCase_: Union[str, Any] = task_specific_params UpperCamelCase_: Tuple = convert_pegasus(UpperCAmelCase__ , UpperCAmelCase__ ) torch_model.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(UpperCAmelCase__ , Path(UpperCAmelCase__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') A_ : Optional[Any] = parser.parse_args() if args.save_dir is None: A_ : Union[str, Any] = Path(args.tf_ckpt_path).parent.name A_ : Optional[Any] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
292
0
'''simple docstring''' from math import factorial def _A ( snake_case = 1_00 ) -> Optional[int]: return sum(map(snake_case , str(factorial(snake_case ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
250
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase : List[Any] = None lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Optional[int] = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } lowerCamelCase : List[Any] = { "google/fnet-base": 512, "google/fnet-large": 512, } lowerCamelCase : Any = "▁" class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''token_type_ids'''] UpperCamelCase = FNetTokenizer def __init__( self : Optional[int] , A_ : Any=None , A_ : int=None , A_ : int=False , A_ : Optional[int]=True , A_ : List[Any]=True , A_ : Tuple="<unk>" , A_ : Optional[int]="[SEP]" , A_ : List[Any]="<pad>" , A_ : Optional[int]="[CLS]" , A_ : Optional[Any]="[MASK]" , **A_ : Dict , ) -> List[str]: """simple docstring""" lowerCamelCase_ = ( AddedToken(A_ , lstrip=A_ , rstrip=A_ , normalized=A_ ) if isinstance(A_ , A_ ) else mask_token ) super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , **A_ , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Dict , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
204
0
def lowercase_ ( A__ ) -> list: """simple docstring""" def merge(A__ , A__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(A__ ) <= 1: return collection snake_case = len(A__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _A = input("Enter numbers separated by a comma:\n").strip() _A = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
137
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _A = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } _A = {"mobilebert-uncased": 5_12} _A = {} class lowerCamelCase ( A_ ): UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = MobileBertTokenizer def __init__(self : Any , _A : str=None , _A : str=None , _A : Union[str, Any]=True , _A : Optional[Any]="[UNK]" , _A : int="[SEP]" , _A : Dict="[PAD]" , _A : int="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : Any=True , _A : Dict=None , **_A : List[str] , ) -> List[str]: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _A ) != do_lower_case or normalizer_state.get("strip_accents" , _A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars ): snake_case = getattr(_A , normalizer_state.pop("type" ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**_A ) snake_case = do_lower_case def UpperCAmelCase(self : List[str] , _A : Union[str, Any] , _A : Dict=None ) -> Optional[Any]: snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase(self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase(self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
137
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class snake_case : """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCamelCase_ = len(UpperCamelCase ) - 1 def snake_case ( self , UpperCamelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCamelCase ) , 5 ) == 1 return output_values def snake_case ( self , UpperCamelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase_ = self.basis_function(UpperCamelCase ) lowerCamelCase_ = 0.0 lowerCamelCase_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case ( self , UpperCamelCase = 0.01 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowerCamelCase_ = [] # x coordinates of points to plot lowerCamelCase_ = [] # y coordinates of points to plot lowerCamelCase_ = 0.0 while t <= 1: lowerCamelCase_ = self.bezier_curve_function(UpperCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCamelCase_ = [i[0] for i in self.list_of_points] lowerCamelCase_ = [i[1] for i in self.list_of_points] plt.plot( UpperCamelCase , UpperCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(UpperCamelCase , UpperCamelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
55
from numpy import exp, pi, sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
62
0
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Any ) ->Union[str, Any]: '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase__ ) for s in shape] )}.npy""" def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' super().tearDown() gc.collect() def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str=0 , lowerCamelCase__ : int=(4, 4, 64, 64) , lowerCamelCase__ : Union[str, Any]=False ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) , dtype=lowerCamelCase__ ) return image def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Dict="CompVis/stable-diffusion-v1-4" ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase : Union[str, Any] = "bf16" if fpaa else None _UpperCAmelCase : Any = FlaxUNetaDConditionModel.from_pretrained( lowerCamelCase__ , subfolder="unet" , dtype=lowerCamelCase__ , revision=lowerCamelCase__ ) return model, params def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : List[Any]=(4, 77, 7_68) , lowerCamelCase__ : Optional[int]=False ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) , dtype=lowerCamelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 10_00, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->str: '''simple docstring''' _UpperCAmelCase : int = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=lowerCamelCase__ ) _UpperCAmelCase : List[str] = self.get_latents(lowerCamelCase__ , fpaa=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_encoder_hidden_states(lowerCamelCase__ , fpaa=lowerCamelCase__ ) _UpperCAmelCase : Tuple = model.apply( {"params": params} , lowerCamelCase__ , jnp.array(lowerCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase__ , ).sample assert sample.shape == latents.shape _UpperCAmelCase : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase : str = jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 10_00, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.get_latents(lowerCamelCase__ , shape=(4, 4, 96, 96) , fpaa=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.get_encoder_hidden_states(lowerCamelCase__ , shape=(4, 77, 10_24) , fpaa=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = model.apply( {"params": params} , lowerCamelCase__ , jnp.array(lowerCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase__ , ).sample assert sample.shape == latents.shape _UpperCAmelCase : List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase : Dict = jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 )
350
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("CPU" , font_size=24 ) _UpperCAmelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("GPU" , font_size=24 ) _UpperCAmelCase : str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) _UpperCAmelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : int = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() _UpperCAmelCase : Dict = 0.4_6 / 4 _UpperCAmelCase : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
322
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a :Union[str, Any] = logging.get_logger(__name__) a :Optional[Any] = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :str = """instructblip_vision_model""" def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=1E-6 , _a=0.0 , _a=1E-1_0 , _a=True , **_a , ) -> Any: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : Dict = image_size SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : Dict = qkv_bias @classmethod def _a ( cls , _a , **_a ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_a ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": SCREAMING_SNAKE_CASE__ : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = """instructblip_qformer""" def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-1_2 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=_a , **_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = hidden_act SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : str = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[int] = position_embedding_type SCREAMING_SNAKE_CASE__ : Any = cross_attention_frequency SCREAMING_SNAKE_CASE__ : Tuple = encoder_hidden_size @classmethod def _a ( cls , _a , **_a ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_a ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": SCREAMING_SNAKE_CASE__ : Optional[int] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = """instructblip""" _SCREAMING_SNAKE_CASE :Union[str, Any] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ) -> List[Any]: """simple docstring""" super().__init__(**_a ) if vision_config is None: SCREAMING_SNAKE_CASE__ : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: SCREAMING_SNAKE_CASE__ : Tuple = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) SCREAMING_SNAKE_CASE__ : Dict = InstructBlipVisionConfig(**_a ) SCREAMING_SNAKE_CASE__ : Any = InstructBlipQFormerConfig(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" SCREAMING_SNAKE_CASE__ : Optional[int] = CONFIG_MAPPING[text_model_type](**_a ) SCREAMING_SNAKE_CASE__ : Dict = self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE__ : str = self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE__ : Dict = num_query_tokens SCREAMING_SNAKE_CASE__ : Any = self.vision_config.hidden_size SCREAMING_SNAKE_CASE__ : str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1.0 SCREAMING_SNAKE_CASE__ : int = 0.02 @classmethod def _a ( cls , _a , _a , _a , **_a , ) -> int: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ : Any = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ : int = self.qformer_config.to_dict() SCREAMING_SNAKE_CASE__ : Tuple = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ : List[Any] = self.__class__.model_type return output
132
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __a : '''simple docstring''' def __init__( self , _a , _a=13 , _a=2 , _a=24 , _a=16 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , _a=2 , _a=2 , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : str = max_length SCREAMING_SNAKE_CASE__ : Optional[Any] = num_mel_bins SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = scope SCREAMING_SNAKE_CASE__ : List[str] = frequency_stride SCREAMING_SNAKE_CASE__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE__ : Optional[int] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE__ : Any = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE__ : Any = num_patches + 2 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE__ : int = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, input_values, labels def _a ( self ) -> Union[str, Any]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ASTModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""input_values""": input_values} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Dict = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = False _SCREAMING_SNAKE_CASE :Any = False _SCREAMING_SNAKE_CASE :Union[str, Any] = False _SCREAMING_SNAKE_CASE :Tuple = False def _a ( self , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ASTModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _a ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def _a ( self ) -> List[str]: """simple docstring""" pass def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Any = model_class(_a ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Dict = ["""input_values"""] self.assertListEqual(arg_names[:1] , _a ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = ASTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( ) -> int: SCREAMING_SNAKE_CASE__ : List[Any] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torchaudio.load(__lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __a (unittest.TestCase): '''simple docstring''' @cached_property def _a ( self ) -> int: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_feature_extractor SCREAMING_SNAKE_CASE__ : Optional[Any] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Dict = self.default_feature_extractor SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_audio() SCREAMING_SNAKE_CASE__ : List[str] = audio.squeeze().numpy() SCREAMING_SNAKE_CASE__ : List[str] = feature_extractor(_a , sampling_rate=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**_a ) # verify the logits SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _a ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
132
1
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[Any] = ['''input_values''', '''attention_mask'''] def __init__( self, A = 1, A = 16_000, A = 0.0, A = False, A = 80, A = 16, A = 64, A = "hann_window", A = 1.0, A = 80, A = 7_600, A = 1E-10, A = 2, A = True, **A, ): '''simple docstring''' super().__init__(feature_size=A, sampling_rate=A, padding_value=A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = return_attention_mask SCREAMING_SNAKE_CASE : str = num_mel_bins SCREAMING_SNAKE_CASE : List[Any] = hop_length SCREAMING_SNAKE_CASE : int = win_length SCREAMING_SNAKE_CASE : List[Any] = win_function SCREAMING_SNAKE_CASE : Optional[int] = frame_signal_scale SCREAMING_SNAKE_CASE : Any = fmin SCREAMING_SNAKE_CASE : str = fmax SCREAMING_SNAKE_CASE : Optional[int] = mel_floor SCREAMING_SNAKE_CASE : List[Any] = reduction_factor SCREAMING_SNAKE_CASE : str = win_length * sampling_rate // 1_000 SCREAMING_SNAKE_CASE : Optional[int] = hop_length * sampling_rate // 1_000 SCREAMING_SNAKE_CASE : str = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE : Dict = (self.n_fft // 2) + 1 SCREAMING_SNAKE_CASE : int = window_function(window_length=self.sample_size, name=self.win_function, periodic=A ) SCREAMING_SNAKE_CASE : int = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.num_mel_bins, min_frequency=self.fmin, max_frequency=self.fmax, sampling_rate=self.sampling_rate, norm='slaney', mel_scale='slaney', ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers', A, ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers', A, ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ ( A, A, A = 0.0 ): '''simple docstring''' if attention_mask is not None: SCREAMING_SNAKE_CASE : Any = np.array(A, np.intaa ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for vector, length in zip(A, attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE : int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE : Dict = padding_value normed_input_values.append(A ) else: SCREAMING_SNAKE_CASE : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def UpperCamelCase_ ( self, A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = spectrogram( A, window=self.window, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, mel_filters=self.mel_filters, mel_floor=self.mel_floor, log_mel='log10', ) return log_mel_spec.T def __call__( self, A = None, A = None, A = False, A = None, A = False, A = None, A = None, A = None, A = None, **A, ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self._process_audio( A, A, A, A, A, A, A, A, **A, ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = None if audio_target is not None: SCREAMING_SNAKE_CASE : Optional[int] = self._process_audio( A, A, A, A, A, A, A, A, **A, ) if inputs is None: return inputs_target else: SCREAMING_SNAKE_CASE : Tuple = inputs_target['input_values'] SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE : int = decoder_attention_mask return inputs def UpperCamelCase_ ( self, A, A = False, A = False, A = None, A = False, A = None, A = None, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = isinstance(A, np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : Tuple = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : str = [np.asarray(A, dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Union[str, Any] = speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : str = [speech] # needed to make pad() work on spectrogram inputs SCREAMING_SNAKE_CASE : Optional[int] = self.feature_size # convert into correct format for padding if is_target: SCREAMING_SNAKE_CASE : str = [self._extract_mel_features(A ) for waveform in speech] SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature({'input_values': features} ) SCREAMING_SNAKE_CASE : int = self.num_mel_bins else: SCREAMING_SNAKE_CASE : List[str] = BatchFeature({'input_values': speech} ) SCREAMING_SNAKE_CASE : List[str] = self.pad( A, padding=A, max_length=A, truncation=A, pad_to_multiple_of=A, return_attention_mask=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = feature_size_hack # convert input values to correct format SCREAMING_SNAKE_CASE : Optional[Any] = padded_inputs['input_values'] if not isinstance(input_values[0], np.ndarray ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for array in input_values] elif ( not isinstance(A, np.ndarray ) and isinstance(input_values[0], np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): SCREAMING_SNAKE_CASE : Tuple = [array.astype(np.floataa ) for array in input_values] elif isinstance(A, np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : List[str] = input_values.astype(np.floataa ) # convert attention_mask to correct format SCREAMING_SNAKE_CASE : Optional[int] = padded_inputs.get('attention_mask' ) if attention_mask is not None: SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(A, dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: SCREAMING_SNAKE_CASE : Union[str, Any] = ( attention_mask if self._get_padding_strategies(A, max_length=A ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE : Tuple = self.zero_mean_unit_var_norm( padded_inputs['input_values'], attention_mask=A, padding_value=self.padding_value ) if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[Any] = padded_inputs.convert_to_tensors(A ) return padded_inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. SCREAMING_SNAKE_CASE : str = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
246
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCamelCase_ = logging.get_logger(__name__) @add_end_docstrings( SCREAMING_SNAKE_CASE , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.framework == "tf": SCREAMING_SNAKE_CASE : List[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=A ) else: raise ValueError('Unsupported framework' ) return masked_index def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_masked_index(A ) SCREAMING_SNAKE_CASE : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask', self.model.base_model_prefix, F"No mask_token ({self.tokenizer.mask_token}) found on the input", ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if isinstance(A, A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def UpperCamelCase_ ( self, A, A=None, **A ): '''simple docstring''' if return_tensors is None: SCREAMING_SNAKE_CASE : Dict = self.framework SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(A, return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model(**A ) SCREAMING_SNAKE_CASE : List[str] = model_inputs['input_ids'] return model_outputs def UpperCamelCase_ ( self, A, A=5, A=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: SCREAMING_SNAKE_CASE : List[str] = target_ids.shape[0] SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs['input_ids'][0] SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs['logits'] if self.framework == "tf": SCREAMING_SNAKE_CASE : Dict = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] SCREAMING_SNAKE_CASE : Tuple = outputs.numpy() SCREAMING_SNAKE_CASE : Any = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE : List[Any] = stable_softmax(A, axis=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.gather_nd(tf.squeeze(A, 0 ), target_ids.reshape(-1, 1 ) ) SCREAMING_SNAKE_CASE : Optional[int] = tf.expand_dims(A, 0 ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.math.top_k(A, k=A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = topk.values.numpy(), topk.indices.numpy() else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample SCREAMING_SNAKE_CASE : Optional[int] = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE : Any = logits.softmax(dim=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE : int = probs[..., target_ids] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = probs.topk(A ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[str] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist() ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = [] for v, p in zip(_values, _predictions ): # Copy is important since we're going to modify this array in place SCREAMING_SNAKE_CASE : Tuple = input_ids.numpy().copy() if target_ids is not None: SCREAMING_SNAKE_CASE : Any = target_ids[p].tolist() SCREAMING_SNAKE_CASE : List[Any] = p # Filter padding out: SCREAMING_SNAKE_CASE : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.decode(A, skip_special_tokens=A ) SCREAMING_SNAKE_CASE : List[Any] = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' if isinstance(A, A ): SCREAMING_SNAKE_CASE : List[Any] = [targets] try: SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.get_vocab() except Exception: SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[str] = [] for target in targets: SCREAMING_SNAKE_CASE : Dict = vocab.get(A, A ) if id_ is None: SCREAMING_SNAKE_CASE : Dict = self.tokenizer( A, add_special_tokens=A, return_attention_mask=A, return_token_type_ids=A, max_length=1, truncation=A, )['input_ids'] if len(A ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " 'We cannot replace it with anything meaningful, ignoring it' ) continue SCREAMING_SNAKE_CASE : List[Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) SCREAMING_SNAKE_CASE : List[str] = list(set(A ) ) if len(A ) == 0: raise ValueError('At least one target must be provided when passed.' ) SCREAMING_SNAKE_CASE : Any = np.array(A ) return target_ids def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = {} if targets is not None: SCREAMING_SNAKE_CASE : Any = self.get_target_ids(A, A ) SCREAMING_SNAKE_CASE : str = target_ids if top_k is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask', self.model.base_model_prefix, 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self, A, *A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = super().__call__(A, **A ) if isinstance(A, A ) and len(A ) == 1: return outputs[0] return outputs
246
1
from sklearn.metrics import recall_score import datasets __snake_case = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' __snake_case = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' __snake_case = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=1 , snake_case__="binary" , snake_case__=None , snake_case__="warn" , ) -> int: '''simple docstring''' UpperCAmelCase : Dict =recall_score( __UpperCamelCase , __UpperCamelCase , labels=__UpperCamelCase , pos_label=__UpperCamelCase , average=__UpperCamelCase , sample_weight=__UpperCamelCase , zero_division=__UpperCamelCase , ) return {"recall": float(__UpperCamelCase ) if score.size == 1 else score}
348
"""simple docstring""" _snake_case : Optional[int] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
292
0
"""simple docstring""" from manim import * class _A ( lowerCAmelCase ): def A__ ( self ): """simple docstring""" lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.2_5 , width=0.2_5 ) lowercase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""CPU""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""GPU""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""Model""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) lowercase = [] lowercase = [] lowercase = [] for i, rect in enumerate(__lowerCAmelCase ): rect.set_stroke(__lowerCAmelCase ) lowercase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCAmelCase , buff=0.0 ) self.add(__lowerCAmelCase ) model_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""Loaded Checkpoint""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowerCAmelCase ) lowercase = [] lowercase = [] for i, rect in enumerate(__lowerCAmelCase ): lowercase = fill.copy().set_fill(__lowerCAmelCase , opacity=0.7 ) target.move_to(__lowerCAmelCase ) ckpt_arr.append(__lowerCAmelCase ) lowercase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) lowercase = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCAmelCase ) lowercase = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowercase = [meta_mem.copy() for i in range(6 )] lowercase = [meta_mem.copy() for i in range(6 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""Disk""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) , Write(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) ) lowercase = [] for i, rect in enumerate(__lowerCAmelCase ): lowercase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(FadeOut(__lowerCAmelCase ) ) lowercase = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) ) self.play( FadeOut(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) , ) self.wait()
32
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=[]): SCREAMING_SNAKE_CASE = size[0] - overlap_pixels * 2 SCREAMING_SNAKE_CASE = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels SCREAMING_SNAKE_CASE = np.ones((size_y, size_x) , dtype=np.uinta) * 255 SCREAMING_SNAKE_CASE = np.pad(_UpperCAmelCase , mode='linear_ramp' , pad_width=_UpperCAmelCase , end_values=0) if "l" in remove_borders: SCREAMING_SNAKE_CASE = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: SCREAMING_SNAKE_CASE = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: SCREAMING_SNAKE_CASE = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: SCREAMING_SNAKE_CASE = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): return max(_UpperCAmelCase , min(_UpperCAmelCase , _UpperCAmelCase)) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): return ( clamp(rect[0] , min[0] , max[0]), clamp(rect[1] , min[1] , max[1]), clamp(rect[2] , min[0] , max[0]), clamp(rect[3] , min[1] , max[1]), ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = list(_UpperCAmelCase) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap SCREAMING_SNAKE_CASE = clamp_rect(_UpperCAmelCase , [0, 0] , [image_size[0], image_size[1]]) return rect def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1])) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC).crop( (slice_x, 0, slice_x + original_slice, tile.size[1])) , (0, 0) , ) result.paste(_UpperCAmelCase , (original_slice, 0)) return result def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) SCREAMING_SNAKE_CASE = tile.crop(_UpperCAmelCase) return tile def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = n % d return n - divisor class _snake_case ( A__ ): def __init__( self , a , a , a , a , a , a , a = 350 , ) -> int: super().__init__( vae=a , text_encoder=a , tokenizer=a , unet=a , low_res_scheduler=a , scheduler=a , max_noise_level=a , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , **a) -> Tuple: torch.manual_seed(0) SCREAMING_SNAKE_CASE = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size), min(image.size[0] , (x + 1) * tile_size), min(image.size[1] , (y + 1) * tile_size), ) SCREAMING_SNAKE_CASE = add_overlap_rect(a , a , image.size) SCREAMING_SNAKE_CASE = image.crop(a) SCREAMING_SNAKE_CASE = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] SCREAMING_SNAKE_CASE = translated_slice_x - (original_image_slice / 2) SCREAMING_SNAKE_CASE = max(0 , a) SCREAMING_SNAKE_CASE = squeeze_tile(a , a , a , a) SCREAMING_SNAKE_CASE = to_input.size SCREAMING_SNAKE_CASE = to_input.resize((tile_size, tile_size) , Image.BICUBIC) SCREAMING_SNAKE_CASE = super(a , self).__call__(image=a , **a).images[0] SCREAMING_SNAKE_CASE = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC) SCREAMING_SNAKE_CASE = unsqueeze_tile(a , a) SCREAMING_SNAKE_CASE = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC) SCREAMING_SNAKE_CASE = [] if x == 0: remove_borders.append('l') elif crop_rect[2] == image.size[0]: remove_borders.append('r') if y == 0: remove_borders.append('t') elif crop_rect[3] == image.size[1]: remove_borders.append('b') SCREAMING_SNAKE_CASE = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=a) , mode='L' , ) final_image.paste( a , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , a) @torch.no_grad() def __call__( self , a , a , a = 75 , a = 9.0 , a = 50 , a = None , a = 1 , a = 0.0 , a = None , a = None , a = None , a = 1 , a = 128 , a = 32 , a = 32 , ) -> Optional[Any]: SCREAMING_SNAKE_CASE = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4)) SCREAMING_SNAKE_CASE = math.ceil(image.size[0] / tile_size) SCREAMING_SNAKE_CASE = math.ceil(image.size[1] / tile_size) SCREAMING_SNAKE_CASE = tcx * tcy SCREAMING_SNAKE_CASE = 0 for y in range(a): for x in range(a): self._process_tile( a , a , a , a , a , a , a , prompt=a , num_inference_steps=a , guidance_scale=a , noise_level=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image}) return final_image def lowerCamelCase__ (): # Run a demo SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE = StableDiffusionTiledUpscalePipeline.from_pretrained(_UpperCAmelCase , revision='fp16' , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE = pipe.to('cuda') SCREAMING_SNAKE_CASE = Image.open('../../docs/source/imgs/diffusers_library.jpg') def callback(_UpperCAmelCase): print(F'''progress: {obj['progress']:.4f}''') obj["image"].save('diffusers_library_progress.jpg') SCREAMING_SNAKE_CASE = pipe(image=_UpperCAmelCase , prompt='Black font, white background, vector' , noise_level=40 , callback=_UpperCAmelCase) final_image.save('diffusers_library.jpg') if __name__ == "__main__": main()
137
import os def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'triangle.txt') with open(_UpperCAmelCase) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = [] for line in triangle: SCREAMING_SNAKE_CASE = [] for number in line.strip().split(' '): numbers_from_line.append(int(_UpperCAmelCase)) a.append(_UpperCAmelCase) for i in range(1 , len(_UpperCAmelCase)): for j in range(len(a[i])): SCREAMING_SNAKE_CASE = a[i - 1][j] if j != len(a[i - 1]) else 0 SCREAMING_SNAKE_CASE = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCAmelCase , _UpperCAmelCase) return max(a[-1]) if __name__ == "__main__": print(solution())
137
1
"""simple docstring""" __lowerCamelCase = tuple[float, float, float] __lowerCamelCase = tuple[float, float, float] def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = end_pointa[0] - end_pointa[0] A__ = end_pointa[1] - end_pointa[1] A__ = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = ab[1] * ac[2] - ab[2] * ac[1] # *i A__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j A__ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" return tuple(round(UpperCamelCase__ , UpperCamelCase__ ) for x in vector ) == (0, 0, 0) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 10 ): """simple docstring""" A__ = create_vector(UpperCamelCase__ , UpperCamelCase__ ) A__ = create_vector(UpperCamelCase__ , UpperCamelCase__ ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ )
356
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm __lowerCamelCase = 20_48 __lowerCamelCase = 40_96 __lowerCamelCase = 42 __lowerCamelCase = os.environ.pop("PROCESS_TRAIN", "false") __lowerCamelCase = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" def choose_first(UpperCamelCase__ , UpperCamelCase__=False ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: A__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: A__ = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a A__ = {'id': example['id']} A__ = example['annotations'] A__ = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: A__ = ['yes'] if 1 in yes_no_answer else ['no'] A__ = A__ = [] A__ = A__ = [] A__ = ['<cls>'] else: A__ = ['short'] A__ = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available A__ = ['long'] A__ = choose_first(annotation['long_answer'] , is_long_answer=UpperCamelCase__ ) A__ = [] answer.update(UpperCamelCase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: A__ = True else: A__ = False A__ = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , UpperCamelCase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=False ): """simple docstring""" A__ = _get_single_answer(UpperCamelCase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = example['document']['tokens'] A__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples A__ = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 A__ = example['document']['tokens'] A__ = answer['start_token'] A__ = answer['end_token'] A__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 A__ = ' '.join(context[start_token:end_token] ) # checking above code if assertion: A__ = doc['is_html'][answer['start_token'] : answer['end_token']] A__ = doc['token'][answer['start_token'] : answer['end_token']] A__ = ' '.join([old[i] for i in range(len(UpperCamelCase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , UpperCamelCase__ , end='\n' ) print('Old:' , UpperCamelCase__ , end='\n\n' ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_048 , UpperCamelCase__=4_096 , UpperCamelCase__=True ): """simple docstring""" A__ = get_context_and_ans(UpperCamelCase__ , assertion=UpperCamelCase__ ) A__ = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } A__ = tokenizer(example['question']['text'] , out['context'] ).input_ids A__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = [] A__ = [] A__ = input_ids[:q_len] A__ = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCamelCase__ ), "end_token": [-100] * len(UpperCamelCase__ ), "category": category, }, } A__ = out['context'].split() A__ = splitted_context[answer['end_token']] A__ = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=UpperCamelCase__ , ).input_ids ) A__ = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=UpperCamelCase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token A__ = len(tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 A__ = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive A__ = answer['start_token'] A__ = answer['end_token'] if assertion: A__ = tokenizer.decode(UpperCamelCase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , UpperCamelCase__ , end='\n\n' ) if len(UpperCamelCase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } A__ = input_ids[:q_len] A__ = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) A__ = [] A__ = [] A__ = [] A__ = [] # null, yes, no, long, short for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: A__ = start_token - i + q_len A__ = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: A__ = -100 A__ = -100 answers_category.append('null' ) A__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCamelCase__ ) answers_end_token.append(UpperCamelCase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(UpperCamelCase__ ) ) print('Old:' , tokenizer.decode(UpperCamelCase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_048 , UpperCamelCase__=4_096 , UpperCamelCase__=False ): """simple docstring""" A__ = get_strided_contexts_and_ans( UpperCamelCase__ , UpperCamelCase__ , doc_stride=UpperCamelCase__ , max_length=UpperCamelCase__ , assertion=UpperCamelCase__ , ) return example def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with jsonlines.open(UpperCamelCase__ , 'a' ) as writer: for example in tqdm(UpperCamelCase__ , total=len(UpperCamelCase__ ) , desc='Saving samples ... ' ): A__ = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __lowerCamelCase = load_dataset("natural_questions") __lowerCamelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") __lowerCamelCase = data["train" if PROCESS_TRAIN == "true" else "validation"] __lowerCamelCase = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } __lowerCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __lowerCamelCase = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) __lowerCamelCase = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
154
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a_ = list[list[float | int]] def _a( UpperCamelCase__ : Matrix, UpperCamelCase__ : Matrix ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(size + 1 )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float for row in range(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =matrix[row][col] SCREAMING_SNAKE_CASE__ : Union[str, Any] =vector[row][0] SCREAMING_SNAKE_CASE__ : List[str] =0 SCREAMING_SNAKE_CASE__ : Tuple =0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE__ : int =max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCamelCase__, UpperCamelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =augmented[pivot_row], augmented[row] for rowa in range(row + 1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE__ : List[str] =0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, UpperCamelCase__ ): for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Dict =augmented[row][col] / augmented[col][col] for cola in range(UpperCamelCase__, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 1_0 )] for row in range(UpperCamelCase__ ) ] def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix =[[0] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int for x_val, y_val in enumerate(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : str =(x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE__ : List[str] =y_val SCREAMING_SNAKE_CASE__ : Any =solve(UpperCamelCase__, UpperCamelCase__ ) def interpolated_func(UpperCamelCase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCamelCase__ ) ) return interpolated_func def _a( UpperCamelCase__ : int ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def _a( UpperCamelCase__ : Callable[[int], int] = question_function, UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : list[int] =[func(UpperCamelCase__ ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE__ : list[Callable[[int], int]] =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Callable[[int], int] SCREAMING_SNAKE_CASE__ : int for poly in polynomials: SCREAMING_SNAKE_CASE__ : Optional[Any] =1 while func(UpperCamelCase__ ) == poly(UpperCamelCase__ ): x_val += 1 ret += poly(UpperCamelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
152
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
from itertools import count def __lowercase ( lowerCamelCase : int = 50 ): UpperCamelCase_ : Optional[Any] = [1] * min_block_length for n in count(lowerCamelCase ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
from typing import Any class _lowercase : def __init__( self : Optional[Any] , snake_case : Any ) -> Any: """simple docstring""" UpperCamelCase_ : Union[str, Any] = data UpperCamelCase_ : Any = None def __repr__( self : int ) -> str: """simple docstring""" return f"Node({self.data})" class _lowercase : def __init__( self : str ) -> int: """simple docstring""" UpperCamelCase_ : int = None def __iter__( self : Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : Tuple = self.head while node: yield node.data UpperCamelCase_ : Dict = node.next def __len__( self : int ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self : List[Any] ) -> str: """simple docstring""" return "->".join([str(snake_case ) for item in self] ) def __getitem__( self : Union[str, Any] , snake_case : int ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Any , snake_case : int , snake_case : Any ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) UpperCamelCase_ : int = self.head for _ in range(snake_case ): UpperCamelCase_ : Union[str, Any] = current.next UpperCamelCase_ : Any = data def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Any ) -> None: """simple docstring""" self.insert_nth(len(self ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Any ) -> None: """simple docstring""" self.insert_nth(0 , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : int , snake_case : Any ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) UpperCamelCase_ : Union[str, Any] = Node(snake_case ) if self.head is None: UpperCamelCase_ : Union[str, Any] = new_node elif index == 0: UpperCamelCase_ : int = self.head # link new_node to head UpperCamelCase_ : List[str] = new_node else: UpperCamelCase_ : List[str] = self.head for _ in range(index - 1 ): UpperCamelCase_ : Union[str, Any] = temp.next UpperCamelCase_ : Dict = temp.next UpperCamelCase_ : Optional[Any] = new_node def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> None: # print every node data """simple docstring""" print(self ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" return self.delete_nth(0 ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : int = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) UpperCamelCase_ : str = self.head # default first node if index == 0: UpperCamelCase_ : List[Any] = self.head.next else: UpperCamelCase_ : Dict = self.head for _ in range(index - 1 ): UpperCamelCase_ : Tuple = temp.next UpperCamelCase_ : List[Any] = temp.next UpperCamelCase_ : Dict = temp.next.next return delete_node.data def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> bool: """simple docstring""" return self.head is None def SCREAMING_SNAKE_CASE__ ( self : str ) -> None: """simple docstring""" UpperCamelCase_ : str = None UpperCamelCase_ : int = self.head while current: # Store the current node's next node. UpperCamelCase_ : Tuple = current.next # Make the current node's next point backwards UpperCamelCase_ : Tuple = prev # Make the previous node be the current node UpperCamelCase_ : List[Any] = current # Make the current node the next node (to progress iteration) UpperCamelCase_ : Dict = next_node # Return prev in order to put the head at the end UpperCamelCase_ : Union[str, Any] = prev def __lowercase ( ): UpperCamelCase_ : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(lowerCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowerCamelCase ) == i linked_list.insert_nth(lowerCamelCase , i + 1 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowerCamelCase ) == 9 assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCamelCase_ : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(-8 , 1 ) ) def __lowercase ( ): UpperCamelCase_ : List[str] = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] UpperCamelCase_ : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(lowerCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowerCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase_ : List[Any] = linked_list.delete_head() assert result == -9 assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase_ : Tuple = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase_ : Optional[Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowerCamelCase ) assert ( str(lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowerCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __lowercase ( ): from doctest import testmod testmod() UpperCamelCase_ : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(lowerCamelCase ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) UpperCamelCase_ : Optional[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(lowerCamelCase ) print(F"length of linked_list is : {len(lowerCamelCase )}" ) if __name__ == "__main__": main()
50
1
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int = 50 ) -> int: _UpperCAmelCase : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
246
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ : List[Any] = '''src/transformers''' lowerCamelCase__ : Union[str, Any] = '''docs/source/en''' lowerCamelCase__ : Optional[int] = '''.''' def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: with open(_lowerCAmelCase, """r""", encoding="""utf-8""", newline="""\n""" ) as f: _UpperCAmelCase : str = f.readlines() # Find the start prompt. _UpperCAmelCase : Dict = 0 while not lines[start_index].startswith(_lowerCAmelCase ): start_index += 1 start_index += 1 _UpperCAmelCase : List[Any] = start_index while not lines[end_index].startswith(_lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ : Dict = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. lowerCamelCase__ : Union[str, Any] = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') lowerCamelCase__ : Optional[int] = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ : Any = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] ) -> Any: _UpperCAmelCase : Optional[int] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""", _lowerCAmelCase ) return [m.group(0 ) for m in matches] def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : int ) -> Any: _UpperCAmelCase : Union[str, Any] = 2 if text == """✅""" or text == """❌""" else len(_lowerCAmelCase ) _UpperCAmelCase : str = (width - text_length) // 2 _UpperCAmelCase : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCamelCase ( ) -> List[Any]: _UpperCAmelCase : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase : List[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCAmelCase : int = {name: config.replace("""Config""", """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCAmelCase : Dict = collections.defaultdict(_lowerCAmelCase ) _UpperCAmelCase : List[str] = collections.defaultdict(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = collections.defaultdict(_lowerCAmelCase ) _UpperCAmelCase : List[str] = collections.defaultdict(_lowerCAmelCase ) _UpperCAmelCase : str = collections.defaultdict(_lowerCAmelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(_lowerCAmelCase ): _UpperCAmelCase : List[str] = None if attr_name.endswith("""Tokenizer""" ): _UpperCAmelCase : Optional[int] = slow_tokenizers _UpperCAmelCase : Optional[int] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): _UpperCAmelCase : List[Any] = fast_tokenizers _UpperCAmelCase : str = attr_name[:-13] elif _re_tf_models.match(_lowerCAmelCase ) is not None: _UpperCAmelCase : Tuple = tf_models _UpperCAmelCase : Any = _re_tf_models.match(_lowerCAmelCase ).groups()[0] elif _re_flax_models.match(_lowerCAmelCase ) is not None: _UpperCAmelCase : Any = flax_models _UpperCAmelCase : List[Any] = _re_flax_models.match(_lowerCAmelCase ).groups()[0] elif _re_pt_models.match(_lowerCAmelCase ) is not None: _UpperCAmelCase : Union[str, Any] = pt_models _UpperCAmelCase : List[Any] = _re_pt_models.match(_lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(_lowerCAmelCase ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCAmelCase : List[str] = True break # Try again after removing the last word in the name _UpperCAmelCase : Optional[Any] = """""".join(camel_case_split(_lowerCAmelCase )[:-1] ) # Let's build that table! _UpperCAmelCase : List[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCAmelCase : List[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCAmelCase : List[Any] = [len(_lowerCAmelCase ) + 2 for c in columns] _UpperCAmelCase : Optional[int] = max([len(_lowerCAmelCase ) for name in model_names] ) + 2 # Build the table per se _UpperCAmelCase : Tuple = """|""" + """|""".join([_center_text(_lowerCAmelCase, _lowerCAmelCase ) for c, w in zip(_lowerCAmelCase, _lowerCAmelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" _UpperCAmelCase : Dict = {True: """✅""", False: """❌"""} for name in model_names: _UpperCAmelCase : Optional[int] = model_name_to_prefix[name] _UpperCAmelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_lowerCAmelCase, _lowerCAmelCase ) for l, w in zip(_lowerCAmelCase, _lowerCAmelCase )] ) + "|\n" return table def UpperCamelCase ( _lowerCAmelCase : Any=False ) -> Dict: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = _find_text_in_file( filename=os.path.join(_lowerCAmelCase, """index.md""" ), start_prompt="""<!--This table is updated automatically from the auto modules""", end_prompt="""<!-- End table-->""", ) _UpperCAmelCase : List[str] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_lowerCAmelCase, """index.md""" ), """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase__ : List[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
246
1
'''simple docstring''' from collections.abc import Callable import numpy as np def a_ ( __snake_case : Callable , __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : float ) -> np.array: """simple docstring""" lowerCamelCase_ =int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ =np.zeros((n + 1,) ) lowerCamelCase_ =ya lowerCamelCase_ =xa for k in range(__snake_case ): lowerCamelCase_ =y[k] + step_size * ode_func(__snake_case , y[k] ) lowerCamelCase_ =y[k] + ( (step_size / 2) * (ode_func(__snake_case , y[k] ) + ode_func(x + step_size , __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase_ : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ) -> None: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
32
UpperCAmelCase_ : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ : str = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int , __A : int ) -> str: """simple docstring""" assert len(str(__A ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a_ : List[str] = year // 1_00 a_ : Optional[int] = (5 * (century % 4) + 2) % 7 a_ : List[str] = year % 1_00 a_ : str = centurian % 12 a_ : List[str] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a_ : Any = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) a_ : Any = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
32
1
'''simple docstring''' import os import string import sys __A =1 << 8 __A ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __A =KEYMAP['up'] __A =KEYMAP['left'] if sys.platform == "win32": __A =[] __A ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __A =ord(str(i)) def _UpperCamelCase ( ): if os.name == "nt": import msvcrt UpperCAmelCase__ : str = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke UpperCAmelCase__ : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase__ : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase__ : Tuple = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) UpperCAmelCase__ : str = chr(KEYMAP["""esc"""] ) except KeyError: UpperCAmelCase__ : List[Any] = cha[1] else: UpperCAmelCase__ : Union[str, Any] = ch.decode(lowercase__ ) else: UpperCAmelCase__ : Any = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase__ : List[Any] = sys.stdin.fileno() UpperCAmelCase__ : str = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) UpperCAmelCase__ : str = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: UpperCAmelCase__ : str = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: UpperCAmelCase__ : int = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
363
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : str = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) UpperCAmelCase__ : List[str] = Vector() def snake_case__ ( self): UpperCAmelCase__ : Any = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(_lowerCamelCase) , """(0,0,0,0,0,1)""") def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4]) self.assertEqual(len(_lowerCamelCase) , 4) def snake_case__ ( self): UpperCAmelCase__ : List[str] = Vector([1, 2]) UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4, 5]) UpperCAmelCase__ : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) UpperCAmelCase__ : Union[str, Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def snake_case__ ( self): UpperCAmelCase__ : int = Vector([1, 2, 3]) UpperCAmelCase__ : Optional[Any] = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3]) UpperCAmelCase__ : Dict = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def snake_case__ ( self): UpperCAmelCase__ : Tuple = Vector([1, 2, 3]) UpperCAmelCase__ : Optional[int] = Vector([2, -1, 4]) # for test of dot product UpperCAmelCase__ : Any = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def snake_case__ ( self): self.assertEqual(str(zero_vector(10)).count("""0""") , 10) def snake_case__ ( self): self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def snake_case__ ( self): UpperCAmelCase__ : Any = Vector([1, 2, 3]) UpperCAmelCase__ : List[str] = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , _lowerCamelCase , _lowerCamelCase)) , """(3,4,7)""") def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 0, 0, 0, 0, 0]) UpperCAmelCase__ : Optional[int] = x.copy() self.assertEqual(str(_lowerCamelCase) , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : str = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(_lowerCamelCase) , """(0,1,0)""") def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Dict = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Tuple = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) UpperCAmelCase__ : List[Any] = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def snake_case__ ( self): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
283
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
161
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __UpperCamelCase ( _A : Dict=None ) ->Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""tpu-config""" , description=_description ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments lowerCamelCase_ =parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_A , default=_A , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_A , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_A , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) lowerCamelCase_ =parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_A , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Tuple ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): lowerCamelCase_ =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase_ =defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase_ =defaults.commands if not args.tpu_name: lowerCamelCase_ =defaults.tpu_name if not args.tpu_zone: lowerCamelCase_ =defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase_ ="""git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": lowerCamelCase_ ="""accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _A ): lowerCamelCase_ =f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: lowerCamelCase_ =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): lowerCamelCase_ =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase_ =["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowerCamelCase_ ="""; """.join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase_ =["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_A )}' ) return subprocess.run(_A ) print("""Successfully setup pod.""" ) def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =tpu_command_parser() lowerCamelCase_ =parser.parse_args() tpu_command_launcher(_A )
154
0
import math import tensorflow as tf from packaging import version def __UpperCamelCase ( _A ): lowerCAmelCase_ = tf.convert_to_tensor(lowerCamelCase__ ) lowerCAmelCase_ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __UpperCamelCase ( _A ): lowerCAmelCase_ = tf.convert_to_tensor(lowerCamelCase__ ) lowerCAmelCase_ = tf.cast(math.pi , x.dtype ) lowerCAmelCase_ = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowerCAmelCase_ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__ , 3 )) )) return x * cdf def __UpperCamelCase ( _A ): lowerCAmelCase_ = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = tf.convert_to_tensor(lowerCamelCase__ ) lowerCAmelCase_ = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowerCAmelCase_ = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __UpperCamelCase ( _A ): lowerCAmelCase_ = tf.convert_to_tensor(lowerCamelCase__ ) lowerCAmelCase_ = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __UpperCamelCase ( _A ): return tf.clip_by_value(_gelu(lowerCamelCase__ ) , -10 , 10 ) def __UpperCamelCase ( _A , _A=-1 ): lowerCAmelCase_ , lowerCAmelCase_ = tf.split(lowerCamelCase__ , 2 , axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __UpperCamelCase ( _A ): return tf.keras.activations.gelu(lowerCamelCase__ , approximate=lowerCamelCase__ ) _A = tf.keras.activations.gelu _A = approximate_gelu_wrap else: _A = _gelu _A = _gelu_new _A = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __UpperCamelCase ( _A ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
350
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _A = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = generator.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''', torch_dtype=torch.floataa ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
167
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = 10 lowerCamelCase__ : int = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) lowerCamelCase__ : str = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(_UpperCAmelCase ) ), } , features=_UpperCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase__ : Dict = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=_UpperCAmelCase ) return filename # FILE_CONTENT + files _UpperCAmelCase : Optional[int] = """\ Text data. Second line of data.""" @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt' lowerCamelCase__ : Optional[int] = FILE_CONTENT with open(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase ) return filename @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[Any]: import bza lowerCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' lowerCamelCase__ : Any = bytes(_UpperCAmelCase , 'utf-8' ) with bza.open(_UpperCAmelCase , 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: import gzip lowerCamelCase__ : Any = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) lowerCamelCase__ : Optional[Any] = bytes(_UpperCAmelCase , 'utf-8' ) with gzip.open(_UpperCAmelCase , 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' lowerCamelCase__ : int = bytes(_UpperCAmelCase , 'utf-8' ) with lza.frame.open(_UpperCAmelCase , 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(_UpperCAmelCase , 'w' ) as archive: archive.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import tarfile lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(_UpperCAmelCase , 'w' ) as f: f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: import lzma lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' lowerCamelCase__ : Optional[Any] = bytes(_UpperCAmelCase , 'utf-8' ) with lzma.open(_UpperCAmelCase , 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import zipfile lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCamelCase__ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' lowerCamelCase__ : int = bytes(_UpperCAmelCase , 'utf-8' ) with zstd.open(_UpperCAmelCase , 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.xml' lowerCamelCase__ : Optional[int] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase ) return filename _UpperCAmelCase : Union[str, Any] = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] _UpperCAmelCase : List[Any] = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] _UpperCAmelCase : Optional[int] = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } _UpperCAmelCase : Any = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] _UpperCAmelCase : int = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : int = datasets.Dataset.from_dict(_UpperCAmelCase ) lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(_UpperCAmelCase ) ) as con: lowerCamelCase__ : List[str] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(_UpperCAmelCase , 'w' , newline='' ) as f: lowerCamelCase__ : str = csv.DictWriter(_UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(_UpperCAmelCase , 'w' , newline='' ) as f: lowerCamelCase__ : str = csv.DictWriter(_UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str: import bza lowerCamelCase__ : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(_UpperCAmelCase , 'rb' ) as f: lowerCamelCase__ : List[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_UpperCAmelCase , 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(_UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) ) f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) lowerCamelCase__ : List[str] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(_UpperCAmelCase , 'wb' ) as f: lowerCamelCase__ : Union[str, Any] = pq.ParquetWriter(_UpperCAmelCase , schema=_UpperCAmelCase ) lowerCamelCase__ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_UpperCAmelCase ) )] for k in DATA[0]} , schema=_UpperCAmelCase ) writer.write_table(_UpperCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase__ : Tuple = {'data': DATA} with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase__ : int = {'data': DATA_DICT_OF_LISTS} with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(_UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(_UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(_UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(_UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(_UpperCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(_UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(_UpperCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(_UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import gzip lowerCamelCase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(_UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(_UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import gzip lowerCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(_UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(_UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: lowerCamelCase__ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) ) f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(_UpperCAmelCase , 'w' ) as f: f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(_UpperCAmelCase , 'w' ) as f: f.add(_UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : int = ['0', '1', '2', '3'] lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(_UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Dict = ['0', '1', '2', '3'] lowerCamelCase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(_UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : List[Any] = ['0', '1', '2', '3'] lowerCamelCase__ : str = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(_UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) ) f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(_UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Optional[int] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) lowerCamelCase__ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( ) -> Dict: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) ) f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
50
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
1
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : str = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE : int = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : int = f'''\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '''.split() SCREAMING_SNAKE_CASE : str = [sys.executable] + distributed_args execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy() )
352
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
0
from collections.abc import Callable import numpy as np def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> np.array: __a = int(np.ceil((x_end - xa) / step_size ) ) __a = np.zeros((n + 1,) ) __a = ya __a = xa for k in range(a__ ): __a = y[k] + step_size * ode_func(a__ , y[k] ) __a = y[k] + ( (step_size / 2) * (ode_func(a__ , y[k] ) + ode_func(x + step_size , a__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
6
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
import string def UpperCamelCase ( snake_case__ : str ) -> None: for key in range(len(string.ascii_uppercase ) ): UpperCamelCase : Optional[int] = '' for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase : Tuple = string.ascii_uppercase.find(snake_case__ ) UpperCamelCase : str = num - key if num < 0: UpperCamelCase : List[str] = num + len(string.ascii_uppercase ) UpperCamelCase : List[str] = translated + string.ascii_uppercase[num] else: UpperCamelCase : Union[str, Any] = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def UpperCamelCase ( ) -> None: UpperCamelCase : Dict = input('Encrypted message: ' ) UpperCamelCase : Optional[int] = message.upper() decrypt(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
103
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def UpperCamelCase ( snake_case__ : Accelerator , snake_case__ : int = 16 ) -> Dict: UpperCamelCase : str = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case__ : Dict ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase : List[str] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase : str = 16 elif accelerator.mixed_precision != "no": UpperCamelCase : Dict = 8 else: UpperCamelCase : Union[str, Any] = None return tokenizer.pad( snake_case__ , padding='longest' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) UpperCamelCase : List[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase = mocked_dataloaders # noqa: F811 def UpperCamelCase ( snake_case__ : str , snake_case__ : List[Any] ) -> List[str]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , snake_case__ ) == "1": UpperCamelCase : List[str] = 2 # New Code # UpperCamelCase : Optional[int] = int(args.gradient_accumulation_steps ) UpperCamelCase : List[str] = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : Union[str, Any] = config['lr'] UpperCamelCase : Optional[int] = int(config['num_epochs'] ) UpperCamelCase : List[Any] = int(config['seed'] ) UpperCamelCase : List[str] = int(config['batch_size'] ) UpperCamelCase : Optional[Any] = evaluate.load('glue' , 'mrpc' ) set_seed(snake_case__ ) UpperCamelCase , UpperCamelCase : int = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase : List[str] = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler UpperCamelCase : Any = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() with LocalSGD( accelerator=snake_case__ , model=snake_case__ , local_sgd_steps=snake_case__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case__ ): UpperCamelCase : int = model(**snake_case__ ) UpperCamelCase : Union[str, Any] = output.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : Dict = model(**snake_case__ ) UpperCamelCase : Any = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase : Any = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) UpperCamelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , snake_case__ ) def UpperCamelCase ( ) -> Dict: UpperCamelCase : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case__ , default=snake_case__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=snake_case__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=snake_case__ , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase : str = parser.parse_args() UpperCamelCase : Tuple = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
103
1
import os _UpperCAmelCase : int = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[Any] = 0 while index < len(_UpperCAmelCase ) - 1: lowerCamelCase__ : Optional[int] = SYMBOLS[numerals[index]] lowerCamelCase__ : Optional[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : int = '' lowerCamelCase__ : Any = num // 1000 numerals += m_count * "M" num %= 1000 lowerCamelCase__ : str = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCamelCase__ : List[str] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = "/p089_roman.txt" ) -> int: lowerCamelCase__ : Tuple = 0 with open(os.path.dirname(_UpperCAmelCase ) + roman_numerals_filename ) as filea: lowerCamelCase__ : List[str] = filea.readlines() for line in lines: lowerCamelCase__ : Optional[int] = line.strip() lowerCamelCase__ : Union[str, Any] = parse_roman_numerals(_UpperCAmelCase ) lowerCamelCase__ : List[Any] = generate_roman_numerals(_UpperCAmelCase ) savings += len(_UpperCAmelCase ) - len(_UpperCAmelCase ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
50
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[] ): '''simple docstring''' lowerCamelCase : Optional[Any] = size[0] - overlap_pixels * 2 lowerCamelCase : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCamelCase : Tuple = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 lowerCamelCase : List[Any] = np.pad(SCREAMING_SNAKE_CASE_ , mode="linear_ramp" , pad_width=SCREAMING_SNAKE_CASE_ , end_values=0 ) if "l" in remove_borders: lowerCamelCase : Optional[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCamelCase : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCamelCase : List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCamelCase : Tuple = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return max(SCREAMING_SNAKE_CASE_ , min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCamelCase : Any = clamp_rect(SCREAMING_SNAKE_CASE_ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE_ , (original_slice, 0) ) return result def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCamelCase : int = tile.crop(SCREAMING_SNAKE_CASE_ ) return tile def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = n % d return n - divisor class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A , __A , __A , __A , __A , __A = 350 , ): """simple docstring""" super().__init__( vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , low_res_scheduler=__A , scheduler=__A , max_noise_level=__A , ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , **__A ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase : Tuple = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCamelCase : Union[str, Any] = add_overlap_rect(__A , __A , image.size ) lowerCamelCase : List[str] = image.crop(__A ) lowerCamelCase : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCamelCase : int = translated_slice_x - (original_image_slice / 2) lowerCamelCase : Optional[Any] = max(0 , __A ) lowerCamelCase : Tuple = squeeze_tile(__A , __A , __A , __A ) lowerCamelCase : Dict = to_input.size lowerCamelCase : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCamelCase : Dict = super(__A , self ).__call__(image=__A , **__A ).images[0] lowerCamelCase : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCamelCase : Optional[Any] = unsqueeze_tile(__A , __A ) lowerCamelCase : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCamelCase : int = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) lowerCamelCase : int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__A ) , mode="L" , ) final_image.paste( __A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __A ) @torch.no_grad() def __call__( self , __A , __A , __A = 75 , __A = 9.0 , __A = 50 , __A = None , __A = 1 , __A = 0.0 , __A = None , __A = None , __A = None , __A = 1 , __A = 128 , __A = 32 , __A = 32 , ): """simple docstring""" lowerCamelCase : Dict = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) lowerCamelCase : Union[str, Any] = math.ceil(image.size[0] / tile_size ) lowerCamelCase : Dict = math.ceil(image.size[1] / tile_size ) lowerCamelCase : str = tcx * tcy lowerCamelCase : int = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A , __A , __A , __A , __A , __A , __A , prompt=__A , num_inference_steps=__A , guidance_scale=__A , noise_level=__A , negative_prompt=__A , num_images_per_prompt=__A , eta=__A , generator=__A , latents=__A , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def lowercase_( ): '''simple docstring''' lowerCamelCase : Dict = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase : Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , revision="fp16" , torch_dtype=torch.floataa ) lowerCamelCase : Optional[Any] = pipe.to("cuda" ) lowerCamelCase : List[str] = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(SCREAMING_SNAKE_CASE_ ): print(f"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) lowerCamelCase : int = pipe(image=SCREAMING_SNAKE_CASE_ , prompt="Black font, white background, vector" , noise_level=40 , callback=SCREAMING_SNAKE_CASE_ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
283
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Dict = ShapEPipeline A : List[Any] = ['''prompt'''] A : Optional[int] = ['''prompt'''] A : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A : Optional[int] = False @property def UpperCamelCase_ ( self ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 8 @property def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) return CLIPTextModelWithProjection(A ) @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE : List[str] = PriorTransformer(**A ) return model @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE : Union[str, Any] = ShapERenderer(**A ) return model def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.dummy_prior SCREAMING_SNAKE_CASE : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : Dict = self.dummy_renderer SCREAMING_SNAKE_CASE : Optional[int] = HeunDiscreteScheduler( beta_schedule='exp', num_train_timesteps=1_024, prediction_type='sample', use_karras_sigmas=A, clip_sample=A, clip_sample_range=1.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = self.pipeline_class(**A ) SCREAMING_SNAKE_CASE : int = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs(A ) ) SCREAMING_SNAKE_CASE : Any = output.images[0] SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = torch_device == 'cpu' SCREAMING_SNAKE_CASE : List[str] = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=A, relax_max_difference=A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**A ) SCREAMING_SNAKE_CASE : str = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(A ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE : List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE : Dict = pipe(**A, num_images_per_prompt=A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) SCREAMING_SNAKE_CASE : Tuple = ShapEPipeline.from_pretrained('openai/shap-e' ) SCREAMING_SNAKE_CASE : List[str] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=A ).manual_seed(0 ) SCREAMING_SNAKE_CASE : str = pipe( 'a shark', generator=A, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A, A )
369
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "facebook/nllb-large-en-ro": 1_0_2_4, "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off UpperCamelCase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Any = ['''input_ids''', '''attention_mask'''] A : Dict = NllbTokenizer A : List[int] = [] A : List[int] = [] def __init__( self, A=None, A=None, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=None, A=None, A=None, A=False, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token SCREAMING_SNAKE_CASE : Tuple = legacy_behaviour super().__init__( vocab_file=A, tokenizer_file=A, bos_token=A, eos_token=A, sep_token=A, cls_token=A, unk_token=A, pad_token=A, mask_token=A, src_lang=A, tgt_lang=A, additional_special_tokens=A, legacy_behaviour=A, **A, ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : Optional[int] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : Optional[Any] = { lang_code: self.convert_tokens_to_ids(A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : Dict = src_lang if src_lang is not None else 'eng_Latn' SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self, A, A, A, A, **A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[Any] = self(A, add_special_tokens=A, return_tensors=A, **A ) SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : int = tgt_lang_id return inputs def UpperCamelCase_ ( self, A, A = "eng_Latn", A = None, A = "fra_Latn", **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[Any] = tgt_lang return super().prepare_seqaseq_batch(A, A, **A ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Tuple = [self.cur_lang_code] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Dict = [self.cur_lang_code] SCREAMING_SNAKE_CASE : str = [self.eos_token_id] SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return SCREAMING_SNAKE_CASE : int = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file, A ) return (out_vocab_file,)
246
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _A = 25_6047 _A = 25_6145 @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = NllbTokenizer UpperCAmelCase__ : Any = NllbTokenizerFast UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Dict = {} def _a ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase =NllbTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self ) -> Optional[int]: __UpperCamelCase =NllbTokenizer(A_ , keep_accents=A_ ) __UpperCamelCase =tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCamelCase =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _a ( self ) -> int: __UpperCamelCase =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =tokenizer_r.save_pretrained(A_ ) __UpperCamelCase =tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __UpperCamelCase =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way __UpperCamelCase =tokenizer_r.from_pretrained(A_ ) __UpperCamelCase =tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) __UpperCamelCase =tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way __UpperCamelCase =tokenizer_r.from_pretrained(A_ ) __UpperCamelCase =tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) __UpperCamelCase =tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCamelCase =tokenizer_r.from_pretrained(A_ ) __UpperCamelCase =tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) @require_torch def _a ( self ) -> List[Any]: if not self.test_seqaseq: return __UpperCamelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __UpperCamelCase =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __UpperCamelCase =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __UpperCamelCase =tokenizer.prepare_seqaseq_batch( src_texts=A_ , tgt_texts=A_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __UpperCamelCase =tokenizer.prepare_seqaseq_batch( A_ , tgt_texts=A_ , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __UpperCamelCase =tokenizer.prepare_seqaseq_batch( src_texts=A_ , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , A_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def _a ( self ) -> List[Any]: pass def _a ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =[AddedToken('<special>' , lstrip=A_ )] __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode('Hey this is a <special> token' ) __UpperCamelCase =tokenizer_r.encode('<special>' , add_special_tokens=A_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , **A_ , ) __UpperCamelCase =self.tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode('Hey this is a <special> token' ) __UpperCamelCase =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "facebook/nllb-200-distilled-600M" UpperCAmelCase__ : int = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] UpperCAmelCase__ : List[str] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] UpperCAmelCase__ : Optional[Any] = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def _a ( cls ) -> List[Any]: __UpperCamelCase =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __UpperCamelCase =1 return cls def _a ( self ) -> Tuple: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 256057 ) def _a ( self ) -> Dict: __UpperCamelCase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def _a ( self ) -> List[str]: self.assertIn(A_ , self.tokenizer.all_special_ids ) # fmt: off __UpperCamelCase =[RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on __UpperCamelCase =self.tokenizer.decode(A_ , skip_special_tokens=A_ ) __UpperCamelCase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def _a ( self ) -> Any: __UpperCamelCase =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , A_ ) __UpperCamelCase =10 __UpperCamelCase =self.tokenizer(A_ , max_length=A_ , truncation=A_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , A_ ) self.assertEqual(len(A_ ) , A_ ) def _a ( self ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [256203, 3] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) __UpperCamelCase =NllbTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_ ) @require_torch def _a ( self ) -> Dict: __UpperCamelCase =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __UpperCamelCase =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __UpperCamelCase =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A_ ) self.assertEqual(A_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _a ( self ) -> Any: __UpperCamelCase =self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors='pt' ) __UpperCamelCase =self.tokenizer( text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=10 , return_tensors='pt' ) __UpperCamelCase =targets['input_ids'] __UpperCamelCase =shift_tokens_right( A_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(A_ ) , { # A, test, EOS, en_XX 'input_ids': [[256047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 256057, } , ) @require_torch def _a ( self ) -> Optional[int]: __UpperCamelCase =True __UpperCamelCase =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) __UpperCamelCase =False __UpperCamelCase =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
62
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase_ ( _UpperCAmelCase = "" ): """simple docstring""" A_ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A_ : str = BeautifulSoup(requests.get(_UpperCAmelCase ).text , '''html.parser''' ) A_ : List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) A_ : List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_UpperCAmelCase , _UpperCAmelCase ) } def lowercase_ ( _UpperCAmelCase = "IMDb_Top_250_Movies.csv" ): """simple docstring""" A_ : Any = get_imdb_top_aaa_movies() with open(_UpperCAmelCase , '''w''' , newline='''''' ) as out_file: A_ : List[Any] = csv.writer(_UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
167
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness snake_case_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' snake_case_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' snake_case_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' snake_case_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' snake_case_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) ,homepage='https://github.com/openai/human-eval' ,codebase_urls=['https://github.com/openai/human-eval'] ,reference_urls=['https://github.com/openai/human-eval'] ,license=_LICENSE ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any]=[1, 10, 100] ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : List[Any]=3.0 ): '''simple docstring''' if os.getenv('HF_ALLOW_CODE_EVAL' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Optional[int] = Counter() _UpperCamelCase : int = 0 _UpperCamelCase : Dict = defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ ,lowerCamelCase__ ) ): for candidate in candidates: _UpperCamelCase : int = candidate + '\n' + test_case _UpperCamelCase : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) _UpperCamelCase : Dict = executor.submit(lowerCamelCase__ ,*lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): _UpperCamelCase : Dict = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _UpperCamelCase : List[str] = [], [] for result in results.values(): result.sort() _UpperCamelCase : Optional[Any] = [r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) _UpperCamelCase : List[str] = np.array(lowerCamelCase__ ) _UpperCamelCase : List[Any] = np.array(lowerCamelCase__ ) _UpperCamelCase : Tuple = k _UpperCamelCase : Tuple = {F'pass@{k}': estimate_pass_at_k(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def estimator(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = itertools.repeat(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) else: assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = iter(UpperCAmelCase_ ) return np.array([estimator(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , UpperCAmelCase_ ) for n, c in zip(UpperCAmelCase_ , UpperCAmelCase_ )] )
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : Any = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=False , ) -> List[Any]: '''simple docstring''' A__ = size if size is not None else {"height": 20, "width": 20} A__ = crop_size if crop_size is not None else {"height": 18, "width": 18} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_reduce_labels def UpperCamelCase ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' A__ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) A__ = Image.open(dataset[0]["file"] ) A__ = Image.open(dataset[1]["file"] ) return image, map def lowerCAmelCase__ ( ) -> int: '''simple docstring''' A__ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) A__ = Image.open(ds[0]["file"] ) A__ = Image.open(ds[1]["file"] ) A__ = Image.open(ds[2]["file"] ) A__ = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = BeitImageProcessingTester(self ) @property def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) self.assertTrue(hasattr(lowercase , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase , "center_crop" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , lowercase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) A__ = [] for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A__ = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) A__ , A__ = prepare_semantic_single_inputs() A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) A__ , A__ = prepare_semantic_batch_inputs() A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A__ , A__ = prepare_semantic_single_inputs() A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) A__ = True A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
68
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = Dict[str, Any] UpperCamelCase = List[Prediction] @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: Any = {} if "threshold" in kwargs: A: List[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A: int = load_image(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = torch.IntTensor([[image.height, image.width]] ) A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) A: Any = target_size return inputs def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: '''simple docstring''' A: Tuple = model_inputs.pop('''target_size''' ) A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ ) A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: A: Dict = model_inputs['''bbox'''] return model_outputs def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A , A: Union[str, Any] = target_size[0].tolist() def unnormalize(SCREAMING_SNAKE_CASE_ : str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] A: Dict = ['''score''', '''label''', '''box'''] A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[str] = raw_annotations[0] A: List[Any] = raw_annotation['''scores'''] A: List[Any] = raw_annotation['''labels'''] A: int = raw_annotation['''boxes'''] A: Any = scores.tolist() A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels] A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A: Tuple = ['''score''', '''label''', '''box'''] A: str = [ dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) A , A , A , A: str = box.int().tolist() A: str = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
319
0
import functools def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Validation if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(SCREAMING_SNAKE_CASE_ ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 0 if min(SCREAMING_SNAKE_CASE_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(SCREAMING_SNAKE_CASE_ ) >= 366: raise ValueError("All days elements should be less than 366" ) lowercase__ = set(SCREAMING_SNAKE_CASE_ ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
354
from collections import namedtuple import requests from lxml import html # type: ignore lowercase_ = namedtuple("""covid_data""", """cases deaths recovered""") def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "https://www.worldometers.info/coronavirus/" ): lowercase__ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(SCREAMING_SNAKE_CASE_ ).content ).xpath(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
224
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Tuple = 1_0 def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[str] = [1, 2, 3, 4] lowerCAmelCase_ : Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCAmelCase_ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCAmelCase_ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Optional[int] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' lowerCAmelCase_ , lowerCAmelCase_ : Dict = process_story(A_) self.assertEqual(A_ , []) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[Any] = '''''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = process_story(A_) self.assertEqual(A_ , []) self.assertEqual(A_ , []) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = process_story(A_) lowerCAmelCase_ : str = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(A_ , A_) lowerCAmelCase_ : Dict = ['''It was the best of times.'''] self.assertEqual(A_ , A_) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : int = torch.tensor([1, 2, 3, 4]) lowerCAmelCase_ : List[Any] = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(A_ , 0).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : str = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3]) lowerCAmelCase_ : int = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(A_ , 2_3).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1]) lowerCAmelCase_ : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(A_ , 1).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Optional[Any] = 1_0_1 lowerCAmelCase_ : Optional[int] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]]) lowerCAmelCase_ : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) lowerCAmelCase_ : Optional[int] = compute_token_type_ids(A_ , A_) np.testing.assert_array_equal(A_ , A_)
103
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A__ : Union[str, Any] = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(UpperCamelCase_ ) class __snake_case ( UpperCamelCase_ ): _a = '''rag''' _a = True def __init__( self : str , A_ : List[Any]=None , A_ : str=True , A_ : Tuple=None , A_ : Union[str, Any]=None , A_ : List[str]=None , A_ : List[str]=None , A_ : List[Any]=None , A_ : Union[str, Any]=" / " , A_ : Tuple=" // " , A_ : Any=5 , A_ : Optional[Any]=3_0_0 , A_ : Tuple=7_6_8 , A_ : Union[str, Any]=8 , A_ : Dict="wiki_dpr" , A_ : Optional[Any]="train" , A_ : Dict="compressed" , A_ : Optional[int]=None , A_ : List[str]=None , A_ : str=False , A_ : Dict=False , A_ : Dict=0.0 , A_ : List[str]=True , A_ : List[str]=False , A_ : List[Any]=False , A_ : Any=False , A_ : Optional[int]=True , A_ : int=None , **A_ : List[str] , ): super().__init__( bos_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , is_encoder_decoder=A_ , prefix=A_ , vocab_size=A_ , **A_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCAmelCase_ : List[str] = kwargs.pop('''question_encoder''') lowerCAmelCase_ : Tuple = question_encoder_config.pop('''model_type''') lowerCAmelCase_ : Tuple = kwargs.pop('''generator''') lowerCAmelCase_ : Dict = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ : Union[str, Any] = AutoConfig.for_model(A_ , **A_) lowerCAmelCase_ : int = AutoConfig.for_model(A_ , **A_) lowerCAmelCase_ : List[Any] = reduce_loss lowerCAmelCase_ : Optional[Any] = label_smoothing lowerCAmelCase_ : Union[str, Any] = exclude_bos_score lowerCAmelCase_ : List[Any] = do_marginalize lowerCAmelCase_ : int = title_sep lowerCAmelCase_ : Optional[int] = doc_sep lowerCAmelCase_ : List[str] = n_docs lowerCAmelCase_ : int = max_combined_length lowerCAmelCase_ : Union[str, Any] = dataset lowerCAmelCase_ : int = dataset_split lowerCAmelCase_ : Dict = index_name lowerCAmelCase_ : Union[str, Any] = retrieval_vector_size lowerCAmelCase_ : Optional[Any] = retrieval_batch_size lowerCAmelCase_ : List[str] = passages_path lowerCAmelCase_ : Any = index_path lowerCAmelCase_ : int = use_dummy_dataset lowerCAmelCase_ : Tuple = output_retrieved lowerCAmelCase_ : List[Any] = do_deduplication lowerCAmelCase_ : Union[str, Any] = use_cache if self.forced_eos_token_id is None: lowerCAmelCase_ : List[Any] = getattr(self.generator , '''forced_eos_token_id''' , A_) @classmethod def UpperCAmelCase__ ( cls : str , A_ : PretrainedConfig , A_ : PretrainedConfig , **A_ : Any): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : str = copy.deepcopy(self.__dict__) lowerCAmelCase_ : Tuple = self.question_encoder.to_dict() lowerCAmelCase_ : Dict = self.generator.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
103
1
def a_ ( lowerCAmelCase_ : Union[str, Any] ): if length <= 0 or not isinstance(_UpperCAmelCase, _UpperCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : Union[str, Any] ) -> Tuple: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = ort.SessionOptions() __lowerCAmelCase = False return options def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default __lowerCAmelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'A red cat sitting on a park bench' __lowerCAmelCase = np.random.RandomState(0 ) __lowerCAmelCase = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=lowerCAmelCase_ , output_type='np' , ) __lowerCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
207
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowercase : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Tuple: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope lowerCamelCase = self.vocab_size - 1 def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self , A , A , A , A , *A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = OpenAIGPTModel(config=_A ) model.to(_A ) model.eval() lowerCamelCase = model(_A , token_type_ids=_A , head_mask=_A ) lowerCamelCase = model(_A , token_type_ids=_A ) lowerCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , *A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = OpenAIGPTLMHeadModel(_A ) model.to(_A ) model.eval() lowerCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = OpenAIGPTDoubleHeadsModel(_A ) model.to(_A ) model.eval() lowerCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> str: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = OpenAIGPTForSequenceClassification(_A ) model.to(_A ) model.eval() lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() ( lowerCamelCase ) = config_and_inputs lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowercase ( __a , __a , __a , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase : Optional[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase : Any = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , A , A , A , A , A ) -> int: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self , A , A , A=False ) -> int: '''simple docstring''' lowerCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_A , ) lowerCamelCase = inputs_dict["""labels"""] lowerCamelCase = inputs_dict["""labels"""] lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_A , ) lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = OpenAIGPTModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_A , n_embd=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_A ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = OpenAIGPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_A ) lowerCamelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_A ) # the president is lowerCamelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
252
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _UpperCAmelCase ( __a): __a : Optional[torch.FloatTensor] = None __a : torch.FloatTensor = None __a : Optional[Tuple[torch.FloatTensor]] = None __a : Optional[Tuple[torch.FloatTensor]] = None class _UpperCAmelCase ( __a): def __init__( self , _A=1 , _A=0 , _A=2 , _A=5_12 , _A="cls" , _A=False , _A=True , **_A , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCAmelCase : int = project_dim _UpperCAmelCase : str = pooler_fn _UpperCAmelCase : Union[str, Any] = learn_encoder _UpperCAmelCase : Tuple = use_attention_mask class _UpperCAmelCase ( __a): __a : str = [R"""pooler""", R"""logit_scale"""] __a : str = [R"""position_ids""", R"""predictions.decoder.bias"""] __a : int = """roberta""" __a : Optional[int] = RobertaSeriesConfig def __init__( self , _A ) -> List[Any]: '''simple docstring''' super().__init__(_A ) _UpperCAmelCase : Dict = XLMRobertaModel(_A ) _UpperCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase : Optional[int] = getattr(_A , """has_pre_transformation""" , _A ) if self.has_pre_transformation: _UpperCAmelCase : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase : Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __snake_case ( self , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Any = self.base_model( input_ids=_A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_attentions=_A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_A , ) if self.has_pre_transformation: _UpperCAmelCase : Optional[int] = outputs["""hidden_states"""][-2] _UpperCAmelCase : str = self.pre_LN(_A ) _UpperCAmelCase : str = self.transformation_pre(_A ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCAmelCase : Union[str, Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
246
0
'''simple docstring''' import string def _A ( A__ ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __lowercase = '''''' for symbol in message: if symbol in string.ascii_uppercase: __lowercase = string.ascii_uppercase.find(A__ ) __lowercase = num - key if num < 0: __lowercase = num + len(string.ascii_uppercase ) __lowercase = translated + string.ascii_uppercase[num] else: __lowercase = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def _A ( ): """simple docstring""" __lowercase = input('''Encrypted message: ''' ) __lowercase = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
52
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'luke' def __init__( self : int ,lowercase__ : Tuple=5_0_2_6_7 ,lowercase__ : str=5_0_0_0_0_0 ,lowercase__ : Union[str, Any]=7_6_8 ,lowercase__ : Any=2_5_6 ,lowercase__ : int=1_2 ,lowercase__ : Dict=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : Dict="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[Any]=5_1_2 ,lowercase__ : Tuple=2 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=1e-1_2 ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=1 ,lowercase__ : int=0 ,lowercase__ : Tuple=2 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = entity_vocab_size __lowercase = hidden_size __lowercase = entity_emb_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_entity_aware_attention __lowercase = classifier_dropout
52
1
'''simple docstring''' from torch import nn class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int ): """simple docstring""" super().__init__() UpperCAmelCase__ = class_size UpperCAmelCase__ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCAmelCase__ = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.mlp(_lowerCAmelCase ) return logits
346
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } _UpperCAmelCase : Any = { "camembert-base": 512, } _UpperCAmelCase : List[Any] = "▁" class __lowerCAmelCase ( lowerCAmelCase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Dict="<s>" , _lowerCAmelCase: Union[str, Any]="</s>" , _lowerCAmelCase: Optional[int]="</s>" , _lowerCAmelCase: List[Any]="<s>" , _lowerCAmelCase: Tuple="<unk>" , _lowerCAmelCase: Union[str, Any]="<pad>" , _lowerCAmelCase: str="<mask>" , _lowerCAmelCase: int=["<s>NOTUSED", "</s>NOTUSED"] , _lowerCAmelCase: Optional[Dict[str, Any]] = None , **_lowerCAmelCase: Any , ): # Mask token behave like a normal word, i.e. include the space before it lowercase :Dict = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token lowercase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase :Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowercase :Tuple = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowercase :int = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} lowercase :Tuple = len(self.fairseq_tokens_to_ids ) lowercase :int = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowercase :Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :List[Any] = [self.cls_token_id] lowercase :List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): lowercase :Any = [self.sep_token_id] lowercase :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Any = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] ): lowercase :Tuple = [] lowercase :Any = "" lowercase :str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase :Optional[int] = True lowercase :Any = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase :str = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self: Dict ): lowercase :int = self.__dict__.copy() lowercase :List[str] = None return state def __setstate__( self: Optional[Any] , _lowerCAmelCase: Dict ): lowercase :int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase :Optional[int] = {} lowercase :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowercase :Any = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: lowercase :Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
236
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : List[Any] = """▁""" __snake_case : Dict = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } __snake_case : List[Any] = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } __snake_case : Union[str, Any] = { """facebook/s2t-small-librispeech-asr""": 10_24, } __snake_case : int = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] __snake_case : Any = {"""mustc""": MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = MAX_MODEL_INPUT_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ['''input_ids''', '''attention_mask'''] _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<unk>" , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , do_upper_case=_UpperCamelCase , do_lower_case=_UpperCamelCase , tgt_lang=_UpperCamelCase , lang_codes=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) lowerCAmelCase__ = do_upper_case lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = load_json(_UpperCamelCase ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ = spm_file lowerCAmelCase__ = load_spm(_UpperCamelCase , self.sp_model_kwargs ) if lang_codes is not None: lowerCAmelCase__ = lang_codes lowerCAmelCase__ = LANGUAGES[lang_codes] lowerCAmelCase__ = [F"<lang:{lang}>" for lang in self.langs] lowerCAmelCase__ = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} lowerCAmelCase__ = self.lang_tokens lowerCAmelCase__ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCAmelCase__ = {} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.encoder ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [lang_code_id] def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder[self.unk_token] ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.decoder.get(_UpperCamelCase , self.unk_token ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCAmelCase__ = self.sp_model.decode(_UpperCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCAmelCase__ = [] else: current_sub_tokens.append(_UpperCamelCase ) lowerCAmelCase__ = self.sp_model.decode(_UpperCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase__ = {} lowerCAmelCase__ = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" lowerCAmelCase__ = Path(_UpperCamelCase ) assert save_dir.is_dir(), F"{save_directory} should be a directory" lowerCAmelCase__ = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) lowerCAmelCase__ = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCamelCase , 'wb' ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (str(_UpperCamelCase ), str(_UpperCamelCase )) def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" lowerCAmelCase__ = sentencepiece.SentencePieceProcessor(**UpperCamelCase_ ) spm.Load(str(UpperCamelCase_ ) ) return spm def _UpperCamelCase ( UpperCamelCase_ : str ) -> Union[Dict, List]: """simple docstring""" with open(UpperCamelCase_ , 'r' ) as f: return json.load(UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str ) -> None: """simple docstring""" with open(UpperCamelCase_ , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ , indent=2 )
122
import argparse import collections import json import os import re import string import sys import numpy as np __snake_case : Any = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) __snake_case : List[Any] = None def _UpperCamelCase ( ) -> Tuple: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=UpperCamelCase_ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=UpperCamelCase_ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _UpperCamelCase ( UpperCamelCase_ : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase__ = bool(qa['answers']['text'] ) return qid_to_has_ans def _UpperCamelCase ( UpperCamelCase_ : List[Any] ) -> Any: """simple docstring""" def remove_articles(UpperCamelCase_ : Optional[int] ): return ARTICLES_REGEX.sub(' ' , UpperCamelCase_ ) def white_space_fix(UpperCamelCase_ : Any ): return " ".join(text.split() ) def remove_punc(UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase_ : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase_ ) ) ) ) def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if not s: return [] return normalize_answer(UpperCamelCase_ ).split() def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : List[str] ) -> Tuple: """simple docstring""" return int(normalize_answer(UpperCamelCase_ ) == normalize_answer(UpperCamelCase_ ) ) def _UpperCamelCase ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = get_tokens(UpperCamelCase_ ) lowerCAmelCase__ = get_tokens(UpperCamelCase_ ) lowerCAmelCase__ = collections.Counter(UpperCamelCase_ ) & collections.Counter(UpperCamelCase_ ) lowerCAmelCase__ = sum(common.values() ) if len(UpperCamelCase_ ) == 0 or len(UpperCamelCase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCAmelCase__ = 1.0 * num_same / len(UpperCamelCase_ ) lowerCAmelCase__ = 1.0 * num_same / len(UpperCamelCase_ ) lowerCAmelCase__ = (2 * precision * recall) / (precision + recall) return fa def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase__ = qa['id'] lowerCAmelCase__ = [t for t in qa['answers']['text'] if normalize_answer(UpperCamelCase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase__ = [''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue lowerCAmelCase__ = preds[qid] # Take max over all gold answers lowerCAmelCase__ = max(compute_exact(UpperCamelCase_ , UpperCamelCase_ ) for a in gold_answers ) lowerCAmelCase__ = max(compute_fa(UpperCamelCase_ , UpperCamelCase_ ) for a in gold_answers ) return exact_scores, fa_scores def _UpperCamelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ) -> str: """simple docstring""" lowerCAmelCase__ = {} for qid, s in scores.items(): lowerCAmelCase__ = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase__ = float(not qid_to_has_ans[qid] ) else: lowerCAmelCase__ = s return new_scores def _UpperCamelCase ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : str=None ) -> Union[str, Any]: """simple docstring""" if not qid_list: lowerCAmelCase__ = len(UpperCamelCase_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowerCAmelCase__ = len(UpperCamelCase_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def _UpperCamelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" for k in new_eval: lowerCAmelCase__ = new_eval[k] def _UpperCamelCase ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] ) -> int: """simple docstring""" plt.step(UpperCamelCase_ , UpperCamelCase_ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(UpperCamelCase_ , UpperCamelCase_ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCamelCase_ ) plt.savefig(UpperCamelCase_ ) plt.clf() def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Any=None ) -> List[str]: """simple docstring""" lowerCAmelCase__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : na_probs[k] ) lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1.0 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = [1.0] lowerCAmelCase__ = [0.0] lowerCAmelCase__ = 0.0 for i, qid in enumerate(UpperCamelCase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase__ = true_pos / float(i + 1 ) lowerCAmelCase__ = true_pos / float(UpperCamelCase_ ) if i == len(UpperCamelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCamelCase_ ) recalls.append(UpperCamelCase_ ) if out_image: plot_pr_curve(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return {"ap": 100.0 * avg_prec} def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" if out_image_dir and not os.path.exists(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) lowerCAmelCase__ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCAmelCase__ = make_precision_recall_eval( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , out_image=os.path.join(UpperCamelCase_ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowerCAmelCase__ = make_precision_recall_eval( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , out_image=os.path.join(UpperCamelCase_ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowerCAmelCase__ = {k: float(UpperCamelCase_ ) for k, v in qid_to_has_ans.items()} lowerCAmelCase__ = make_precision_recall_eval( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , out_image=os.path.join(UpperCamelCase_ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'pr_exact' ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'pr_f1' ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'pr_oracle' ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> int: """simple docstring""" if not qid_list: return lowerCAmelCase__ = [na_probs[k] for k in qid_list] lowerCAmelCase__ = np.ones_like(UpperCamelCase_ ) / float(len(UpperCamelCase_ ) ) plt.hist(UpperCamelCase_ , weights=UpperCamelCase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(UpperCamelCase_ , F"na_prob_hist_{name}.png" ) ) plt.clf() def _UpperCamelCase ( UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCAmelCase__ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCAmelCase__ = num_no_ans lowerCAmelCase__ = cur_score lowerCAmelCase__ = 0.0 lowerCAmelCase__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : na_probs[k] ) for i, qid in enumerate(UpperCamelCase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase__ = scores[qid] else: if preds[qid]: lowerCAmelCase__ = -1 else: lowerCAmelCase__ = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase__ = cur_score lowerCAmelCase__ = na_probs[qid] return 100.0 * best_score / len(UpperCamelCase_ ), best_thresh def _UpperCamelCase ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = find_best_thresh(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = find_best_thresh(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = best_exact lowerCAmelCase__ = exact_thresh lowerCAmelCase__ = best_fa lowerCAmelCase__ = fa_thresh def _UpperCamelCase ( ) -> Dict: """simple docstring""" with open(OPTS.data_file ) as f: lowerCAmelCase__ = json.load(UpperCamelCase_ ) lowerCAmelCase__ = dataset_json['data'] with open(OPTS.pred_file ) as f: lowerCAmelCase__ = json.load(UpperCamelCase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCAmelCase__ = json.load(UpperCamelCase_ ) else: lowerCAmelCase__ = {k: 0.0 for k in preds} lowerCAmelCase__ = make_qid_to_has_ans(UpperCamelCase_ ) # maps qid to True/False lowerCAmelCase__ = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase__ = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase__ , lowerCAmelCase__ = get_raw_scores(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = apply_no_ans_threshold(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , OPTS.na_prob_thresh ) lowerCAmelCase__ = apply_no_ans_threshold(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , OPTS.na_prob_thresh ) lowerCAmelCase__ = make_eval_dict(UpperCamelCase_ , UpperCamelCase_ ) if has_ans_qids: lowerCAmelCase__ = make_eval_dict(UpperCamelCase_ , UpperCamelCase_ , qid_list=UpperCamelCase_ ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'HasAns' ) if no_ans_qids: lowerCAmelCase__ = make_eval_dict(UpperCamelCase_ , UpperCamelCase_ , qid_list=UpperCamelCase_ ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , OPTS.out_image_dir ) histogram_na_prob(UpperCamelCase_ , UpperCamelCase_ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(UpperCamelCase_ , UpperCamelCase_ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) else: print(json.dumps(UpperCamelCase_ , indent=2 ) ) if __name__ == "__main__": __snake_case : int = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
122
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _a = ['pixel_values'] def __init__( self : Tuple , lowerCAmelCase : bool = True , lowerCAmelCase : int = 32 , lowerCAmelCase : List[Any]=PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , **lowerCAmelCase : Optional[Any] , ): lowerCAmelCase = do_resize lowerCAmelCase = do_rescale lowerCAmelCase = size_divisor lowerCAmelCase = resample super().__init__(**SCREAMING_SNAKE_CASE_ ) def __lowercase ( self : int , lowerCAmelCase : np.ndarray , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[ChannelDimension] = None , **lowerCAmelCase : Union[str, Any] ): lowerCAmelCase = get_image_size(SCREAMING_SNAKE_CASE_ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase = height // size_divisor * size_divisor lowerCAmelCase = width // size_divisor * size_divisor lowerCAmelCase = resize(SCREAMING_SNAKE_CASE_ , (new_h, new_w) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return image def __lowercase ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : Optional[ChannelDimension] = None , **lowerCAmelCase : Union[str, Any] ): return rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __lowercase ( self : str , lowerCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[TensorType, str]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : Dict , ): lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) lowerCAmelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for img in images] if do_resize: lowerCAmelCase = [self.resize(SCREAMING_SNAKE_CASE_ , size_divisor=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(SCREAMING_SNAKE_CASE_ , scale=1 / 255 ) for image in images] lowerCAmelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
155
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) _SCREAMING_SNAKE_CASE = """CIDAS/clipseg-rd64-refined""" _SCREAMING_SNAKE_CASE = """image_segmenter""" _SCREAMING_SNAKE_CASE = CLIPSegForImageSegmentation _SCREAMING_SNAKE_CASE = ["""image""", """text"""] _SCREAMING_SNAKE_CASE = ["""image"""] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(self , ['vision'] ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : "Image" , SCREAMING_SNAKE_CASE_ : str ): return self.pre_processor(text=[label] , images=[image] , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ): with torch.no_grad(): lowerCAmelCase_ : List[str] = self.model(**SCREAMING_SNAKE_CASE_ ).logits return logits def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Dict = outputs.cpu().detach().numpy() lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Optional[Any] = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
224
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : int , _lowercase : Any , _lowercase : List[str]=7 , _lowercase : Dict=3 , _lowercase : Dict=10 , _lowercase : Union[str, Any]=18 , _lowercase : Dict=30 , _lowercase : List[str]=4_00 , _lowercase : Tuple=True , _lowercase : int=None , _lowercase : Union[str, Any]=True , _lowercase : Union[str, Any]=[0.5, 0.5, 0.5] , _lowercase : List[Any]=[0.5, 0.5, 0.5] , _lowercase : List[Any]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = size if size is not None else {"""shortest_edge""": 18} SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = num_frames SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = crop_size def __a ( self : Optional[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = VivitImageProcessor if is_vision_available() else None def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VivitImageProcessingTester(self ) @property def __a ( self : Optional[Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """image_mean""" ) ) self.assertTrue(hasattr(_lowercase , """image_std""" ) ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for video in video_inputs: self.assertIsInstance(_lowercase , _lowercase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for video in video_inputs: self.assertIsInstance(_lowercase , _lowercase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for video in video_inputs: self.assertIsInstance(_lowercase , _lowercase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
361
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [0] * len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: SCREAMING_SNAKE_CASE__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCamelCase : int = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
204
0
"""simple docstring""" from typing import Any class _A : """simple docstring""" def __init__( self : Any , __UpperCAmelCase : Any): a : Optional[Any] = data a : Optional[int] = None def __repr__( self : str): return f'''Node({self.data})''' class _A : """simple docstring""" def __init__( self : str): a : Dict = None def __iter__( self : int): a : str = self.head while node: yield node.data a : Union[str, Any] = node.next def __len__( self : Any): return sum(1 for _ in self) def __repr__( self : Any): return "->".join([str(__UpperCAmelCase) for item in self]) def __getitem__( self : int , __UpperCAmelCase : int): if not 0 <= index < len(self): raise ValueError("list index out of range.") for i, node in enumerate(self): if i == index: return node return None def __setitem__( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any): if not 0 <= index < len(self): raise ValueError("list index out of range.") a : List[Any] = self.head for _ in range(__UpperCAmelCase): a : Dict = current.next a : Optional[Any] = data def __snake_case ( self : Any , __UpperCAmelCase : Any): self.insert_nth(len(self) , __UpperCAmelCase) def __snake_case ( self : List[Any] , __UpperCAmelCase : Any): self.insert_nth(0 , __UpperCAmelCase) def __snake_case ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Any): if not 0 <= index <= len(self): raise IndexError("list index out of range") a : Any = Node(__UpperCAmelCase) if self.head is None: a : int = new_node elif index == 0: a : Dict = self.head # link new_node to head a : Union[str, Any] = new_node else: a : List[str] = self.head for _ in range(index - 1): a : int = temp.next a : Optional[int] = temp.next a : int = new_node def __snake_case ( self : int): # print every node data print(self) def __snake_case ( self : Optional[Any]): return self.delete_nth(0) def __snake_case ( self : Any): # delete from tail return self.delete_nth(len(self) - 1) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : int = 0): if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError("List index out of range.") a : Optional[Any] = self.head # default first node if index == 0: a : int = self.head.next else: a : List[str] = self.head for _ in range(index - 1): a : int = temp.next a : Any = temp.next a : str = temp.next.next return delete_node.data def __snake_case ( self : int): return self.head is None def __snake_case ( self : List[Any]): a : str = None a : Tuple = self.head while current: # Store the current node's next node. a : Any = current.next # Make the current node's next point backwards a : Any = prev # Make the previous node be the current node a : Optional[int] = current # Make the current node the next node (to progress iteration) a : int = next_node # Return prev in order to put the head at the end a : Dict = prev def lowercase ( )-> None: '''simple docstring''' a : Any = LinkedList() assert linked_list.is_empty() is True assert str(A_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(A_ ) == i linked_list.insert_nth(A_ , i + 1 ) assert str(A_ ) == "->".join(str(A_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(A_ ) == "->".join(str(A_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(A_ ) == 9 assert str(A_ ) == "->".join(str(A_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): a : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(A_ ) == "->".join(str(A_ ) for i in range(-8 , 1 ) ) def lowercase ( )-> None: '''simple docstring''' a : str = [ -9, 100, Node(77_345_112 ), "dlrow olleH", 7, 5_555, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] a : str = LinkedList() for i in test_input: linked_list.insert_tail(A_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(A_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head a : int = linked_list.delete_head() assert result == -9 assert ( str(A_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail a : int = linked_list.delete_tail() assert result == 1_2.2 assert ( str(A_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list a : Union[str, Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(A_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(A_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(A_ ) assert ( str(A_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(A_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase ( )-> Optional[int]: '''simple docstring''' from doctest import testmod testmod() a : int = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(A_ ) print("\nReading/changing Node data using indexing:" ) print(F'''Element at Position 1: {linked_list[1]}''' ) a : Tuple = input("Enter New Value: " ).strip() print("New list:" ) print(A_ ) print(F'''length of linked_list is : {len(A_ )}''' ) if __name__ == "__main__": main()
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A__ : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
0
"""simple docstring""" import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __SCREAMING_SNAKE_CASE =[ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None ): """simple docstring""" lowercase_ : List[Any] = True while ask_again: lowercase_ : str = input(_snake_case ) try: if default is not None and len(_snake_case ) == 0: return default return convert_value(_snake_case ) if convert_value is not None else result except Exception: if error_message is not None: print(_snake_case ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any]=[] , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Optional[Any]=0 ): """simple docstring""" lowercase_ : Union[str, Any] = BulletMenu(_snake_case , _snake_case ) lowercase_ : List[str] = menu.run(default_choice=_snake_case ) return convert_value(_snake_case ) if convert_value is not None else result def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : Union[str, Any] = int(_snake_case ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def lowercase__( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" lowercase_ : int = int(_snake_case ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Optional[int] = int(_snake_case ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : Any = int(_snake_case ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def lowercase__( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Any = int(_snake_case ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = super()._format_usage(a_ ,a_ ,a_ ,a_ ) lowercase_ : Optional[Any] = usage.replace('<command> [<args>] ' ,'' ) return usage
352
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Any: # Format the message. if name is None: UpperCamelCase : Dict = None else: UpperCamelCase : Tuple = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" UpperCamelCase : List[str] = fmt.format(_lowerCAmelCase ) # Print and recurse (if needed). if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if msg is not None: print(_lowerCAmelCase ) for k in val.keys(): recursive_print(_lowerCAmelCase , val[k] , spaces + 2 ) elif isinstance(_lowerCAmelCase , torch.Tensor ): print(_lowerCAmelCase , ":" , val.size() ) else: print(_lowerCAmelCase , ":" , _lowerCAmelCase ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. UpperCamelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCamelCase : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCamelCase : str = param.view(*_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = param.transpose(0 , 2 ) UpperCamelCase : List[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCamelCase : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCamelCase : Dict = param.view(*_lowerCAmelCase ) UpperCamelCase : Dict = param.transpose(0 , 1 ).contiguous() UpperCamelCase : List[Any] = param.view(*_lowerCAmelCase ) return param def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: # The converted output model. UpperCamelCase : List[str] = {} # old versions did not store training args UpperCamelCase : Optional[int] = input_state_dict.get("args" , _lowerCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCamelCase : Optional[int] = ds_args.padded_vocab_size UpperCamelCase : int = ds_args.max_position_embeddings UpperCamelCase : Any = ds_args.hidden_size UpperCamelCase : Dict = ds_args.num_layers UpperCamelCase : str = ds_args.num_attention_heads UpperCamelCase : Dict = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCamelCase : Optional[Any] = config.n_head # The hidden_size per head. UpperCamelCase : List[str] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCamelCase : Optional[int] = input_state_dict["checkpoint_version"] else: UpperCamelCase : Tuple = 0.0 # The model. UpperCamelCase : Dict = input_state_dict["model"] # The language model. UpperCamelCase : Any = model["language_model"] # The embeddings. UpperCamelCase : Tuple = lm["embedding"] # The word embeddings. UpperCamelCase : List[str] = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. UpperCamelCase : Dict = word_embeddings[: config.vocab_size, :] UpperCamelCase : Optional[int] = word_embeddings # The position embeddings. UpperCamelCase : List[str] = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCamelCase : Union[str, Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. UpperCamelCase : List[Any] = pos_embeddings # The transformer. UpperCamelCase : int = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. UpperCamelCase : List[Any] = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. UpperCamelCase : int = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCamelCase : List[str] = layer_re.match(_lowerCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCamelCase : List[str] = int(m.group(1 ) ) # The name of the operation. UpperCamelCase : List[Any] = m.group(2 ) # Is it a weight or a bias? UpperCamelCase : str = m.group(3 ) # The name of the layer. UpperCamelCase : List[Any] = F"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): UpperCamelCase : Optional[int] = "ln_1" if op_name.startswith("input" ) else "ln_2" UpperCamelCase : str = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCamelCase : str = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Optional[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCamelCase : Dict = torch.tensor(-1e4 , dtype=torch.floataa ) UpperCamelCase : Dict = masked_bias UpperCamelCase : List[Any] = fix_query_key_value_ordering(_lowerCAmelCase , _lowerCAmelCase , 3 , _lowerCAmelCase , _lowerCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCamelCase : Any = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCamelCase : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCamelCase : Dict = fix_query_key_value_ordering(_lowerCAmelCase , _lowerCAmelCase , 3 , _lowerCAmelCase , _lowerCAmelCase ) # Store. No change of shape. UpperCamelCase : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCamelCase : Tuple = megatron_to_transformers[op_name] UpperCamelCase : Tuple = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCamelCase : int = megatron_to_transformers[op_name] UpperCamelCase : str = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCamelCase : Optional[int] = transformer["final_layernorm.weight"] UpperCamelCase : Optional[Any] = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. UpperCamelCase : List[Any] = word_embeddings # It should be done! return output_state_dict def A_ ( ) -> List[str]: # Create the argument parser. UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=_lowerCAmelCase , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=_lowerCAmelCase , help="An optional config json file describing the pre-trained model." , ) UpperCamelCase : List[str] = parser.parse_args() # Extract the basename. UpperCamelCase : List[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: UpperCamelCase : int = torch.load(_lowerCAmelCase , map_location="cpu" ) else: UpperCamelCase : List[Any] = torch.load(args.path_to_checkpoint , map_location="cpu" ) UpperCamelCase : Optional[Any] = input_state_dict.get("args" , _lowerCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCamelCase : Dict = "gelu_fast" elif ds_args.openai_gelu: UpperCamelCase : str = "gelu_new" else: UpperCamelCase : Tuple = "gelu" else: # in the very early days this used to be "gelu_new" UpperCamelCase : Tuple = "gelu_new" # Spell out all parameters in case the defaults change. UpperCamelCase : List[Any] = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=_lowerCAmelCase , summary_activation=_lowerCAmelCase , summary_proj_to_labels=_lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=_lowerCAmelCase , use_cache=_lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: UpperCamelCase : int = GPTaConfig.from_json_file(args.config_file ) UpperCamelCase : str = ["GPT2LMHeadModel"] # Convert. print("Converting" ) UpperCamelCase : Dict = convert_megatron_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCAmelCase , _lowerCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCamelCase : Union[str, Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCamelCase : Optional[int] = "gpt2" elif tokenizer_type == "PretrainedFromHF": UpperCamelCase : Any = ds_args.tokenizer_name_or_path else: raise ValueError(F"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: UpperCamelCase : Optional[int] = "gpt2" UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) UpperCamelCase : Tuple = type(_lowerCAmelCase ).__name__ UpperCamelCase : Optional[int] = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(_lowerCAmelCase ) # Save tokenizer based on args print(F"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_lowerCAmelCase ) # Store the state_dict to file. UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , "pytorch_model.bin" ) print(F"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
52
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class A__ ( __snake_case ): _UpperCAmelCase :Dict = 'bart' _UpperCAmelCase :str = ['past_key_values'] _UpperCAmelCase :Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A_=5_0265 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=3 , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , **A_ , ): '''simple docstring''' UpperCamelCase : int = vocab_size UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Any = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = encoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : List[str] = decoder_layers UpperCamelCase : Optional[int] = decoder_attention_heads UpperCamelCase : int = dropout UpperCamelCase : int = attention_dropout UpperCamelCase : Tuple = activation_dropout UpperCamelCase : Tuple = activation_function UpperCamelCase : int = init_std UpperCamelCase : List[Any] = encoder_layerdrop UpperCamelCase : List[str] = decoder_layerdrop UpperCamelCase : Dict = classifier_dropout UpperCamelCase : Optional[int] = use_cache UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , A_ ): UpperCamelCase : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase : List[str] = {0: "batch"} UpperCamelCase : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase : Dict = {0: "batch", 1: "decoder_sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(A_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase : Optional[int] = self.num_layers for i in range(A_ ): UpperCamelCase : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCamelCase : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Tuple = super().outputs else: UpperCamelCase : Dict = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase : int = self.num_layers for i in range(A_ ): UpperCamelCase : int = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Tuple = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase : List[Any] = seq_length if not self.use_past else 1 UpperCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase : Optional[int] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase : List[Any] = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Optional[Any] = common_inputs["input_ids"].shape UpperCamelCase : List[Any] = common_inputs["decoder_input_ids"].shape[1] UpperCamelCase , UpperCamelCase : List[str] = self.num_attention_heads UpperCamelCase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : List[Any] = decoder_seq_length + 3 UpperCamelCase : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase : Union[str, Any] = self.num_layers UpperCamelCase : Any = min(A_ , A_ ) UpperCamelCase : List[str] = max(A_ , A_ ) - min_num_layers UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase : Optional[Any] = seqlen + 2 UpperCamelCase , UpperCamelCase : List[Any] = self.num_layers UpperCamelCase , UpperCamelCase : Optional[int] = self.num_attention_heads UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : Optional[Any] = common_inputs["attention_mask"].dtype UpperCamelCase : int = torch.cat( [common_inputs["attention_mask"], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase : Optional[Any] = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : Optional[Any] = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase : int = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase : Dict = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": UpperCamelCase : List[str] = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[Any] = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase : Optional[Any] = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
52
1
'''simple docstring''' import re import string import numpy as np import datasets snake_case__ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' snake_case__ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' snake_case__ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __lowercase ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,reference_urls=[] ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[int]=None ,_UpperCAmelCase : str=False ,_UpperCAmelCase : int=False ,_UpperCAmelCase : List[str]=False ,): if regexes_to_ignore is not None: for s in regexes_to_ignore: _a : Union[str, Any] = np.array([re.sub(_UpperCAmelCase ,'' ,_UpperCAmelCase ) for x in predictions] ) _a : Optional[Any] = np.array([re.sub(_UpperCAmelCase ,'' ,_UpperCAmelCase ) for x in references] ) else: _a : int = np.asarray(_UpperCAmelCase ) _a : Dict = np.asarray(_UpperCAmelCase ) if ignore_case: _a : Dict = np.char.lower(_UpperCAmelCase ) _a : Any = np.char.lower(_UpperCAmelCase ) if ignore_punctuation: _a : Dict = string.punctuation.maketrans('' ,'' ,string.punctuation ) _a : Dict = np.char.translate(_UpperCAmelCase ,table=_UpperCAmelCase ) _a : Optional[int] = np.char.translate(_UpperCAmelCase ,table=_UpperCAmelCase ) if ignore_numbers: _a : Union[str, Any] = string.digits.maketrans('' ,'' ,string.digits ) _a : int = np.char.translate(_UpperCAmelCase ,table=_UpperCAmelCase ) _a : List[str] = np.char.translate(_UpperCAmelCase ,table=_UpperCAmelCase ) _a : str = predictions == references return {"exact_match": np.mean(_UpperCAmelCase ) * 100}
371
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) set_seed(770) __lowerCAmelCase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } __lowerCAmelCase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } __lowerCAmelCase = os.path.dirname(os.path.abspath(__file__)) __lowerCAmelCase = os.path.join(os.path.expanduser('''~'''), '''.cache''') __lowerCAmelCase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: _a : int = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) hf_hub_download(repo_id=lowerCAmelCase_ , filename=lowerCAmelCase_ , local_dir=lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_="text" ) -> List[str]: if model_type == "text": _a : List[str] = BarkSemanticModel _a : Optional[Any] = BarkSemanticConfig _a : Any = BarkSemanticGenerationConfig elif model_type == "coarse": _a : Tuple = BarkCoarseModel _a : str = BarkCoarseConfig _a : str = BarkCoarseGenerationConfig elif model_type == "fine": _a : List[str] = BarkFineModel _a : Optional[Any] = BarkFineConfig _a : str = BarkFineGenerationConfig else: raise NotImplementedError() _a : Dict = f"""{model_type}_small""" if use_small else model_type _a : Union[str, Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase_ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['repo_id'] , model_info['file_name'] ) _a : int = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) # this is a hack _a : List[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: _a : Dict = model_args['vocab_size'] _a : Dict = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _a : List[Any] = model_args.pop('n_head' ) _a : Any = model_args.pop('n_embd' ) _a : List[Any] = model_args.pop('n_layer' ) _a : Optional[int] = ConfigClass(**checkpoint['model_args'] ) _a : List[str] = ModelClass(config=lowerCAmelCase_ ) _a : Tuple = GenerationConfigClass() _a : Optional[Any] = model_generation_config _a : Optional[Any] = checkpoint['model'] # fixup checkpoint _a : int = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase_ ): # replace part of the key with corresponding layer name in HF implementation _a : str = k[len(lowerCAmelCase_ ) :] for old_layer_name in new_layer_name_dict: _a : List[Any] = new_k.replace(lowerCAmelCase_ , new_layer_name_dict[old_layer_name] ) _a : List[Any] = state_dict.pop(lowerCAmelCase_ ) _a : List[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) _a : Tuple = {k for k in extra_keys if not k.endswith('.attn.bias' )} _a : Tuple = set(model.state_dict().keys() ) - set(state_dict.keys() ) _a : Optional[Any] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase_ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(lowerCAmelCase_ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) _a : Dict = model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) _a : Tuple = checkpoint['best_val_loss'].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCAmelCase_ , 3 )} loss""" ) model.eval() model.to(lowerCAmelCase_ ) del checkpoint, state_dict return model def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_="text" ) -> List[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _a : Optional[int] = 'cpu' # do conversion on cpu _a : Tuple = _get_ckpt_path(lowerCAmelCase_ , use_small=lowerCAmelCase_ ) _a : List[Any] = _load_model(lowerCAmelCase_ , lowerCAmelCase_ , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) # load bark initial model _a : Any = _bark_load_model(lowerCAmelCase_ , 'cpu' , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) if model_type == "text": _a : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model _a : Any = 5 _a : List[str] = 10 if model_type in ["text", "coarse"]: _a : Dict = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _a : Dict = bark_model(lowerCAmelCase_ )[0] _a : Tuple = model(lowerCAmelCase_ ) # take last logits _a : Optional[int] = output_new_model_total.logits[:, [-1], :] else: _a : List[str] = 3 _a : List[Any] = 8 _a : Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _a : Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = bark_model(lowerCAmelCase_ , lowerCAmelCase_ ) _a : List[str] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> Any: _a : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : Any = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : List[Any] = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase_ , 'config.json' ) ) _a : List[str] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) _a : str = BarkSemanticModel.from_pretrained(lowerCAmelCase_ ) _a : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase_ ) _a : int = BarkFineModel.from_pretrained(lowerCAmelCase_ ) _a : List[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) _a : Any = BarkConfig.from_sub_model_configs( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a : List[str] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _a : Optional[Any] = BarkModel(lowerCAmelCase_ ) _a : List[str] = semantic _a : Union[str, Any] = coarseAcoustic _a : Optional[int] = fineAcoustic _a : Optional[Any] = codec _a : List[Any] = bark_generation_config Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) bark.save_pretrained(lowerCAmelCase_ , repo_id=lowerCAmelCase_ , push_to_hub=lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') __lowerCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
107
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _A = HUGGINGFACE_HUB_CACHE _A = '''config.json''' _A = '''diffusion_pytorch_model.bin''' _A = '''diffusion_flax_model.msgpack''' _A = '''model.onnx''' _A = '''diffusion_pytorch_model.safetensors''' _A = '''weights.pb''' _A = '''https://huggingface.co''' _A = default_cache_path _A = '''diffusers_modules''' _A = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) _A = ['''fp16''', '''non-ema'''] _A = '''.self_attn'''
122
from __future__ import annotations def lowerCamelCase__ ( a__ : int | float | str , a__ : int | float | str ) -> list[str]: if nth_term == "": return [""] UpperCamelCase_ = int(a__ ) UpperCamelCase_ = int(a__ ) UpperCamelCase_ = [] for temp in range(int(a__ ) ): series.append(f'''1 / {pow(temp + 1 , int(a__ ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() _A = int(input('''Enter the last number (nth term) of the P-Series''')) _A = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
122
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer A : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A : List[Any] = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } A : List[Any] = { "google/electra-small-generator": 5_1_2, "google/electra-base-generator": 5_1_2, "google/electra-large-generator": 5_1_2, "google/electra-small-discriminator": 5_1_2, "google/electra-base-discriminator": 5_1_2, "google/electra-large-discriminator": 5_1_2, } A : Any = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =VOCAB_FILES_NAMES __UpperCAmelCase : Any =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] =PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict =ElectraTokenizer def __init__( self , __a=None , __a=None , __a=True , __a="[UNK]" , __a="[SEP]" , __a="[PAD]" , __a="[CLS]" , __a="[MASK]" , __a=True , __a=None , **__a , ): super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __a ) != do_lower_case or normalizer_state.get("strip_accents" , __a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __a ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(__a , normalizer_state.pop("type" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**__a ) __lowerCAmelCase = do_lower_case def snake_case ( self , __a , __a=None ): __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , __a , __a = None ): __lowerCAmelCase = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
350
"""simple docstring""" import string def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "" for i in sequence: __lowerCAmelCase = ord(_UpperCamelCase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = string.ascii_letters __lowerCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_UpperCamelCase )] if c in letters else c for c in sequence ) def _lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print("Running performance benchmarks..." ) __lowerCAmelCase = "from string import printable ; from __main__ import atbash, atbash_slow" print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_UpperCamelCase )} seconds" ) print(f"> atbash(): {timeit('atbash(printable)' , setup=_UpperCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
259
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ =logging.getLogger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] ): return (preds == labels).mean() @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[Any] = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _SCREAMING_SNAKE_CASE : Tuple = field( default=__lowercase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : int = field( default=__lowercase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : str = field( default=__lowercase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) _SCREAMING_SNAKE_CASE : List[Any] = field(metadata={"help": "Should contain the data files for the task."} ) _SCREAMING_SNAKE_CASE : Tuple = field( default=128 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _SCREAMING_SNAKE_CASE : str = field( default=__lowercase ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCamelCase ( ): __a : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __a , __a , __a : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) try: __a : Union[str, Any] = processors[data_args.task_name]() __a : int = processor.get_labels() __a : str = len(lowerCAmelCase__ ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __a : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __a : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets __a : Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __a : Union[str, Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCAmelCase__ : EvalPrediction ) -> Dict: __a : str = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase__ , p.label_ids )} # Data collator __a : str = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __a : Any = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __a : Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __a : Any = trainer.evaluate() __a : Optional[int] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowerCAmelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , lowerCAmelCase__ , lowerCAmelCase__ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowerCAmelCase__ ) return results def __UpperCamelCase ( lowerCAmelCase__ : str ): main() if __name__ == "__main__": main()
216
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , *A_ : str , **A_ : Optional[int] ) -> None: """simple docstring""" warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
204
0
def __lowerCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : int ): if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(__magic_name__ , __magic_name__ ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate a__: int =rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly a__: Any =years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
356
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __UpperCAmelCase = logging.getLogger(__name__) def __lowerCamelCase ( __magic_name__ : Tuple , __magic_name__ : List[Any] ): # save results if os.path.exists(__magic_name__ ): if os.path.exists(os.path.join(__magic_name__ , "config.json" ) ) and os.path.isfile( os.path.join(__magic_name__ , "config.json" ) ): os.remove(os.path.join(__magic_name__ , "config.json" ) ) if os.path.exists(os.path.join(__magic_name__ , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__magic_name__ , "pytorch_model.bin" ) ): os.remove(os.path.join(__magic_name__ , "pytorch_model.bin" ) ) else: os.makedirs(__magic_name__ ) model.save_pretrained(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=False ): a__: int =2 if unlogit: a__: Union[str, Any] =torch.pow(__magic_name__ , __magic_name__ ) a__: str =p * torch.log(__magic_name__ ) a__: Dict =0 return -plogp.sum(dim=-1 ) def __lowerCamelCase ( __magic_name__ : Optional[int] ): logger.info("lv, h >\t" + "\t".join(F"{x + 1}" for x in range(len(__magic_name__ ) ) ) ) for row in range(len(__magic_name__ ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:d}" for x in tensor[row].cpu().data ) ) def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : Dict=None , __magic_name__ : Union[str, Any]=False ): a__ , a__: int =model.config.num_hidden_layers, model.config.num_attention_heads a__: List[str] =torch.zeros(__magic_name__ , __magic_name__ ).to(args.device ) a__: List[Any] =torch.zeros(__magic_name__ , __magic_name__ ).to(args.device ) if head_mask is None: a__: Any =torch.ones(__magic_name__ , __magic_name__ ).to(args.device ) head_mask.requires_grad_(requires_grad=__magic_name__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: a__: int =None a__: Optional[int] =0.0 a__: Optional[Any] =0.0 for step, inputs in enumerate(tqdm(__magic_name__ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): a__: Tuple =tuple(t.to(args.device ) for t in inputs ) ((a__) , ): List[Any] =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) a__: List[Any] =model(__magic_name__ , labels=__magic_name__ , head_mask=__magic_name__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) a__ , a__ , a__: Optional[Any] =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__magic_name__ ): a__: int =entropy(attn.detach() , __magic_name__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__magic_name__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: a__: Any =2 a__: Any =torch.pow(torch.pow(__magic_name__ , __magic_name__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: a__: int =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__magic_name__ ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__magic_name__ ) logger.info("Head ranked by importance scores" ) a__: Any =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) a__: List[Any] =torch.arange( head_importance.numel() , device=args.device ) a__: int =head_ranks.view_as(__magic_name__ ) print_ad_tensor(__magic_name__ ) return attn_entropy, head_importance, total_loss def __lowerCamelCase ( __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Tuple ): a__ , a__ , a__: List[Any] =compute_heads_importance(__magic_name__ , __magic_name__ , __magic_name__ , compute_entropy=__magic_name__ ) a__: List[str] =1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , __magic_name__ , original_score * args.masking_threshold ) a__: Union[str, Any] =torch.ones_like(__magic_name__ ) a__: Optional[Any] =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) a__: Union[str, Any] =original_score while current_score >= original_score * args.masking_threshold: a__: Dict =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads a__: List[Any] =float("Inf" ) a__: List[str] =head_importance.view(-1 ).sort()[1] if len(__magic_name__ ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads a__: Union[str, Any] =current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) a__: Any =new_head_mask.view(-1 ) a__: Optional[int] =0.0 a__: Optional[int] =new_head_mask.view_as(__magic_name__ ) a__: str =new_head_mask.clone().detach() print_ad_tensor(__magic_name__ ) # Compute metric and head importance again a__ , a__ , a__: Optional[Any] =compute_heads_importance( __magic_name__ , __magic_name__ , __magic_name__ , compute_entropy=__magic_name__ , head_mask=__magic_name__ ) a__: Optional[int] =1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , __magic_name__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(__magic_name__ ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowerCamelCase ( __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any ): a__: Any =datetime.now() a__ , a__ , a__: int =compute_heads_importance( __magic_name__ , __magic_name__ , __magic_name__ , compute_entropy=__magic_name__ , compute_importance=__magic_name__ , head_mask=__magic_name__ ) a__: Optional[int] =1 / loss a__: Optional[Any] =datetime.now() - before_time a__: str =sum(p.numel() for p in model.parameters() ) a__: Optional[Any] ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__magic_name__ ) ) } for k, v in heads_to_prune.items(): if isinstance(__magic_name__ , __magic_name__ ): a__: List[Any] =[ v, ] assert sum(len(__magic_name__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__magic_name__ ) a__: Dict =sum(p.numel() for p in model.parameters() ) a__: Any =datetime.now() a__ , a__ , a__: Union[str, Any] =compute_heads_importance( __magic_name__ , __magic_name__ , __magic_name__ , compute_entropy=__magic_name__ , compute_importance=__magic_name__ , head_mask=__magic_name__ , actually_pruned=__magic_name__ , ) a__: Dict =1 / loss a__: Dict =datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , __magic_name__ , __magic_name__ , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , __magic_name__ , __magic_name__ ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(__magic_name__ , args.output_dir ) def __lowerCamelCase ( ): a__: int =argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=__magic_name__ , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=__magic_name__ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=__magic_name__ , type=__magic_name__ , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=__magic_name__ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=__magic_name__ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=__magic_name__ , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=__magic_name__ , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=__magic_name__ , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=__magic_name__ , help="Batch size." ) parser.add_argument("--seed" , type=__magic_name__ , default=42 ) parser.add_argument("--local_rank" , type=__magic_name__ , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=__magic_name__ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__magic_name__ , default="" , help="Can be used for distant debugging." ) a__: Union[str, Any] =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__magic_name__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: a__: Tuple =torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) a__: Optional[Any] =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) a__: Optional[Any] =torch.device("cuda" , args.local_rank ) a__: Dict =1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) a__: Dict =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: a__: List[str] =nn.parallel.DistributedDataParallel( __magic_name__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__magic_name__ ) elif args.n_gpu > 1: a__: List[str] =nn.DataParallel(__magic_name__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__magic_name__ ) torch.save(__magic_name__ , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , __magic_name__ ) # Prepare dataset a__: int =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) a__: Any =(torch.from_numpy(__magic_name__ ),) a__: List[str] =TensorDataset(*__magic_name__ ) a__: Optional[int] =RandomSampler(__magic_name__ ) a__: Union[str, Any] =DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__magic_name__ , __magic_name__ , __magic_name__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: a__: Optional[int] =mask_heads(__magic_name__ , __magic_name__ , __magic_name__ ) prune_heads(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
42
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ = 256047 snake_case_ = 256145 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Any = NllbTokenizer A_ : Tuple = NllbTokenizerFast A_ : Union[str, Any] = True A_ : List[str] = True A_ : int = {} def a (self : Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case = NllbTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : List[Any] ): """simple docstring""" __snake_case = NllbTokenizer(a__ , keep_accents=a__ ) __snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __snake_case = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) __snake_case = self.tokenizer_class.from_pretrained(a__ , **a__ ) __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(a__ ) __snake_case = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __snake_case = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(a__ ) __snake_case = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=True __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) __snake_case = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(a__ ) __snake_case = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=False __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) __snake_case = tokenizer_p.save_pretrained(a__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(a__ ) __snake_case = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) @require_torch def a (self : Optional[Any] ): """simple docstring""" if not self.test_seqaseq: return __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. __snake_case = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] __snake_case = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: __snake_case = tokenizer.prepare_seqaseq_batch( src_texts=a__ , tgt_texts=a__ , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __snake_case = tokenizer.prepare_seqaseq_batch( a__ , tgt_texts=a__ , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __snake_case = tokenizer.prepare_seqaseq_batch( src_texts=a__ , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , a__ ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def a (self : List[str] ): """simple docstring""" pass def a (self : int ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case = [AddedToken('''<special>''' , lstrip=a__ )] __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ ) __snake_case = tokenizer_r.encode('''Hey this is a <special> token''' ) __snake_case = tokenizer_r.encode('''<special>''' , add_special_tokens=a__ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ , ) __snake_case = self.tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , **a__ ) __snake_case = tokenizer_p.encode('''Hey this is a <special> token''' ) __snake_case = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : List[Any] = 'facebook/nllb-200-distilled-600M' A_ : List[str] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] A_ : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] A_ : List[Any] = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def a (cls : Tuple ): """simple docstring""" __snake_case = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) __snake_case = 1 return cls def a (self : Optional[int] ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 25_6057 ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a__ ) def a (self : Optional[Any] ): """simple docstring""" self.assertIn(a__ , self.tokenizer.all_special_ids ) # fmt: off __snake_case = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __snake_case = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) __snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def a (self : Optional[int] ): """simple docstring""" __snake_case = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , a__ ) __snake_case = 10 __snake_case = self.tokenizer(a__ , max_length=a__ , truncation=a__ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , a__ ) self.assertEqual(len(a__ ) , a__ ) def a (self : Tuple ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_6203, 3] ) def a (self : Any ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a__ ) __snake_case = NllbTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a__ ) @require_torch def a (self : str ): """simple docstring""" __snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __snake_case = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(a__ , a__ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a__ ) self.assertEqual(a__ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.tokenizer(self.src_text , padding=a__ , truncation=a__ , max_length=3 , return_tensors='''pt''' ) __snake_case = self.tokenizer( text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=10 , return_tensors='''pt''' ) __snake_case = targets['''input_ids'''] __snake_case = shift_tokens_right( a__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a (self : str ): """simple docstring""" __snake_case = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(a__ ) , { # A, test, EOS, en_XX '''input_ids''': [[25_6047, 70, 7356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_6057, } , ) @require_torch def a (self : Optional[Any] ): """simple docstring""" __snake_case = True __snake_case = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __snake_case = False __snake_case = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
24
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__UpperCamelCase ) ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> bool: # Base Case if index == len(__UpperCamelCase ): return True # Recursive Step for i in range(__UpperCamelCase ): if valid_coloring(graph[index] , __UpperCamelCase , __UpperCamelCase ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list[int]: UpperCamelCase = [-1] * len(__UpperCamelCase ) if util_color(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , 0 ): return colored_vertices return []
321
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowercase__ : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = 13 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 99 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 512 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 0.02 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 'last' SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 0 def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A_ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE__ = TFFlaubertModel(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , ): SCREAMING_SNAKE_CASE__ = TFFlaubertWithLMHeadModel(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , ): SCREAMING_SNAKE_CASE__ = TFFlaubertForQuestionAnsweringSimple(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'lengths': input_lengths} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , ): SCREAMING_SNAKE_CASE__ = TFFlaubertForSequenceClassification(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'lengths': input_lengths} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFFlaubertForTokenClassification(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , ): SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = TFFlaubertForMultipleChoice(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : Tuple =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) A__ : Dict =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A__ : Optional[Any] =( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) A__ : Union[str, Any] =False A__ : Any =False def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = TFFlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=37 ) def A_ ( self : Any ): self.config_tester.run_common_tests() def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCAmelCase_ ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCAmelCase_ ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCAmelCase_ ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*UpperCAmelCase_ ) @slow def A_ ( self : Optional[Any] ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFFlaubertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): @slow def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
169
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Tuple =FlaxAutoencoderKL @property def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = (32, 32) SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.uniform(UpperCAmelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE__ = self.dummy_input return init_dict, inputs_dict
169
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' __lowerCAmelCase = sorted(zip(snake_case_ , snake_case_ ) , key=lambda snake_case_ : x[0] / x[1] , reverse=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = [i[0] for i in r], [i[1] for i in r] __lowerCAmelCase = list(accumulate(snake_case_ ) ) __lowerCAmelCase = bisect(snake_case_ , snake_case_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __magic_name__ ( A : Union[str, Any], A : str, A : Optional[int]=None, A : List[str]=None ): '''simple docstring''' if attention_mask is None: a = tf.cast(tf.math.not_equal(A, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int = OPTConfig SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : List[str] = """gelu""" def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : int=4 , __lowerCamelCase : Any=4 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Dict=20 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=16 , ) -> Any: a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id a = embed_dim a = word_embed_proj_dim a = False def __UpperCAmelCase ( self : str ) -> int: a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__lowerCamelCase , **self.config_updates , ) a = prepare_opt_inputs_dict(__lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def __UpperCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> List[str]: a = TFOPTModel(config=__lowerCamelCase ) a = inputs_dict["input_ids"] a = input_ids[:1, :] a = inputs_dict["attention_mask"][:1, :] a = 1 # first forward pass a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) @require_tf class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Tuple = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = 10 def __UpperCAmelCase ( self : Tuple ) -> List[str]: a = TFOPTModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__lowerCamelCase : Tuple , __lowerCamelCase : int ): if hasattr(__lowerCamelCase , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__lowerCamelCase , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings a = model_class(config=__lowerCamelCase ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__lowerCamelCase ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. a = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __lowerCamelCase ) # check that weights remain the same after resizing a = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a = False self.assertTrue(__lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __lowerCamelCase ) a = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a = False self.assertTrue(__lowerCamelCase ) def __magic_name__ ( A : List[Any] ): '''simple docstring''' return tf.constant(A, dtype=tf.intaa ) @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 99 def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = tf.ones((4, 1) , dtype=tf.intaa ) * 2 a = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) a = input_ids.shape[0] a = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = TFOPTModel.from_pretrained("facebook/opt-350m" ) a = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) a = tf.not_equal(__lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): a = model(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ).last_hidden_state a = (1, 11, 5_12) self.assertEqual(output.shape , __lowerCamelCase ) a = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-3 ) ) a = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) a = xla_generate(__lowerCamelCase , __lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-2 ) ) @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: super().setUp() a = "facebook/opt-350m" def __UpperCAmelCase ( self : Any ) -> Tuple: a = TFOPTForCausalLM.from_pretrained(self.path_model ) a = GPTaTokenizer.from_pretrained(self.path_model ) a = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False a = tokenizer(__lowerCamelCase , return_tensors="tf" , padding=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) a = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) a = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) a = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ) -> str: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: a = "facebook/opt-125m" a = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a = [] a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: a = tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids a = model.generate(__lowerCamelCase , max_length=10 ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> Dict: a = "facebook/opt-350m" a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) a = "left" # use different length sentences to test batching a = [ "Hello, my dog is a little", "Today, I", ] a = tokenizer(__lowerCamelCase , return_tensors="tf" , padding=__lowerCamelCase ) a = inputs["input_ids"] a = model.generate(input_ids=__lowerCamelCase , attention_mask=inputs["attention_mask"] ) a = tokenizer(sentences[0] , return_tensors="tf" ).input_ids a = model.generate(input_ids=__lowerCamelCase ) a = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) a = tokenizer(sentences[1] , return_tensors="tf" ).input_ids a = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) a = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) a = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: a = "facebook/opt-350m" a = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a = [] a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: a = tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids a = model.generate(__lowerCamelCase , max_length=10 ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
107
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self , _lowercase ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def _lowercase ( self , _lowercase ): """simple docstring""" self.neighbors.append(_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = weight def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict , __lowerCamelCase :Optional[int] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __lowerCamelCase ) def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(__lowerCamelCase ) q.remove(__lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(__lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(__lowerCamelCase ) hq.heapify(__lowerCamelCase ) while h: _lowerCAmelCase = hq.heappop(__lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A (): pass if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 A__ : List[Any] = get_tests_dir('''fixtures''') class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[str]): # A mock response for an HTTP head request to emulate server down lowerCAmelCase_ : Tuple = mock.Mock() lowerCAmelCase_ : Tuple = 5_0_0 lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Any = HTTPError lowerCAmelCase_ : Optional[int] = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ : Any = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=A_) as mock_head: lowerCAmelCase_ : Optional[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''') # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : List[Any]): # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''') def UpperCAmelCase__ ( self : List[str]): with self.assertRaises(A_): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase_ : int = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''') lowerCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''') self.assertIsNotNone(A_) @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls : Optional[int]): lowerCAmelCase_ : Union[str, Any] = TOKEN HfFolder.save_token(A_) @classmethod def UpperCAmelCase__ ( cls : int): try: delete_repo(token=cls._token , repo_id='''test-image-processor''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''') except HTTPError: pass def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : List[str] = ViTImageProcessor.from_pretrained(A_) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token) lowerCAmelCase_ : List[str] = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_)) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='''test-image-processor''' , push_to_hub=A_ , use_auth_token=self._token) lowerCAmelCase_ : Tuple = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_)) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Dict = ViTImageProcessor.from_pretrained(A_) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token) lowerCAmelCase_ : int = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''') for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=A_ , use_auth_token=self._token) lowerCAmelCase_ : Dict = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''') for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_)) def UpperCAmelCase__ ( self : Union[str, Any]): CustomImageProcessor.register_for_auto_class() lowerCAmelCase_ : Optional[int] = CustomImageProcessor.from_pretrained(A_) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) lowerCAmelCase_ : List[Any] = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=A_) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''')
103
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Dict ='git_vision_model' def __init__( self , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=1e-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = hidden_size UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :Dict = num_hidden_layers UpperCamelCase :int = num_attention_heads UpperCamelCase :List[str] = num_channels UpperCamelCase :Optional[int] = patch_size UpperCamelCase :Optional[int] = image_size UpperCamelCase :List[Any] = initializer_range UpperCamelCase :Union[str, Any] = attention_dropout UpperCamelCase :Tuple = layer_norm_eps UpperCamelCase :Optional[Any] = hidden_act @classmethod def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase :Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": UpperCamelCase :Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Optional[Any] ='git' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=101 , SCREAMING_SNAKE_CASE_=102 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if vision_config is None: UpperCamelCase :Tuple = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) UpperCamelCase :Union[str, Any] = GitVisionConfig(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = vocab_size UpperCamelCase :Optional[Any] = hidden_size UpperCamelCase :List[Any] = num_hidden_layers UpperCamelCase :List[Any] = num_attention_heads UpperCamelCase :Dict = hidden_act UpperCamelCase :List[str] = intermediate_size UpperCamelCase :List[str] = hidden_dropout_prob UpperCamelCase :Optional[int] = attention_probs_dropout_prob UpperCamelCase :Optional[Any] = max_position_embeddings UpperCamelCase :Tuple = initializer_range UpperCamelCase :Any = layer_norm_eps UpperCamelCase :int = position_embedding_type UpperCamelCase :Dict = use_cache UpperCamelCase :Tuple = tie_word_embeddings UpperCamelCase :Union[str, Any] = num_image_with_embedding UpperCamelCase :Optional[int] = bos_token_id UpperCamelCase :List[Any] = eos_token_id def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase :Optional[int] = self.vision_config.to_dict() UpperCamelCase :int = self.__class__.model_type return output
259
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
264
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" assert column_title.isupper() lowercase_ : Dict = 0 lowercase_ : Tuple = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Optional[int] = 0 while index >= 0: lowercase_ : Optional[Any] = (ord(column_title[index] ) - 64) * pow(26 , __SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
264
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } lowerCAmelCase_ = { "bert-base-uncased": 5_12, "bert-large-uncased": 5_12, "bert-base-cased": 5_12, "bert-large-cased": 5_12, "bert-base-multilingual-uncased": 5_12, "bert-base-multilingual-cased": 5_12, "bert-base-chinese": 5_12, "bert-base-german-cased": 5_12, "bert-large-uncased-whole-word-masking": 5_12, "bert-large-cased-whole-word-masking": 5_12, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_12, "bert-large-cased-whole-word-masking-finetuned-squad": 5_12, "bert-base-cased-finetuned-mrpc": 5_12, "bert-base-german-dbmdz-cased": 5_12, "bert-base-german-dbmdz-uncased": 5_12, "TurkuNLP/bert-base-finnish-cased-v1": 5_12, "TurkuNLP/bert-base-finnish-uncased-v1": 5_12, "wietsedv/bert-base-dutch-cased": 5_12, } lowerCAmelCase_ = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = BertTokenizer def __init__( self : Dict , _A : int=None , _A : Dict=None , _A : Union[str, Any]=True , _A : Any="[UNK]" , _A : Any="[SEP]" , _A : Tuple="[PAD]" , _A : int="[CLS]" , _A : int="[MASK]" , _A : List[str]=True , _A : Tuple=None , **_A : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): lowercase : Optional[int] = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) lowercase : Tuple = do_lower_case lowercase : List[str] = strip_accents lowercase : List[Any] = tokenize_chinese_chars lowercase : str = normalizer_class(**lowerCAmelCase_ ) lowercase : Union[str, Any] = do_lower_case def __a ( self : Tuple , _A : Union[str, Any] , _A : Optional[int]=None ) -> List[str]: """simple docstring""" lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Union[str, Any] , _A : Optional[int] , _A : str = None ) -> Any: """simple docstring""" lowercase : Dict = [self.sep_token_id] lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : List[Any] , _A : Dict , _A : str = None ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
308
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowercase : Optional[Any] = False class __UpperCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger ' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = generator.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase ( self ): """simple docstring""" _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger ' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _snake_case = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
42
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class A__ ( datasets.BuilderConfig ): _UpperCAmelCase :Optional[datasets.Features] = None class A__ ( datasets.ArrowBasedBuilder ): _UpperCAmelCase :str = PandasConfig def __UpperCamelCase( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase( self , A_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCamelCase : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_ , (str, list, tuple) ): UpperCamelCase : Dict = data_files if isinstance(A_ , A_ ): UpperCamelCase : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCamelCase : Union[str, Any] = [dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCamelCase : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(A_ , A_ ): UpperCamelCase : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCamelCase : str = [dl_manager.iter_files(A_ ) for file in files] splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={"files": files} ) ) return splits def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase : Optional[Any] = table_cast(A_ , self.config.features.arrow_schema ) return pa_table def __UpperCamelCase( self , A_ ): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(A_ ) ): with open(A_ , "rb" ) as f: UpperCamelCase : List[Any] = pa.Table.from_pandas(pd.read_pickle(A_ ) ) yield i, self._cast_table(A_ )
140
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> list[float]: UpperCamelCase , UpperCamelCase : List[Any] = coefficient_matrix.shape UpperCamelCase , UpperCamelCase : Optional[int] = constant_matrix.shape if rowsa != colsa: UpperCamelCase : List[Any] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if colsa != 1: UpperCamelCase : Any = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if rowsa != rowsa: UpperCamelCase : Tuple = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != rowsa: UpperCamelCase : Any = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(_lowerCAmelCase )} and {rowsa}""" ) raise ValueError(_lowerCAmelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) UpperCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCamelCase , UpperCamelCase : str = table.shape strictly_diagonally_dominant(_lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = [] for row in range(_lowerCAmelCase ): UpperCamelCase : Optional[int] = 0 for col in range(_lowerCAmelCase ): if col == row: UpperCamelCase : Union[str, Any] = table[row][col] elif col == cols - 1: UpperCamelCase : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase : Dict = (temp + val) / denom new_val.append(_lowerCAmelCase ) UpperCamelCase : List[str] = new_val return [float(_lowerCAmelCase ) for i in new_val] def A_ ( _lowerCAmelCase ) -> bool: UpperCamelCase , UpperCamelCase : Dict = table.shape UpperCamelCase : List[Any] = True for i in range(0 , _lowerCAmelCase ): UpperCamelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
140
1
def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 UpperCAmelCase__ , UpperCAmelCase__ = 1, 1 for _ in range(number_of_steps - 1 ): UpperCAmelCase__ , UpperCAmelCase__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
169
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """realm""" def __init__( self :str , lowerCamelCase :List[Any]=3_0522 , lowerCamelCase :Optional[int]=768 , lowerCamelCase :Any=128 , lowerCamelCase :Tuple=12 , lowerCamelCase :str=12 , lowerCamelCase :List[str]=8 , lowerCamelCase :List[str]=3072 , lowerCamelCase :List[str]="gelu_new" , lowerCamelCase :int=0.1 , lowerCamelCase :Optional[Any]=0.1 , lowerCamelCase :int=512 , lowerCamelCase :Union[str, Any]=2 , lowerCamelCase :str=0.02 , lowerCamelCase :Tuple=1e-12 , lowerCamelCase :Dict=256 , lowerCamelCase :int=10 , lowerCamelCase :List[str]=1e-3 , lowerCamelCase :str=5 , lowerCamelCase :Optional[int]=320 , lowerCamelCase :Union[str, Any]=1335_3718 , lowerCamelCase :str=5000 , lowerCamelCase :str=1 , lowerCamelCase :List[Any]=0 , lowerCamelCase :Tuple=2 , **lowerCamelCase :Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) # Common config UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = hidden_size UpperCAmelCase__ = retriever_proj_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = num_candidates UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = layer_norm_eps # Reader config UpperCAmelCase__ = span_hidden_size UpperCAmelCase__ = max_span_width UpperCAmelCase__ = reader_layer_norm_eps UpperCAmelCase__ = reader_beam_size UpperCAmelCase__ = reader_seq_len # Retrieval config UpperCAmelCase__ = num_block_records UpperCAmelCase__ = searcher_beam_size
169
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : TreeNode | None = None SCREAMING_SNAKE_CASE_ : TreeNode | None = None UpperCamelCase_ : Any = namedtuple('''CoinsDistribResult''', '''moves excess''') def __a ( _UpperCamelCase: TreeNode | None ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(_UpperCamelCase: TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_UpperCamelCase: TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCamelCase ) != count_coins(_UpperCamelCase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_UpperCamelCase: TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _snake_case , _snake_case = get_distrib(node.left ) _snake_case , _snake_case = get_distrib(node.right ) _snake_case = 1 - left_distrib_excess _snake_case = 1 - right_distrib_excess _snake_case = ( left_distrib_moves + right_distrib_moves + abs(_UpperCamelCase ) + abs(_UpperCamelCase ) ) _snake_case = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCamelCase , _UpperCamelCase ) return get_distrib(_UpperCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
142
'''simple docstring''' import pprint import requests UpperCamelCase_ : Tuple = '''https://zenquotes.io/api''' def __a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + "/today" ).json() def __a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": UpperCamelCase_ : Any = random_quotes() pprint.pprint(response)
142
1
from collections import deque from math import floor from random import random from time import time class _lowerCamelCase : """simple docstring""" def __init__( self )->Tuple: '''simple docstring''' A_ : Any = {} def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 )->Optional[Any]: '''simple docstring''' if self.graph.get(SCREAMING_SNAKE_CASE__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A_ : Any = [[w, v]] if not self.graph.get(SCREAMING_SNAKE_CASE__ ): A_ : int = [] def _snake_case ( self )->Optional[int]: '''simple docstring''' return list(self.graph ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE__ ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 , _SCREAMING_SNAKE_CASE=-1 )->Optional[int]: '''simple docstring''' if s == d: return [] A_ : Optional[int] = [] A_ : int = [] if s == -2: A_ : Optional[Any] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) A_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE__ ) != 0: A_ : List[str] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: A_ : Optional[int] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return visited def _snake_case ( self , _SCREAMING_SNAKE_CASE=-1 )->int: '''simple docstring''' if c == -1: A_ : Optional[int] = floor(random() * 1_0000 ) + 10 for i in range(SCREAMING_SNAKE_CASE__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A_ : Tuple = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )->Tuple: '''simple docstring''' A_ : Tuple = deque() A_ : List[Any] = [] if s == -2: A_ : int = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) while d: A_ : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' return len(self.graph[u] ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )->Union[str, Any]: '''simple docstring''' A_ : List[str] = [] A_ : Dict = [] if s == -2: A_ : int = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) A_ : int = s A_ : Tuple = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Any = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(SCREAMING_SNAKE_CASE__ ) != 0: A_ : Any = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: A_ : Optional[int] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return sorted_nodes def _snake_case ( self )->str: '''simple docstring''' A_ : Optional[int] = [] A_ : int = [] A_ : str = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) A_ : Dict = -2 A_ : Optional[Any] = [] A_ : Dict = s A_ : Tuple = False A_ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Dict = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Tuple = True if len(SCREAMING_SNAKE_CASE__ ) != 0: A_ : List[Any] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: A_ : Optional[Any] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) A_ : str = s A_ : Tuple = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return list(SCREAMING_SNAKE_CASE__ ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Dict = [] A_ : List[Any] = [] A_ : Dict = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) A_ : str = -2 A_ : Optional[Any] = [] A_ : Any = s A_ : Tuple = False A_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : int = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : List[Any] = True if len(SCREAMING_SNAKE_CASE__ ) != 0: A_ : List[Any] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: A_ : Union[str, Any] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) A_ : Optional[int] = s A_ : Optional[int] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return False def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 , _SCREAMING_SNAKE_CASE=-1 )->str: '''simple docstring''' A_ : Optional[int] = time() self.dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A_ : Tuple = time() return end - begin def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )->Tuple: '''simple docstring''' A_ : str = time() self.bfs(SCREAMING_SNAKE_CASE__ ) A_ : Optional[Any] = time() return end - begin class _lowerCamelCase : """simple docstring""" def __init__( self )->Dict: '''simple docstring''' A_ : List[Any] = {} def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 )->Optional[Any]: '''simple docstring''' if self.graph.get(SCREAMING_SNAKE_CASE__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A_ : str = [[w, v]] # add the other way if self.graph.get(SCREAMING_SNAKE_CASE__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A_ : Union[str, Any] = [[w, u]] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE__ ) # the other way round if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(SCREAMING_SNAKE_CASE__ ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 , _SCREAMING_SNAKE_CASE=-1 )->Optional[Any]: '''simple docstring''' if s == d: return [] A_ : Optional[Any] = [] A_ : Union[str, Any] = [] if s == -2: A_ : Any = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) A_ : Union[str, Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE__ ) != 0: A_ : Any = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: A_ : Optional[Any] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return visited def _snake_case ( self , _SCREAMING_SNAKE_CASE=-1 )->Optional[Any]: '''simple docstring''' if c == -1: A_ : List[str] = floor(random() * 1_0000 ) + 10 for i in range(SCREAMING_SNAKE_CASE__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A_ : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = deque() A_ : Union[str, Any] = [] if s == -2: A_ : int = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) while d: A_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' return len(self.graph[u] ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[str] = [] A_ : Dict = [] A_ : Union[str, Any] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) A_ : List[str] = -2 A_ : Any = [] A_ : List[Any] = s A_ : Optional[int] = False A_ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : List[Any] = True if len(SCREAMING_SNAKE_CASE__ ) != 0: A_ : List[Any] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: A_ : Dict = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) A_ : int = s A_ : Tuple = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return list(SCREAMING_SNAKE_CASE__ ) def _snake_case ( self )->Any: '''simple docstring''' A_ : int = [] A_ : Union[str, Any] = [] A_ : Optional[Any] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) A_ : Optional[Any] = -2 A_ : str = [] A_ : int = s A_ : int = False A_ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : List[Any] = True if len(SCREAMING_SNAKE_CASE__ ) != 0: A_ : int = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: A_ : Optional[int] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) A_ : str = s A_ : Dict = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return False def _snake_case ( self )->Optional[Any]: '''simple docstring''' return list(self.graph ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 , _SCREAMING_SNAKE_CASE=-1 )->Optional[int]: '''simple docstring''' A_ : Optional[int] = time() self.dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A_ : str = time() return end - begin def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )->Dict: '''simple docstring''' A_ : str = time() self.bfs(SCREAMING_SNAKE_CASE__ ) A_ : str = time() return end - begin
186
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A : Optional[int] = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
229
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _SCREAMING_SNAKE_CASE : _UpperCamelCase:int = BlenderbotSmallConfig _UpperCamelCase:Optional[int] = {} _UpperCamelCase:Union[str, Any] = "gelu" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , )-> str: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =eos_token_id lowerCamelCase_ =pad_token_id lowerCamelCase_ =bos_token_id def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_ =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_ =tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase_ =prepare_blenderbot_small_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]: lowerCamelCase_ =TFBlenderbotSmallModel(config=_SCREAMING_SNAKE_CASE ).get_decoder() lowerCamelCase_ =inputs_dict["""input_ids"""] lowerCamelCase_ =input_ids[:1, :] lowerCamelCase_ =inputs_dict["""attention_mask"""][:1, :] lowerCamelCase_ =inputs_dict["""head_mask"""] lowerCamelCase_ =1 # first forward pass lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ , lowerCamelCase_ =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_ =tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_ =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_ =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_ =output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_ =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-3 ) def __UpperCamelCase ( _A : List[str] , _A : Tuple , _A : str , _A : Dict=None , _A : List[Any]=None , _A : List[str]=None , _A : List[str]=None , _A : Optional[Any]=None , ) ->int: """simple docstring""" if attention_mask is None: lowerCamelCase_ =tf.cast(tf.math.not_equal(_A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase_ =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase_ =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_ =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _UpperCamelCase:Tuple = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _UpperCamelCase:Dict = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _UpperCamelCase:int = True _UpperCamelCase:Union[str, Any] = False _UpperCamelCase:List[Any] = False def _snake_case ( self )-> int: lowerCamelCase_ =TFBlenderbotSmallModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: self.config_tester.run_common_tests() def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) @require_tokenizers @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase): _UpperCamelCase:List[str] = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] _UpperCamelCase:Union[str, Any] = "facebook/blenderbot_small-90M" @cached_property def _snake_case ( self )-> Optional[int]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.tokenizer(self.src_text , return_tensors="""tf""" ) lowerCamelCase_ =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
355
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : Tuple = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ['GLPNFeatureExtractor'] __A : Dict = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowercase ( ): snake_case_ : int = HfArgumentParser(_a ) snake_case_ : List[str] = parser.parse_args_into_dataclasses()[0] snake_case_ : Optional[Any] = TensorFlowBenchmark(args=_a ) try: snake_case_ : Dict = parser.parse_args_into_dataclasses()[0] except ValueError as e: snake_case_ : Union[str, Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' snake_case_ : Any = ''' '''.join(str(_a ).split(''' ''' )[:-1] ) snake_case_ : Optional[int] = '''''' snake_case_ : Any = eval(str(_a ).split(''' ''' )[-1] ) snake_case_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_a ) if len(_a ) > 0: snake_case_ : Optional[int] = full_error_msg + begin_error_msg + str(_a ) raise ValueError(_a ) benchmark.run() if __name__ == "__main__": main()
264
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowercase__ : str = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowercase ( _a , _a ): snake_case_ : Optional[int] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case_ : List[Any] = int(re.match(r'''.*layer_(\d*).*''' , _a )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def __lowercase ( _a ): if dtype == torch.bool: return 1 / 8 snake_case_ : Dict = re.search(r'''[^\d](\d+)$''' , str(_a ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) snake_case_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def __lowercase ( _a , _a , _a , _a , _a ): # Construct model if bloom_config_file == "": snake_case_ : int = BloomConfig() else: snake_case_ : List[str] = BloomConfig.from_json_file(_a ) if shard_model: snake_case_ : List[str] = os.listdir(_a ) snake_case_ : int = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[str] = {'''weight_map''': {}, '''metadata''': {}} snake_case_ : Any = 0 snake_case_ : Union[str, Any] = None snake_case_ : List[str] = BloomConfig() for j, file in enumerate(_a ): print('''Processing file: {}'''.format(_a ) ) snake_case_ : Dict = None for i in range(_a ): # load all TP files snake_case_ : Union[str, Any] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : List[str] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : Any = temp.pop(_a ) if tensors is None: snake_case_ : Any = temp else: for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Any = tensors[key] / pretraining_tp torch.save( _a , os.path.join( _a , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case_ : List[str] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) snake_case_ : int = BloomConfig() snake_case_ : Any = pytorch_dump_folder_path + '''/''' + CONFIG_NAME snake_case_ : Dict = total_size with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_a , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: snake_case_ : Tuple = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' f.write(_a ) else: snake_case_ : Union[str, Any] = BloomModel(_a ) snake_case_ : List[str] = os.listdir(_a ) snake_case_ : Dict = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[Any] = None for i, file in enumerate(_a ): snake_case_ : Optional[Any] = None for i in range(_a ): # load all TP files snake_case_ : List[str] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : Optional[Any] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : str = temp.pop(_a ) if tensors is None: snake_case_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Union[str, Any] = tensors[key] / pretraining_tp snake_case_ : Any = model.load_state_dict(_a , strict=_a ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: snake_case_ : Optional[int] = set(other_keys.missing_keys ) else: snake_case_ : Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(_a , exist_ok=_a ) snake_case_ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: snake_case_ : Optional[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowercase__ : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
264
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _UpperCAmelCase = 16 _UpperCAmelCase = 32 def UpperCamelCase ( __lowercase : Accelerator ,__lowercase : int = 16 ,__lowercase : str = "bert-base-cased" ): '''simple docstring''' A_ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase ) A_ : Any = load_dataset('glue' ,'mrpc' ) def tokenize_function(__lowercase : str ): # max_length=None => use the model max length (it's actually the default) A_ : List[Any] = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__lowercase ,max_length=__lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A_ : Union[str, Any] = datasets.map( __lowercase ,batched=__lowercase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : Tuple = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__lowercase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowercase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__lowercase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. A_ : Tuple = DataLoader( tokenized_datasets['train'] ,shuffle=__lowercase ,collate_fn=__lowercase ,batch_size=__lowercase ) A_ : Optional[int] = DataLoader( tokenized_datasets['validation'] ,shuffle=__lowercase ,collate_fn=__lowercase ,batch_size=__lowercase ) return train_dataloader, eval_dataloader def UpperCamelCase ( __lowercase : str ,__lowercase : Tuple ,__lowercase : List[Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' model.eval() A_ : Tuple = 0 for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A_ : Optional[Any] = model(**__lowercase ) A_ : Dict = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A_ , A_ : Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowercase ) - 1: A_ : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] A_ : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowercase ,references=__lowercase ,) A_ : List[str] = metric.compute() return eval_metric["accuracy"] def UpperCamelCase ( __lowercase : Dict ,__lowercase : List[Any] ): '''simple docstring''' A_ : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : List[Any] = config['lr'] A_ : str = int(config['num_epochs'] ) A_ : Dict = int(config['seed'] ) A_ : Optional[Any] = int(config['batch_size'] ) A_ : Tuple = args.model_name_or_path set_seed(__lowercase ) A_ , A_ : Dict = get_dataloaders(__lowercase ,__lowercase ,__lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(__lowercase ,return_dict=__lowercase ) # Instantiate optimizer A_ : Any = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A_ : Optional[int] = optimizer_cls(params=model.parameters() ,lr=__lowercase ) if accelerator.state.deepspeed_plugin is not None: A_ : int = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A_ : List[Any] = 1 A_ : List[str] = (len(__lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A_ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowercase ,num_warmup_steps=0 ,num_training_steps=__lowercase ,) else: A_ : int = DummyScheduler(__lowercase ,total_num_steps=__lowercase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ , A_ , A_ , A_ , A_ : str = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) # We need to keep track of how many total steps we have iterated over A_ : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly A_ : Union[str, Any] = 0 A_ : Union[str, Any] = evaluate.load('glue' ,'mrpc' ) A_ : List[Any] = num_epochs if args.partial_train_epoch is not None: A_ : Dict = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A_ : List[str] = args.resume_from_checkpoint.split('epoch_' )[1] A_ : List[str] = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A_ : Union[str, Any] = int(__lowercase ) + 1 A_ : Dict = evaluation_loop(__lowercase ,__lowercase ,__lowercase ,__lowercase ) accelerator.print('resumed checkpoint performance:' ,__lowercase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: A_ : List[str] = json.load(__lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A_ : Union[str, Any] = {} for epoch in range(__lowercase ,__lowercase ): model.train() for step, batch in enumerate(__lowercase ): A_ : List[str] = model(**__lowercase ) A_ : Union[str, Any] = outputs.loss A_ : Tuple = loss / gradient_accumulation_steps accelerator.backward(__lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A_ : int = f'''epoch_{epoch}''' A_ : Optional[int] = os.path.join(args.output_dir ,__lowercase ) accelerator.save_state(__lowercase ) A_ : Dict = evaluation_loop(__lowercase ,__lowercase ,__lowercase ,__lowercase ) A_ : Dict = accuracy A_ : str = lr_scheduler.get_lr()[0] A_ : int = optimizer.param_groups[0]['lr'] A_ : Optional[int] = epoch A_ : Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' ,__lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__lowercase ,__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__lowercase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__lowercase ,) parser.add_argument( '--output_dir' ,type=__lowercase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__lowercase ,default=__lowercase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__lowercase ,default=__lowercase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__lowercase ,default=2 ,help='Number of train epochs.' ,) A_ : Union[str, Any] = parser.parse_args() A_ : Dict = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__lowercase ,__lowercase ) if __name__ == "__main__": main()
140
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
140
1
from math import ceil, sqrt def __lowerCAmelCase ( a__ = 100_0000 ) -> int: __a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"{solution() = }")
33
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A( a ): snake_case_ = 0 snake_case_ = False snake_case_ = 3.0 class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": A : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) A : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) A : int = torch.nn.Linear(1_0_0, 2_0_0) A : Optional[int] = accelerator.prepare(model) # Check the values changed in kwargs A : List[Any] = '' A : Tuple = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
33
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _A : Optional[int] = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowerCamelCase__ : int = os.path.abspath(UpperCAmelCase ) logger.info(f"Loading PyTorch weights from {pt_path}" ) lowerCamelCase__ : Union[str, Any] = torch.load(UpperCAmelCase , map_location='''cpu''' ) logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) lowerCamelCase__ : Optional[int] = convert_pytorch_state_dict_to_flax(UpperCAmelCase , UpperCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCamelCase__ : str = convert_pytorch_sharded_state_dict_to_flax(UpperCAmelCase , UpperCAmelCase ) return flax_state_dict def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> (Tuple[str], np.ndarray): """simple docstring""" def is_key_or_prefix_key_in_dict(UpperCAmelCase ) -> bool: return len(set(UpperCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCamelCase__ : Any = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCamelCase__ : Dict = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCamelCase__ : Optional[int] = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCamelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ : List[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(UpperCAmelCase ): lowerCamelCase__ : Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ : Any = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ : Dict = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCamelCase__ : str = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCamelCase__ : Union[str, Any] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCamelCase__ : Tuple = pt_tuple_key[-2] + '''_v''' if name is not None: lowerCamelCase__ : List[str] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" # convert pytorch tensor to numpy lowerCamelCase__ : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase__ : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCamelCase__ : str = flax_model.params['''params'''] else: lowerCamelCase__ : Any = flax_model.params lowerCamelCase__ : str = flatten_dict(UpperCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase__ : str = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCamelCase__ : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCamelCase__ : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ : List[str] = rename_key_and_reshape_tensor( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # add model prefix if necessary lowerCamelCase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase__ : Optional[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCamelCase__ : Dict = jnp.asarray(UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(UpperCAmelCase , UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown lowerCamelCase__ : List[Any] = jnp.asarray(UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown lowerCamelCase__ : Any = jnp.asarray(UpperCAmelCase ) return unflatten_dict(UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" import torch # Load the index lowerCamelCase__ : List[str] = {} for shard_file in shard_filenames: # load using msgpack utils lowerCamelCase__ : str = torch.load(UpperCAmelCase ) lowerCamelCase__ : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase__ : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase__ : Optional[int] = flax_model.params['''params'''] lowerCamelCase__ : int = flatten_dict(UpperCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowerCamelCase__ : Any = flax_model.params lowerCamelCase__ : str = flatten_dict(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCamelCase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ : Union[str, Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCamelCase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase__ : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = rename_key_and_reshape_tensor( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # add model prefix if necessary lowerCamelCase__ : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCamelCase__ : Any = jnp.asarray(UpperCAmelCase ) continue if "var" in flax_key[-1]: lowerCamelCase__ : List[Any] = jnp.asarray(UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(UpperCAmelCase , UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown lowerCamelCase__ : List[str] = jnp.asarray(UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown lowerCamelCase__ : int = jnp.asarray(UpperCAmelCase ) return unflatten_dict(UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Any = os.path.abspath(UpperCAmelCase ) logger.info(f"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class lowerCamelCase__ : int = getattr(UpperCAmelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(UpperCAmelCase , '''rb''' ) as state_f: try: lowerCamelCase__ : Tuple = from_bytes(UpperCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowerCamelCase__ : List[str] = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase : x.dtype == jnp.bfloataa , UpperCAmelCase ) ).values() if any(UpperCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowerCamelCase__ : int = jax.tree_util.tree_map( lambda UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase ) lowerCamelCase__ : str = flatten_dict(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = pt_model.state_dict() lowerCamelCase__ : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowerCamelCase__ : Dict = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCamelCase__ : int = [] lowerCamelCase__ : List[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase__ : Any = flax_key_tuple[0] == pt_model.base_model_prefix lowerCamelCase__ : Tuple = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase__ : Optional[Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase__ : str = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(UpperCAmelCase ) not in pt_model_dict: # conv layer lowerCamelCase__ : str = flax_key_tuple[:-1] + ('''weight''',) lowerCamelCase__ : str = jnp.transpose(UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCAmelCase ) not in pt_model_dict: # linear layer lowerCamelCase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowerCamelCase__ : List[str] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase__ : int = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCamelCase__ : Dict = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowerCamelCase__ : Tuple = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowerCamelCase__ : List[str] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCamelCase__ : Dict = '''.'''.join(UpperCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCamelCase__ : Dict = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCamelCase__ : Optional[Any] = key.split('''.''' ) lowerCamelCase__ : Tuple = None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCamelCase__ : int = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCamelCase__ : Optional[Any] = key_components[-2] + '''_v''' if name is not None: lowerCamelCase__ : Dict = key_components[:-3] + [name] lowerCamelCase__ : str = '''.'''.join(UpperCAmelCase ) lowerCamelCase__ : List[str] = key if flax_key in special_pt_names: lowerCamelCase__ : Optional[int] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict lowerCamelCase__ : Optional[Any] = np.asarray(UpperCAmelCase ) if not isinstance(UpperCAmelCase , np.ndarray ) else flax_tensor lowerCamelCase__ : Optional[int] = torch.from_numpy(UpperCAmelCase ) # remove from missing keys missing_keys.remove(UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCAmelCase ) pt_model.load_state_dict(UpperCAmelCase ) # re-transform missing_keys to list lowerCamelCase__ : Tuple = list(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(UpperCAmelCase ) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ''' use it for predictions and inference.''' ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
142
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : str = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) lowerCamelCase__ : Union[str, Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase__ : Dict = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) lowerCamelCase__ : Tuple = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase__ : int = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) lowerCamelCase__ : str = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase__ : Any = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) lowerCamelCase__ : Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: """simple docstring""" if split_mlp_wi: lowerCamelCase__ : Dict = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] lowerCamelCase__ : List[Any] = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] lowerCamelCase__ : str = (wi_a, wi_a) else: lowerCamelCase__ : Optional[int] = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] lowerCamelCase__ : Tuple = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def _a ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : List[str] = traverse_util.flatten_dict(variables['''target'''] ) lowerCamelCase__ : Union[str, Any] = {'''/'''.join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase__ : Any = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCAmelCase ) lowerCamelCase__ : List[str] = collections.OrderedDict() # Shared embeddings. lowerCamelCase__ : List[Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase__ : int = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''pre_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''attention''' ) lowerCamelCase__ : Optional[Any] = layer_norm lowerCamelCase__ : Tuple = k.T lowerCamelCase__ : Tuple = o.T lowerCamelCase__ : List[Any] = q.T lowerCamelCase__ : Optional[int] = v.T # Block i, layer 1 (MLP). lowerCamelCase__ : Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''pre_mlp_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ : Any = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , UpperCAmelCase ) lowerCamelCase__ : Any = layer_norm if split_mlp_wi: lowerCamelCase__ : Any = wi[0].T lowerCamelCase__ : Any = wi[1].T else: lowerCamelCase__ : Tuple = wi.T lowerCamelCase__ : List[str] = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase__ : Tuple = tax_relpos_bias_lookup( UpperCAmelCase , UpperCAmelCase , '''encoder''' ).T lowerCamelCase__ : List[Any] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: lowerCamelCase__ : Optional[Any] = tax_relpos_bias_lookup( UpperCAmelCase , 0 , '''encoder''' ).T lowerCamelCase__ : Any = tax_relpos_bias_lookup( UpperCAmelCase , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase__ : int = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_self_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''self_attention''' ) lowerCamelCase__ : Tuple = layer_norm lowerCamelCase__ : Tuple = k.T lowerCamelCase__ : List[Any] = o.T lowerCamelCase__ : List[Any] = q.T lowerCamelCase__ : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase__ : Dict = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_cross_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''encoder_decoder_attention''' ) lowerCamelCase__ : int = layer_norm lowerCamelCase__ : int = k.T lowerCamelCase__ : List[Any] = o.T lowerCamelCase__ : Dict = q.T lowerCamelCase__ : Union[str, Any] = v.T # Block i, layer 2 (MLP). lowerCamelCase__ : List[str] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_mlp_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ : int = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = layer_norm if split_mlp_wi: lowerCamelCase__ : List[str] = wi[0].T lowerCamelCase__ : Optional[int] = wi[1].T else: lowerCamelCase__ : List[str] = wi.T lowerCamelCase__ : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase__ : Dict = tax_relpos_bias_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' ).T lowerCamelCase__ : str = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase__ : Dict = old['''decoder/logits_dense/kernel'''].T return new def _a ( UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" lowerCamelCase__ : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase__ : str = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase__ : Optional[Any] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) lowerCamelCase__ : Dict = state_dict['''shared.weight'''] return state_dict def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" lowerCamelCase__ : str = checkpoints.load_tax_checkpoint(UpperCAmelCase ) lowerCamelCase__ : str = convert_tax_to_pytorch( UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase , scalable_attention=UpperCAmelCase ) lowerCamelCase__ : int = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = False , ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = MTaConfig.from_json_file(UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase__ : Optional[int] = UMTaEncoderModel(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = UMTaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print('''Done''' ) if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _A : str = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
142
1
import math def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = input('Enter message: ' ) snake_case = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) snake_case = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): snake_case = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith('d' ): snake_case = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = [""""""] * key for col in range(snake_case_ ): snake_case = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : str ) -> Any: """simple docstring""" snake_case = math.ceil(len(snake_case_ ) / key ) snake_case = key snake_case = (num_cols * num_rows) - len(snake_case_ ) snake_case = [""""""] * num_cols snake_case = 0 snake_case = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): snake_case = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
355
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE__ = random.Random() def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Optional[int]=None ) -> Optional[int]: """simple docstring""" if rng is None: snake_case = global_rng snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=4_00 , lowerCAmelCase=20_00 , lowerCAmelCase=20_48 , lowerCAmelCase=1_28 , lowerCAmelCase=1 , lowerCAmelCase=5_12 , lowerCAmelCase=30 , lowerCAmelCase=4_41_00 , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = min_seq_length snake_case = max_seq_length snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case = spectrogram_length snake_case = feature_size snake_case = num_audio_channels snake_case = hop_length snake_case = chunk_length snake_case = sampling_rate def snake_case ( self ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case ( self , lowerCAmelCase=False , lowerCAmelCase=False ): """simple docstring""" def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case = [np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = TvltFeatureExtractor def snake_case ( self ): """simple docstring""" snake_case = TvltFeatureExtractionTester(self ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'spectrogram_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'num_audio_channels' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'hop_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'chunk_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate' ) ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = feat_extract_first.save_pretrained(lowerCAmelCase )[0] check_json_file_has_correct_format(lowerCAmelCase ) snake_case = self.feature_extraction_class.from_pretrained(lowerCAmelCase ) snake_case = feat_extract_first.to_dict() snake_case = feat_extract_second.to_dict() snake_case = dict_first.pop('mel_filters' ) snake_case = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = os.path.join(lowerCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCAmelCase ) snake_case = self.feature_extraction_class.from_json_file(lowerCAmelCase ) snake_case = feat_extract_first.to_dict() snake_case = feat_extract_second.to_dict() snake_case = dict_first.pop('mel_filters' ) snake_case = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = [np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking snake_case = feature_extractor( lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 , mask_audio=lowerCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case = np.asarray(lowerCAmelCase ) snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case = ds.sort('id' ).select(range(lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): """simple docstring""" snake_case = self._load_datasamples(1 ) snake_case = TvltFeatureExtractor() snake_case = feature_extractor(lowerCAmelCase , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) snake_case = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCAmelCase , atol=1E-4 ) )
149
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union __A : Tuple = TypeVar("T") __A : int = Union[List[T], Tuple[T, ...]] __A : Union[str, Any] = Union[T, List[T], Dict[str, T]] __A : str = Union[str, bytes, os.PathLike]
260
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __snake_case ( ): __a , __a = 9, 14 # noqa: F841 __a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __a = defaultdict(_UpperCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __a = mst(_UpperCAmelCase ) __a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __a = tuple(answer[:2] ) __a = tuple(edge[::-1] ) assert edge in result or reverse in result
49
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( A__ ): '''simple docstring''' def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(_A , '''depth_multiplier''' ) ) class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case=13 , _snake_case=3 , _snake_case=32 , _snake_case=0.25 , _snake_case=8 , _snake_case=True , _snake_case=1024 , _snake_case=32 , _snake_case="relu6" , _snake_case=0.1 , _snake_case=0.02 , _snake_case=True , _snake_case=True , _snake_case=10 , _snake_case=None , ) -> Dict: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = depth_multiplier UpperCAmelCase = min_depth UpperCAmelCase = tf_padding UpperCAmelCase = int(last_hidden_size * depth_multiplier ) UpperCAmelCase = output_stride UpperCAmelCase = hidden_act UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = use_labels UpperCAmelCase = is_training UpperCAmelCase = num_labels UpperCAmelCase = initializer_range UpperCAmelCase = scope def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = MobileNetVaModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = MobileNetVaForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase = config_and_inputs UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = MobileNetVaModelTester(self ) UpperCAmelCase = MobileNetVaConfigTester(self , config_class=_A , has_text_modality=_A ) def snake_case_ ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def snake_case_ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" pass def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_A ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): UpperCAmelCase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = 26 self.assertEqual(len(_A ) , _A ) UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(_A , _A , _A ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def snake_case_ ( self ) -> int: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = MobileNetVaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case_ ( self ) -> str: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(_A ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_A ) # verify the logits UpperCAmelCase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
357
import string def _lowerCAmelCase ( A__: str ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase = '''''' for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase = string.ascii_uppercase.find(A__ ) UpperCAmelCase = num - key if num < 0: UpperCAmelCase = num + len(string.ascii_uppercase ) UpperCAmelCase = translated + string.ascii_uppercase[num] else: UpperCAmelCase = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = input('''Encrypted message: ''' ) UpperCAmelCase = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
152
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = ort.SessionOptions() UpperCamelCase = False return options def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default UpperCamelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A red cat sitting on a park bench""" UpperCamelCase = np.random.RandomState(0 ) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=lowerCamelCase_ , output_type="""np""" , ) UpperCamelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
343
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = """swin""" __lowerCAmelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return 1E-4
343
1
'''simple docstring''' snake_case_ : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Tuple = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution snake_case_ : list[bool | None] = [None] * 10000000 snake_case_ : List[str] = True snake_case_ : Optional[Any] = False def A__ ( UpperCAmelCase_ ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCamelCase : List[str] = chain(next_number(UpperCAmelCase_ ) ) _UpperCamelCase : List[Any] = number_chain while number < 1_0_0_0_0_0_0_0: _UpperCamelCase : str = number_chain number *= 1_0 return number_chain def A__ ( UpperCAmelCase_ = 1_0_0_0_0_0_0_0 ): for i in range(1 , UpperCAmelCase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
236
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness snake_case_ : List[str] = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' snake_case_ : Tuple = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' snake_case_ : str = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' snake_case_ : str = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' snake_case_ : List[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) ,homepage='https://github.com/openai/human-eval' ,codebase_urls=['https://github.com/openai/human-eval'] ,reference_urls=['https://github.com/openai/human-eval'] ,license=_LICENSE ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any]=[1, 10, 100] ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : List[Any]=3.0 ): '''simple docstring''' if os.getenv('HF_ALLOW_CODE_EVAL' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Optional[int] = Counter() _UpperCamelCase : int = 0 _UpperCamelCase : Dict = defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ ,lowerCamelCase__ ) ): for candidate in candidates: _UpperCamelCase : int = candidate + '\n' + test_case _UpperCamelCase : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) _UpperCamelCase : Dict = executor.submit(lowerCamelCase__ ,*lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): _UpperCamelCase : Dict = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _UpperCamelCase , _UpperCamelCase : List[str] = [], [] for result in results.values(): result.sort() _UpperCamelCase : Optional[Any] = [r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) _UpperCamelCase : List[str] = np.array(lowerCamelCase__ ) _UpperCamelCase : List[Any] = np.array(lowerCamelCase__ ) _UpperCamelCase : Tuple = k _UpperCamelCase : Tuple = {F'pass@{k}': estimate_pass_at_k(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def estimator(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = itertools.repeat(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) else: assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = iter(UpperCAmelCase_ ) return np.array([estimator(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , UpperCAmelCase_ ) for n, c in zip(UpperCAmelCase_ , UpperCAmelCase_ )] )
236
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A : List[str] = logging.get_logger(__name__) __A : int = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : int = "deta" SCREAMING_SNAKE_CASE_ : List[str] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Union[str, Any] , A : Optional[int]=None , A : Union[str, Any]=9_00 , A : Tuple=20_48 , A : int=6 , A : str=20_48 , A : Any=8 , A : Optional[int]=6 , A : Dict=10_24 , A : str=8 , A : Dict=0.0 , A : Union[str, Any]=True , A : List[Any]="relu" , A : Tuple=2_56 , A : Optional[int]=0.1 , A : int=0.0 , A : str=0.0 , A : List[Any]=0.02 , A : Union[str, Any]=1.0 , A : str=True , A : str=False , A : Optional[int]="sine" , A : Optional[Any]=5 , A : str=4 , A : Union[str, Any]=4 , A : Tuple=True , A : Union[str, Any]=3_00 , A : Optional[Any]=True , A : int=True , A : Dict=1 , A : Tuple=5 , A : Optional[Any]=2 , A : Optional[Any]=1 , A : Any=1 , A : int=5 , A : Optional[Any]=2 , A : List[str]=0.1 , A : Dict=0.25 , **A : Tuple , ) -> Dict: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase_ : Optional[int] = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(A , A ): lowercase_ : List[str] = backbone_config.pop('''model_type''' ) lowercase_ : List[str] = CONFIG_MAPPING[backbone_model_type] lowercase_ : Union[str, Any] = config_class.from_dict(A ) lowercase_ : List[str] = backbone_config lowercase_ : Optional[int] = num_queries lowercase_ : str = max_position_embeddings lowercase_ : Any = d_model lowercase_ : Optional[Any] = encoder_ffn_dim lowercase_ : List[str] = encoder_layers lowercase_ : Dict = encoder_attention_heads lowercase_ : int = decoder_ffn_dim lowercase_ : List[Any] = decoder_layers lowercase_ : int = decoder_attention_heads lowercase_ : Optional[Any] = dropout lowercase_ : Tuple = attention_dropout lowercase_ : str = activation_dropout lowercase_ : List[str] = activation_function lowercase_ : int = init_std lowercase_ : Dict = init_xavier_std lowercase_ : List[Any] = encoder_layerdrop lowercase_ : str = auxiliary_loss lowercase_ : Dict = position_embedding_type # deformable attributes lowercase_ : Union[str, Any] = num_feature_levels lowercase_ : Optional[int] = encoder_n_points lowercase_ : Dict = decoder_n_points lowercase_ : Tuple = two_stage lowercase_ : Union[str, Any] = two_stage_num_proposals lowercase_ : Tuple = with_box_refine lowercase_ : Optional[int] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase_ : Optional[Any] = class_cost lowercase_ : Dict = bbox_cost lowercase_ : Optional[int] = giou_cost # Loss coefficients lowercase_ : Optional[int] = mask_loss_coefficient lowercase_ : Optional[Any] = dice_loss_coefficient lowercase_ : Dict = bbox_loss_coefficient lowercase_ : int = giou_loss_coefficient lowercase_ : Union[str, Any] = eos_coefficient lowercase_ : Dict = focal_alpha super().__init__(is_encoder_decoder=A , **A ) @property def A ( self : Any ) -> int: return self.encoder_attention_heads @property def A ( self : Optional[int] ) -> int: return self.d_model def A ( self : List[Any] ) -> Dict: lowercase_ : str = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.backbone_config.to_dict() lowercase_ : List[Any] = self.__class__.model_type return output
33
"""simple docstring""" def lowercase ( __snake_case : list[int] ): lowercase_ : List[Any] = len(__snake_case ) for i in range(__snake_case ): for j in range(i + 1 , __snake_case ): if numbers[j] < numbers[i]: lowercase_ , lowercase_ : Optional[int] = numbers[j], numbers[i] return numbers if __name__ == "__main__": __A : int = input('''Enter numbers separated by a comma:\n''').strip() __A : Any = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
33
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> str | Literal[False]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 SCREAMING_SNAKE_CASE__ : Optional[int] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def _a ( SCREAMING_SNAKE_CASE__ : list[str] ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [] while True: SCREAMING_SNAKE_CASE__ : Dict = ["$"] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : str = compare_string(binary[i] , binary[j] ) if k is False: SCREAMING_SNAKE_CASE__ : str = "*" SCREAMING_SNAKE_CASE__ : Union[str, Any] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi SCREAMING_SNAKE_CASE__ : Tuple = list(set(_lowerCamelCase ) ) def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Sequence[float] ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for minterm in minterms: SCREAMING_SNAKE_CASE__ : Union[str, Any] = "" for _ in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _a ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : list[str] ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : str = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 SCREAMING_SNAKE_CASE__ : List[Any] = j if count == 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = 0 temp.append(prime_implicants[i] ) while True: SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : Dict = -1 SCREAMING_SNAKE_CASE__ : Tuple = 0 for i in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: SCREAMING_SNAKE_CASE__ : Optional[int] = count_n SCREAMING_SNAKE_CASE__ : List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Any = 0 def _a ( SCREAMING_SNAKE_CASE__ : list[str] , SCREAMING_SNAKE_CASE__ : list[str] ) -> list[list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[str] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Dict = 1 return chart def _a ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = int(input("Enter the no. of variables\n" ) ) SCREAMING_SNAKE_CASE__ : List[str] = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] SCREAMING_SNAKE_CASE__ : List[str] = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
370
def _a ( SCREAMING_SNAKE_CASE__ : int = 50_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = set() SCREAMING_SNAKE_CASE__ : Dict = int((limit - 24) ** (1 / 2) ) SCREAMING_SNAKE_CASE__ : Any = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE__ ) ) ) for primea in primes: SCREAMING_SNAKE_CASE__ : Optional[int] = primea * primea for primea in primes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: SCREAMING_SNAKE_CASE__ : List[str] = primea * primea * primea * primea SCREAMING_SNAKE_CASE__ : Optional[int] = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"{solution() = }")
191
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : List[Any] , a__ : Optional[int] , a__ : Optional[int]=13 , a__ : List[Any]=7 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=True , a__ : Optional[int]=99 , a__ : Optional[Any]=32 , a__ : List[str]=5 , a__ : Any=4 , a__ : str=37 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=0.1 , a__ : Dict=0.1 , a__ : Any=512 , a__ : Union[str, Any]=16 , a__ : Any=2 , a__ : Optional[int]=0.0_2 , a__ : Optional[int]=4 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_attention_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_choices def a (self : Union[str, Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_attention_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a (self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a (self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = True __snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Any = True A_ : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a (self : Dict ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModelTester(self ) @slow def a (self : List[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : str ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] __snake_case = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , a__ ) # compare the actual values for a slice. __snake_case = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) ) @slow def a (self : Any ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] # compare the actual values for a slice. __snake_case = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
24
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _a : """simple docstring""" def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=sys.maxsize ): '''simple docstring''' UpperCamelCase__: List[Any] = "bilinear" UpperCamelCase__: Optional[int] = max_size UpperCamelCase__: Optional[int] = short_edge_length def __call__( self: Optional[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = [] for img in imgs: UpperCamelCase__ , UpperCamelCase__: Any = img.shape[:2] # later: provide list and randomly choose index for resize UpperCamelCase__: Optional[int] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCamelCase__: Dict = size * 1.0 / min(__lowerCamelCase , __lowerCamelCase ) if h < w: UpperCamelCase__ , UpperCamelCase__: Optional[Any] = size, scale * w else: UpperCamelCase__ , UpperCamelCase__: Dict = scale * h, size if max(__lowerCamelCase , __lowerCamelCase ) > self.max_size: UpperCamelCase__: str = self.max_size * 1.0 / max(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: List[str] = newh * scale UpperCamelCase__: Any = neww * scale UpperCamelCase__: List[str] = int(neww + 0.5 ) UpperCamelCase__: List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCamelCase__: Dict = Image.fromarray(__lowerCamelCase ) UpperCamelCase__: Any = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCamelCase__: str = np.asarray(__lowerCamelCase ) else: UpperCamelCase__: Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCamelCase__: Optional[Any] = nn.functional.interpolate( __lowerCamelCase , (newh, neww) , mode=self.interp_method , align_corners=__lowerCamelCase ).squeeze(0 ) img_augs.append(__lowerCamelCase ) return img_augs class _a : """simple docstring""" def __init__( self: Dict , __lowerCamelCase: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCamelCase__: Union[str, Any] = cfg.INPUT.FORMAT UpperCamelCase__: Union[str, Any] = cfg.SIZE_DIVISIBILITY UpperCamelCase__: Tuple = cfg.PAD_VALUE UpperCamelCase__: str = cfg.INPUT.MAX_SIZE_TEST UpperCamelCase__: int = cfg.MODEL.DEVICE UpperCamelCase__: str = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__: int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__: List[Any] = lambda __lowerCamelCase : (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' UpperCamelCase__: Dict = tuple(max(__lowerCamelCase ) for s in zip(*[img.shape for img in images] ) ) UpperCamelCase__: Tuple = [im.shape[-2:] for im in images] UpperCamelCase__: Optional[int] = [ nn.functional.pad( __lowerCamelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__lowerCamelCase , __lowerCamelCase ) ] return torch.stack(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) def __call__( self: str , __lowerCamelCase: Dict , __lowerCamelCase: Any=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: int = [images] if single_image: assert len(__lowerCamelCase ) == 1 for i in range(len(__lowerCamelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__lowerCamelCase , images.pop(__lowerCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __lowerCamelCase , torch.as_tensor(img_tensorize(images.pop(__lowerCamelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCamelCase__: int = torch.tensor([im.shape[:2] for im in images] ) UpperCamelCase__: int = self.aug(__lowerCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCamelCase__: Any = [self.normalizer(__lowerCamelCase ) for x in images] # now pad them to do the following operations UpperCamelCase__ , UpperCamelCase__: Any = self.pad(__lowerCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCamelCase__: Optional[int] = torch.true_divide(__lowerCamelCase , __lowerCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( A_ ,A_): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( A_ ,A_): assert torch.isfinite(A_).all(), "Box tensor contains infinite or NaN!" UpperCamelCase__ , UpperCamelCase__: int = box_size tensor[:, 0].clamp_(min=0 ,max=A_) tensor[:, 1].clamp_(min=0 ,max=A_) tensor[:, 2].clamp_(min=0 ,max=A_) tensor[:, 3].clamp_(min=0 ,max=A_)
149
0
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _UpperCamelCase: List[Any] = logging.get_logger(__name__) class a__ : _lowerCamelCase = None @experimental def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return _map_with_joblib(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' lowercase : List[str] = num_proc if num_proc <= len(_UpperCAmelCase ) else len(_UpperCAmelCase ) lowercase : Union[str, Any] = [] # We organize the splits ourselve (contiguous splits) for index in range(_UpperCAmelCase ): lowercase : str = len(_UpperCAmelCase ) // num_proc lowercase : Optional[Any] = len(_UpperCAmelCase ) % num_proc lowercase : List[Any] = div * index + min(_UpperCAmelCase , _UpperCAmelCase ) lowercase : List[str] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_UpperCAmelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'''Error dividing inputs iterable among processes. ''' f'''Total number of objects {len(_UpperCAmelCase )}, ''' f'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( f'''Spawning {num_proc} processes for {len(_UpperCAmelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) lowercase , lowercase : Optional[Any] = None, None if not disable_tqdm: lowercase , lowercase : Dict = (RLock(),), tqdm.set_lock with Pool(_UpperCAmelCase , initargs=_UpperCAmelCase , initializer=_UpperCAmelCase ) as pool: lowercase : Optional[int] = pool.map(_UpperCAmelCase , _UpperCAmelCase ) logger.info(f'''Finished {num_proc} processes''' ) lowercase : Any = [obj for proc_res in mapped for obj in proc_res] logger.info(f'''Unpacked {len(_UpperCAmelCase )} objects''' ) return mapped def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_UpperCAmelCase ): return joblib.Parallel()( joblib.delayed(_UpperCAmelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowercase__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowercase : Optional[Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowercase : Tuple = None
53
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCamelCase: str = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _UpperCamelCase: int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _UpperCamelCase: Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowercase ( self : List[str] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ), codebase_urls=['https://www.atticusprojectai.org/cuad'], reference_urls=['https://www.atticusprojectai.org/cuad'], ) def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Optional[Any] ) -> Optional[Any]: lowercase : int = {prediction['id']: prediction['prediction_text'] for prediction in predictions} lowercase : Any = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] lowercase : int = evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
53
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : str = IFPipeline _a : List[Any] = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} _a : Any = TEXT_TO_IMAGE_BATCH_PARAMS _a : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self._get_dummy_components() def __SCREAMING_SNAKE_CASE( self , _A , _A=0 ): """simple docstring""" if str(_A ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(_A ) else: __lowerCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) __lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_save_load_local() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) __lowerCAmelCase = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=_A , tokenizer=_A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) __lowerCAmelCase , __lowerCAmelCase = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __lowerCAmelCase = None __lowerCAmelCase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_A , _A , _A , _A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __lowerCAmelCase = IFImgaImgPipeline(**pipe_a.components ) __lowerCAmelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_A , _A , _A , _A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __lowerCAmelCase = IFInpaintingPipeline(**pipe_a.components ) __lowerCAmelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_A , _A , _A , _A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" _start_torch_memory_measurement() __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase = pipe_a( prompt_embeds=_A , negative_prompt_embeds=_A , num_inference_steps=2 , generator=_A , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(_A , _A ) # pipeline 2 _start_torch_memory_measurement() __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_A ) __lowerCAmelCase = pipe_a( prompt_embeds=_A , negative_prompt_embeds=_A , image=_A , generator=_A , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_A , _A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" _start_torch_memory_measurement() __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_A ) __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase = pipe_a( prompt_embeds=_A , negative_prompt_embeds=_A , image=_A , num_inference_steps=2 , generator=_A , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(_A , _A ) # pipeline 2 _start_torch_memory_measurement() __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_A ) __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_A ) __lowerCAmelCase = pipe_a( prompt_embeds=_A , negative_prompt_embeds=_A , image=_A , original_image=_A , generator=_A , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_A , _A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" _start_torch_memory_measurement() __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_A ) __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(_A ) __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase = pipe_a( prompt_embeds=_A , negative_prompt_embeds=_A , image=_A , mask_image=_A , num_inference_steps=2 , generator=_A , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(_A , _A ) # pipeline 2 _start_torch_memory_measurement() __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_A ) __lowerCAmelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_A ) __lowerCAmelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(_A ) __lowerCAmelCase = pipe_a( prompt_embeds=_A , negative_prompt_embeds=_A , image=_A , mask_image=_A , original_image=_A , generator=_A , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowerCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_A , _A ) def _a ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
92
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : List[Any] =value SCREAMING_SNAKE_CASE__ : Node | None =None SCREAMING_SNAKE_CASE__ : Node | None =None class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Node ) -> None: SCREAMING_SNAKE_CASE__ : Any =tree def __magic_name__ ( self : str , __lowercase : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Union[str, Any] ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
152
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _A ( lowercase , lowercase ): """simple docstring""" a =[] for part_id in partition_order: a =df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowercase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" a =pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a =spark.range(1_00 ).repartition(1 ) a =Spark(lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" a =pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a =spark.range(10 ).repartition(2 ) a =[1, 0] a =_generate_iterable_examples(lowercase , lowercase ) # Reverse the partitions. a =_get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a , a =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" a =pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a =spark.range(10 ).repartition(1 ) a =SparkExamplesIterable(lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" a =pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a =lambda lowercase : x.reverse() a =_get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [2, 1, 0] ) a =SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase ): a , a =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" a =pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a =SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a =_get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase ): a , a =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a =SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a =_get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase ): a , a =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" a =pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a =spark.range(1_00 ).repartition(1 ) a =Spark(lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Union[str, Any] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
0
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __lowerCAmelCase ( lowerCAmelCase): # to overwrite at feature extractactor specific tests _a = None _a = None @property def SCREAMING_SNAKE_CASE ( self: List[str] ): return self.feat_extract_tester.prepare_feat_extract_dict() def SCREAMING_SNAKE_CASE ( self: str ): lowercase :int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "feature_size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "sampling_rate" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "padding_value" ) ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Any = self.feat_extract_tester.prepare_inputs_for_common() lowercase :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase :Optional[int] = feat_extract.model_input_names[0] lowercase :Tuple = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) lowercase :int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) lowercase :int = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowercase :List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase :List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) lowercase :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase :Any = feat_extract.model_input_names[0] lowercase :int = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowercase :Optional[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase :Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :str = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) lowercase :Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase :int = feat_extract.model_input_names[0] lowercase :List[str] = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) lowercase :Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase :Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: str=False ): def _inputs_have_equal_length(_lowerCAmelCase: int ): lowercase :Tuple = len(input[0] ) for input_slice in input[1:]: if len(_lowerCAmelCase ) != length: return False return True def _inputs_are_equal(_lowerCAmelCase: int , _lowerCAmelCase: Tuple ): if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCAmelCase , _lowerCAmelCase ): if not np.allclose(np.asarray(_lowerCAmelCase ) , np.asarray(_lowerCAmelCase ) , atol=1e-3 ): return False return True lowercase :List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase :Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCAmelCase ) lowercase :Optional[Any] = feat_extract.model_input_names[0] lowercase :Any = BatchFeature({input_name: speech_inputs} ) lowercase :List[str] = self.feat_extract_tester.seq_length_diff lowercase :Any = self.feat_extract_tester.max_seq_length + pad_diff lowercase :Any = self.feat_extract_tester.min_seq_length lowercase :Dict = self.feat_extract_tester.batch_size lowercase :Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase :Optional[int] = feat_extract.pad(_lowerCAmelCase , padding=_lowerCAmelCase ) lowercase :int = input_a[input_name] lowercase :List[Any] = feat_extract.pad(_lowerCAmelCase , padding="longest" ) lowercase :str = input_a[input_name] lowercase :Union[str, Any] = feat_extract.pad(_lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[-1] ) ) lowercase :Optional[int] = input_a[input_name] lowercase :List[Any] = feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="np" ) lowercase :str = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="max_length" )[input_name] lowercase :Any = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=_lowerCAmelCase , return_tensors="np" ) lowercase :int = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase :List[Any] = feat_extract.pad(_lowerCAmelCase , pad_to_multiple_of=10 ) lowercase :Optional[Any] = input_a[input_name] lowercase :Any = feat_extract.pad(_lowerCAmelCase , padding="longest" , pad_to_multiple_of=10 ) lowercase :List[str] = input_a[input_name] lowercase :List[Any] = feat_extract.pad( _lowerCAmelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=_lowerCAmelCase ) lowercase :Tuple = input_a[input_name] lowercase :Dict = feat_extract.pad( _lowerCAmelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=_lowerCAmelCase , return_tensors="np" , ) lowercase :Union[str, Any] = input_a[input_name] self.assertTrue(all(len(_lowerCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :Optional[Any] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_lowerCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowercase :Union[str, Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: int=False ): def _inputs_have_equal_length(_lowerCAmelCase: Union[str, Any] ): lowercase :str = len(input[0] ) for input_slice in input[1:]: if len(_lowerCAmelCase ) != length: return False return True def _inputs_are_equal(_lowerCAmelCase: int , _lowerCAmelCase: Optional[Any] ): if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCAmelCase , _lowerCAmelCase ): if not np.allclose(np.asarray(_lowerCAmelCase ) , np.asarray(_lowerCAmelCase ) , atol=1e-3 ): return False return True lowercase :Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase :Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCAmelCase ) lowercase :Tuple = feat_extract.model_input_names[0] lowercase :List[Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowercase :Tuple = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=_lowerCAmelCase ) lowercase :List[str] = input_a[input_name] lowercase :Union[str, Any] = feat_extract.pad(_lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[0] ) ) lowercase :Union[str, Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) # truncate to smallest with np lowercase :Tuple = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=_lowerCAmelCase , ) lowercase :Optional[Any] = input_a[input_name] lowercase :int = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) lowercase :Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) # truncate to middle lowercase :int = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=_lowerCAmelCase , return_tensors="np" , ) lowercase :Union[str, Any] = input_a[input_name] lowercase :List[Any] = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=_lowerCAmelCase ) lowercase :Tuple = input_a[input_name] lowercase :Tuple = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) lowercase :Tuple = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , truncation=_lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="longest" , truncation=_lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="longest" , truncation=_lowerCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="max_length" , truncation=_lowerCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase :int = 12 lowercase :Tuple = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCAmelCase , truncation=_lowerCAmelCase , ) lowercase :Union[str, Any] = input_a[input_name] lowercase :Any = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCAmelCase , ) lowercase :Optional[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase :List[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowercase :Dict = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self: int ): self._check_padding(numpify=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): self._check_padding(numpify=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Any ): self._check_truncation(numpify=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple ): self._check_truncation(numpify=_lowerCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase :int = self.feat_extract_tester.prepare_inputs_for_common() lowercase :str = feat_extract.model_input_names[0] lowercase :Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowercase :Tuple = feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="np" )[input_name] lowercase :Tuple = feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase :Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() lowercase :List[Any] = feat_extract.model_input_names[0] lowercase :List[Any] = BatchFeature({input_name: speech_inputs} ) lowercase :Union[str, Any] = feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="np" )[input_name] lowercase :Dict = feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :str = self.feat_extract_dict lowercase :Optional[int] = True lowercase :Union[str, Any] = self.feature_extraction_class(**_lowerCAmelCase ) lowercase :int = self.feat_extract_tester.prepare_inputs_for_common() lowercase :int = [len(_lowerCAmelCase ) for x in speech_inputs] lowercase :List[str] = feat_extract.model_input_names[0] lowercase :int = BatchFeature({input_name: speech_inputs} ) lowercase :Dict = feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = self.feat_extract_dict lowercase :Any = True lowercase :str = self.feature_extraction_class(**_lowerCAmelCase ) lowercase :str = self.feat_extract_tester.prepare_inputs_for_common() lowercase :int = [len(_lowerCAmelCase ) for x in speech_inputs] lowercase :Dict = feat_extract.model_input_names[0] lowercase :Tuple = BatchFeature({input_name: speech_inputs} ) lowercase :str = min(_lowerCAmelCase ) lowercase :Optional[Any] = feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="np" ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
236
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Dict = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _UpperCAmelCase : Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _UpperCAmelCase : List[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class __lowerCAmelCase ( lowerCAmelCase): _a = '''whisper''' _a = ['''past_key_values'''] _a = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self: int , _lowerCAmelCase: str=5_18_65 , _lowerCAmelCase: str=80 , _lowerCAmelCase: int=6 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=6 , _lowerCAmelCase: List[Any]=4 , _lowerCAmelCase: Any=15_36 , _lowerCAmelCase: Union[str, Any]=15_36 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: List[Any]=5_02_57 , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Dict=2_56 , _lowerCAmelCase: Union[str, Any]=0.0 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Dict=0.0 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: Any=False , _lowerCAmelCase: List[str]=15_00 , _lowerCAmelCase: Tuple=4_48 , _lowerCAmelCase: Optional[Any]=5_02_56 , _lowerCAmelCase: Dict=5_02_56 , _lowerCAmelCase: List[Any]=5_02_56 , _lowerCAmelCase: Union[str, Any]=None , _lowerCAmelCase: str=[2_20, 5_02_56] , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Optional[int]=2_56 , _lowerCAmelCase: int=False , _lowerCAmelCase: Dict=0.05 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: List[str]=2 , _lowerCAmelCase: Tuple=0.0 , _lowerCAmelCase: str=10 , _lowerCAmelCase: Union[str, Any]=0 , _lowerCAmelCase: List[Any]=7 , **_lowerCAmelCase: Union[str, Any] , ): lowercase :Optional[Any] = vocab_size lowercase :Optional[int] = num_mel_bins lowercase :Union[str, Any] = d_model lowercase :List[Any] = encoder_layers lowercase :Optional[Any] = encoder_attention_heads lowercase :Union[str, Any] = decoder_layers lowercase :List[str] = decoder_attention_heads lowercase :Optional[int] = decoder_ffn_dim lowercase :List[Any] = encoder_ffn_dim lowercase :Optional[Any] = dropout lowercase :Tuple = attention_dropout lowercase :Tuple = activation_dropout lowercase :Optional[Any] = activation_function lowercase :Any = init_std lowercase :Optional[int] = encoder_layerdrop lowercase :Optional[int] = decoder_layerdrop lowercase :str = use_cache lowercase :Optional[Any] = encoder_layers lowercase :List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase :Any = max_source_positions lowercase :Optional[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase :int = classifier_proj_size lowercase :List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase :Tuple = apply_spec_augment lowercase :int = mask_time_prob lowercase :Union[str, Any] = mask_time_length lowercase :Dict = mask_time_min_masks lowercase :Tuple = mask_feature_prob lowercase :List[Any] = mask_feature_length lowercase :List[Any] = mask_feature_min_masks lowercase :Any = median_filter_width super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , suppress_tokens=_lowerCAmelCase , begin_suppress_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) class __lowerCAmelCase ( lowerCAmelCase): @property def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Tuple = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowercase :List[Any] = {0: "batch"} else: lowercase :str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) return common_inputs def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase: int = -1 , _lowerCAmelCase: int = -1 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional["TensorType"] = None , _lowerCAmelCase: int = 2_20_50 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 2_20 , ): lowercase :List[str] = OrderedDict() lowercase :str = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_lowerCAmelCase , framework=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , time_duration=_lowerCAmelCase , frequency=_lowerCAmelCase , ) lowercase :Optional[Any] = encoder_inputs["input_features"].shape[2] lowercase :List[str] = encoder_sequence_length // 2 if self.use_past else seq_length lowercase :Dict = super().generate_dummy_inputs( preprocessor.tokenizer , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :str = encoder_inputs.pop("input_features" ) lowercase :Optional[int] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowercase :List[str] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def SCREAMING_SNAKE_CASE ( self: str ): return 1e-3
236
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__(self : Union[str, Any] , _A : Union[str, Any] , _A : Dict=7 , _A : Any=3 , _A : Optional[Any]=30 , _A : Any=4_00 , _A : Tuple=True , _A : List[str]=None , _A : Tuple=True , _A : str=[0.5, 0.5, 0.5] , _A : Tuple=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 2_55 , _A : Optional[int]=True , ) -> str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __snake_case : Tuple = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} __snake_case : int = parent __snake_case : List[str] = batch_size __snake_case : Optional[int] = num_channels __snake_case : Optional[Any] = min_resolution __snake_case : List[str] = max_resolution __snake_case : Optional[Any] = do_resize __snake_case : Optional[int] = size __snake_case : Tuple = do_normalize __snake_case : Optional[Any] = image_mean __snake_case : List[str] = image_std __snake_case : List[str] = do_rescale __snake_case : Union[str, Any] = rescale_factor __snake_case : str = do_pad def _lowercase (self : Any) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase (self : Optional[int] , _A : int , _A : Optional[Any]=False) -> str: if not batched: __snake_case : List[str] = image_inputs[0] if isinstance(_A , Image.Image): __snake_case : Union[str, Any] = image.size else: __snake_case : str = image.shape[1], image.shape[2] if w < h: __snake_case : int = int(self.size['shortest_edge'] * h / w) __snake_case : Any = self.size['shortest_edge'] elif w > h: __snake_case : Any = self.size['shortest_edge'] __snake_case : Tuple = int(self.size['shortest_edge'] * w / h) else: __snake_case : str = self.size['shortest_edge'] __snake_case : Optional[int] = self.size['shortest_edge'] else: __snake_case : Union[str, Any] = [] for image in image_inputs: __snake_case : Union[str, Any] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) __snake_case : Optional[Any] = max(_A , key=lambda _A: item[0])[0] __snake_case : Any = max(_A , key=lambda _A: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase (self : int) -> int: __snake_case : Optional[int] = DeformableDetrImageProcessingTester(self) @property def _lowercase (self : Dict) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase (self : int) -> Any: __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_A , 'image_mean')) self.assertTrue(hasattr(_A , 'image_std')) self.assertTrue(hasattr(_A , 'do_normalize')) self.assertTrue(hasattr(_A , 'do_resize')) self.assertTrue(hasattr(_A , 'do_rescale')) self.assertTrue(hasattr(_A , 'do_pad')) self.assertTrue(hasattr(_A , 'size')) def _lowercase (self : Tuple) -> List[str]: __snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33}) self.assertEqual(image_processor.do_pad , _A) __snake_case : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , _A) def _lowercase (self : str) -> List[Any]: pass def _lowercase (self : Dict) -> Optional[int]: # Initialize image_processing __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A) for image in image_inputs: self.assertIsInstance(_A , Image.Image) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __snake_case : Dict = self.image_processor_tester.get_expected_values(_A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : str = self.image_processor_tester.get_expected_values(_A , batched=_A) __snake_case : Union[str, Any] = image_processing(_A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase (self : List[str]) -> Optional[int]: # Initialize image_processing __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A) for image in image_inputs: self.assertIsInstance(_A , np.ndarray) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __snake_case : Dict = self.image_processor_tester.get_expected_values(_A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Any = image_processing(_A , return_tensors='pt').pixel_values __snake_case : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase (self : Any) -> Union[str, Any]: # Initialize image_processing __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __snake_case : Any = self.image_processor_tester.get_expected_values(_A) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : int = image_processing(_A , return_tensors='pt').pixel_values __snake_case : List[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase (self : Dict) -> Dict: # prepare image and target __snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: __snake_case : Dict = json.loads(f.read()) __snake_case : Dict = {'image_id': 3_97_69, 'annotations': target} # encode them __snake_case : Dict = DeformableDetrImageProcessor() __snake_case : List[str] = image_processing(images=_A , annotations=_A , return_tensors='pt') # verify pixel values __snake_case : str = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , _A) __snake_case : str = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1E-4)) # verify area __snake_case : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A)) # verify boxes __snake_case : List[Any] = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A) __snake_case : int = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1E-3)) # verify image_id __snake_case : Optional[int] = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A)) # verify is_crowd __snake_case : int = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A)) # verify class_labels __snake_case : List[str] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A)) # verify orig_size __snake_case : Optional[Any] = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A)) # verify size __snake_case : Optional[Any] = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A)) @slow def _lowercase (self : str) -> Union[str, Any]: # prepare image, target and masks_path __snake_case : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: __snake_case : List[Any] = json.loads(f.read()) __snake_case : Dict = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} __snake_case : List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them __snake_case : str = DeformableDetrImageProcessor(format='coco_panoptic') __snake_case : List[str] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt') # verify pixel values __snake_case : Tuple = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding['pixel_values'].shape , _A) __snake_case : Optional[int] = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1E-4)) # verify area __snake_case : List[Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A)) # verify boxes __snake_case : List[Any] = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A) __snake_case : Tuple = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1E-3)) # verify image_id __snake_case : List[str] = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A)) # verify is_crowd __snake_case : List[str] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A)) # verify class_labels __snake_case : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A)) # verify masks __snake_case : Optional[int] = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A) # verify orig_size __snake_case : List[str] = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A)) # verify size __snake_case : Any = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A))
368
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __UpperCAmelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase_ , 2 ) - pow(UpperCAmelCase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase_ , 2 ) - pow(UpperCAmelCase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase_ , 2 ) + pow(UpperCAmelCase_ , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
95
0
"""simple docstring""" import numpy as np import datasets snake_case__ : Dict = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' snake_case__ : Union[str, Any] = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' snake_case__ : Any = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_( datasets.Metric ): def lowerCamelCase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ): # convert to numpy arrays lowerCAmelCase : List[str] = np.array(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.array(UpperCamelCase_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction lowerCAmelCase : List[Any] = X - np.mean(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: lowerCAmelCase : Dict = np.linalg.inv(UpperCamelCase_ ) except np.linalg.LinAlgError: lowerCAmelCase : List[str] = np.linalg.pinv(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = np.dot(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.dot(UpperCamelCase_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
60
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase_ = logging.getLogger(__name__) def __lowerCamelCase ( ) -> int: __SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=a_ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=a_ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=a_ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=a_ , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE :Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE :str = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE :Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE :Union[str, Any] = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'''{len(a_ )} examples to process.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE :List[str] = 0 __SCREAMING_SNAKE_CASE :Optional[Any] = 1_00_00 __SCREAMING_SNAKE_CASE :List[Any] = time.time() for text in data: __SCREAMING_SNAKE_CASE :Any = f'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE :int = tokenizer.encode(a_ , add_special_tokens=a_ ) rslt.append(a_ ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE :Any = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE :Any = time.time() logger.info('''Finished binarization''' ) logger.info(f'''{len(a_ )} examples processed.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE :str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE :Union[str, Any] = [np.uintaa(a_ ) for d in rslt] else: __SCREAMING_SNAKE_CASE :List[Any] = [np.intaa(a_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(a_ , '''wb''' ) as handle: pickle.dump(rslt_ , a_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
191
0
'''simple docstring''' UpperCAmelCase_ = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
354
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = input_str.split("""_""" ) UpperCAmelCase__ = 0 if use_pascal else 1 UpperCAmelCase__ = words[start_index:] UpperCAmelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
61
0
'''simple docstring''' def lowercase__ ( __lowercase : int = 10 ) -> str: """simple docstring""" if not isinstance(__lowercase , __lowercase ) or n < 0: raise ValueError('Invalid input' ) __UpperCamelCase = 10**n __UpperCamelCase = 28433 * (pow(2 , 7830457 , __lowercase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(10) = }')
53
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[str] ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
1
from ...configuration_utils import PretrainedConfig class _lowerCamelCase( _a ): """simple docstring""" lowercase_ : List[Any] = """bert-generation""" def __init__( self, lowerCamelCase=5_03_58, lowerCamelCase=10_24, lowerCamelCase=24, lowerCamelCase=16, lowerCamelCase=40_96, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=0, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase="absolute", lowerCamelCase=True, **lowerCamelCase, ) -> str: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) _lowercase : Dict = vocab_size _lowercase : int = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : str = hidden_act _lowercase : Dict = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Any = initializer_range _lowercase : int = layer_norm_eps _lowercase : Dict = position_embedding_type _lowercase : List[str] = use_cache
353
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Union[str, Any] = len(lowerCamelCase_ ) // 2 # choose the middle 3 elements _lowercase : Any = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
84
0
def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ) -> int: return abs(lowerCAmelCase_ ) if a == 0 else greatest_common_divisor(b % a , lowerCAmelCase_ ) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : str ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. A_ : Union[str, Any] = y, x % y return abs(lowerCAmelCase_ ) def __snake_case ( ) -> Tuple: try: A_ : List[str] = input("Enter two integers separated by comma (,): " ).split("," ) A_ : Tuple = int(nums[0] ) A_ : Dict = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(lowerCAmelCase_ , lowerCAmelCase_ )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCAmelCase_ , lowerCAmelCase_ )}" ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
300
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowercase ( unittest.TestCase , _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> Any: _UpperCAmelCase : int = load_tool("""text-classification""" ) self.tool.setup() _UpperCAmelCase : Tuple = load_tool("""text-classification""" ,remote=a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = self.tool("""That's quite cool""" ,["""positive""", """negative"""] ) self.assertEqual(a_ ,"""positive""" ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = self.remote_tool("""That's quite cool""" ,["""positive""", """negative"""] ) self.assertEqual(a_ ,"""positive""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = self.tool(text="""That's quite cool""" ,labels=["""positive""", """negative"""] ) self.assertEqual(a_ ,"""positive""" ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Any = self.remote_tool(text="""That's quite cool""" ,labels=["""positive""", """negative"""] ) self.assertEqual(a_ ,"""positive""" )
215
0
from string import ascii_lowercase, ascii_uppercase def lowerCAmelCase_ ( snake_case_ ): if not sentence: return "" _A : Tuple = dict(zip(snake_case_,snake_case_ ) ) return lower_to_upper.get(sentence[0],sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
361
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __A : Optional[int] = get_logger(__name__) class __A ( enum.Enum ): lowerCAmelCase_ : Dict = """all_checks""" lowerCAmelCase_ : int = """basic_checks""" lowerCAmelCase_ : Union[str, Any] = """no_checks""" class __A ( UpperCamelCase__ ): pass class __A ( UpperCamelCase__ ): pass class __A ( UpperCamelCase__ ): pass class __A ( UpperCamelCase__ ): pass def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None ) -> str: '''simple docstring''' if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) lowerCAmelCase : List[str] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCAmelCase : Union[str, Any] = " for " + verification_name if verification_name is not None else "" if len(_UpperCAmelCase ) > 0: raise NonMatchingChecksumError( f"Checksums didn\'t match{for_verification_name}:\n" f"{bad_urls}\n" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __A ( UpperCamelCase__ ): pass class __A ( UpperCamelCase__ ): pass class __A ( UpperCamelCase__ ): pass class __A ( UpperCamelCase__ ): pass def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) lowerCAmelCase : Optional[Any] = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase ) ) logger.info('All the splits matched successfully.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = True ) -> Tuple: '''simple docstring''' if record_checksum: lowerCAmelCase : Tuple = shaaaa() with open(_UpperCAmelCase, 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ), b'' ): m.update(_UpperCAmelCase ) lowerCAmelCase : str = m.hexdigest() else: lowerCAmelCase : Union[str, Any] = None return {"num_bytes": os.path.getsize(_UpperCAmelCase ), "checksum": checksum} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
138
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase : int = False class __lowerCAmelCase ( unittest.TestCase): pass @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Any: '''simple docstring''' a__ : str =VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) a__ : Optional[Any] =torch.manual_seed(0 ) a__ : Optional[Any] =pipe.dual_guided( prompt="first prompt" , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) a__ : str =VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[Any] =generator.manual_seed(0 ) a__ : Tuple =pipe.dual_guided( prompt="first prompt" , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _lowercase ( self ) -> Any: '''simple docstring''' a__ : str =VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[Any] ="cyberpunk 2077" a__ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) a__ : Union[str, Any] =torch.manual_seed(0 ) a__ : Tuple =pipe.dual_guided( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" , ).images a__ : int =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Any =np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a__ : str ="A painting of a squirrel eating a burger " a__ : Optional[int] =torch.manual_seed(0 ) a__ : str =pipe.text_to_image( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" ).images a__ : Any =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Optional[int] =np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a__ : Optional[Any] =pipe.image_variation(lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="numpy" ).images a__ : Union[str, Any] =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Any =np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
95
0
import math import unittest def snake_case (UpperCAmelCase__ ) -> bool: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def _a ( self ): with self.assertRaises(_lowerCamelCase ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
292
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: Any = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: List[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase , param_name='crop_size' ) UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: Tuple = do_rescale UpperCamelCase_: Dict = do_normalize UpperCamelCase_: Optional[int] = do_center_crop UpperCamelCase_: Tuple = crop_size UpperCamelCase_: Optional[int] = size UpperCamelCase_: Dict = resample UpperCamelCase_: Tuple = rescale_factor UpperCamelCase_: Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_: Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: UpperCamelCase_: str = get_resize_output_image_size(_lowerCamelCase , size=size['shortest_edge'] , default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase_: Any = (size['height'], size['width']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: List[str] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['height'], size['width']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_: Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_: Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCamelCase_: List[str] = get_size_dict(_lowerCamelCase , param_name='crop_size' , default_to_square=_lowerCamelCase ) UpperCamelCase_: Tuple = resample if resample is not None else self.resample UpperCamelCase_: str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_: Dict = image_mean if image_mean is not None else self.image_mean UpperCamelCase_: Dict = image_std if image_std is not None else self.image_std UpperCamelCase_: Any = size if size is not None else self.size UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): UpperCamelCase_: Dict = [images] if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: List[str] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: List[str] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase_: List[str] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase_: int = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] UpperCamelCase_: List[str] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: Optional[int] = {'pixel_values': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
292
1
"""simple docstring""" def _A (__a , __a ) -> float: """simple docstring""" if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: UpperCAmelCase_ : Union[str, Any] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: UpperCAmelCase_ : Optional[int] = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: UpperCAmelCase_ : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=32 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : str = eos_token_id UpperCAmelCase_ : str = pad_token_id UpperCAmelCase_ : str = bos_token_id UpperCAmelCase_ : List[Any] = initializer_range def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase_ : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase_ : str = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) UpperCAmelCase_ : Optional[int] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : int = model_class_name(lowercase_ ) UpperCAmelCase_ : Optional[int] = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : int = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Optional[Any] = model.decode(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : Any = model_class_name(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ : int = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Dict = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) UpperCAmelCase_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 99 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ : Any = input_ids.shape[0] UpperCAmelCase_ : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._get_config_and_data() UpperCAmelCase_ : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : Optional[int] = lm_model(input_ids=lowercase_ ) UpperCAmelCase_ : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase_ : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase_ : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase_ : Tuple = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) UpperCAmelCase_ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase_ : Dict = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : Tuple = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() UpperCAmelCase_ : Optional[Any] = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ (lowercase__ ,unittest.TestCase ,lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = FlaxBlenderbotSmallModelTester(self ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = model_class(lowercase_ ) @jax.jit def encode_jitted(lowercase_ , lowercase_=None , **lowercase_ ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : List[Any] = encode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Optional[Any] = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase_ : int = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowercase_ , lowercase_ , lowercase_ ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : str = decode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : List[Any] = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ : List[str] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase_ : Optional[int] = model(lowercase_ ) self.assertIsNotNone(lowercase_ )
61
0
'''simple docstring''' def __UpperCAmelCase ( a_: int ): return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') __a = int(input('Enter number: ').strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
17
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
1
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters A : Union[str, Any] = False A : Tuple = False def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return TrainCommand(lowercase__ ) class _UpperCamelCase ( A__ ): '''simple docstring''' @staticmethod def snake_case ( __a ): __lowerCAmelCase = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=__A , required=__A , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=__A , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=__A , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=__A , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=__A , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=__A , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=__A , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=__A , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=__A , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=__A , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=__A , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=__A , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=__A , default=1e-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=__A ) def __init__( self , __a ): __lowerCAmelCase = logging.get_logger("transformers-cli/training" ) __lowerCAmelCase = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=__A ) __lowerCAmelCase = args.output __lowerCAmelCase = args.column_label __lowerCAmelCase = args.column_text __lowerCAmelCase = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": __lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) __lowerCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowerCAmelCase = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) __lowerCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowerCAmelCase = args.validation_split __lowerCAmelCase = args.train_batch_size __lowerCAmelCase = args.valid_batch_size __lowerCAmelCase = args.learning_rate __lowerCAmelCase = args.adam_epsilon def snake_case ( self ): if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case ( self ): raise NotImplementedError def snake_case ( self ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
57
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCAmelCase_ :int = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :List[Any] = jax.device_count() lowerCAmelCase_ :Optional[Any] = num_samples * [prompt] lowerCAmelCase_ :int = sd_pipe.prepare_inputs(__A ) lowerCAmelCase_ :Optional[Any] = replicate(__A ) lowerCAmelCase_ :Union[str, Any] = shard(__A ) lowerCAmelCase_ :Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ :Tuple = jax.random.split(__A , jax.device_count() ) lowerCAmelCase_ :Union[str, Any] = sd_pipe(__A , __A , __A , num_inference_steps=25 , jit=__A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCAmelCase_ :Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ :List[str] = images[0, 253:256, 253:256, -1] lowerCAmelCase_ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ :Optional[int] = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Union[str, Any] = """stabilityai/stable-diffusion-2""" lowerCAmelCase_ , lowerCAmelCase_ :Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(__A , subfolder="""scheduler""" ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = FlaxStableDiffusionPipeline.from_pretrained( __A , scheduler=__A , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCAmelCase_ :Optional[int] = scheduler_params lowerCAmelCase_ :List[Any] = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :Tuple = jax.device_count() lowerCAmelCase_ :str = num_samples * [prompt] lowerCAmelCase_ :Union[str, Any] = sd_pipe.prepare_inputs(__A ) lowerCAmelCase_ :Tuple = replicate(__A ) lowerCAmelCase_ :Optional[int] = shard(__A ) lowerCAmelCase_ :List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase_ :List[Any] = jax.random.split(__A , jax.device_count() ) lowerCAmelCase_ :Optional[Any] = sd_pipe(__A , __A , __A , num_inference_steps=25 , jit=__A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCAmelCase_ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ :List[str] = images[0, 253:256, 253:256, -1] lowerCAmelCase_ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ :Dict = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
84
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["input_features", "attention_mask"] def __init__( self : str , __A : Dict=8_0 , __A : Tuple=1_6_0_0_0 , __A : List[str]=0.0 , __A : Optional[int]=1_0 , __A : int=2_5 , __A : List[str]="hamming_window" , __A : Any=3_2_7_6_8.0 , __A : Union[str, Any]=0.9_7 , __A : Any=1.0 , __A : Union[str, Any]=True , __A : Any=True , __A : Optional[int]=False , **__A : Tuple , ): super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) snake_case__ : int = feature_size snake_case__ : Optional[int] = sampling_rate snake_case__ : str = padding_value snake_case__ : Union[str, Any] = hop_length snake_case__ : Optional[Any] = win_length snake_case__ : Dict = frame_signal_scale snake_case__ : Any = preemphasis_coeff snake_case__ : Optional[int] = mel_floor snake_case__ : List[str] = normalize_means snake_case__ : Union[str, Any] = normalize_vars snake_case__ : Optional[int] = win_function snake_case__ : List[str] = return_attention_mask snake_case__ : Any = win_length * sampling_rate // 1_0_0_0 snake_case__ : int = hop_length * sampling_rate // 1_0_0_0 snake_case__ : Optional[Any] = optimal_fft_length(self.sample_size ) snake_case__ : Union[str, Any] = (self.n_fft // 2) + 1 def _lowercase ( self : List[str] , __A : np.array ): if self.win_function == "hamming_window": snake_case__ : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=__A ) else: snake_case__ : Optional[Any] = window_function(window_length=self.sample_size , name=self.win_function ) snake_case__ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) snake_case__ : int = spectrogram( one_waveform * self.frame_signal_scale , window=__A , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__A , preemphasis=self.preemphasis_coeff , mel_filters=__A , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def _lowercase ( self : Optional[int] , __A : List[str] , __A : List[Any] , __A : List[Any] ): # make sure we normalize float32 arrays if self.normalize_means: snake_case__ : Optional[Any] = x[:input_length].mean(axis=0 ) snake_case__ : str = np.subtract(__A , __A ) if self.normalize_vars: snake_case__ : Dict = x[:input_length].std(axis=0 ) snake_case__ : Optional[int] = np.divide(__A , __A ) if input_length < x.shape[0]: snake_case__ : Dict = padding_value # make sure array is in float32 snake_case__ : Union[str, Any] = x.astype(np.floataa ) return x def _lowercase ( self : List[str] , __A : List[np.ndarray] , __A : Optional[np.ndarray] = None ): snake_case__ : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A , __A , self.padding_value ) for x, n in zip(__A , __A )] def __call__( self : List[Any] , __A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __A : Union[bool, str, PaddingStrategy] = False , __A : Optional[int] = None , __A : bool = False , __A : Optional[int] = None , __A : Optional[bool] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[int] = None , **__A : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) snake_case__ : int = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case__ : Optional[Any] = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ : Union[str, Any] = [np.asarray(__A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): snake_case__ : str = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ : Optional[Any] = [raw_speech] # extract fbank features snake_case__ : Optional[int] = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding snake_case__ : List[str] = BatchFeature({"input_features": features} ) snake_case__ : str = self.pad( __A , padding=__A , max_length=__A , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=__A , **__A , ) # make sure list is in array format snake_case__ : List[str] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , __A ): snake_case__ : List[Any] = [np.asarray(__A , dtype=np.floataa ) for feature in input_features] snake_case__ : Any = padded_inputs.get("attention_mask" ) if attention_mask is not None: snake_case__ : Optional[Any] = [np.asarray(__A , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: snake_case__ : List[str] = ( np.array(__A , dtype=np.intaa ) if self._get_padding_strategies(__A , max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) snake_case__ : int = self.normalize( padded_inputs["input_features"] , attention_mask=__A ) if return_tensors is not None: snake_case__ : List[str] = padded_inputs.convert_to_tensors(__A ) return padded_inputs
353
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
286
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase : Tuple = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class A__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowercase = " ") -> Tuple: '''simple docstring''' a__ : Tuple = sentence_delimiter def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' return list(lowercase) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Tuple = [] for sent_idx, sentence in enumerate(lowercase): chars.extend(self.process_string(lowercase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase) - 1: chars.append(self.sentence_delimiter) return chars lowercase : Union[str, Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase : List[Any] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowercase : Optional[int] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowercase : Optional[Any] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def __lowercase ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , )["wer"] a__ : Optional[int] = 0 a__ : str = 0 for prediction, reference in zip(lowercase , lowercase): a__ : Optional[int] = jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
99
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : List[Any] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'vivit' def __init__( self :int , a :Optional[int]=2_2_4 , a :int=3_2 , a :Optional[int]=[2, 1_6, 1_6] , a :List[str]=3 , a :str=7_6_8 , a :Optional[int]=1_2 , a :Optional[int]=1_2 , a :Tuple=3_0_7_2 , a :Dict="gelu_fast" , a :int=0.0 , a :Dict=0.0 , a :Optional[Any]=0.02 , a :Any=1E-0_6 , a :Optional[Any]=True , **a :Union[str, Any] , ) -> str: __UpperCamelCase : Union[str, Any] = hidden_size __UpperCamelCase : Optional[int] = num_hidden_layers __UpperCamelCase : Dict = num_attention_heads __UpperCamelCase : Union[str, Any] = intermediate_size __UpperCamelCase : List[str] = hidden_act __UpperCamelCase : Dict = hidden_dropout_prob __UpperCamelCase : Tuple = attention_probs_dropout_prob __UpperCamelCase : int = initializer_range __UpperCamelCase : int = layer_norm_eps __UpperCamelCase : List[str] = image_size __UpperCamelCase : int = num_frames __UpperCamelCase : Tuple = tubelet_size __UpperCamelCase : Optional[Any] = num_channels __UpperCamelCase : List[str] = qkv_bias super().__init__(**a )
151
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase : Any = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' lowercase : str = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' lowercase : str = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' lowercase : List[str] = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' lowercase : List[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self :List[Any] ) -> List[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def _lowerCamelCase ( self :str , a :Tuple , a :str , a :Tuple=[1, 1_0, 1_0_0] , a :Optional[Any]=4 , a :Optional[int]=3.0 ) -> Dict: if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=a ) as executor: __UpperCamelCase : List[Any] = [] __UpperCamelCase : str = Counter() __UpperCamelCase : Tuple = 0 __UpperCamelCase : Dict = defaultdict(a ) for task_id, (candidates, test_case) in enumerate(zip(a , a ) ): for candidate in candidates: __UpperCamelCase : List[str] = candidate + "\n" + test_case __UpperCamelCase : Tuple = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : str = executor.submit(a , *a ) futures.append(a ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(a ): __UpperCamelCase : int = future.result() results[result["task_id"]].append((result["completion_id"], result) ) __UpperCamelCase , __UpperCamelCase : Tuple = [], [] for result in results.values(): result.sort() __UpperCamelCase : List[Any] = [r[1]["passed"] for r in result] total.append(len(a ) ) correct.append(sum(a ) ) __UpperCamelCase : Union[str, Any] = np.array(a ) __UpperCamelCase : Dict = np.array(a ) __UpperCamelCase : List[str] = k __UpperCamelCase : Optional[int] = {f'pass@{k}': estimate_pass_at_k(a , a , a ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any]) -> Dict: '''simple docstring''' def estimator(_lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1)) if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : List[Any] = itertools.repeat(_lowerCamelCase , len(_lowerCamelCase)) else: assert len(_lowerCamelCase) == len(_lowerCamelCase) __UpperCamelCase : Optional[int] = iter(_lowerCamelCase) return np.array([estimator(int(_lowerCamelCase) , int(_lowerCamelCase) , _lowerCamelCase) for n, c in zip(_lowerCamelCase , _lowerCamelCase)])
151
1