code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = "" lowerCAmelCase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCAmelCase : str = None # compression type in fsspec. ex: "gzip" lowerCAmelCase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Union[str, Any] ,_snake_case : str = "" ,_snake_case : Optional[str] = None ,_snake_case : Optional[dict] = None ,**_snake_case : int ) -> Any: """simple docstring""" super().__init__(self ,**_snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowercase__ : Dict = fsspec.open( _snake_case ,mode='''rb''' ,protocol=_snake_case ,compression=self.compression ,client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) lowercase__ : Optional[Any] = os.path.basename(self.file.path.split('''::''' )[0] ) lowercase__ : List[Any] = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowercase__ : int = None @classmethod def UpperCAmelCase ( cls : List[Any] ,_snake_case : str ) -> List[Any]: """simple docstring""" return super()._strip_protocol(_snake_case ).lstrip('''/''' ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" if self.dir_cache is None: lowercase__ : Any = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowercase__ : int = {f['''name''']: f} def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : str ) -> Dict: """simple docstring""" return self.file.open().read() def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : str = "rb" ,_snake_case : Any=None ,_snake_case : Tuple=True ,_snake_case : str=None ,**_snake_case : Optional[int] ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = self._strip_protocol(_snake_case ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "bz2" lowerCAmelCase : List[Any] = "bz2" lowerCAmelCase : Union[str, Any] = ".bz2" class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "gzip" lowerCAmelCase : Any = "gzip" lowerCAmelCase : Optional[Any] = ".gz" class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "lz4" lowerCAmelCase : int = "lz4" lowerCAmelCase : Optional[int] = ".lz4" class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "xz" lowerCAmelCase : Any = "xz" lowerCAmelCase : Any = ".xz" class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "zstd" lowerCAmelCase : str = "zstd" lowerCAmelCase : Tuple = ".zst" def __init__( self : Optional[int] ,_snake_case : str ,_snake_case : str = "rb" ,_snake_case : Optional[str] = None ,_snake_case : Optional[dict] = None ,_snake_case : int = DEFAULT_BLOCK_SIZE ,**_snake_case : List[str] ,) -> List[str]: """simple docstring""" super().__init__( fo=_snake_case ,mode=_snake_case ,target_protocol=_snake_case ,target_options=_snake_case ,block_size=_snake_case ,**_snake_case ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowercase__ : Optional[Any] = self.file.__enter__ class __A : '''simple docstring''' def __init__( self : List[Any] ,_snake_case : List[str] ) -> List[str]: """simple docstring""" lowercase__ : List[str] = file_ def __enter__( self : Optional[Any] ) -> List[Any]: """simple docstring""" self._file.__enter__() return self def __exit__( self : Any ,*_snake_case : Any ,**_snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" self._file.__exit__(*_snake_case ,**_snake_case ) def __iter__( self : str ) -> Union[str, Any]: """simple docstring""" return iter(self._file ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return next(self._file ) def __getattr__( self : Any ,_snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" return getattr(self._file ,_snake_case ) def fixed_enter(*_snake_case : Dict ,**_snake_case : str ): return WrappedFile(_enter(*_snake_case ,**_snake_case ) ) lowercase__ : Union[str, Any] = fixed_enter
16
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _snake_case = logging.get_logger(__name__) _snake_case = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Tuple=None , **__lowerCamelCase: Union[str, Any] ) -> Dict: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __UpperCAmelCase : Union[str, Any] = model __UpperCAmelCase : Optional[Any] = kwargs.get("model_save_dir" , __lowerCamelCase ) __UpperCAmelCase : str = kwargs.get("latest_model_name" , __lowerCamelCase ) def __call__( self: int , **__lowerCamelCase: Optional[Any] ) -> int: __UpperCAmelCase : Optional[Any] = {k: np.array(__lowerCamelCase ) for k, v in kwargs.items()} return self.model.run(__lowerCamelCase , __lowerCamelCase ) @staticmethod def _lowerCamelCase ( __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Tuple=None ) -> List[str]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __UpperCAmelCase : Any = "CPUExecutionProvider" return ort.InferenceSession(__lowerCamelCase , providers=[provider] , sess_options=__lowerCamelCase ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Optional[str] = None , **__lowerCamelCase: Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME __UpperCAmelCase : str = self.model_save_dir.joinpath(self.latest_model_name ) __UpperCAmelCase : Any = Path(__lowerCamelCase ).joinpath(__lowerCamelCase ) try: shutil.copyfile(__lowerCamelCase , __lowerCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __UpperCAmelCase : str = self.model_save_dir.joinpath(__lowerCamelCase ) if src_path.exists(): __UpperCAmelCase : List[str] = Path(__lowerCamelCase ).joinpath(__lowerCamelCase ) try: shutil.copyfile(__lowerCamelCase , __lowerCamelCase ) except shutil.SameFileError: pass def _lowerCamelCase ( self: Any , __lowerCamelCase: Union[str, os.PathLike] , **__lowerCamelCase: Any , ) -> List[Any]: if os.path.isfile(__lowerCamelCase ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) # saving model weights/files self._save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Optional[Any] , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: Optional[Union[bool, str, None]] = None , __lowerCamelCase: Optional[Union[str, None]] = None , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional["ort.SessionOptions"] = None , **__lowerCamelCase: Union[str, Any] , ) -> Optional[Any]: __UpperCAmelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__lowerCamelCase ): __UpperCAmelCase : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(__lowerCamelCase , __lowerCamelCase ) , provider=__lowerCamelCase , sess_options=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = Path(__lowerCamelCase ) # load model from hub else: # download model __UpperCAmelCase : Optional[Any] = hf_hub_download( repo_id=__lowerCamelCase , filename=__lowerCamelCase , use_auth_token=__lowerCamelCase , revision=__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , ) __UpperCAmelCase : Any = Path(__lowerCamelCase ).parent __UpperCAmelCase : List[Any] = Path(__lowerCamelCase ).name __UpperCAmelCase : Dict = OnnxRuntimeModel.load_model(__lowerCamelCase , provider=__lowerCamelCase , sess_options=__lowerCamelCase ) return cls(model=__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: Union[str, Path] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: Optional[str] = None , **__lowerCamelCase: Tuple , ) -> Optional[Any]: __UpperCAmelCase : int = None if len(str(__lowerCamelCase ).split("@" ) ) == 2: __UpperCAmelCase , __UpperCAmelCase : Any = model_id.split("@" ) return cls._from_pretrained( model_id=__lowerCamelCase , revision=__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , use_auth_token=__lowerCamelCase , **__lowerCamelCase , )
157
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCAmelCase__ ( a__ , a__ , a__ , a__ , a__ ) ->np.ndarray: '''simple docstring''' _UpperCamelCase = cva.getAffineTransform(a__ , a__ ) return cva.warpAffine(a__ , a__ , (rows, cols) ) if __name__ == "__main__": # read original image lowerCamelCase__ = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value lowerCamelCase__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape lowerCamelCase__,lowerCamelCase__ = gray_img.shape # set different points to rotate image lowerCamelCase__ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) lowerCamelCase__ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) lowerCamelCase__ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) lowerCamelCase__ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list lowerCamelCase__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations lowerCamelCase__ = plt.figure(1) lowerCamelCase__ = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
63
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ) -> Tuple: """simple docstring""" _UpperCamelCase = path_or_paths _UpperCamelCase = split if split or isinstance(lowercase_ , lowercase_) else "train" _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def __UpperCAmelCase ( self : Any) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ) -> str: """simple docstring""" _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def __UpperCAmelCase ( self : Any) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
63
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A_ : List[Any] = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
'''simple docstring''' from torch import nn class lowercase ( nn.Module ): """simple docstring""" def __init__( self ,a_ ,a_ ) -> List[Any]: super().__init__() _UpperCAmelCase : Dict = class_size _UpperCAmelCase : Union[str, Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _UpperCAmelCase : List[Any] = nn.Linear(a_ ,a_ ) def _snake_case ( self ,a_ ) -> Tuple: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _UpperCAmelCase : Optional[int] = self.mlp(a_ ) return logits
215
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _A = get_logger() _A = None class _lowerCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self : Dict , UpperCamelCase : Any=None , UpperCamelCase : int=None , **UpperCamelCase : str ) -> List[Any]: """simple docstring""" super().__init__(features=UpperCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError( f"""Expected {device} to be a `str` not {type(UpperCamelCase )}, as `jaxlib.xla_extension.Device` """ """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) lowerCAmelCase__ : Dict = device if isinstance(UpperCamelCase , UpperCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase__ : Optional[int] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) lowerCAmelCase__ : int = str(jax.devices()[0] ) lowerCAmelCase__ : Optional[Any] = jnp_array_kwargs @staticmethod def _lowerCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(UpperCamelCase ): device for device in jax.devices()} def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Dict ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase , axis=0 ) return column def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : int ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase__ : List[str] = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase__ : Union[str, Any] = {"""dtype""": jnp.intaa} else: lowerCAmelCase__ : List[str] = {"""dtype""": jnp.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase__ : List[str] = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): lowerCAmelCase__ : Union[str, Any] = np.asarray(UpperCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase , """__array__""" ) and not isinstance(UpperCamelCase , jax.Array ): lowerCAmelCase__ : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def _lowerCAmelCase ( self : int , UpperCamelCase : dict ) -> Optional[Any]: """simple docstring""" return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : pa.Table ) -> Mapping: """simple docstring""" lowerCAmelCase__ : str = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : pa.Table ) -> "jax.Array": """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) lowerCAmelCase__ : List[str] = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) lowerCAmelCase__ : Any = self.recursive_tensorize(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = self._consolidate(UpperCamelCase ) return column def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : pa.Table ) -> Mapping: """simple docstring""" lowerCAmelCase__ : str = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = self.python_features_decoder.decode_batch(UpperCamelCase ) lowerCAmelCase__ : int = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: lowerCAmelCase__ : Any = self._consolidate(batch[column_name] ) return batch
212
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _A = logging.getLogger(__name__) class _lowerCamelCase ( a_ ): def __init__( self : List[Any] , UpperCamelCase : Dict=-1 ) -> List[Any]: """simple docstring""" # in NER datasets, the last column is usually reserved for NER label lowerCAmelCase__ : Optional[int] = label_idx def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : int = mode.value lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , f"""{mode}.txt""" ) lowerCAmelCase__ : str = 1 lowerCAmelCase__ : List[Any] = [] with open(UpperCamelCase , encoding="""utf-8""" ) as f: lowerCAmelCase__ : str = [] lowerCAmelCase__ : Any = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Tuple = [] else: lowerCAmelCase__ : Optional[int] = line.split(""" """ ) words.append(splits[0] ) if len(UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCamelCase , labels=UpperCamelCase ) ) return examples def _lowerCAmelCase ( self : Any , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase__ : Union[str, Any] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCamelCase ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _lowerCAmelCase ( self : str , UpperCamelCase : str ) -> List[str]: """simple docstring""" if path: with open(UpperCamelCase , """r""" ) as f: lowerCAmelCase__ : Any = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ : List[str] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _lowerCamelCase ( a_ ): def __init__( self : Union[str, Any] ) -> Any: """simple docstring""" # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : str ) -> List[str]: """simple docstring""" if path: with open(UpperCamelCase , """r""" ) as f: lowerCAmelCase__ : Any = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ : str = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _lowerCamelCase ( a_ ): def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = mode.value lowerCAmelCase__ : int = os.path.join(UpperCamelCase , f"""{mode}.txt""" ) lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : List[Any] = [] with open(UpperCamelCase , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCamelCase ): lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[Any] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCamelCase ) == len(UpperCamelCase ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCamelCase , labels=UpperCamelCase ) ) guid_index += 1 return examples def _lowerCAmelCase ( self : List[str] , UpperCamelCase : TextIO , UpperCamelCase : TextIO , UpperCamelCase : List ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = 0 for sentence in parse_incr(UpperCamelCase ): lowerCAmelCase__ : Union[str, Any] = preds_list[example_id] lowerCAmelCase__ : List[Any] = """""" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCamelCase ) example_id += 1 def _lowerCAmelCase ( self : Dict , UpperCamelCase : str ) -> List[str]: """simple docstring""" if path: with open(UpperCamelCase , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
212
1
def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowerCamelCase = 1 lowerCamelCase = 1 while repunit: lowerCamelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __lowerCamelCase ( lowerCamelCase__ : int = 1000000 ): '''simple docstring''' lowerCamelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCamelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : List[str] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase__ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowerCAmelCase__ = get_tests_dir('''fixtures/vocab.json''') lowerCAmelCase__ = get_tests_dir('''fixtures''') class snake_case__(unittest.TestCase ): """simple docstring""" lowercase_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def snake_case ( self : List[Any] ): lowercase__ : Optional[int] = 0 def snake_case ( self : int ): lowercase__ : Optional[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Dict = WavaVecaConfig() lowercase__ : int = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : str = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , "vocab.json" ) ) lowercase__ : Any = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : int = WavaVecaFeatureExtractor() lowercase__ : str = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) lowercase__ : Union[str, Any] = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(SCREAMING_SNAKE_CASE ) # drop `processor_class` in tokenizer with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , "r" ) as f: lowercase__ : Tuple = json.load(SCREAMING_SNAKE_CASE ) config_dict.pop("processor_class" ) with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , "w" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE ) ) lowercase__ : Any = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : List[str] = WavaVecaFeatureExtractor() lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) lowercase__ : List[Any] = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(SCREAMING_SNAKE_CASE ) # drop `processor_class` in feature extractor with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , "r" ) as f: lowercase__ : Tuple = json.load(SCREAMING_SNAKE_CASE ) config_dict.pop("processor_class" ) with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , "w" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE ) ) lowercase__ : Any = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Optional[int] = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(SCREAMING_SNAKE_CASE ) # copy relevant files copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , "w" ) as f: f.write("{}" ) lowercase__ : Union[str, Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE ): lowercase__ : List[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) lowercase__ : Any = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) lowercase__ : Tuple = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version lowercase__ : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) lowercase__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def snake_case ( self : str ): try: AutoConfig.register("custom" , SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__ : Tuple = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE , "vocab.txt" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowercase__ : Any = CustomTokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : str = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case ( self : List[str] ): class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = False class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = False class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """AutoFeatureExtractor""" lowercase_ = """AutoTokenizer""" lowercase_ = False try: AutoConfig.register("custom" , SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local classes. lowercase__ : str = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase__ : Tuple = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase__ : str = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case ( self : str ): lowercase__ : Any = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def snake_case ( self : Tuple ): lowercase__ : Any = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class snake_case__(unittest.TestCase ): """simple docstring""" lowercase_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def snake_case ( cls : Optional[int] ): lowercase__ : int = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE ) @classmethod def snake_case ( cls : Optional[int] ): try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def snake_case ( self : List[str] ): lowercase__ : List[str] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(SCREAMING_SNAKE_CASE , "test-processor" ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowercase__ : List[str] = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def snake_case ( self : str ): lowercase__ : List[Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(SCREAMING_SNAKE_CASE , "test-processor-org" ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization="valid_org" , ) lowercase__ : Optional[Any] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def snake_case ( self : Tuple ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase__ : int = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , "vocab.txt" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowercase__ : Optional[Any] = CustomTokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) lowercase__ : List[str] = Repository(SCREAMING_SNAKE_CASE , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) ) as f: lowercase__ : Any = json.load(SCREAMING_SNAKE_CASE ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , "custom_processing.py" ) ) ) repo.push_to_hub() lowercase__ : str = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
121
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : Optional[int] ): lowercase__ : Dict = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowercase__ : Dict = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Optional[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowercase__ : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowercase__ : int = shift_tokens_right(SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ).logits lowercase__ : Dict = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE , onehot(SCREAMING_SNAKE_CASE , logits.shape[-1] ) ).mean() lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowercase__ : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
121
1
import os def a ( snake_case__: str ): '''simple docstring''' lowercase_ = len(grid[0] ) lowercase_ = len(_UpperCamelCase ) lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_UpperCamelCase ): for j in range(n_rows - 3 ): lowercase_ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase_ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase_ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase_ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase_ = max( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if max_product > largest: lowercase_ = max_product return largest def a ( ): '''simple docstring''' lowercase_ = [] with open(os.path.dirname(_UpperCamelCase ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) lowercase_ = [[int(_UpperCamelCase ) for i in grid[j]] for j in range(len(_UpperCamelCase ) )] return largest_product(_UpperCamelCase ) if __name__ == "__main__": print(solution())
30
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , _lowerCAmelCase : int ): __snake_case : Optional[int] = size __snake_case : List[Any] = [0] * size __snake_case : Dict = [0] * size @staticmethod def snake_case__ ( _lowerCAmelCase : int ): return index | (index + 1) @staticmethod def snake_case__ ( _lowerCAmelCase : int ): return (index & (index + 1)) - 1 def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): __snake_case : Any = value while index < self.size: __snake_case : Optional[int] = self.get_prev(_lowerCAmelCase ) + 1 if current_left_border == index: __snake_case : Dict = value else: __snake_case : str = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[Any] = self.get_next(_lowerCAmelCase ) def snake_case__ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int ): right -= 1 # Because of right is exclusive __snake_case : Optional[Any] = 0 while left <= right: __snake_case : List[str] = self.get_prev(_lowerCAmelCase ) if left <= current_left: __snake_case : Optional[Any] = max(_lowerCAmelCase , self.tree[right] ) __snake_case : List[str] = current_left else: __snake_case : Union[str, Any] = max(_lowerCAmelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
371
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) __snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = True __snake_case : Union[str, Any] = True print(F'''Building TensorFlow model from configuration: {config}''' ) __snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __snake_case : Optional[Any] = cached_file( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if compare_with_pt_model: __snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network __snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __snake_case : Any = pt_model_class.from_pretrained( pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs ) __snake_case : Any = pto[0].numpy() __snake_case : Optional[int] = tfo[0].numpy() __snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ): '''simple docstring''' if args_model_type is None: __snake_case : Tuple = list(MODEL_CLASSES.keys() ) else: __snake_case : Union[str, Any] = [args_model_type] for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ): print("""=""" * 1_0_0 ) print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' ) print("""=""" * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __snake_case : int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __snake_case : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ): print("""-""" * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __snake_case : List[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 1_0_0 ) if config_shortcut_name in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : Dict = config_shortcut_name if model_shortcut_name in aws_model_maps: __snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : List[Any] = model_shortcut_name if os.path.isfile(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(__SCREAMING_SNAKE_CASE ) os.remove(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
20
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase_ : Any = getLogger(__name__) lowerCAmelCase_ : int = 'cuda' if torch.cuda.is_available() else 'cpu' def _lowerCamelCase ( lowercase : List[str] , lowercase : str , lowercase : str , lowercase : int = 8 , lowercase : str = DEFAULT_DEVICE , lowercase : List[Any]=False , lowercase : int="summarization" , lowercase : int=None , **lowercase : int , ) -> Dict: _a = Path(lowercase ).open("w" , encoding="utf-8" ) _a = str(lowercase ) _a = AutoModelForSeqaSeqLM.from_pretrained(lowercase ).to(lowercase ) if fpaa: _a = model.half() _a = AutoTokenizer.from_pretrained(lowercase ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. _a = time.time() # update config with task specific params use_task_specific_params(lowercase , lowercase ) if prefix is None: _a = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(lowercase , lowercase ) ) ): _a = [prefix + text for text in examples_chunk] _a = tokenizer(lowercase , return_tensors="pt" , truncation=lowercase , padding="longest" ).to(lowercase ) _a = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **lowercase , ) _a = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() _a = int(time.time() - start_time ) # seconds _a = len(lowercase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _lowerCamelCase ( ) -> int: return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def _lowerCamelCase ( lowercase : str=True ) -> int: _a = argparse.ArgumentParser() parser.add_argument("model_name" , type=lowercase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=lowercase , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=lowercase , help="where to save summaries" ) parser.add_argument("--reference_path" , type=lowercase , required=lowercase , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=lowercase , required=lowercase , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=lowercase , required=lowercase , default=lowercase , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=lowercase , required=lowercase , default=lowercase , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=lowercase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowercase , default=8 , required=lowercase , help="batch size" ) parser.add_argument( "--n_obs" , type=lowercase , default=-1 , required=lowercase , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=lowercase , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _a , _a = parser.parse_known_args() _a = parse_numeric_n_bool_cl_kwargs(lowercase ) if parsed_args and verbose: print(F'parsed the following generate kwargs: {parsed_args}' ) _a = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _a = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=lowercase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) _a = generate_summaries_or_translations( lowercase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **lowercase , ) if args.reference_path is None: return {} # Compute scores _a = calculate_bleu if "translation" in args.task else calculate_rouge _a = [x.rstrip() for x in open(args.save_path ).readlines()] _a = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(lowercase )] _a = score_fn(lowercase , lowercase ) scores.update(lowercase ) if args.dump_args: scores.update(lowercase ) if args.info: _a = args.info if verbose: print(lowercase ) if args.score_path is not None: json.dump(lowercase , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
63
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : int , lowercase : int=1024 , lowercase : int=1024 , lowercase : Tuple=False , **lowercase : Optional[int] ) -> Union[str, Any]: _a = AutoTokenizer.from_pretrained(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="train" , **lowercase ) _a = tok.pad_token_id def get_lens(lowercase : Optional[int] ): _a = tqdm( DataLoader(lowercase , batch_size=512 , num_workers=8 , shuffle=lowercase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _a = [] for batch in dl: _a = batch["input_ids"].ne(lowercase ).sum(1 ).tolist() _a = batch["labels"].ne(lowercase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase , lowercase ): max_lens.append(max(lowercase , lowercase ) ) else: max_lens.extend(lowercase ) return max_lens _a = get_lens(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="val" , **lowercase ) _a = get_lens(lowercase ) pickle_save(lowercase , train_ds.len_file ) pickle_save(lowercase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
63
1
"""simple docstring""" def lowercase ( _snake_case : int = 200 ) ->int: """simple docstring""" __snake_case : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __snake_case : Tuple = [0] * (pence + 1) __snake_case : List[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_snake_case , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
24
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = [[1, 2, 4], [1, 2, 3, 4]] lowerCAmelCase__ : Dict = DisjunctiveConstraint(a ) self.assertTrue(isinstance(dc.token_ids , a ) ) with self.assertRaises(a ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(a ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(a ): DisjunctiveConstraint(a ) # fails here def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = [[1, 2, 3], [1, 2, 4]] lowerCAmelCase__ : Any = DisjunctiveConstraint(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = dc.update(1 ) lowerCAmelCase__ : Union[str, Any] = stepped is True and completed is False and reset is False self.assertTrue(a ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = dc.update(2 ) lowerCAmelCase__ : int = stepped is True and completed is False and reset is False self.assertTrue(a ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = dc.update(3 ) lowerCAmelCase__ : Any = stepped is True and completed is True and reset is False self.assertTrue(a ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCAmelCase__ : Optional[Any] = DisjunctiveConstraint(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
212
import argparse import hashlib # hashlib is only used inside the Test class import struct class A__ : def __init__( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = data lowerCAmelCase__ : List[Any] = [0X67_452_301, 0Xef_cda_b89, 0X98_bad_cfe, 0X10_325_476, 0Xc3_d2e_1f0] @staticmethod def _lowerCamelCase ( a : int , a : List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_fff_fff def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = b'\x80' + b'\x00' * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase__ : List[str] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Tuple , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = list(struct.unpack('>16L' , a ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase__ : int = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.padding() lowerCAmelCase__ : List[Any] = self.split_blocks() for block in self.blocks: lowerCAmelCase__ : str = self.expand_block(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase__ : Tuple = (b & c) | ((~b) & d) lowerCAmelCase__ : int = 0X5a_827_999 elif 20 <= i < 40: lowerCAmelCase__ : List[str] = b ^ c ^ d lowerCAmelCase__ : Any = 0X6e_d9e_ba1 elif 40 <= i < 60: lowerCAmelCase__ : Tuple = (b & c) | (b & d) | (c & d) lowerCAmelCase__ : Tuple = 0X8f_1bb_cdc elif 60 <= i < 80: lowerCAmelCase__ : List[Any] = b ^ c ^ d lowerCAmelCase__ : int = 0Xca_62c_1d6 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = ( self.rotate(a , 5 ) + f + e + k + expanded_block[i] & 0Xff_fff_fff, a, self.rotate(a , 30 ), c, d, ) lowerCAmelCase__ : Optional[Any] = ( self.h[0] + a & 0Xff_fff_fff, self.h[1] + b & 0Xff_fff_fff, self.h[2] + c & 0Xff_fff_fff, self.h[3] + d & 0Xff_fff_fff, self.h[4] + e & 0Xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Optional[int] = b'Test String' assert SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE_ ).hexdigest() # noqa: S324 def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : str = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowerCAmelCase__ : Dict = parser.parse_args() lowerCAmelCase__ : Tuple = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowerCAmelCase__ : List[Any] = f.read() else: lowerCAmelCase__ : Tuple = bytes(SCREAMING_SNAKE_CASE_ , 'utf-8' ) print(SHAaHash(SCREAMING_SNAKE_CASE_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
212
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCAmelCase__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCAmelCase__ = parser.parse_args() return args.f def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__="eval" ): lowerCAmelCase__ = os.path.join(lowerCAmelCase__ , F"""{split}_results.json""" ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'r' ) as f: return json.load(lowerCAmelCase__ ) raise ValueError(F"""can\'t find {path}""" ) lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a_ ( lowercase_ ): '''simple docstring''' def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"""\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n """.split() with patch.object(a__ , 'argv' , a__): run_flax_glue.main() lowerCAmelCase__ = get_results(a__) self.assertGreaterEqual(result['eval_accuracy'] , 0.75) @slow def __snake_case ( self : int): '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"""\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n """.split() with patch.object(a__ , 'argv' , a__): run_clm_flax.main() lowerCAmelCase__ = get_results(a__) self.assertLess(result['eval_perplexity'] , 100) @slow def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"""\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n """.split() with patch.object(a__ , 'argv' , a__): run_summarization_flax.main() lowerCAmelCase__ = get_results(a__ , split='test') self.assertGreaterEqual(result['test_rouge1'] , 10) self.assertGreaterEqual(result['test_rouge2'] , 2) self.assertGreaterEqual(result['test_rougeL'] , 7) self.assertGreaterEqual(result['test_rougeLsum'] , 7) @slow def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"""\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n """.split() with patch.object(a__ , 'argv' , a__): run_mlm_flax.main() lowerCAmelCase__ = get_results(a__) self.assertLess(result['eval_perplexity'] , 42) @slow def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"""\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n """.split() with patch.object(a__ , 'argv' , a__): run_ta_mlm_flax.main() lowerCAmelCase__ = get_results(a__) self.assertGreaterEqual(result['eval_accuracy'] , 0.42) @slow def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"""\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n """.split() with patch.object(a__ , 'argv' , a__): run_flax_ner.main() lowerCAmelCase__ = get_results(a__) self.assertGreaterEqual(result['eval_accuracy'] , 0.75) self.assertGreaterEqual(result['eval_f1'] , 0.3) @slow def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"""\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n """.split() with patch.object(a__ , 'argv' , a__): run_qa.main() lowerCAmelCase__ = get_results(a__) self.assertGreaterEqual(result['eval_f1'] , 30) self.assertGreaterEqual(result['eval_exact'] , 30)
354
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int , *lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : Dict=None , **lowercase__ : Optional[int]): '''simple docstring''' super().__init__(*lowercase__ , **lowercase__) lowerCAmelCase__ = eval_examples lowerCAmelCase__ = post_process_function lowerCAmelCase__ = quant_trainer_args lowerCAmelCase__ = 128 # default number of calibration samples def __snake_case ( self : Tuple , lowercase__ : Any=None): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.') lowerCAmelCase__ = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCAmelCase__ = self._remove_unused_columns(lowercase__ , description='Calibration') return DataLoader( lowercase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowercase__ , ) def __snake_case ( self : List[Any] , lowercase__ : Union[str, Any]=None): '''simple docstring''' lowerCAmelCase__ = self.train_dataset if calib_dataset is None else calib_dataset lowerCAmelCase__ = self.get_calib_dataloader(lowercase__) lowerCAmelCase__ = self.model quant_trainer.configure_model(lowercase__ , self.quant_trainer_args , calib=lowercase__) model.eval() quant_trainer.enable_calibration(lowercase__) logger.info('***** Running calibration *****') logger.info(F""" Num examples = {self.calib_num}""") logger.info(F""" Batch size = {calib_dataloader.batch_size}""") for step, inputs in enumerate(lowercase__): # Prediction step lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prediction_step(lowercase__ , lowercase__ , prediction_loss_only=lowercase__) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowercase__ , self.quant_trainer_args) lowerCAmelCase__ = model def __snake_case ( self : Optional[Any] , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=None , lowercase__ : str = "eval"): '''simple docstring''' lowerCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase__ = self.get_eval_dataloader(lowercase__) lowerCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ = self.compute_metrics lowerCAmelCase__ = None lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase__ = eval_loop( lowercase__ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , ) finally: lowerCAmelCase__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCAmelCase__ = self.post_process_function(lowercase__ , lowercase__ , output.predictions) lowerCAmelCase__ = self.compute_metrics(lowercase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): lowerCAmelCase__ = metrics.pop(lowercase__) self.log(lowercase__) else: lowerCAmelCase__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) lowerCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase__) return metrics def __snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Any , lowercase__ : List[str]=None , lowercase__ : str = "test"): '''simple docstring''' lowerCAmelCase__ = self.get_test_dataloader(lowercase__) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ = self.compute_metrics lowerCAmelCase__ = None lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase__ = eval_loop( lowercase__ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , ) finally: lowerCAmelCase__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase__ = self.post_process_function(lowercase__ , lowercase__ , output.predictions , 'predict') lowerCAmelCase__ = self.compute_metrics(lowercase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): lowerCAmelCase__ = metrics.pop(lowercase__) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase__) def __snake_case ( self : List[str] , lowercase__ : List[str]="./"): '''simple docstring''' lowerCAmelCase__ = self.eval_dataset lowerCAmelCase__ = self.get_eval_dataloader(lowercase__) lowerCAmelCase__ = next(iter(lowercase__)) # saving device - to make it consistent lowerCAmelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # convert to tuple lowerCAmelCase__ = tuple(v.to(lowercase__) for k, v in batch.items()) logger.info('Converting model to be onnx compatible') from pytorch_quantization.nn import TensorQuantizer lowerCAmelCase__ = True lowerCAmelCase__ = self.model.to(lowercase__) model.eval() model.float() lowerCAmelCase__ = model.module if hasattr(lowercase__ , 'module') else model quant_trainer.configure_model(lowercase__ , self.quant_trainer_args) lowerCAmelCase__ = os.path.join(lowercase__ , 'model.onnx') logger.info(F"""exporting model to {output_model_file}""") lowerCAmelCase__ = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( lowercase__ , lowercase__ , lowercase__ , export_params=lowercase__ , opset_version=13 , do_constant_folding=lowercase__ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=lowercase__ , ) logger.info('onnx export finished')
119
0
from __future__ import annotations def lowerCamelCase__ ( a , a , a , a , a , ) -> None: _A: Optional[Any] = len(a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , a , a , ) def lowerCamelCase__ ( a ) -> None: _A: list[list[str]] = [] depth_first_search([] , [] , [] , a , a ) # Print all the boards for board in boards: for column in board: print(a ) print('''''' ) print(len(a ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
121
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = '''swin2sr''' __UpperCamelCase : str = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[str] , lowerCAmelCase_ : int=6_4 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=1_8_0 , lowerCAmelCase_ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : Tuple=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : Any=2.0 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Optional[Any]=1e-5 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : int=1.0 , lowerCAmelCase_ : Any="1conv" , lowerCAmelCase_ : List[str]="pixelshuffle" , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[str] = image_size _A: Any = patch_size _A: Any = num_channels _A: Union[str, Any] = embed_dim _A: int = depths _A: List[Any] = len(lowerCAmelCase_ ) _A: int = num_heads _A: Any = window_size _A: Optional[int] = mlp_ratio _A: int = qkv_bias _A: List[Any] = hidden_dropout_prob _A: List[str] = attention_probs_dropout_prob _A: List[Any] = drop_path_rate _A: Any = hidden_act _A: List[str] = use_absolute_embeddings _A: Tuple = layer_norm_eps _A: str = initializer_range _A: int = upscale _A: int = img_range _A: Optional[Any] = resi_connection _A: int = upsampler
121
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __UpperCAmelCase :Union[str, Any] = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Union[str, Any] = ["BeitFeatureExtractor"] __UpperCAmelCase :int = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Optional[Any] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :List[Any] = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __UpperCAmelCase :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _a ): """simple docstring""" def __init__( self : Optional[Any] , snake_case : Dict , snake_case : Dict=13 , snake_case : str=7 , snake_case : Dict=True , snake_case : Any=True , snake_case : Optional[Any]=True , snake_case : Optional[Any]=True , snake_case : List[str]=99 , snake_case : str=32 , snake_case : Any=5 , snake_case : List[str]=4 , snake_case : List[str]=37 , snake_case : int="gelu" , snake_case : int=0.1 , snake_case : int=0.1 , snake_case : Union[str, Any]=512 , snake_case : int=16 , snake_case : Optional[Any]=2 , snake_case : List[Any]=0.02 , snake_case : Any=False , snake_case : int=True , snake_case : Union[str, Any]="None" , snake_case : str=3 , snake_case : Union[str, Any]=4 , snake_case : Any=None , ) -> List[Any]: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_token_type_ids __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Any = type_vocab_size __UpperCAmelCase : Tuple = type_sequence_label_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : Any = num_choices __UpperCAmelCase : Any = relative_attention __UpperCAmelCase : Dict = position_biased_input __UpperCAmelCase : Optional[int] = pos_att_type __UpperCAmelCase : Dict = scope def lowerCamelCase__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = None __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ) -> List[str]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = self.get_config() __UpperCAmelCase : Dict = 300 return config def lowerCamelCase__ ( self : Any , snake_case : int ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase__ ( self : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : Any , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = DebertaModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )[0] __UpperCAmelCase : Tuple = model(snake_case , token_type_ids=snake_case )[0] __UpperCAmelCase : Optional[int] = model(snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase__ ( self : Optional[int] , snake_case : int , snake_case : Tuple , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = DebertaForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : int = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[Any] , snake_case : str , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : List[Any] = DebertaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case ) def lowerCamelCase__ ( self : str , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Dict , snake_case : Optional[int] ) -> int: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Union[str, Any] = DebertaForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : Optional[int] , snake_case : int , snake_case : int , snake_case : str ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = DebertaForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[int] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str ) -> int: __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Dict = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Dict = DebertaModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> str: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case ) @slow def lowerCamelCase__ ( self : Dict ) -> Tuple: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = DebertaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def lowerCamelCase__ ( self : Dict ) -> Tuple: pass @slow def lowerCamelCase__ ( self : int ) -> Optional[Any]: __UpperCAmelCase : Any = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __UpperCAmelCase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __UpperCAmelCase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : int = model(snake_case , attention_mask=snake_case )[0] # compare the actual values for a slice. __UpperCAmelCase : Optional[Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
240
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A_ : @staticmethod def _lowercase ( *_A , **_A ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A_ (unittest.TestCase ): UpperCAmelCase__ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _lowercase ( self , _A , _A , _A ): '''simple docstring''' UpperCAmelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) UpperCAmelCase = [ { """image""": Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def _lowercase ( self , _A , _A ): '''simple docstring''' UpperCAmelCase = vqa_pipeline(_A , top_k=1 ) self.assertEqual( _A , [ [{'''score''': ANY(_A ), '''answer''': ANY(_A )}], [{'''score''': ANY(_A ), '''answer''': ANY(_A )}], ] , ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) UpperCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" UpperCAmelCase = """How many cats are there?""" UpperCAmelCase = vqa_pipeline(image=_A , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( _A , [{'''score''': ANY(_A ), '''answer''': ANY(_A )}, {'''score''': ANY(_A ), '''answer''': ANY(_A )}] ) UpperCAmelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( _A , [{'''score''': ANY(_A ), '''answer''': ANY(_A )}, {'''score''': ANY(_A ), '''answer''': ANY(_A )}] ) @slow @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) UpperCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" UpperCAmelCase = """How many cats are there?""" UpperCAmelCase = vqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) UpperCAmelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) UpperCAmelCase = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [[{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def _lowercase ( self ): '''simple docstring''' pass
273
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=18 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=None ,): '''simple docstring''' lowercase : Dict = size if size is not None else {"""shortest_edge""": 20} lowercase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase : str = parent lowercase : int = batch_size lowercase : str = num_channels lowercase : int = image_size lowercase : List[str] = min_resolution lowercase : str = max_resolution lowercase : Dict = do_resize lowercase : Dict = size lowercase : Dict = do_center_crop lowercase : str = crop_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Any= MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MobileNetVaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case ,"""do_resize""" ) ) self.assertTrue(hasattr(snake_case ,"""size""" ) ) self.assertTrue(hasattr(snake_case ,"""do_center_crop""" ) ) self.assertTrue(hasattr(snake_case ,"""crop_size""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,Image.Image ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Tuple = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,torch.Tensor ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
20
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=36 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ) -> Tuple: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = embedding_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_hidden_groups _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self ) -> Optional[int]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = AlbertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _snake_case = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _snake_case = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _snake_case = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _snake_case = AlbertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _snake_case = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , sentence_order_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = AlbertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _snake_case = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = AlbertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _snake_case = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _snake_case = self.num_labels _snake_case = AlbertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _snake_case = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _snake_case = self.num_labels _snake_case = AlbertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _snake_case = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.num_choices _snake_case = AlbertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.prepare_config_and_inputs() ( _snake_case ) = config_and_inputs _snake_case = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = True def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: _snake_case = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def lowerCAmelCase ( self ) -> List[Any]: _snake_case = AlbertModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase ( self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def lowerCAmelCase ( self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def lowerCAmelCase ( self ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def lowerCAmelCase ( self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def lowerCAmelCase ( self ) -> Tuple: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AlbertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self ) -> str: _snake_case = AlbertModel.from_pretrained('albert-base-v2' ) _snake_case = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _snake_case = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _snake_case = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
370
def lowerCamelCase__ ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
295
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __UpperCAmelCase ( __a : int ) -> bool: """simple docstring""" _a : int = int(number**0.5 ) return number == sq * sq def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ,__a : int ,__a : int ,__a : int ) -> tuple[int, int]: """simple docstring""" _a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _a : int = x_den * y_den * z_den _a : int = gcd(__a ,__a ) top //= hcf bottom //= hcf return top, bottom def __UpperCAmelCase ( __a : int = 35 ) -> int: """simple docstring""" _a : set = set() _a : int _a : Fraction = Fraction(0 ) _a : tuple[int, int] for x_num in range(1 ,order + 1 ): for x_den in range(x_num + 1 ,order + 1 ): for y_num in range(1 ,order + 1 ): for y_den in range(y_num + 1 ,order + 1 ): # n=1 _a : Optional[Any] = x_num * y_den + x_den * y_num _a : Any = x_den * y_den _a : List[str] = gcd(__a ,__a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _a : List[Any] = add_three( __a ,__a ,__a ,__a ,__a ,__a ) unique_s.add(__a ) # n=2 _a : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _a : Tuple = x_den * x_den * y_den * y_den if is_sq(__a ) and is_sq(__a ): _a : List[str] = int(sqrt(__a ) ) _a : List[str] = int(sqrt(__a ) ) _a : List[Any] = gcd(__a ,__a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _a : List[Any] = add_three( __a ,__a ,__a ,__a ,__a ,__a ) unique_s.add(__a ) # n=-1 _a : Optional[Any] = x_num * y_num _a : List[Any] = x_den * y_num + x_num * y_den _a : List[Any] = gcd(__a ,__a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _a : Any = add_three( __a ,__a ,__a ,__a ,__a ,__a ) unique_s.add(__a ) # n=2 _a : int = x_num * x_num * y_num * y_num _a : Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__a ) and is_sq(__a ): _a : str = int(sqrt(__a ) ) _a : Optional[int] = int(sqrt(__a ) ) _a : Optional[int] = gcd(__a ,__a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _a : Optional[int] = add_three( __a ,__a ,__a ,__a ,__a ,__a ) unique_s.add(__a ) for num, den in unique_s: total += Fraction(__a ,__a ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
15
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Any = RoCBertTokenizer lowerCAmelCase : List[str] = None lowerCAmelCase : Dict = False lowerCAmelCase : Optional[int] = True lowerCAmelCase : int = filter_non_english def __lowercase ( self : Tuple ): super().setUp() _a : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] _a : Optional[Any] = {} _a : List[str] = {} for i, value in enumerate(_UpperCAmelCase ): _a : Optional[Any] = i _a : Optional[int] = i _a : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['word_shape_file'] ) _a : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file ,'w' ,encoding='utf-8' ) as word_shape_writer: json.dump(_UpperCAmelCase ,_UpperCAmelCase ,ensure_ascii=_UpperCAmelCase ) with open(self.word_pronunciation_file ,'w' ,encoding='utf-8' ) as word_pronunciation_writer: json.dump(_UpperCAmelCase ,_UpperCAmelCase ,ensure_ascii=_UpperCAmelCase ) def __lowercase ( self : Tuple ): _a : int = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file ) _a : Optional[int] = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(_UpperCAmelCase ,['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_UpperCAmelCase ) ,[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_UpperCAmelCase ) ,[5, 6, 2, 5, 7, 8] ) def __lowercase ( self : Dict ): _a : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def __lowercase ( self : Union[str, Any] ): _a : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : Union[str, Any] ): _a : List[str] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def __lowercase ( self : List[str] ): _a : Dict = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : str ): _a : Dict = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : Optional[Any] ): _a : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Optional[Any] ): _a : List[str] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Optional[int] ): _a : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ,strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Any ): _a : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __lowercase ( self : Dict ): _a : int = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _a : Optional[int] = {} for i, token in enumerate(_UpperCAmelCase ): _a : List[str] = i _a : Tuple = RoCBertWordpieceTokenizer(vocab=_UpperCAmelCase ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) def __lowercase ( self : Tuple ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __lowercase ( self : List[str] ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __lowercase ( self : Optional[int] ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __lowercase ( self : Optional[int] ): _a : List[str] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_UpperCAmelCase ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: _a : List[Any] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_UpperCAmelCase ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) def __lowercase ( self : int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Any = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _a : str = tokenizer_r.encode_plus( _UpperCAmelCase ,return_attention_mask=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ,return_offsets_mapping=_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,) _a : int = tokenizer_r.do_lower_case if hasattr(_UpperCAmelCase ,'do_lower_case' ) else False _a : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['offset_mapping'] ) def __lowercase ( self : Dict ): _a : Tuple = ['的', '人', '有'] _a : List[Any] = ''.join(_UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Dict = True _a : Optional[int] = self.tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[Any] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Tuple = tokenizer_p.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : Optional[Any] = tokenizer_r.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : List[Any] = tokenizer_r.convert_ids_to_tokens(_UpperCAmelCase ) _a : Optional[int] = tokenizer_p.convert_ids_to_tokens(_UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : int = False _a : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Dict = self.tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Any = tokenizer_r.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : str = tokenizer_p.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_UpperCAmelCase ) _a : str = tokenizer_p.convert_ids_to_tokens(_UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". _a : int = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_UpperCAmelCase ) ] self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) @slow def __lowercase ( self : str ): _a : int = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file ) _a : Optional[int] = tokenizer.encode('你好' ,add_special_tokens=_UpperCAmelCase ) _a : Any = tokenizer.encode('你是谁' ,add_special_tokens=_UpperCAmelCase ) _a : Tuple = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _a : str = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ,_UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __lowercase ( self : List[Any] ): _a : int = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : Optional[Any] = '你好,你是谁' _a : Optional[int] = tokenizer.tokenize(_UpperCAmelCase ) _a : int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) _a : List[str] = tokenizer.convert_tokens_to_shape_ids(_UpperCAmelCase ) _a : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(_UpperCAmelCase ) _a : List[str] = tokenizer.prepare_for_model( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : Dict = tokenizer.encode_plus(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase )
89
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Tuple = "bloom" UpperCAmelCase__ : List[Any] = ["past_key_values"] UpperCAmelCase__ : str = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self, SCREAMING_SNAKE_CASE_=25_0880, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Tuple: UpperCamelCase : str = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase : Optional[Any] = kwargs.pop('n_embed', SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = hidden_size if n_embed is None else n_embed UpperCamelCase : Tuple = n_layer UpperCamelCase : Dict = n_head UpperCamelCase : List[Any] = layer_norm_epsilon UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : int = use_cache UpperCamelCase : int = pretraining_tp UpperCamelCase : Optional[int] = apply_residual_connection_post_layernorm UpperCamelCase : str = hidden_dropout UpperCamelCase : str = attention_dropout UpperCamelCase : List[Any] = bos_token_id UpperCamelCase : Tuple = eos_token_id UpperCamelCase : Union[str, Any] = slow_but_exact super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = version.parse("1.12" ) def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? UpperCamelCase : Tuple = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs', inverted_values_shape=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.n_layer @property def snake_case_ ( self ) -> int: return self._config.n_head @property def snake_case_ ( self ) -> float: return 1e-3 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : Dict = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : Any = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : Any = seqlen + 2 UpperCamelCase : Optional[int] = self._config.hidden_size // self.num_attention_heads UpperCamelCase : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase : List[str] = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : str = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : int = ordered_inputs['attention_mask'].dtype UpperCamelCase : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
119
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase : Tuple = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) lowerCAmelCase : int = [] lowerCAmelCase : Any = [] lowerCAmelCase : List[Any] = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} lowerCAmelCase : Any = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", 'emoji': True, }, } ] lowerCAmelCase : List[str] = 0 for log in Path().glob('*.log'): lowerCAmelCase : List[str] = 0 with open(log, 'r') as f: for line in f: lowerCAmelCase : Dict = json.loads(line) if line.get('nodeid', '') != "": lowerCAmelCase : Tuple = line['nodeid'] if line.get('duration', None) is not None: lowerCAmelCase : List[str] = f"""{line['duration']:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase : Optional[Any] = [] log.unlink() lowerCAmelCase : int = '' lowerCAmelCase : Tuple = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = {} for test in failed_tests: lowerCAmelCase : int = test[0].split('::') lowerCAmelCase : Optional[int] = data[0].split('/')[-1] if data[0] not in filesafailed: lowerCAmelCase : Tuple = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase : Optional[int] = [test[0] for test in failed_table] lowerCAmelCase : int = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase : List[Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase : int = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: lowerCAmelCase : Any = 'Too many failed tests, please see the full report in the Action results.' lowerCAmelCase : int = len(err) + 10 lowerCAmelCase : Tuple = message[: 30_00 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: lowerCAmelCase : List[Any] = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient lowerCAmelCase : List[str] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": lowerCAmelCase : Tuple = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) lowerCAmelCase : Optional[int] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) lowerCAmelCase : Optional[int] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) lowerCAmelCase : List[Any] = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) lowerCAmelCase : str = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase : str = '' for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase : Optional[Any] = row[0] else: lowerCAmelCase : int = '' lowerCAmelCase : int = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
367
'''simple docstring''' from __future__ import annotations import time import numpy as np lowerCAmelCase : List[Any] = [8, 5, 9, 7] lowerCAmelCase : str = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCAmelCase : Tuple = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_ , A_ , )-> None: '''simple docstring''' UpperCamelCase = claim_vector UpperCamelCase = allocated_resources_table UpperCamelCase = maximum_claim_table def UpperCAmelCase_ ( self )-> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ ( self )-> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ ( self )-> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(A_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ ( self )-> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(A_ ): i for i in self.__need()} def UpperCAmelCase_ ( self , **A_ )-> None: '''simple docstring''' UpperCamelCase = self.__need() UpperCamelCase = self.__allocated_resources_table UpperCamelCase = self.__available_resources() UpperCamelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: UpperCamelCase = False for each_need in need_list: UpperCamelCase = True for index, need in enumerate(A_ ): if need > available_resources[index]: UpperCamelCase = False break if execution: UpperCamelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(A_ ) # update available/freed resources stack UpperCamelCase = np.array(A_ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(A_ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(A_ ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(A_ ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(A_ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(A_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
251
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[Any] , __snake_case : str , __snake_case : Tuple=3 , __snake_case : Dict=7 , __snake_case : List[str]=True , __snake_case : List[Any]=True , __snake_case : Any=False , __snake_case : Dict=True , __snake_case : Optional[Any]=99 , __snake_case : List[Any]=32 , __snake_case : List[Any]=5 , __snake_case : int=4 , __snake_case : Optional[Any]=37 , __snake_case : int="gelu" , __snake_case : Dict=0.1 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Optional[int]=16 , __snake_case : List[Any]=2 , __snake_case : int=0.02 , __snake_case : int=3 , __snake_case : Tuple=4 , __snake_case : Tuple=None , ) -> Optional[int]: UpperCAmelCase : str = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : Tuple = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : Any = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Any = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : Any = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : Any = scope def A ( self : List[Any] ) -> int: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Optional[int] = None UpperCAmelCase : List[str] = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[Any] ) -> List[str]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__snake_case , ) def A ( self : str , __snake_case : List[Any] , __snake_case : int , __snake_case : Tuple , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> Any: UpperCAmelCase : List[Any] = FalconModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case ) UpperCAmelCase : int = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Any , __snake_case : int , __snake_case : Dict , __snake_case : Any , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , ) -> List[str]: UpperCAmelCase : str = True UpperCAmelCase : Union[str, Any] = FalconModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : int = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : Any = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : int , __snake_case : str , __snake_case : str , __snake_case : Optional[int] , ) -> Optional[int]: UpperCAmelCase : List[Any] = FalconForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : int = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : str , __snake_case : str , ) -> int: UpperCAmelCase : List[Any] = True UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Tuple = FalconForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : str = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] UpperCAmelCase : Tuple = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] # select random slice UpperCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def A ( self : int ) -> Tuple: UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = FalconModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : int ) -> Any: self.config_tester.run_common_tests() def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase , *UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCAmelCase : Optional[Any] = alibi self.model_tester.create_and_check_model(__snake_case , *__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Union[str, Any] = input_dict['''input_ids'''] UpperCAmelCase : Any = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Tuple = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[Any] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = 3 UpperCAmelCase : Tuple = '''single_label_classification''' UpperCAmelCase : Union[str, Any] = input_dict['''input_ids'''] UpperCAmelCase : Dict = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Tuple = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = input_dict['''input_ids'''] UpperCAmelCase : Tuple = FalconForCausalLM(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case , use_cache=__snake_case ) UpperCAmelCase : Tuple = input_ids.shape[0] UpperCAmelCase : Any = model._convert_to_rw_cache(result.past_key_values ) UpperCAmelCase : Any = model._convert_cache_to_standard_format(__snake_case , __snake_case ) for layer in range(len(__snake_case ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = 3 UpperCAmelCase : List[Any] = '''multi_label_classification''' UpperCAmelCase : Tuple = input_dict['''input_ids'''] UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : str = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : List[str] ) -> Tuple: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__snake_case , '''use_cache''' ): return UpperCAmelCase : List[str] = model_class(__snake_case ).to(__snake_case ) if "use_cache" not in inputs: UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Optional[int] = model(**__snake_case ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCAmelCase : List[Any] = ( getattr(__snake_case , '''decoder_layers''' , __snake_case ) or getattr(__snake_case , '''num_decoder_layers''' , __snake_case ) or config.num_hidden_layers ) UpperCAmelCase : Any = getattr(__snake_case , '''num_kv_heads''' , config.num_attention_heads ) UpperCAmelCase : Optional[Any] = getattr(__snake_case , '''d_model''' , config.hidden_size ) UpperCAmelCase : Union[str, Any] = embed_dim // num_attention_heads UpperCAmelCase : List[str] = outputs['''past_key_values'''] self.assertEqual(len(__snake_case ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : List[Any] = inputs['''input_ids'''].shape for i in range(__snake_case ): if config.new_decoder_architecture: UpperCAmelCase : Tuple = config.num_attention_heads elif config.multi_query: UpperCAmelCase : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Any ) -> Tuple: UpperCAmelCase : Dict = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) UpperCAmelCase : List[str] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__snake_case ) UpperCAmelCase : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) UpperCAmelCase : List[Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) UpperCAmelCase : List[str] = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=19 ) UpperCAmelCase : str = tokenizer.batch_decode(__snake_case )[0] self.assertEqual(__snake_case , __snake_case ) @slow def A ( self : Tuple ) -> List[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(__snake_case ) UpperCAmelCase : List[Any] = FalconForCausalLM.from_pretrained(__snake_case ) model.eval() model.to(__snake_case ) UpperCAmelCase : List[str] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=4 ) model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=4 ) model.generate(**__snake_case , num_beams=2 , max_new_tokens=4 ) @slow def A ( self : str ) -> Optional[int]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FalconForCausalLM.from_pretrained(__snake_case ) model.eval() model.to(device=__snake_case ) UpperCAmelCase : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) # Test results are the same with and without cache UpperCAmelCase : Dict = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=20 , use_cache=__snake_case ) UpperCAmelCase : Tuple = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=20 , use_cache=__snake_case ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
23
import math def __lowercase ( __lowerCAmelCase : int ): a__ = [True] * n a__ = False a__ = False a__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a__ = i * 2 while index < n: a__ = False a__ = index + i a__ = [2] for i in range(3 , __lowerCAmelCase , 2 ): if is_prime[i]: primes.append(__lowerCAmelCase ) return primes def __lowercase ( __lowerCAmelCase : int = 9_9_9_9_6_6_6_6_3_3_3_3 ): a__ = math.floor(math.sqrt(__lowerCAmelCase ) ) + 1_0_0 a__ = prime_sieve(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = primes[prime_index] while (last_prime**2) <= limit: a__ = primes[prime_index + 1] a__ = last_prime**2 a__ = next_prime**2 # Get numbers divisible by lps(current) a__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
240
0
'''simple docstring''' from manim import * class a__( lowerCamelCase__ ): def lowercase_ ( self : str ): a : Dict = Rectangle(height=0.5 , width=0.5 ) a : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a : Optional[Any] = [mem.copy() for i in range(6 )] a : Dict = [mem.copy() for i in range(6 )] a : List[Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) a : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) a : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) a : Any = Text('CPU' , font_size=24 ) a : int = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) a : int = [mem.copy() for i in range(4 )] a : str = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) a : List[Any] = Text('GPU' , font_size=24 ) a : Optional[int] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) a : List[str] = [mem.copy() for i in range(6 )] a : List[str] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) a : int = Text('Model' , font_size=24 ) a : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) a : Optional[Any] = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) a : List[Any] = [mem.copy() for i in range(6 )] a : Optional[int] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) a : Tuple = Text('Loaded Checkpoint' , font_size=24 ) a : str = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) a : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) a : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) a : Optional[int] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) a : List[str] = [] a : Dict = [] for i, rect in enumerate(__snake_case ): a : Optional[int] = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) a : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
367
'''simple docstring''' import torch from transformers import AutoModel class a__( torch.nn.Module ): def __init__( self : Any , __snake_case : str="sayef/fsner-bert-base-uncased" ): super(__snake_case , self ).__init__() a : List[str] = AutoModel.from_pretrained(__snake_case , return_dict=__snake_case ) a : Optional[Any] = torch.nn.CosineSimilarity(3 , 1e-0_8 ) a : Tuple = torch.nn.Softmax(dim=1 ) def lowercase_ ( self : List[str] , **__snake_case : int ): return self.bert(**__snake_case ).last_hidden_state def lowercase_ ( self : Optional[int] , __snake_case : Union[str, Any] ): return token_embeddings.sum(2 , keepdim=__snake_case ) def lowercase_ ( self : str , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any]=1 ): return self.softmax(T * self.cos(__snake_case , __snake_case ) ) def lowercase_ ( self : int , __snake_case : int , __snake_case : Tuple ): a : List[Any] = W_supports['sizes'].tolist() a : Any = W_supports['start_token_id'].item() a : int = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a : Optional[Any] = self.BERT(**__snake_case ) a : Tuple = self.BERT(**__snake_case ) a : Dict = None a : Optional[Any] = None a : Union[str, Any] = W_supports['input_ids'] == start_token_id a : str = W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case ): if i == 0: a : Optional[int] = 0 else: a : Tuple = support_sizes[i - 1] a : Tuple = S[s : s + size][start_token_masks[s : s + size]] a : int = S[s : s + size][end_token_masks[s : s + size]] a : Any = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a : List[Any] = torch.vstack((p_starts, p_start) ) a : List[Any] = torch.vstack((p_ends, p_end) ) else: a : List[Any] = p_start a : Optional[int] = p_end return p_starts, p_ends
96
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : List[Any] = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE_: Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_: Dict = "" else: SCREAMING_SNAKE_CASE_: Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: str = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE_: Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: Dict = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_: List[str] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_: Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_: Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_: Tuple = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_: List[Any] = in_proj_bias[-config.hidden_size :] def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = dct.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = val def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: Dict = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = ViTConfig() SCREAMING_SNAKE_CASE_: int = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE_: str = True SCREAMING_SNAKE_CASE_: Tuple = int(vit_name[-12:-10] ) SCREAMING_SNAKE_CASE_: List[str] = int(vit_name[-9:-6] ) else: SCREAMING_SNAKE_CASE_: Optional[int] = 10_00 SCREAMING_SNAKE_CASE_: str = "huggingface/label-files" SCREAMING_SNAKE_CASE_: Optional[Any] = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: Tuple = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any = idalabel SCREAMING_SNAKE_CASE_: Any = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Union[str, Any] = int(vit_name[-6:-4] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): SCREAMING_SNAKE_CASE_: Any = 1_92 SCREAMING_SNAKE_CASE_: Any = 7_68 SCREAMING_SNAKE_CASE_: int = 12 SCREAMING_SNAKE_CASE_: List[Any] = 3 elif vit_name[9:].startswith("small" ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 3_84 SCREAMING_SNAKE_CASE_: Any = 15_36 SCREAMING_SNAKE_CASE_: List[str] = 12 SCREAMING_SNAKE_CASE_: Union[str, Any] = 6 else: pass else: if vit_name[4:].startswith("small" ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 7_68 SCREAMING_SNAKE_CASE_: List[Any] = 23_04 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: str = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): SCREAMING_SNAKE_CASE_: Optional[int] = 10_24 SCREAMING_SNAKE_CASE_: List[str] = 40_96 SCREAMING_SNAKE_CASE_: List[Any] = 24 SCREAMING_SNAKE_CASE_: Optional[Any] = 16 elif vit_name[4:].startswith("huge" ): SCREAMING_SNAKE_CASE_: Optional[Any] = 12_80 SCREAMING_SNAKE_CASE_: List[Any] = 51_20 SCREAMING_SNAKE_CASE_: str = 32 SCREAMING_SNAKE_CASE_: List[str] = 16 # load original model from timm SCREAMING_SNAKE_CASE_: int = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_: Dict = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE_: str = ViTModel(_UpperCAmelCase ).eval() else: SCREAMING_SNAKE_CASE_: Tuple = ViTForImageClassification(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: SCREAMING_SNAKE_CASE_: int = DeiTImageProcessor(size=config.image_size ) else: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE_: Dict = encoding["pixel_values"] SCREAMING_SNAKE_CASE_: int = model(_UpperCAmelCase ) if base_model: SCREAMING_SNAKE_CASE_: Tuple = timm_model.forward_features(_UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCAmelCase , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE_: Tuple = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1e-3 ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
13
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A ( enum.Enum ): UpperCamelCase_ : Optional[int] =0 UpperCamelCase_ : Tuple =1 UpperCamelCase_ : Optional[int] =2 @add_end_docstrings(A_ ) class A ( A_ ): UpperCamelCase_ : Union[str, Any] =''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__(self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowercase= None if self.model.config.prefix is not None: __lowercase= self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowercase= self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowercase, __lowercase, __lowercase= self._sanitize_parameters(prefix=lowerCAmelCase , **self._forward_params ) __lowercase= {**self._preprocess_params, **preprocess_params} __lowercase= {**self._forward_params, **forward_params} def _A (self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): __lowercase= {} if prefix is not None: __lowercase= prefix if prefix: __lowercase= self.tokenizer( lowerCAmelCase , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework ) __lowercase= prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' ' [None, \'hole\']' ) __lowercase= handle_long_generation preprocess_params.update(lowerCAmelCase ) __lowercase= generate_kwargs __lowercase= {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) __lowercase= ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) __lowercase= ReturnType.TENSORS if return_type is not None: __lowercase= return_type if clean_up_tokenization_spaces is not None: __lowercase= clean_up_tokenization_spaces if stop_sequence is not None: __lowercase= self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) if len(lowerCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __lowercase= stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _A (self , *lowerCAmelCase , **lowerCAmelCase ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase , **lowerCAmelCase ) def __call__(self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase="" , lowerCAmelCase=None , **lowerCAmelCase ): __lowercase= self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework ) __lowercase= prompt_text if handle_long_generation == "hole": __lowercase= inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __lowercase= generate_kwargs['max_new_tokens'] else: __lowercase= generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowercase= self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) __lowercase= inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __lowercase= inputs['attention_mask'][:, -keep_length:] return inputs def _A (self , lowerCAmelCase , **lowerCAmelCase ): __lowercase= model_inputs['input_ids'] __lowercase= model_inputs.get('attention_mask' , lowerCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __lowercase= None __lowercase= None __lowercase= 1 else: __lowercase= input_ids.shape[0] __lowercase= model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowercase= generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: __lowercase= 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __lowercase= generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowercase= 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowercase= self.model.generate(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , **lowerCAmelCase ) __lowercase= generated_sequence.shape[0] if self.framework == "pt": __lowercase= generated_sequence.reshape(lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowercase= tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _A (self , lowerCAmelCase , lowerCAmelCase=ReturnType.FULL_TEXT , lowerCAmelCase=True ): __lowercase= model_outputs['generated_sequence'][0] __lowercase= model_outputs['input_ids'] __lowercase= model_outputs['prompt_text'] __lowercase= generated_sequence.numpy().tolist() __lowercase= [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowercase= {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowercase= self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowercase= 0 else: __lowercase= len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: __lowercase= prompt_text + text[prompt_length:] else: __lowercase= text[prompt_length:] __lowercase= {'generated_text': all_text} records.append(lowerCAmelCase ) return records
295
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : str = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : str = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" __A = int(number**0.5 ) return number == sq * sq def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> tuple[int, int]: """simple docstring""" __A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __A = x_den * y_den * z_den __A = gcd(a_ , a_ ) top //= hcf bottom //= hcf return top, bottom def UpperCAmelCase ( a_ = 3_5 ) -> int: """simple docstring""" __A = set() __A = 42 __A = Fraction(0 ) __A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __A = x_num * y_den + x_den * y_num __A = x_den * y_den __A = gcd(a_ , a_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __A = add_three( a_ , a_ , a_ , a_ , a_ , a_ ) unique_s.add(a_ ) # n=2 __A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __A = x_den * x_den * y_den * y_den if is_sq(a_ ) and is_sq(a_ ): __A = int(sqrt(a_ ) ) __A = int(sqrt(a_ ) ) __A = gcd(a_ , a_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __A = add_three( a_ , a_ , a_ , a_ , a_ , a_ ) unique_s.add(a_ ) # n=-1 __A = x_num * y_num __A = x_den * y_num + x_num * y_den __A = gcd(a_ , a_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __A = add_three( a_ , a_ , a_ , a_ , a_ , a_ ) unique_s.add(a_ ) # n=2 __A = x_num * x_num * y_num * y_num __A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(a_ ) and is_sq(a_ ): __A = int(sqrt(a_ ) ) __A = int(sqrt(a_ ) ) __A = gcd(a_ , a_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __A = add_three( a_ , a_ , a_ , a_ , a_ , a_ ) unique_s.add(a_ ) for num, den in unique_s: total += Fraction(a_ , a_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
15
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any) SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if isinstance(a_ , a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def UpperCAmelCase ( a_ ) -> Callable[[str], Any]: """simple docstring""" __A = {str(a_ ): choice for choice in choices} return lambda a_ : str_to_choice.get(a_ , a_ ) def UpperCAmelCase ( *, a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A = {} if aliases is not None: __A = aliases if help is not None: __A = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: __A = ArgumentDefaultsHelpFormatter super().__init__(**A ) if dataclasses.is_dataclass(A ): __A = [dataclass_types] __A = list(A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A ) @staticmethod def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ): __A = f'''--{field.name}''' __A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) __A = kwargs.pop("aliases" ,[] ) if isinstance(A ,A ): __A = [aliases] __A = getattr(field.type ,"__origin__" ,field.type ) if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(A ) not in field.type.__args__: # filter `str` in Union __A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A = getattr(field.type ,"__origin__" ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A = ( field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1] ) __A = getattr(field.type ,"__origin__" ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A = {} if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )): if origin_type is Literal: __A = field.type.__args__ else: __A = [x.value for x in field.type] __A = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: __A = field.default else: __A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A = copy(A ) # Hack because type=bool in argparse does not behave as we want. __A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A = default # This tells argparse we accept 0 or 1 value after --field_name __A = "?" # This is the value that will get picked if we do --field_name (without value) __A = True elif isclass(A ) and issubclass(A ,A ): __A = field.type.__args__[0] __A = "+" if field.default_factory is not dataclasses.MISSING: __A = field.default_factory() elif field.default is dataclasses.MISSING: __A = True else: __A = field.type if field.default is not dataclasses.MISSING: __A = field.default elif field.default_factory is not dataclasses.MISSING: __A = field.default_factory() else: __A = True parser.add_argument(A ,*A ,**A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A = False parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ): if hasattr(A ,"_argument_group_name" ): __A = self.add_argument_group(dtype._argument_group_name ) else: __A = self try: __A = get_type_hints(A ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ): __A = ".".join(map(A ,sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(A ): if not field.init: continue __A = type_hints[field.name] self._parse_dataclass_field(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A = [] if args_filename: args_files.append(Path(A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A = ArgumentParser() args_file_parser.add_argument(A ,type=A ,action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A = args_file_parser.parse_known_args(args=A ) __A = vars(A ).get(args_file_flag.lstrip("-" ) ,A ) if cmd_args_file_paths: args_files.extend([Path(A ) for p in cmd_args_file_paths] ) __A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A = self.parse_known_args(args=A ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in vars(A ).items() if k in keys} for k in keys: delattr(A ,A ) __A = dtype(**A ) outputs.append(A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ): __A = set(args.keys() ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A = dtype(**A ) outputs.append(A ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' ) return tuple(A ) def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ): with open(Path(A ) ,encoding="utf-8" ) as open_json_file: __A = json.loads(open_json_file.read() ) __A = self.parse_dict(A ,allow_extra_keys=A ) return tuple(A ) def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ): __A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A ) return tuple(A )
15
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , snake_case_ : Optional[int] , snake_case_ : str=7 , snake_case_ : List[Any]=3 , snake_case_ : Union[str, Any]=18 , snake_case_ : int=30 , snake_case_ : Optional[Any]=400 , snake_case_ : List[str]=True , snake_case_ : Tuple=None , snake_case_ : List[Any]=True , ) -> List[str]: '''simple docstring''' A__ = size if size is not None else {"height": 18, "width": 18} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize def __magic_name__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCAmelCase_ ( A_, unittest.TestCase ): lowercase__ = ImageGPTImageProcessor if is_vision_available() else None def __magic_name__ ( self : int ) -> Tuple: '''simple docstring''' A__ = ImageGPTImageProcessingTester(self ) @property def __magic_name__ ( self : int ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , "clusters" ) ) self.assertTrue(hasattr(snake_case_ , "do_resize" ) ) self.assertTrue(hasattr(snake_case_ , "size" ) ) self.assertTrue(hasattr(snake_case_ , "do_normalize" ) ) def __magic_name__ ( self : int ) -> Optional[int]: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __magic_name__ ( self : Dict ) -> Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) A__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case_ ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(snake_case_ , "image_processor.json" ) image_processor_first.to_json_file(snake_case_ ) A__ = self.image_processing_class.from_json_file(snake_case_ ).to_dict() A__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) def __magic_name__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case_ ) A__ = self.image_processing_class.from_pretrained(snake_case_ ).to_dict() A__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def __magic_name__ ( self : int ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( ) -> str: A__ = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) A__ = Image.open(dataset[4]["file"] ) A__ = Image.open(dataset[5]["file"] ) A__ = [imagea, imagea] return images @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __magic_name__ ( self : Optional[int] ) -> str: '''simple docstring''' A__ = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) A__ = prepare_images() # test non-batched A__ = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) A__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case_ ) # test batched A__ = image_processing(snake_case_ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) A__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case_ )
230
"""simple docstring""" from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[Any] , snake_case_ : Any ) -> List[str]: '''simple docstring''' A__ = data A__ = None def __repr__( self : Optional[int] ) -> str: '''simple docstring''' return F"""Node({self.data})""" class UpperCAmelCase_ : def __init__( self : Dict ) -> Any: '''simple docstring''' A__ = None def __iter__( self : List[Any] ) -> Any: '''simple docstring''' A__ = self.head while node: yield node.data A__ = node.next def __len__( self : Any ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : List[str] ) -> str: '''simple docstring''' return "->".join([str(snake_case_ ) for item in self] ) def __getitem__( self : str , snake_case_ : int ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Tuple , snake_case_ : int , snake_case_ : Any ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) A__ = self.head for _ in range(snake_case_ ): A__ = current.next A__ = data def __magic_name__ ( self : List[Any] , snake_case_ : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , snake_case_ ) def __magic_name__ ( self : Tuple , snake_case_ : Any ) -> None: '''simple docstring''' self.insert_nth(0 , snake_case_ ) def __magic_name__ ( self : Dict , snake_case_ : int , snake_case_ : Any ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) A__ = Node(snake_case_ ) if self.head is None: A__ = new_node elif index == 0: A__ = self.head # link new_node to head A__ = new_node else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = new_node def __magic_name__ ( self : Dict ) -> None: # print every node data '''simple docstring''' print(self ) def __magic_name__ ( self : Dict ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def __magic_name__ ( self : Optional[Any] ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def __magic_name__ ( self : Any , snake_case_ : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) A__ = self.head # default first node if index == 0: A__ = self.head.next else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = temp.next.next return delete_node.data def __magic_name__ ( self : Dict ) -> bool: '''simple docstring''' return self.head is None def __magic_name__ ( self : List[Any] ) -> None: '''simple docstring''' A__ = None A__ = self.head while current: # Store the current node's next node. A__ = current.next # Make the current node's next point backwards A__ = prev # Make the previous node be the current node A__ = current # Make the current node the next node (to progress iteration) A__ = next_node # Return prev in order to put the head at the end A__ = prev def _SCREAMING_SNAKE_CASE ( ) -> None: A__ = LinkedList() assert linked_list.is_empty() is True assert str(lowercase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase_ ) == i linked_list.insert_nth(lowercase_ , i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase_ ) == 9 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): A__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE ( ) -> None: A__ = [ -9, 1_00, Node(77_34_51_12 ), "dlrow olleH", 7, 55_55, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] A__ = LinkedList() for i in test_input: linked_list.insert_tail(lowercase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head A__ = linked_list.delete_head() assert result == -9 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail A__ = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list A__ = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase_ ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: from doctest import testmod testmod() A__ = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(lowercase_ ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) A__ = input("Enter New Value: " ).strip() print("New list:" ) print(lowercase_ ) print(f"""length of linked_list is : {len(lowercase_ )}""" ) if __name__ == "__main__": main()
230
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowercase__ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
241
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Union[str, Any] = '''linear''' A : int = '''cosine''' A : Optional[Any] = '''cosine_with_restarts''' A : Optional[int] = '''polynomial''' A : str = '''constant''' A : Union[str, Any] = '''constant_with_warmup''' A : Optional[Any] = '''piecewise_constant''' def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int = -1 ): """simple docstring""" return LambdaLR(__UpperCamelCase ,lambda __UpperCamelCase : 1 ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1.0 ,__UpperCamelCase ) ) return 1.0 return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: str ,__UpperCamelCase: int = -1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = rule_str.split(':' ) SCREAMING_SNAKE_CASE : int = int(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = float(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = value SCREAMING_SNAKE_CASE : Any = float(rule_list[-1] ) def create_rules_function(__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Any] ): def rule_func(__UpperCamelCase: int ) -> float: SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func SCREAMING_SNAKE_CASE : Any = create_rules_function(__UpperCamelCase ,__UpperCamelCase ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: int=-1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) return max( 0.0 ,float(num_training_steps - current_step ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float = 0.5 ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: Any ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : str = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * float(__UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int = 1 ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: Dict ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : int = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Any ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Optional[Any]=1e-7 ,__UpperCamelCase: Dict=1.0 ,__UpperCamelCase: Optional[Any]=-1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: SCREAMING_SNAKE_CASE : List[str] = lr_init - lr_end SCREAMING_SNAKE_CASE : Optional[Any] = num_training_steps - num_warmup_steps SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps SCREAMING_SNAKE_CASE : str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) UpperCamelCase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase__( __UpperCamelCase: Union[str, SchedulerType] ,__UpperCamelCase: Optimizer ,__UpperCamelCase: Optional[str] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: int = 1 ,__UpperCamelCase: float = 1.0 ,__UpperCamelCase: int = -1 ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = SchedulerType(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCamelCase ,last_epoch=__UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCamelCase ,step_rules=__UpperCamelCase ,last_epoch=__UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,last_epoch=__UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,num_cycles=__UpperCamelCase ,last_epoch=__UpperCamelCase ,) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,power=__UpperCamelCase ,last_epoch=__UpperCamelCase ,) return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,last_epoch=__UpperCamelCase )
251
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _lowerCamelCase : str = logging.get_logger(__name__) # General docstring _lowerCamelCase : Any = '''MobileNetV1Config''' # Base docstring _lowerCamelCase : Tuple = '''google/mobilenet_v1_1.0_224''' _lowerCamelCase : List[Any] = [1, 1_0_2_4, 7, 7] # Image classification docstring _lowerCamelCase : str = '''google/mobilenet_v1_1.0_224''' _lowerCamelCase : Any = '''tabby, tabby cat''' _lowerCamelCase : Union[str, Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = {} if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = model.mobilenet_va else: SCREAMING_SNAKE_CASE__ : Dict = model SCREAMING_SNAKE_CASE__ : Optional[Any] = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE__ : str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE__ : List[Any] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE__ : Any = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE__ : List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE__ : Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE__ : List[Any] = i + 1 SCREAMING_SNAKE_CASE__ : Dict = i * 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = backbone.layer[pt_index] SCREAMING_SNAKE_CASE__ : List[str] = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' SCREAMING_SNAKE_CASE__ : List[str] = pointer.convolution.weight SCREAMING_SNAKE_CASE__ : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE__ : int = pointer.normalization.weight SCREAMING_SNAKE_CASE__ : Tuple = pointer.normalization.running_mean SCREAMING_SNAKE_CASE__ : Any = pointer.normalization.running_var SCREAMING_SNAKE_CASE__ : Any = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE__ : Optional[int] = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' SCREAMING_SNAKE_CASE__ : List[str] = pointer.convolution.weight SCREAMING_SNAKE_CASE__ : List[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE__ : str = pointer.normalization.weight SCREAMING_SNAKE_CASE__ : Any = pointer.normalization.running_mean SCREAMING_SNAKE_CASE__ : int = pointer.normalization.running_var if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE__ : str = model.classifier.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.classifier.bias return tf_to_pt_map def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE__ : Optional[int] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) SCREAMING_SNAKE_CASE__ : int = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE__ : List[Any] = _build_tf_to_pytorch_map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue SCREAMING_SNAKE_CASE__ : List[str] = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.transpose(SCREAMING_SNAKE_CASE__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE__ : Optional[int] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE__ : int = np.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) tf_weights.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) tf_weights.pop(name + "/RMSProp" , SCREAMING_SNAKE_CASE__ ) tf_weights.pop(name + "/RMSProp_1" , SCREAMING_SNAKE_CASE__ ) tf_weights.pop(name + "/ExponentialMovingAverage" , SCREAMING_SNAKE_CASE__ ) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def _a ( SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : nn.Convad ) -> torch.Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = features.shape[-2:] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = conv_layer.stride SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE__ : int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE__ : Dict = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE__ : Optional[int] = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE__ : Any = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE__ : List[Any] = pad_along_width // 2 SCREAMING_SNAKE_CASE__ : List[Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE__ : str = pad_along_height // 2 SCREAMING_SNAKE_CASE__ : Dict = pad_along_height - pad_top SCREAMING_SNAKE_CASE__ : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "constant" , 0.0 ) class lowerCamelCase (nn.Module ): """simple docstring""" def __init__( self : int, _UpperCAmelCase : MobileNetVaConfig, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : Optional[int] = 1, _UpperCAmelCase : Optional[int] = 1, _UpperCAmelCase : bool = False, _UpperCAmelCase : Optional[bool] = True, _UpperCAmelCase : Optional[bool or str] = True, ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : str = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.Convad( in_channels=_UpperCAmelCase, out_channels=_UpperCAmelCase, kernel_size=_UpperCAmelCase, stride=_UpperCAmelCase, padding=_UpperCAmelCase, groups=_UpperCAmelCase, bias=_UpperCAmelCase, padding_mode="zeros", ) if use_normalization: SCREAMING_SNAKE_CASE__ : Tuple = nn.BatchNormad( num_features=_UpperCAmelCase, eps=config.layer_norm_eps, momentum=0.9997, affine=_UpperCAmelCase, track_running_stats=_UpperCAmelCase, ) else: SCREAMING_SNAKE_CASE__ : str = None if use_activation: if isinstance(_UpperCAmelCase, _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act, _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ : Any = config.hidden_act else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None def A_ ( self : Tuple, _UpperCAmelCase : torch.Tensor ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: SCREAMING_SNAKE_CASE__ : Optional[Any] = apply_tf_padding(_UpperCAmelCase, self.convolution ) SCREAMING_SNAKE_CASE__ : str = self.convolution(_UpperCAmelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = self.normalization(_UpperCAmelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE__ : List[str] = self.activation(_UpperCAmelCase ) return features class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = MobileNetVaConfig UpperCAmelCase_ = load_tf_weights_in_mobilenet_va UpperCAmelCase_ = "mobilenet_v1" UpperCAmelCase_ = "pixel_values" UpperCAmelCase_ = False def A_ ( self : Any, _UpperCAmelCase : Union[nn.Linear, nn.Convad] ) -> None: """simple docstring""" if isinstance(_UpperCAmelCase, (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_UpperCAmelCase, nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _lowerCamelCase : Optional[int] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : Dict = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __lowerCamelCase , ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" def __init__( self : str, _UpperCAmelCase : MobileNetVaConfig, _UpperCAmelCase : bool = True ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = config SCREAMING_SNAKE_CASE__ : str = 3_2 SCREAMING_SNAKE_CASE__ : Tuple = max(int(depth * config.depth_multiplier ), config.min_depth ) SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaConvLayer( _UpperCAmelCase, in_channels=config.num_channels, out_channels=_UpperCAmelCase, kernel_size=3, stride=2, ) SCREAMING_SNAKE_CASE__ : Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE__ : List[str] = nn.ModuleList() for i in range(1_3 ): SCREAMING_SNAKE_CASE__ : Dict = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE__ : Dict = max(int(depth * config.depth_multiplier ), config.min_depth ) self.layer.append( MobileNetVaConvLayer( _UpperCAmelCase, in_channels=_UpperCAmelCase, out_channels=_UpperCAmelCase, kernel_size=3, stride=strides[i], groups=_UpperCAmelCase, ) ) self.layer.append( MobileNetVaConvLayer( _UpperCAmelCase, in_channels=_UpperCAmelCase, out_channels=_UpperCAmelCase, kernel_size=1, ) ) SCREAMING_SNAKE_CASE__ : str = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def A_ ( self : List[str], _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=_UpperCAmelCase, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def A_ ( self : str, _UpperCAmelCase : Optional[torch.Tensor] = None, _UpperCAmelCase : Optional[bool] = None, _UpperCAmelCase : Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) SCREAMING_SNAKE_CASE__ : Any = self.conv_stem(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE__ : Tuple = layer_module(_UpperCAmelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE__ : Optional[Any] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE__ : Tuple = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.flatten(self.pooler(_UpperCAmelCase ), start_dim=1 ) else: SCREAMING_SNAKE_CASE__ : List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase, pooler_output=_UpperCAmelCase, hidden_states=_UpperCAmelCase, ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowerCamelCase , ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" def __init__( self : Union[str, Any], _UpperCAmelCase : MobileNetVaConfig ) -> None: """simple docstring""" super().__init__(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = config.num_labels SCREAMING_SNAKE_CASE__ : List[str] = MobileNetVaModel(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE__ : List[str] = nn.Dropout(config.classifier_dropout_prob, inplace=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(_UpperCAmelCase, config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=_UpperCAmelCase, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def A_ ( self : Tuple, _UpperCAmelCase : Optional[torch.Tensor] = None, _UpperCAmelCase : Optional[bool] = None, _UpperCAmelCase : Optional[torch.Tensor] = None, _UpperCAmelCase : Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ : str = self.mobilenet_va(_UpperCAmelCase, output_hidden_states=_UpperCAmelCase, return_dict=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.classifier(self.dropout(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ : Any = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ : Optional[int] = "single_label_classification" else: SCREAMING_SNAKE_CASE__ : Optional[int] = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ : Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = loss_fct(logits.squeeze(), labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = loss_fct(_UpperCAmelCase, _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ : int = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ : int = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ : str = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ : Dict = loss_fct(_UpperCAmelCase, _UpperCAmelCase ) if not return_dict: SCREAMING_SNAKE_CASE__ : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_UpperCAmelCase, logits=_UpperCAmelCase, hidden_states=outputs.hidden_states, )
191
def _a ( SCREAMING_SNAKE_CASE__ : str ) -> str: '''simple docstring''' if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) SCREAMING_SNAKE_CASE__ : List[Any] = "" while len(SCREAMING_SNAKE_CASE__ ) % 3 != 0: SCREAMING_SNAKE_CASE__ : str = "0" + bin_string SCREAMING_SNAKE_CASE__ : List[Any] = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE__ : List[Any] = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE__ ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE__ ) ) oct_string += str(SCREAMING_SNAKE_CASE__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
191
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase=768 ): super().__init__(lowercase ) _lowerCamelCase : Any = proj_size _lowerCamelCase : Dict = CLIPVisionModel(lowercase ) _lowerCamelCase : List[str] = PaintByExampleMapper(lowercase ) _lowerCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size ) _lowerCamelCase : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _lowerCamelCase : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A_ ( self , lowercase , lowercase=False ): _lowerCamelCase : Union[str, Any] = self.model(pixel_values=lowercase ) _lowerCamelCase : int = clip_output.pooler_output _lowerCamelCase : str = self.mapper(latent_states[:, None] ) _lowerCamelCase : List[Any] = self.final_layer_norm(lowercase ) _lowerCamelCase : Dict = self.proj_out(lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase ): super().__init__() _lowerCamelCase : Tuple = (config.num_hidden_layers + 1) // 5 _lowerCamelCase : int = config.hidden_size _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : str = nn.ModuleList( [ BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn='gelu' , attention_bias=lowercase ) for _ in range(lowercase ) ] ) def A_ ( self , lowercase ): for block in self.blocks: _lowerCamelCase : Tuple = block(lowercase ) return hidden_states
96
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A : List[Any] = logging.get_logger(__name__) __A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : lowerCAmelCase_ : Optional[Any] = field( default=a__ , metadata={"help": "Model type selected in the list: " + ", ".join(a__ )} ) lowerCAmelCase_ : Union[str, Any] = field( default=a__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) lowerCAmelCase_ : str = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase_ : Dict = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) lowerCAmelCase_ : Tuple = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) lowerCAmelCase_ : Optional[Any] = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) lowerCAmelCase_ : str = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCAmelCase_ : Optional[int] = field( default=a__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) lowerCAmelCase_ : List[str] = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase_ : Any = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase_ : Union[str, Any] = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) lowerCAmelCase_ : List[str] = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class __A ( a__ ): lowerCAmelCase_ : Dict = "train" lowerCAmelCase_ : List[Any] = "dev" class __A ( a__ ): lowerCAmelCase_ : Tuple = 42 lowerCAmelCase_ : Optional[int] = 42 lowerCAmelCase_ : Tuple = 42 lowerCAmelCase_ : Any = 42 def __init__( self : Optional[Any] , UpperCAmelCase_ : SquadDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = "pt" , ): lowerCAmelCase : Dict = args lowerCAmelCase : List[Any] = is_language_sensitive lowerCAmelCase : List[str] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: lowerCAmelCase : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) lowerCAmelCase : Optional[Any] = mode # Load data features from cache or dataset file lowerCAmelCase : str = "v2" if args.version_2_with_negative else "v1" lowerCAmelCase : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase : Any = cached_features_file + ".lock" with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not args.overwrite_cache: lowerCAmelCase : Tuple = time.time() lowerCAmelCase : Dict = torch.load(UpperCAmelCase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCAmelCase : List[Any] = self.old_features["features"] lowerCAmelCase : List[Any] = self.old_features.get('dataset' , UpperCAmelCase_ ) lowerCAmelCase : str = self.old_features.get('examples' , UpperCAmelCase_ ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" ' future run' ) else: if mode == Split.dev: lowerCAmelCase : Any = self.processor.get_dev_examples(args.data_dir ) else: lowerCAmelCase : Optional[int] = self.processor.get_train_examples(args.data_dir ) lowerCAmelCase : int = squad_convert_examples_to_features( examples=self.examples , tokenizer=UpperCAmelCase_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , UpperCAmelCase_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : Union[str, Any] ): return len(self.features ) def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): # Convert to Tensors and build dataset lowerCAmelCase : List[Any] = self.features[i] lowerCAmelCase : Any = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCAmelCase : Optional[int] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCAmelCase : str = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCAmelCase : Optional[int] = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCAmelCase : Union[str, Any] = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCAmelCase : List[str] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCAmelCase : str = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCAmelCase : Any = torch.tensor(feature.start_position , dtype=torch.long ) lowerCAmelCase : Optional[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def _A ( ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __lowercase = parser.parse_args() return args.f def _A ( A__ ): """simple docstring""" __lowercase = {} __lowercase = os.path.join(A__ , '''all_results.json''' ) if os.path.exists(A__ ): with open(A__ , '''r''' ) as f: __lowercase = json.load(A__ ) else: raise ValueError(F"can't find {path}" ) return results def _A ( ): """simple docstring""" __lowercase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(cls.tmpdir ,'''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __lowercase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def SCREAMING_SNAKE_CASE ( cls : str ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertLess(result['''perplexity'''] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertLess(result['''perplexity'''] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __lowercase = 7 if get_gpu_count() > 1 else 2 __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertLess(result['''train_loss'''] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] ,2_8 ) self.assertGreaterEqual(result['''eval_exact'''] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] ,1_0 ) self.assertGreaterEqual(result['''eval_rouge2'''] ,2 ) self.assertGreaterEqual(result['''eval_rougeL'''] ,7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] ,7 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_bleu'''] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''translation_no_trainer''' ) ) ) @slow def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase__ ) __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] ,0.1_0 ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''image_classification_no_trainer''' ) ) )
104
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Tuple ="bert" def __init__( self : str , a : Any=3_05_22 , a : Any=7_68 , a : Any=12 , a : Union[str, Any]=12 , a : List[Any]=30_72 , a : Any="gelu" , a : List[str]=0.1 , a : Optional[Any]=0.1 , a : List[str]=5_12 , a : str=2 , a : Dict=0.02 , a : List[str]=1e-1_2 , a : Any=0 , a : Optional[Any]="absolute" , a : Any=True , a : Optional[Any]=None , **a : Dict , ): """simple docstring""" super().__init__(pad_token_id=a , **a ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class a__ ( UpperCAmelCase__ ): @property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
237
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __lowerCamelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCamelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
237
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: snake_case__ : Any = 128 elif "12-12" in model_name: snake_case__ : Dict = 12 snake_case__ : Any = 12 elif "14-14" in model_name: snake_case__ : str = 14 snake_case__ : int = 14 elif "16-16" in model_name: snake_case__ : int = 16 snake_case__ : Optional[int] = 16 else: raise ValueError('''Model not supported''' ) snake_case__ : List[Any] = '''huggingface/label-files''' if "speech-commands" in model_name: snake_case__ : Tuple = 35 snake_case__ : Any = '''speech-commands-v2-id2label.json''' else: snake_case__ : Tuple = 527 snake_case__ : Union[str, Any] = '''audioset-id2label.json''' snake_case__ : List[str] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : Optional[int] = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" if "module.v" in name: snake_case__ : Optional[int] = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: snake_case__ : Union[str, Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: snake_case__ : List[Any] = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: snake_case__ : List[Any] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case__ : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: snake_case__ : int = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: snake_case__ : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: snake_case__ : Any = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case__ : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case__ : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case__ : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case__ : int = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: snake_case__ : List[str] = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: snake_case__ : Optional[int] = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: snake_case__ : int = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case__ : Optional[Any] = orig_state_dict.pop(__lowerCAmelCase ) if "qkv" in key: snake_case__ : Any = key.split('''.''' ) snake_case__ : Any = int(key_split[3] ) snake_case__ : int = config.hidden_size if "weight" in key: snake_case__ : Optional[int] = val[:dim, :] snake_case__ : Dict = val[dim : dim * 2, :] snake_case__ : str = val[-dim:, :] else: snake_case__ : Tuple = val[:dim] snake_case__ : Any = val[dim : dim * 2] snake_case__ : Optional[Any] = val[-dim:] else: snake_case__ : Tuple = val return orig_state_dict def _lowerCAmelCase ( __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : List[Any] = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[Any] = get_audio_spectrogram_transformer_config(__lowerCAmelCase ) snake_case__ : Any = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict snake_case__ : Optional[int] = model_name_to_url[model_name] snake_case__ : Tuple = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' ) # remove some keys remove_keys(__lowerCAmelCase ) # rename some keys snake_case__ : Any = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) # load 🤗 model snake_case__ : str = ASTForAudioClassification(__lowerCAmelCase ) model.eval() model.load_state_dict(__lowerCAmelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 snake_case__ : List[Any] = -4.2_677_393 if '''speech-commands''' not in model_name else -6.845_978 snake_case__ : Union[str, Any] = 4.5_689_974 if '''speech-commands''' not in model_name else 5.5_654_526 snake_case__ : Any = 1024 if '''speech-commands''' not in model_name else 128 snake_case__ : Tuple = ASTFeatureExtractor(mean=__lowerCAmelCase , std=__lowerCAmelCase , max_length=__lowerCAmelCase ) if "speech-commands" in model_name: snake_case__ : Dict = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) snake_case__ : Union[str, Any] = dataset[0]['''audio''']['''array'''] else: snake_case__ : Optional[int] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) snake_case__ , snake_case__ : List[Any] = torchaudio.load(__lowerCAmelCase ) snake_case__ : List[Any] = waveform.squeeze().numpy() snake_case__ : int = feature_extractor(__lowerCAmelCase , sampling_rate=16000 , return_tensors='''pt''' ) # forward pass snake_case__ : List[str] = model(**__lowerCAmelCase ) snake_case__ : Any = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": snake_case__ : Optional[Any] = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": snake_case__ : str = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": snake_case__ : Union[str, Any] = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": snake_case__ : int = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": snake_case__ : List[str] = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": snake_case__ : Tuple = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": snake_case__ : Optional[Any] = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": snake_case__ : List[Any] = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
230
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A__ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main snake_case__ : Dict = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase )
230
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __snake_case : Any = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class A__ ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt") __lowerCAmelCase : Optional[int] = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.504}]) __lowerCAmelCase : Optional[Any] = text_classifier("This is great !" , top_k=2) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]) __lowerCAmelCase : List[Any] = text_classifier(["This is great !", "This is bad"] , top_k=2) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) __lowerCAmelCase : Any = text_classifier("This is great !" , top_k=1) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.504}]) # Legacy behavior __lowerCAmelCase : Any = text_classifier("This is great !" , return_all_scores=_SCREAMING_SNAKE_CASE) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.504}]) __lowerCAmelCase : List[str] = text_classifier("This is great !" , return_all_scores=_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]]) __lowerCAmelCase : List[str] = text_classifier(["This is great !", "Something else"] , return_all_scores=_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) __lowerCAmelCase : int = text_classifier(["This is great !", "Something else"] , return_all_scores=_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[int]: """simple docstring""" import torch __lowerCAmelCase : Union[str, Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu") , ) __lowerCAmelCase : Union[str, Any] = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.504}]) @require_tf def _SCREAMING_SNAKE_CASE ( self: Any) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf") __lowerCAmelCase : List[str] = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.504}]) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = pipeline("text-classification") __lowerCAmelCase : List[str] = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "POSITIVE", "score": 1.0}]) __lowerCAmelCase : str = text_classifier("This is bad !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "NEGATIVE", "score": 1.0}]) __lowerCAmelCase : Optional[int] = text_classifier("Birds are a type of animal") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "POSITIVE", "score": 0.988}]) @slow @require_tf def _SCREAMING_SNAKE_CASE ( self: int) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = pipeline("text-classification" , framework="tf") __lowerCAmelCase : str = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "POSITIVE", "score": 1.0}]) __lowerCAmelCase : Dict = text_classifier("This is bad !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "NEGATIVE", "score": 1.0}]) __lowerCAmelCase : str = text_classifier("Birds are a type of animal") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "POSITIVE", "score": 0.988}]) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Any) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = TextClassificationPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE) return text_classifier, ["HuggingFace is in", "This is another test"] def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Any) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowerCAmelCase : Union[str, Any] = "HuggingFace is in" __lowerCAmelCase : Optional[int] = text_classifier(_SCREAMING_SNAKE_CASE) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}]) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values()) __lowerCAmelCase : Tuple = ["HuggingFace is in ", "Paris is in France"] __lowerCAmelCase : Optional[Any] = text_classifier(_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}, {"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values()) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values()) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowerCAmelCase : int = text_classifier(_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = len(model.config.idalabel.values()) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [[{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}] * N, [{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}] * N] , ) __lowerCAmelCase : Optional[int] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} __lowerCAmelCase : str = text_classifier(_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , {"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values()) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowerCAmelCase : Optional[int] = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(_SCREAMING_SNAKE_CASE): text_classifier(_SCREAMING_SNAKE_CASE) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowerCAmelCase : List[Any] = text_classifier([[["HuggingFace is in ", "Paris is in France"]]]) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values())
364
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case : List[str] = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(_SCREAMING_SNAKE_CASE) def __call__( self: str , _SCREAMING_SNAKE_CASE: Union[str, "Image.Image", List[Dict[str, Any]]] , _SCREAMING_SNAKE_CASE: Union[str, List[str]] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> int: """simple docstring""" if "text_queries" in kwargs: __lowerCAmelCase : List[str] = kwargs.pop("text_queries") if isinstance(_SCREAMING_SNAKE_CASE , (str, Image.Image)): __lowerCAmelCase : Any = {"image": image, "candidate_labels": candidate_labels} else: __lowerCAmelCase : Dict = image __lowerCAmelCase : Optional[int] = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) return results def _SCREAMING_SNAKE_CASE ( self: Any , **_SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: __lowerCAmelCase : Optional[int] = kwargs["threshold"] if "top_k" in kwargs: __lowerCAmelCase : int = kwargs["top_k"] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = load_image(inputs["image"]) __lowerCAmelCase : Union[str, Any] = inputs["candidate_labels"] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = candidate_labels.split(",") __lowerCAmelCase : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : Dict = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) yield { "is_last": i == len(_SCREAMING_SNAKE_CASE) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = model_inputs.pop("target_size") __lowerCAmelCase : Any = model_inputs.pop("candidate_label") __lowerCAmelCase : List[str] = model_inputs.pop("is_last") __lowerCAmelCase : Dict = self.model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = [] for model_output in model_outputs: __lowerCAmelCase : Dict = model_output["candidate_label"] __lowerCAmelCase : int = BaseModelOutput(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.image_processor.post_process_object_detection( outputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): __lowerCAmelCase : Any = outputs["scores"][index].item() __lowerCAmelCase : int = self._get_bounding_box(outputs["boxes"][index][0]) __lowerCAmelCase : List[str] = {"score": score, "label": label, "box": box} results.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE: x["score"] , reverse=_SCREAMING_SNAKE_CASE) if top_k: __lowerCAmelCase : str = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: "torch.Tensor") -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = box.int().tolist() __lowerCAmelCase : Any = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
58
0
"""simple docstring""" from manim import * class _SCREAMING_SNAKE_CASE( A ): def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = Rectangle(height=0.5 ,width=0.5 ) __SCREAMING_SNAKE_CASE :List[str] = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Optional[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Any = VGroup(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Tuple = Text('''CPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :Optional[Any] = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = [mem.copy() for i in range(1 )] __SCREAMING_SNAKE_CASE :str = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = Text('''GPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.align_to(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :List[Any] = Text('''Model''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,) __SCREAMING_SNAKE_CASE :List[str] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) __SCREAMING_SNAKE_CASE :List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __SCREAMING_SNAKE_CASE :Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ ,run_time=2.5 ) ,Write(SCREAMING_SNAKE_CASE__ ) ,Write(SCREAMING_SNAKE_CASE__ ) ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [] __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :List[Any] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Any = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ ,opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE__ ) cpu_target.generate_target() __SCREAMING_SNAKE_CASE :Union[str, Any] = 0.4_6 / 4 __SCREAMING_SNAKE_CASE :Tuple = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=SCREAMING_SNAKE_CASE__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE__ ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ ,run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE__ ) self.play(*SCREAMING_SNAKE_CASE__ ) self.wait()
191
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["DPTFeatureExtractor"] lowerCamelCase_ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Any=7 , snake_case__ : Dict=3 , snake_case__ : Dict=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : List[str]=4_0_0 , snake_case__ : Dict=True , snake_case__ : List[Any]=None , snake_case__ : str=True , snake_case__ : Dict=None , snake_case__ : Dict=True , snake_case__ : Union[str, Any]=[0.5, 0.5, 0.5] , snake_case__ : Dict=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase :Tuple = size if size is not None else {'''shortest_edge''': 1_8} lowercase :Dict = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} lowercase :Any = parent lowercase :List[str] = batch_size lowercase :List[Any] = num_channels lowercase :Dict = image_size lowercase :Any = min_resolution lowercase :List[str] = max_resolution lowercase :int = do_resize lowercase :List[Any] = size lowercase :str = do_center_crop lowercase :int = crop_size lowercase :str = do_normalize lowercase :Optional[Any] = image_mean lowercase :Dict = image_std def __snake_case ( self : Tuple ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : int = LevitImageProcessor if is_vision_available() else None def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[Any] = LevitImageProcessingTester(self ) @property def __snake_case ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : str ): '''simple docstring''' lowercase :int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , '''image_mean''' ) ) self.assertTrue(hasattr(snake_case__ , '''image_std''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_resize''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(snake_case__ , '''size''' ) ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) lowercase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowercase :Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase :Any = image_processing(snake_case__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowercase :Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase :List[str] = image_processing(snake_case__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowercase :Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase :Tuple = image_processing(snake_case__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
353
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''▁''' UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCAmelCase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCAmelCase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCAmelCase = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } UpperCAmelCase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __magic_name__ ( __UpperCAmelCase ): __A : List[str] = ["input_ids"] __A : Optional[Any] = VOCAB_FILES_NAMES __A : str = PRETRAINED_INIT_CONFIGURATION __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = RESOURCE_FILES_NAMES def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : List[Any]=None , snake_case__ : int=False , snake_case__ : Optional[int]="utf8" , snake_case__ : List[str]="[UNK]" , snake_case__ : Tuple="[SEP]" , snake_case__ : List[Any]="[PAD]" , snake_case__ : Dict="[CLS]" , snake_case__ : Dict="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : str , ): '''simple docstring''' lowercase :Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , vocab_file=snake_case__ , encoding=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowercase :Dict = do_lower_case lowercase :str = sentencepiece_model_ckpt lowercase :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase :Tuple = self.load_vocab(filepath=snake_case__ ) else: lowercase :str = {self.sp_model.id_to_piece(snake_case__ ): id for id in range(self.sp_model.get_piece_size() )} lowercase :Any = {v: k for k, v in self.vocab.items()} def __snake_case ( self : List[str] , snake_case__ : str ): '''simple docstring''' if text is None: return None lowercase :List[Any] = self.tokenize(snake_case__ ) lowercase , lowercase :List[str] = '''''', [] for i, ch in enumerate(snake_case__ ): if ch in self.SP_CHAR_MAPPING: lowercase :Optional[int] = self.SP_CHAR_MAPPING.get(snake_case__ ) else: lowercase :Optional[int] = unicodedata.normalize('''NFKC''' , snake_case__ ) if self.is_whitespace(snake_case__ ): continue normalized_text += ch char_mapping.extend([i] * len(snake_case__ ) ) lowercase , lowercase , lowercase :int = normalized_text, [], 0 if self.do_lower_case: lowercase :Any = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase :Tuple = token[1:] lowercase :List[str] = text[offset:].index(snake_case__ ) + offset lowercase :Tuple = start + len(snake_case__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase :int = end return token_mapping @property def __snake_case ( self : List[Any] ): '''simple docstring''' return len(self.vocab ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Optional[int] ): '''simple docstring''' lowercase :Any = self.__dict__.copy() lowercase :Optional[int] = None return state def __setstate__( self : Tuple , snake_case__ : Dict ): '''simple docstring''' lowercase :Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase :Dict = {} lowercase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __snake_case ( self : int , snake_case__ : List[Any] ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(snake_case__ , snake_case__ ) for c in text) ) def __snake_case ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : int=False , snake_case__ : Dict=6_4 , snake_case__ : Any=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowercase :Any = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowercase :Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowercase :Optional[Any] = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowercase :Any = self.sp_model.EncodeAsPieces(snake_case__ ) else: lowercase :List[Any] = self.sp_model.SampleEncodeAsPieces(snake_case__ , snake_case__ , snake_case__ ) lowercase :str = [] for pi, piece in enumerate(snake_case__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(snake_case__ ) and pi != 0: new_pieces.append(snake_case__ ) continue else: continue lowercase :int = 0 for i, chunk in enumerate(snake_case__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(snake_case__ ) or self.is_punct(snake_case__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(snake_case__ ) lowercase :Optional[int] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase :str = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase :Dict = i if len(snake_case__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __snake_case ( self : Dict , snake_case__ : str ): '''simple docstring''' lowercase :int = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def __snake_case ( self : int , snake_case__ : str ): '''simple docstring''' lowercase :Tuple = self.convert_ids_to_tokens(snake_case__ ) lowercase :Any = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def __snake_case ( self : int , snake_case__ : Union[str, Any] ): '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def __snake_case ( self : List[Any] , snake_case__ : List[str] ): '''simple docstring''' return self.reverse_vocab.get(snake_case__ , self.unk_token ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :int = [self.cls_token_id] lowercase :str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __snake_case ( self : Any , snake_case__ : Dict , snake_case__ : str=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __snake_case ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] def __snake_case ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(snake_case__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(snake_case__ ) + 1) + [1] * (len(snake_case__ ) + 3) def __snake_case ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __snake_case ( self : List[str] , snake_case__ : Any ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __snake_case ( self : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __snake_case ( self : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(snake_case__ ) == 1: lowercase :str = unicodedata.category(snake_case__ ) if cat == "Zs": return True return False def __snake_case ( self : str , snake_case__ : Any ): '''simple docstring''' lowercase :Dict = {} with io.open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(snake_case__ ): lowercase :Dict = line.rstrip('''\n''' ) lowercase :str = int(snake_case__ ) return token_to_idx def __snake_case ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' lowercase :Optional[int] = 0 if os.path.isdir(snake_case__ ): lowercase :str = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase :Any = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase :Optional[int] = token_index writer.write(token + '''\n''' ) index += 1 lowercase :int = os.path.join(snake_case__ , '''sentencepiece.bpe.model''' ) with open(snake_case__ , '''wb''' ) as fi: lowercase :Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (vocab_file,)
172
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["note_seq"] def __init__( self: Dict, *a_: Union[str, Any], **a_: List[str] ): '''simple docstring''' requires_backends(self, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[int], *a_: Any, **a_: Optional[Any] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Tuple, *a_: Optional[Any], **a_: List[str] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] )
64
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCamelCase_ ) return config def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0] SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = 1 scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = scheduler.timesteps SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCamelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Dict = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0] with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
323
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Union[str, Any] = (DPMSolverSinglestepScheduler,) A_ : Union[str, Any] = (('num_inference_steps', 25),) def a (self : Dict , **a__ : Tuple ): """simple docstring""" __snake_case = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**a__ ) return config def a (self : str , a__ : Any=0 , **a__ : Tuple ): """simple docstring""" __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop('''num_inference_steps''' , a__ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config(**a__ ) __snake_case = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals __snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) __snake_case = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals __snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case , __snake_case = sample, sample for t in range(a__ , time_step + scheduler.config.solver_order + 1 ): __snake_case = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample __snake_case = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a (self : Union[str, Any] ): """simple docstring""" pass def a (self : List[Any] , a__ : Dict=0 , **a__ : List[str] ): """simple docstring""" __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop('''num_inference_steps''' , a__ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) __snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) __snake_case = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) __snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample __snake_case = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a (self : int , a__ : Tuple=None , **a__ : List[str] ): """simple docstring""" if scheduler is None: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**a__ ) __snake_case = scheduler_class(**a__ ) __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**a__ ) __snake_case = scheduler_class(**a__ ) __snake_case = 10 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case = model(a__ , a__ ) __snake_case = scheduler.step(a__ , a__ , a__ ).prev_sample return sample def a (self : str ): """simple docstring""" __snake_case = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __snake_case = 50 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter scheduler.set_timesteps(a__ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __snake_case = model(a__ , a__ ) __snake_case = scheduler.step(a__ , a__ , a__ ).prev_sample __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3 def a (self : int ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def a (self : List[str] ): """simple docstring""" __snake_case = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __snake_case = self.full_loop(scheduler=a__ ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 __snake_case = DEISMultistepScheduler.from_config(scheduler.config ) __snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config ) __snake_case = UniPCMultistepScheduler.from_config(scheduler.config ) __snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __snake_case = self.full_loop(scheduler=a__ ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def a (self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=a__ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=a__ , prediction_type=a__ , sample_max_value=a__ , algorithm_type='''dpmsolver++''' , solver_order=a__ , solver_type=a__ , ) def a (self : Union[str, Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def a (self : Union[str, Any] ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=a__ , solver_type=a__ , prediction_type=a__ , algorithm_type=a__ , ) __snake_case = self.full_loop( solver_order=a__ , solver_type=a__ , prediction_type=a__ , algorithm_type=a__ , ) assert not torch.isnan(a__ ).any(), "Samples have nan numbers" def a (self : List[str] ): """simple docstring""" self.check_over_configs(lower_order_final=a__ ) self.check_over_configs(lower_order_final=a__ ) def a (self : Optional[Any] ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def a (self : Tuple ): """simple docstring""" self.check_over_configs(variance_type=a__ ) self.check_over_configs(variance_type='''learned_range''' ) def a (self : int ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=a__ , time_step=0 ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.full_loop() __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def a (self : int ): """simple docstring""" __snake_case = self.full_loop(use_karras_sigmas=a__ ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3 def a (self : Tuple ): """simple docstring""" __snake_case = self.full_loop(prediction_type='''v_prediction''' ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3 def a (self : List[Any] ): """simple docstring""" __snake_case = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=a__ ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3 def a (self : int ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(thresholding=a__ , dynamic_thresholding_ratio=0 ) __snake_case = scheduler_class(**a__ ) __snake_case = 10 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter.half() scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case = model(a__ , a__ ) __snake_case = scheduler.step(a__ , a__ , a__ ).prev_sample assert sample.dtype == torch.floataa
238
# Algorithm for the pigeonhole sorting def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: __snake_case = min(snake_case_ ) # min() finds the minimum value __snake_case = max(snake_case_ ) # max() finds the maximum value __snake_case = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __snake_case = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(snake_case_ , snake_case_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __snake_case = 0 for count in range(snake_case_ ): while holes[count] > 0: holes[count] -= 1 __snake_case = count + min_val i += 1 def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(snake_case_ ) print('''Sorted order is:''' , ''' '''.join(snake_case_ ) ) if __name__ == "__main__": main()
238
1
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : bytes ): return "".join([hex(_lowerCamelCase )[2:].zfill(2 ).upper() for byte in list(_lowerCamelCase )] ) def UpperCamelCase ( _lowerCamelCase : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_lowerCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_lowerCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_lowerCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
237
'''simple docstring''' import functools def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): A__ = len(_lowerCamelCase ) A__ = len(_lowerCamelCase ) @functools.cache def min_distance(_lowerCamelCase : int , _lowerCamelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCamelCase ) , 1 + min_distance(_lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
237
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> list[list]: '''simple docstring''' snake_case : Any = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case : Optional[int] = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ): if magnitude == 0: snake_case : Any = column continue snake_case : str = column / magnitude # Subtract to cancel term snake_case : Any = current_set[0] snake_case : List[Any] = [first_row] snake_case : str = current_set[1::] for row in current_set: snake_case : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE__ ) continue for column_index in range(len(SCREAMING_SNAKE_CASE__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: snake_case : str = final_set[0] snake_case : Optional[Any] = [] snake_case : Union[str, Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) snake_case : List[Any] = simplify(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , SCREAMING_SNAKE_CASE__ ) snake_case : str = resultant return final_set def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> list: '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) snake_case : List[str] = len(SCREAMING_SNAKE_CASE__ ) + 1 if any(len(SCREAMING_SNAKE_CASE__ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(SCREAMING_SNAKE_CASE__ ) == 1: return [equations[0][-1] / equations[0][0]] snake_case : int = equations.copy() if any(0 in row for row in data_set ): snake_case : Optional[int] = data_set.copy() snake_case : Dict = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ): if 0 not in row: snake_case : Union[str, Any] = data_set.pop(SCREAMING_SNAKE_CASE__ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , SCREAMING_SNAKE_CASE__ ) snake_case : Optional[int] = data_set.copy() snake_case : List[Any] = simplify(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[Any] = simplified[::-1] snake_case : list = [] for row in simplified: snake_case : Tuple = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue snake_case : str = row.copy()[: len(SCREAMING_SNAKE_CASE__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE__ ) == 0: solutions.append(0 ) continue snake_case : int = temp_row[1::] snake_case : Dict = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[Any] = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
351
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = DebertaTokenizer lowerCamelCase = True lowerCamelCase = DebertaTokenizerFast def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] snake_case : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case : List[Any] = {'''unk_token''': '''[UNK]'''} snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def lowerCAmelCase ( self : Union[str, Any] , **UpperCamelCase__ : Any ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case : Tuple = '''lower newer''' snake_case : Optional[Any] = '''lower newer''' return input_text, output_text def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Dict = self.get_tokenizer() snake_case : Optional[Any] = '''lower newer''' snake_case : Tuple = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] snake_case : Optional[Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" snake_case : int = self.get_tokenizer() snake_case : Optional[int] = tokenizer('''Hello''' , '''World''' ) snake_case : Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case : Optional[int] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) snake_case : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) snake_case : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) snake_case : Optional[int] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) snake_case : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case : Dict = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case : Any = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Optional[Any] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] snake_case : Optional[Any] = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) snake_case : List[str] = [tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for seq in encoding['''input_ids''']] # fmt: off snake_case : Optional[int] = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case : Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCamelCase__ ) for expected, decoded in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
83
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = '' else: _UpperCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _UpperCAmelCase = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def A ( _UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = dct.pop(__lowerCamelCase ) _UpperCAmelCase = val def A ( ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = ViTConfig() _UpperCAmelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _UpperCAmelCase = True _UpperCAmelCase = int(vit_name[-12:-10] ) _UpperCAmelCase = int(vit_name[-9:-6] ) else: _UpperCAmelCase = 1_000 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = int(vit_name[-6:-4] ) _UpperCAmelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): _UpperCAmelCase = 192 _UpperCAmelCase = 768 _UpperCAmelCase = 12 _UpperCAmelCase = 3 elif vit_name[9:].startswith('small' ): _UpperCAmelCase = 384 _UpperCAmelCase = 1_536 _UpperCAmelCase = 12 _UpperCAmelCase = 6 else: pass else: if vit_name[4:].startswith('small' ): _UpperCAmelCase = 768 _UpperCAmelCase = 2_304 _UpperCAmelCase = 8 _UpperCAmelCase = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): _UpperCAmelCase = 1_024 _UpperCAmelCase = 4_096 _UpperCAmelCase = 24 _UpperCAmelCase = 16 elif vit_name[4:].startswith('huge' ): _UpperCAmelCase = 1_280 _UpperCAmelCase = 5_120 _UpperCAmelCase = 32 _UpperCAmelCase = 16 # load original model from timm _UpperCAmelCase = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCamelCase ) _UpperCAmelCase = create_rename_keys(__lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTModel(__lowerCamelCase ).eval() else: _UpperCAmelCase = ViTForImageClassification(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _UpperCAmelCase = DeiTImageProcessor(size=config.image_size ) else: _UpperCAmelCase = ViTImageProcessor(size=config.image_size ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = model(__lowerCamelCase ) if base_model: _UpperCAmelCase = timm_model.forward_features(__lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCamelCase , outputs.pooler_output , atol=1E-3 ) else: _UpperCAmelCase = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
339
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''data2vec-text''' def __init__( self , A=3_0522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = classifier_dropout class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
58
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> Tuple: # initialize config if "resnet-50" in model_name: lowercase_ : Tuple = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: lowercase_ : str = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) lowercase_ : Optional[int] = DetrConfig(use_timm_backbone=UpperCAmelCase__ , backbone_config=UpperCAmelCase__ ) # set label attributes lowercase_ : Dict = """panoptic""" in model_name if is_panoptic: lowercase_ : Optional[int] = 250 else: lowercase_ : Optional[Any] = 91 lowercase_ : Dict = """huggingface/label-files""" lowercase_ : Tuple = """coco-detection-id2label.json""" lowercase_ : str = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowercase_ : List[str] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} lowercase_ : List[str] = idalabel lowercase_ : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCamelCase ( UpperCAmelCase__ : int ) -> Dict: # here we list all keys to be renamed (original name on the left, our name on the right) lowercase_ : List[Any] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ) -> str: lowercase_ : Dict = state_dict.pop(UpperCAmelCase__ ) lowercase_ : List[Any] = val def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=False ) -> Dict: lowercase_ : Union[str, Any] = """""" if is_panoptic: lowercase_ : Any = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase_ : Tuple = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Any = in_proj_weight[:256, :] lowercase_ : Union[str, Any] = in_proj_bias[:256] lowercase_ : str = in_proj_weight[256:512, :] lowercase_ : str = in_proj_bias[256:512] lowercase_ : Any = in_proj_weight[-256:, :] lowercase_ : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Tuple = in_proj_weight[:256, :] lowercase_ : List[Any] = in_proj_bias[:256] lowercase_ : str = in_proj_weight[256:512, :] lowercase_ : str = in_proj_bias[256:512] lowercase_ : List[Any] = in_proj_weight[-256:, :] lowercase_ : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowercase_ : Union[str, Any] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase_ : Dict = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase_ : int = in_proj_weight_cross_attn[:256, :] lowercase_ : Union[str, Any] = in_proj_bias_cross_attn[:256] lowercase_ : Optional[Any] = in_proj_weight_cross_attn[256:512, :] lowercase_ : Optional[Any] = in_proj_bias_cross_attn[256:512] lowercase_ : str = in_proj_weight_cross_attn[-256:, :] lowercase_ : Union[str, Any] = in_proj_bias_cross_attn[-256:] def lowerCamelCase ( ) -> List[str]: lowercase_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ : Dict = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=False ) -> Dict: lowercase_ : str = get_detr_config(UpperCAmelCase__ ) # load original model from torch hub lowercase_ : Optional[int] = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'''Converting model {model_name}...''' ) lowercase_ : Dict = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase__ ).eval() lowercase_ : List[str] = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase__ ): if is_panoptic: lowercase_ : Optional[int] = """detr.""" + src rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase__ , is_panoptic=UpperCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase_ : List[str] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): lowercase_ : List[Any] = state_dict.pop(UpperCAmelCase__ ) lowercase_ : Dict = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase_ : Tuple = state_dict.pop(UpperCAmelCase__ ) lowercase_ : List[str] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: lowercase_ : int = state_dict.pop(UpperCAmelCase__ ) lowercase_ : Any = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowercase_ : List[Any] = state_dict.pop(UpperCAmelCase__ ) lowercase_ : Dict = val # finally, create HuggingFace model and load state dict lowercase_ : Optional[int] = DetrForSegmentation(UpperCAmelCase__ ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # verify our conversion on an image lowercase_ : Tuple = """coco_panoptic""" if is_panoptic else """coco_detection""" lowercase_ : Optional[int] = DetrImageProcessor(format=UpperCAmelCase__ ) lowercase_ : Dict = processor(images=prepare_img() , return_tensors="""pt""" ) lowercase_ : str = encoding["""pixel_values"""] lowercase_ : Optional[int] = detr(UpperCAmelCase__ ) lowercase_ : List[str] = model(UpperCAmelCase__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") _lowercase : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
352
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
0
"""simple docstring""" import numpy as np from transformers import Pipeline def lowercase__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase : Dict = np.max(UpperCAmelCase_ , axis=-1 , keepdims=UpperCAmelCase_ ) lowercase : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCAmelCase_ ) class a__ ( SCREAMING_SNAKE_CASE__ ): def lowercase ( self : Optional[Any], **lowerCAmelCase : Union[str, Any] ) -> Dict: lowercase : Optional[Any] = {} if "second_text" in kwargs: lowercase : Any = kwargs['second_text'] return preprocess_kwargs, {}, {} def lowercase ( self : Tuple, lowerCAmelCase : str, lowerCAmelCase : List[Any]=None ) -> Optional[int]: return self.tokenizer(_A, text_pair=_A, return_tensors=self.framework ) def lowercase ( self : Tuple, lowerCAmelCase : Optional[Any] ) -> List[Any]: return self.model(**_A ) def lowercase ( self : Tuple, lowerCAmelCase : List[str] ) -> List[Any]: lowercase : Any = model_outputs.logits[0].numpy() lowercase : Dict = softmax(_A ) lowercase : List[Any] = np.argmax(_A ) lowercase : List[Any] = self.model.config.idalabel[best_class] lowercase : Tuple = probabilities[best_class].item() lowercase : Optional[int] = logits.tolist() return {"label": label, "score": score, "logits": logits}
255
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int= logging.get_logger(__name__) _a : Optional[Any]= { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[Any] = """lilt""" def __init__(self : Dict , _A : Any=3_05_22 , _A : Union[str, Any]=7_68 , _A : Any=12 , _A : Tuple=12 , _A : Optional[int]=30_72 , _A : Tuple="gelu" , _A : str=0.1 , _A : List[Any]=0.1 , _A : Union[str, Any]=5_12 , _A : Any=2 , _A : Tuple=0.02 , _A : List[str]=1E-12 , _A : Optional[int]=0 , _A : Optional[Any]="absolute" , _A : Any=None , _A : List[Any]=4 , _A : Optional[int]=10_24 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(pad_token_id=_A , **_A) __snake_case : Optional[int] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : List[str] = intermediate_size __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Any = classifier_dropout __snake_case : Optional[int] = channel_shrink_ratio __snake_case : Tuple = max_ad_position_embeddings
172
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->list[int]: """simple docstring""" lowercase : Dict = int(_UpperCamelCase ) # Initialize Result lowercase : Union[str, Any] = [] # Traverse through all denomination for denomination in reversed(_UpperCamelCase ): # Find denominations while int(_UpperCamelCase ) >= int(_UpperCamelCase ): total_value -= int(_UpperCamelCase ) answer.append(_UpperCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __a = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] __a = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
173
0
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase : Optional[int] = data_utils.TransfoXLTokenizer _lowercase : Any = data_utils.TransfoXLCorpus _lowercase : Optional[int] = data_utils _lowercase : Optional[int] = data_utils def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : List[str] ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__lowerCamelCase , '''rb''' ) as fp: lowerCamelCase__ : List[str] =pickle.load(__lowerCamelCase , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowerCamelCase__ : Union[str, Any] =pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' ) lowerCamelCase__ : List[Any] =corpus.vocab.__dict__ torch.save(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[Any] =corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __lowerCamelCase ) lowerCamelCase__ : Any =pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(__lowerCamelCase , __lowerCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowerCamelCase__ : int =os.path.abspath(__lowerCamelCase ) lowerCamelCase__ : str =os.path.abspath(__lowerCamelCase ) print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": lowerCamelCase__ : List[Any] =TransfoXLConfig() else: lowerCamelCase__ : List[Any] =TransfoXLConfig.from_json_file(__lowerCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) lowerCamelCase__ : int =TransfoXLLMHeadModel(__lowerCamelCase ) lowerCamelCase__ : int =load_tf_weights_in_transfo_xl(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowerCamelCase__ : Any =os.path.join(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict =os.path.join(__lowerCamelCase , __lowerCamelCase ) print(f'''Save PyTorch model to {os.path.abspath(__lowerCamelCase )}''' ) torch.save(model.state_dict() , __lowerCamelCase ) print(f'''Save configuration file to {os.path.abspath(__lowerCamelCase )}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) _lowercase : Dict = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
238
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any], lowerCamelCase : Any, lowerCamelCase : List[Any]=13, lowerCamelCase : Any=10, lowerCamelCase : Optional[Any]=3, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Dict=2, lowerCamelCase : Tuple=2, lowerCamelCase : List[str]=True, lowerCamelCase : Optional[int]=True, lowerCamelCase : Dict=32, lowerCamelCase : Any=5, lowerCamelCase : Dict=4, lowerCamelCase : Any=37, lowerCamelCase : Union[str, Any]="gelu", lowerCamelCase : Dict=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : Dict=10, lowerCamelCase : str=0.02, lowerCamelCase : List[Any]=0.9, lowerCamelCase : List[Any]=None, )-> str: lowerCamelCase__ : List[str] =parent lowerCamelCase__ : Any =batch_size lowerCamelCase__ : str =image_size lowerCamelCase__ : Optional[Any] =num_channels lowerCamelCase__ : Optional[int] =patch_size lowerCamelCase__ : List[str] =tubelet_size lowerCamelCase__ : Optional[Any] =num_frames lowerCamelCase__ : Any =is_training lowerCamelCase__ : List[Any] =use_labels lowerCamelCase__ : Union[str, Any] =hidden_size lowerCamelCase__ : List[str] =num_hidden_layers lowerCamelCase__ : str =num_attention_heads lowerCamelCase__ : List[Any] =intermediate_size lowerCamelCase__ : Any =hidden_act lowerCamelCase__ : int =hidden_dropout_prob lowerCamelCase__ : Optional[int] =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =type_sequence_label_size lowerCamelCase__ : int =initializer_range lowerCamelCase__ : Optional[Any] =mask_ratio lowerCamelCase__ : Any =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCamelCase__ : Optional[Any] =(image_size // patch_size) ** 2 lowerCamelCase__ : Any =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCamelCase__ : List[Any] =int(mask_ratio * self.seq_length ) def snake_case ( self : Dict )-> Union[str, Any]: lowerCamelCase__ : str =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Any =None if self.use_labels: lowerCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] =self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] )-> Optional[int]: return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) def snake_case ( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Any )-> Union[str, Any]: lowerCamelCase__ : List[str] =VideoMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : str )-> Dict: lowerCamelCase__ : int =VideoMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase__ : Optional[int] =torch.ones((self.num_masks,) ) lowerCamelCase__ : List[str] =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCamelCase__ : int =mask.expand(self.batch_size, -1 ).bool() lowerCamelCase__ : Any =model(lowerCamelCase, lowerCamelCase ) # model only returns predictions for masked patches lowerCamelCase__ : Optional[int] =mask.sum().item() lowerCamelCase__ : Dict =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def snake_case ( self : Optional[Any] )-> Tuple: lowerCamelCase__ : Tuple =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =config_and_inputs lowerCamelCase__ : List[str] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _a = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def snake_case ( self : List[Any] )-> Tuple: lowerCamelCase__ : int =VideoMAEModelTester(self ) lowerCamelCase__ : Optional[int] =ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def snake_case ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : List[str]=False )-> Tuple: lowerCamelCase__ : str =copy.deepcopy(lowerCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase__ : Any =torch.ones((self.model_tester.num_masks,) ) lowerCamelCase__ : Dict =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCamelCase__ : Optional[int] =mask.expand(self.model_tester.batch_size, -1 ).bool() lowerCamelCase__ : int =bool_masked_pos.to(lowerCamelCase ) if return_labels: if model_class in [ *get_values(lowerCamelCase ), ]: lowerCamelCase__ : List[str] =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase ) return inputs_dict def snake_case ( self : List[Any] )-> int: self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def snake_case ( self : List[str] )-> Tuple: pass def snake_case ( self : Union[str, Any] )-> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] =model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase__ : Optional[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] =model_class(lowerCamelCase ) lowerCamelCase__ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple =[*signature.parameters.keys()] lowerCamelCase__ : List[str] =['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def snake_case ( self : Tuple )-> Optional[int]: lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def snake_case ( self : List[Any] )-> Union[str, Any]: lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) @slow def snake_case ( self : List[Any] )-> Dict: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : str =VideoMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case ( self : List[str] )-> Optional[int]: if not self.has_attentions: pass else: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Tuple =True for model_class in self.all_model_classes: lowerCamelCase__ : Any =self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase__ : Any =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Optional[int] =False lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : int =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Union[str, Any] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : str =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : Tuple =True lowerCamelCase__ : Union[str, Any] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : List[str] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : int =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowerCamelCase__ : Union[str, Any] =len(lowerCamelCase ) # Check attention is always last and order is fine lowerCamelCase__ : List[Any] =True lowerCamelCase__ : Union[str, Any] =True lowerCamelCase__ : Dict =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) self.assertEqual(out_len + 1, len(lowerCamelCase ) ) lowerCamelCase__ : Optional[Any] =outputs.attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def snake_case ( self : str )-> int: def check_hidden_states_output(lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): lowerCamelCase__ : List[Any] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : Dict =outputs.hidden_states lowerCamelCase__ : Any =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowerCamelCase__ : Any =self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase__ : str =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowerCamelCase__ , lowerCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] =True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : int =True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : Optional[int] )-> int: pass def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : int =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowerCamelCase__ : str =np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self : List[str] )-> List[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case ( self : Optional[Any] )-> Dict: lowerCamelCase__ : str =VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowerCamelCase ) lowerCamelCase__ : Optional[Any] =self.default_image_processor lowerCamelCase__ : List[str] =prepare_video() lowerCamelCase__ : Union[str, Any] =image_processor(lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : Tuple =model(**lowerCamelCase ) # verify the logits lowerCamelCase__ : Union[str, Any] =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowerCamelCase__ : Tuple =torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) ) @slow def snake_case ( self : Any )-> Tuple: lowerCamelCase__ : Tuple =VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowerCamelCase ) lowerCamelCase__ : Optional[int] =self.default_image_processor lowerCamelCase__ : Dict =prepare_video() lowerCamelCase__ : Dict =image_processor(lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # add boolean mask, indicating which patches to mask lowerCamelCase__ : str =hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) lowerCamelCase__ : Dict =torch.load(lowerCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : Union[str, Any] =model(**lowerCamelCase ) # verify the logits lowerCamelCase__ : Dict =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : Union[str, Any] =torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]], device=lowerCamelCase ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCamelCase__ : Optional[int] =torch.tensor([0.5_142], device=lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss, lowerCamelCase, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCamelCase__ : Union[str, Any] =VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''', norm_pix_loss=lowerCamelCase ).to( lowerCamelCase ) with torch.no_grad(): lowerCamelCase__ : Union[str, Any] =model(**lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =torch.tensor(torch.tensor([0.6_469] ), device=lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss, lowerCamelCase, atol=1E-4 ) )
238
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed a : Union[str, Any] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) a : Tuple = """sshleifer/student_marian_en_ro_6_1""" a : Dict = """sshleifer/tiny-mbart""" @require_torch class _a ( lowerCamelCase__ ): def __snake_case (self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> str: UpperCAmelCase_: int = self.run_trainer( eval_steps=1, max_len=12, model_name=SCREAMING_SNAKE_CASE_, num_train_epochs=1, distributed=SCREAMING_SNAKE_CASE_, extra_args_str=SCREAMING_SNAKE_CASE_, predict_with_generate=SCREAMING_SNAKE_CASE_, do_train=SCREAMING_SNAKE_CASE_, do_eval=SCREAMING_SNAKE_CASE_, do_predict=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: List[Any] = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE_, """trainer_state.json""" ) ).log_history if not do_eval: return UpperCAmelCase_: str = [log for log in logs if """eval_loss""" in log.keys()] UpperCAmelCase_: Tuple = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_: int = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""], SCREAMING_SNAKE_CASE_ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __snake_case (self ) -> int: self.run_seqaseq_quick() @require_torch_multi_gpu def __snake_case (self ) -> Optional[int]: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE_ ) @require_torch_multi_gpu def __snake_case (self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __snake_case (self ) -> int: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE_, extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __snake_case (self ) -> int: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE_, extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __snake_case (self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE_, extra_args_str="""--sharded_ddp zero_dp_2""", predict_with_generate=SCREAMING_SNAKE_CASE_ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __snake_case (self ) -> List[Any]: self.run_seqaseq_quick( distributed=SCREAMING_SNAKE_CASE_, extra_args_str="""--sharded_ddp zero_dp_2 --fp16""", predict_with_generate=SCREAMING_SNAKE_CASE_ ) @require_apex @require_torch_gpu def __snake_case (self ) -> int: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE_, extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE_, extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Tuple = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } UpperCAmelCase_: Optional[Any] = experiments[experiment_id] UpperCAmelCase_: Optional[Any] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} UpperCAmelCase_: Union[str, Any] = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**SCREAMING_SNAKE_CASE_, extra_args_str=data["""extra_args_str"""] ) UpperCAmelCase_: Optional[int] = len(re.findall(SCREAMING_SNAKE_CASE_, cl.err ) ) self.assertEqual(SCREAMING_SNAKE_CASE_, data["""n_matches"""] ) @slow def __snake_case (self ) -> List[Any]: UpperCAmelCase_: str = self.run_trainer( eval_steps=2, max_len=128, model_name=SCREAMING_SNAKE_CASE_, learning_rate=3E-4, num_train_epochs=10, distributed=SCREAMING_SNAKE_CASE_, ) # Check metrics UpperCAmelCase_: Tuple = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE_, """trainer_state.json""" ) ).log_history UpperCAmelCase_: Optional[int] = [log for log in logs if """eval_loss""" in log.keys()] UpperCAmelCase_: Optional[Any] = eval_metrics[0] UpperCAmelCase_: Optional[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""], SCREAMING_SNAKE_CASE_ ) # test if do_predict saves generations and metrics UpperCAmelCase_: Dict = os.listdir(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = {os.path.basename(SCREAMING_SNAKE_CASE_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __snake_case (self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(SCREAMING_SNAKE_CASE_ ) -> Tuple[int, float]: UpperCAmelCase_: Tuple = """--skip_memory_metrics 0""" UpperCAmelCase_: Optional[int] = self.run_trainer( max_len=128, model_name=SCREAMING_SNAKE_CASE_, learning_rate=3E-4, num_train_epochs=1, optim=SCREAMING_SNAKE_CASE_, distributed=SCREAMING_SNAKE_CASE_, extra_args_str=SCREAMING_SNAKE_CASE_, do_eval=SCREAMING_SNAKE_CASE_, do_predict=SCREAMING_SNAKE_CASE_, n_gpus_to_use=1, ) # Check metrics UpperCAmelCase_: Optional[int] = TrainerState.load_from_json(Path(SCREAMING_SNAKE_CASE_, """trainer_state.json""" ) ).log_history UpperCAmelCase_: Any = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) UpperCAmelCase_: List[Any] = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) UpperCAmelCase_: Dict = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCAmelCase_: Optional[Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_: Tuple = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_: Any = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_: Tuple = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_: List[Any] = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' f' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB', ) self.assertGreater( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' f' gpu_total_mem_bnb={gpu_total_mem_bnb}MB', ) self.assertEqual( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, f'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 3E-3, SCREAMING_SNAKE_CASE_ = "adafactor", SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 0, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, ) -> int: UpperCAmelCase_: List[str] = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" UpperCAmelCase_: List[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase_: Optional[int] = f'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(SCREAMING_SNAKE_CASE_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(SCREAMING_SNAKE_CASE_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() UpperCAmelCase_: Dict = f'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(SCREAMING_SNAKE_CASE_ )}\n '.split() UpperCAmelCase_: Optional[int] = """ --do_predict """.split() UpperCAmelCase_: List[str] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_: int = get_gpu_count() UpperCAmelCase_: List[Any] = get_torch_dist_unique_port() UpperCAmelCase_: Optional[Any] = f'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() UpperCAmelCase_: List[str] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE_, env=self.get_env() ) else: UpperCAmelCase_: Any = ["""run_translation.py"""] + args with patch.object(SCREAMING_SNAKE_CASE_, """argv""", SCREAMING_SNAKE_CASE_ ): main() return output_dir
356
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a : Optional[int] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: int = create_model( """HTSAT-tiny""" , """roberta""" , lowerCAmelCase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCAmelCase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: List[Any] = {} UpperCAmelCase_: Optional[Any] = r""".*sequential.(\d+).*""" UpperCAmelCase_: str = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_: Optional[int] = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_: int = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_: Dict = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(lowerCAmelCase__ )//3}.linear.' ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_: int = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_: Optional[Any] = 1 if projecton_layer == 0 else 2 UpperCAmelCase_: Tuple = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_: str = value UpperCAmelCase_: Optional[int] = mixed_qkv.size(0 ) // 3 UpperCAmelCase_: Optional[int] = mixed_qkv[:qkv_dim] UpperCAmelCase_: List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_: int = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_: str = query_layer UpperCAmelCase_: List[Any] = key_layer UpperCAmelCase_: str = value_layer else: UpperCAmelCase_: Tuple = value return model_state_dict def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: List[Any]=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_: Optional[Any] = clap_model.state_dict() UpperCAmelCase_: Optional[Any] = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_: Dict = ClapConfig() UpperCAmelCase_: Tuple = enable_fusion UpperCAmelCase_: int = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a : Optional[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
82
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = (DEISMultistepScheduler,) lowercase = (('num_inference_steps', 25),) def __lowercase ( self : Dict , **lowerCamelCase : Optional[int] ) -> Any: lowerCAmelCase_ : Union[str, Any] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**lowerCamelCase__ ) return config def __lowercase ( self : List[Any] , lowerCamelCase : Tuple=0 , **lowerCamelCase : List[str] ) -> int: lowerCAmelCase_ : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase_ : int = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) lowerCAmelCase_ : int = self.dummy_sample lowerCAmelCase_ : Union[str, Any] = 0.1 * sample lowerCAmelCase_ : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Optional[Any] = self.get_scheduler_config(**lowerCamelCase__ ) lowerCAmelCase_ : Optional[int] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals lowerCAmelCase_ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) lowerCAmelCase_ : Tuple = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals lowerCAmelCase_ : str = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ : Any = sample, sample for t in range(lowerCamelCase__ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase_ : int = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ : Optional[Any] = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowercase ( self : Tuple ) -> Dict: pass def __lowercase ( self : List[Any] , lowerCamelCase : List[str]=0 , **lowerCamelCase : Dict ) -> Optional[Any]: lowerCAmelCase_ : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : List[Any] = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) lowerCAmelCase_ : int = self.dummy_sample lowerCAmelCase_ : str = 0.1 * sample lowerCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Optional[int] = self.get_scheduler_config() lowerCAmelCase_ : Tuple = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) lowerCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ : Optional[int] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ : List[Any] = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowercase ( self : Any , lowerCamelCase : int=None , **lowerCamelCase : Any ) -> str: if scheduler is None: lowerCAmelCase_ : Any = self.scheduler_classes[0] lowerCAmelCase_ : Optional[Any] = self.get_scheduler_config(**lowerCamelCase__ ) lowerCAmelCase_ : str = scheduler_class(**lowerCamelCase__ ) lowerCAmelCase_ : List[Any] = self.scheduler_classes[0] lowerCAmelCase_ : str = self.get_scheduler_config(**lowerCamelCase__ ) lowerCAmelCase_ : int = scheduler_class(**lowerCamelCase__ ) lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : Optional[int] = self.dummy_model() lowerCAmelCase_ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict = model(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def __lowercase ( self : Optional[int] ) -> Dict: lowerCAmelCase_ : Any = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Dict = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase_ : Optional[int] = scheduler_class(**lowerCamelCase__ ) lowerCAmelCase_ : str = self.dummy_sample lowerCAmelCase_ : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , """set_timesteps""" ): lowerCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase_ : List[str] = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase_ : Union[str, Any] = scheduler.timesteps[5] lowerCAmelCase_ : int = scheduler.timesteps[6] lowerCAmelCase_ : Tuple = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample lowerCAmelCase_ : str = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowercase ( self : Union[str, Any] ) -> Tuple: lowerCAmelCase_ : List[str] = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase_ : Any = self.full_loop(scheduler=lowerCamelCase__ ) lowerCAmelCase_ : List[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 lowerCAmelCase_ : str = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Dict = self.full_loop(scheduler=lowerCamelCase__ ) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def __lowercase ( self : Optional[int] ) -> Any: for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def __lowercase ( self : Any ) -> Optional[Any]: self.check_over_configs(thresholding=lowerCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , algorithm_type="""deis""" , solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , ) def __lowercase ( self : List[str] ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def __lowercase ( self : Dict ) -> List[Any]: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) lowerCAmelCase_ : int = self.full_loop( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers" def __lowercase ( self : int ) -> List[str]: self.check_over_configs(lower_order_final=lowerCamelCase__ ) self.check_over_configs(lower_order_final=lowerCamelCase__ ) def __lowercase ( self : List[Any] ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase__ , time_step=0 ) def __lowercase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase_ : str = self.full_loop() lowerCAmelCase_ : Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def __lowercase ( self : int ) -> int: lowerCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="""v_prediction""" ) lowerCAmelCase_ : Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def __lowercase ( self : List[str] ) -> Union[str, Any]: lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : List[Any] = self.get_scheduler_config(thresholding=lowerCamelCase__ , dynamic_thresholding_ratio=0 ) lowerCAmelCase_ : Any = scheduler_class(**lowerCamelCase__ ) lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : List[Any] = self.dummy_model() lowerCAmelCase_ : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[Any] = model(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_ : List[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample assert sample.dtype == torch.floataa
120
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : MutableSequence[float] ): '''simple docstring''' if len(lowerCamelCase__ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _UpperCamelCase : list[float] = list(lowerCamelCase__ ) _UpperCamelCase : Tuple = degree def __add__( self : Optional[int] ,lowerCamelCase__ : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: _UpperCamelCase : str = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree ,lowerCamelCase__ ) else: _UpperCamelCase : str = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree ,lowerCamelCase__ ) def __sub__( self : Dict ,lowerCamelCase__ : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 ,[-1] ) def __neg__( self : Dict ): '''simple docstring''' return Polynomial(self.degree ,[-c for c in self.coefficients] ) def __mul__( self : Union[str, Any] ,lowerCamelCase__ : Polynomial ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : int | float ): '''simple docstring''' _UpperCamelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Dict = '' for i in range(self.degree ,-1 ,-1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase__ ) return polynomial def __repr__( self : List[str] ): '''simple docstring''' return self.__str__() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * self.degree for i in range(self.degree ): _UpperCamelCase : Optional[int] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : int | float = 0 ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * (self.degree + 2) _UpperCamelCase : Any = constant for i in range(self.degree + 1 ): _UpperCamelCase : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 ,lowerCamelCase__ ) def __eq__( self : str ,lowerCamelCase__ : object ): '''simple docstring''' if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] ,lowerCamelCase__ : object ): '''simple docstring''' return not self.__eq__(lowerCamelCase__ )
83
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = XGLMConfig __lowerCAmelCase = {} __lowerCAmelCase = """gelu""" def __init__( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any]=14 , lowerCamelCase_ : Optional[int]=7 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : Optional[int]=32 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Dict=37 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Optional[int]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = ffn_dim UpperCamelCase = activation_function UpperCamelCase = activation_dropout UpperCamelCase = attention_dropout UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = 2 UpperCamelCase = 1 def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = self.get_config() UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase_ , ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( UpperCamelCase ) = config_and_inputs UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( _a , _a , unittest.TestCase ): __lowerCAmelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __lowerCAmelCase = (TFXGLMForCausalLM,) if is_tf_available() else () __lowerCAmelCase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFXGLMModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFXGLMModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any]=True ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on UpperCamelCase = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) UpperCamelCase = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): UpperCamelCase = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ , seed=[7, 0] ) UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase_ ) UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase = 'left' # use different length sentences to test batching UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors="""tf""" , padding=lowerCamelCase_ ) UpperCamelCase = inputs['input_ids'] UpperCamelCase = model.generate(input_ids=lowerCamelCase_ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) UpperCamelCase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids UpperCamelCase = model.generate(input_ids=lowerCamelCase_ , max_new_tokens=12 ) UpperCamelCase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids UpperCamelCase = model.generate(input_ids=lowerCamelCase_ , max_new_tokens=12 ) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase_ ) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase_ ) UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [non_padded_sentence, padded_sentence] )
343
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = KandinskyImgaImgPipeline lowercase_ : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowercase_ : Any = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowercase_ : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ : Union[str, Any] = False @property def UpperCamelCase ( self) -> str: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> int: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 1_00 @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def UpperCamelCase ( self) -> int: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=10_05, ) _lowercase : Optional[int] = MultilingualCLIP(lowerCamelCase) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Optional[Any] = UNetaDConditionModel(**lowerCamelCase) return model @property def UpperCamelCase ( self) -> str: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.dummy_text_encoder _lowercase : List[Any] = self.dummy_tokenizer _lowercase : int = self.dummy_unet _lowercase : int = self.dummy_movq _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : List[Any] = DDIMScheduler(**lowerCamelCase) _lowercase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" _lowercase : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(lowerCamelCase) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Tuple = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB').resize((2_56, 2_56)) if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = 'cpu' _lowercase : Tuple = self.get_dummy_components() _lowercase : str = self.pipeline_class(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = pipe(**self.get_dummy_inputs(lowerCamelCase)) _lowercase : Optional[int] = output.images _lowercase : List[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase), return_dict=lowerCamelCase, )[0] _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') _lowercase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa) pipe_prior.to(lowerCamelCase) _lowercase : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1', torch_dtype=torch.floataa) _lowercase : List[Any] = pipeline.to(lowerCamelCase) pipeline.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = torch.Generator(device='cpu').manual_seed(0) _lowercase , _lowercase : List[Any] = pipe_prior( lowerCamelCase, generator=lowerCamelCase, num_inference_steps=5, negative_prompt='', ).to_tuple() _lowercase : Union[str, Any] = pipeline( lowerCamelCase, image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=1_00, height=7_68, width=7_68, strength=0.2, output_type='np', ) _lowercase : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase)
21
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = 'The Nymphenburg Palace is a beautiful palace in Munich!' def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: __a = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } __a = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __a = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=lowercase__ , output_all_encodings=lowercase__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , lowercase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __a = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab __a = os.path.join(get_home_dir() , '''models''' ) __a = _load_vocab(lowercase__ , lowercase__ , lowercase__ , cls=lowercase__ ) __a = nlp.model.BERTModel( lowercase__ , len(lowercase__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=lowercase__ , use_token_type_embed=lowercase__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=lowercase__ , use_decoder=lowercase__ , ) original_bort.load_parameters(lowercase__ , cast_dtype=lowercase__ , ignore_extra=lowercase__ ) __a = original_bort._collect_params_with_prefix() # Build our config 🤗 __a = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(lowercase__ ), } __a = BertConfig.from_dict(lowercase__ ) __a = BertForMaskedLM(lowercase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCAmelCase__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): __a = hf_param.shape __a = to_torch(params[gluon_param] ) __a = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __a = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) __a = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) __a = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) __a = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __a = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __a = hf_bort_model.bert.encoder.layer[i] # self attention __a = layer.attention.self __a = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __a = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __a = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __a = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __a = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __a = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __a = layer.attention.output __a = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __a = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __a = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __a = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __a = layer.intermediate __a = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __a = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __a = layer.output __a = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __a = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __a = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __a = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __a = RobertaTokenizer.from_pretrained('''roberta-base''' ) __a = tokenizer.encode_plus(lowercase__ )['''input_ids'''] # Get gluon output __a = mx.nd.array([input_ids] ) __a = original_bort(inputs=lowercase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowercase__ ) __a = BertModel.from_pretrained(lowercase__ ) hf_bort_model.eval() __a = tokenizer.encode_plus(lowercase__ , return_tensors='''pt''' ) __a = hf_bort_model(**lowercase__ )[0] __a = output_gluon[0].asnumpy() __a = output_hf[0].detach().numpy() __a = np.max(np.abs(hf_layer - gluon_layer ) ).item() __a = np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , lowercase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _UpperCAmelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") _UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Any =cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def __magic_name__ ( ): with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Dict =canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] =imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE_: List[Any] =canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def __magic_name__ ( ): assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def __magic_name__ ( ): # laplace diagonals SCREAMING_SNAKE_CASE_: str =array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) SCREAMING_SNAKE_CASE_: Tuple =conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def __magic_name__ ( ): assert med.median_filter(lowercase , 3 ).any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =sp.make_sepia(lowercase , 20 ) assert sepia.all() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" ): SCREAMING_SNAKE_CASE_: Dict =bs.Burkes(imread(lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __magic_name__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" , ): SCREAMING_SNAKE_CASE_: int =rs.NearestNeighbour(imread(lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: str ="""digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE_: Tuple =imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE_: Optional[Any] =0 SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: List[Any] =image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE_: Optional[Any] =lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE_: Dict =np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE_: List[str] =lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
173
0
"""simple docstring""" def lowerCAmelCase_ (): """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] a : Dict = generate_large_matrix() a : str = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" assert all(row == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE_ ) == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for col in zip(*SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: str = 0 UpperCAmelCase_: Any = len(SCREAMING_SNAKE_CASE_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase_: str = (left + right) // 2 UpperCAmelCase_: List[str] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase_: Optional[Any] = mid + 1 else: UpperCAmelCase_: int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: List[Any] = 0 UpperCAmelCase_: Dict = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCAmelCase_: int = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE_ ) * len(grid[0] )) - total def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: Any = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE_ ): if number < 0: total += len(SCREAMING_SNAKE_CASE_ ) - i break return total def lowerCAmelCase_ (): """simple docstring""" from timeit import timeit print("""Running benchmarks""" ) UpperCAmelCase_: Any = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase_: List[str] = timeit(F'{func}(grid=grid)' , setup=SCREAMING_SNAKE_CASE_ , number=5_0_0 ) print(F'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
366
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: str = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): UpperCAmelCase_: Tuple = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): UpperCAmelCase_: List[str] = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase_: Optional[Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] UpperCAmelCase_: Optional[Any] = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowerCAmelCase__ )-1}' ) if "norm" in key: UpperCAmelCase_: Dict = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase_: Any = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] UpperCAmelCase_: str = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowerCAmelCase__ )-1}' ) if "layer_norm1" in key: UpperCAmelCase_: Tuple = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: UpperCAmelCase_: int = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase_: Any = key[key.find("""block""" ) + len("""block""" )] UpperCAmelCase_: Optional[Any] = key.replace(F'block{idx}' , F'block.{int(lowerCAmelCase__ )-1}' ) if "attn.q" in key: UpperCAmelCase_: Dict = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: UpperCAmelCase_: Tuple = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: UpperCAmelCase_: str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: UpperCAmelCase_: Tuple = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: UpperCAmelCase_: Optional[int] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: UpperCAmelCase_: Optional[int] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: UpperCAmelCase_: Tuple = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) UpperCAmelCase_: List[str] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase_: Optional[int] = key[key.find("""linear_c""" ) + len("""linear_c""" )] UpperCAmelCase_: List[str] = key.replace(F'linear_c{idx}' , F'linear_c.{int(lowerCAmelCase__ )-1}' ) if "bot_conv" in key: UpperCAmelCase_: Optional[Any] = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: UpperCAmelCase_: Any = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: UpperCAmelCase_: Optional[Any] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: UpperCAmelCase_: Dict = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: UpperCAmelCase_: Any = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: UpperCAmelCase_: Union[str, Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: UpperCAmelCase_: List[Any] = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): UpperCAmelCase_: Union[str, Any] = key.replace("""module.last_layer_depth""" , """head.head""" ) UpperCAmelCase_: Union[str, Any] = value return new_state_dict def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase_: str = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) UpperCAmelCase_: Tuple = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict UpperCAmelCase_: Any = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase_: Tuple = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase_: Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase_: int = kv_bias[config.hidden_sizes[i] :] def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_: List[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[Any]=False , lowerCAmelCase__: Optional[Any]=None ): """simple docstring""" UpperCAmelCase_: str = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) UpperCAmelCase_: Dict = GLPNImageProcessor() # prepare image UpperCAmelCase_: List[str] = prepare_img() UpperCAmelCase_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict UpperCAmelCase_: Any = torch.load(lowerCAmelCase__ , map_location=torch.device("""cpu""" ) ) # rename keys UpperCAmelCase_: Optional[Any] = rename_keys(lowerCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # create HuggingFace model and load state dict UpperCAmelCase_: Dict = GLPNForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass UpperCAmelCase_: Any = model(lowerCAmelCase__ ) UpperCAmelCase_: Union[str, Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCAmelCase_: List[str] = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCAmelCase_: List[str] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) UpperCAmelCase_: Any = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) a : List[Any] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
82
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : bool , lowerCamelCase : bool ): def run_func(lowerCamelCase : List[str] ): @wraps(lowerCamelCase ) def run_in_eager_mode(*lowerCamelCase : List[str] , **lowerCamelCase : Tuple ): return func(*lowerCamelCase , **lowerCamelCase ) @wraps(lowerCamelCase ) @tf.function(experimental_compile=lowerCamelCase ) def run_in_graph_mode(*lowerCamelCase : List[Any] , **lowerCamelCase : Any ): return func(*lowerCamelCase , **lowerCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a_ ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): lowerCAmelCase = random.Random() lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : TensorFlowBenchmarkArguments lowerCamelCase : PretrainedConfig lowerCamelCase : str = "TensorFlow" @property def __UpperCAmelCase ( self : int ) -> Optional[int]: return tf.__version__ def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> float: # initialize GPU on separate process lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase = self._prepare_inference_func(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return self._measure_speed(_inference ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> float: lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase = self._prepare_train_func(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return self._measure_speed(_train ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCAmelCase__ ) lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase = self._prepare_inference_func(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return self._measure_memory(_inference ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCAmelCase__ ) lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase = self._prepare_train_func(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return self._measure_memory(_train ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Callable[[], None]: lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase = ( hasattr(UpperCAmelCase__ , 'architectures' ) and isinstance(config.architectures , UpperCAmelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model_cls(UpperCAmelCase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](UpperCAmelCase__ ) # encoder-decoder has vocab size saved differently lowerCAmelCase = config.vocab_size if hasattr(UpperCAmelCase__ , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase = random_input_ids(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , training=UpperCAmelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCAmelCase__ , training=UpperCAmelCase__ ) lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Callable[[], None]: lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase = ( hasattr(UpperCAmelCase__ , 'architectures' ) and isinstance(config.architectures , UpperCAmelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model_cls(UpperCAmelCase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCAmelCase__ ) # encoder-decoder has vocab size saved differently lowerCAmelCase = config.vocab_size if hasattr(UpperCAmelCase__ , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase = random_input_ids(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCAmelCase = model(UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__ )[0] lowerCAmelCase = tf.gradients(UpperCAmelCase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCAmelCase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__ )[0] lowerCAmelCase = tf.gradients(UpperCAmelCase__ , model.trainable_variables ) return gradients lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Optional[Any] ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(UpperCAmelCase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCAmelCase = timeit.repeat( UpperCAmelCase__ , repeat=self.args.repeat , number=1_0 , ) return min(UpperCAmelCase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Callable[[], None] ) -> [Memory, MemorySummary]: logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) lowerCAmelCase = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) lowerCAmelCase = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(UpperCAmelCase__ ) lowerCAmelCase = meminfo.used lowerCAmelCase = Memory(UpperCAmelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) lowerCAmelCase = None else: lowerCAmelCase = measure_peak_memory_cpu(UpperCAmelCase__ ) lowerCAmelCase = Memory(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCAmelCase = stop_memory_tracing(UpperCAmelCase__ ) if memory is None: lowerCAmelCase = summary.total else: lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
4
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = AudioLDMPipeline __lowerCamelCase = TEXT_TO_AUDIO_PARAMS __lowerCamelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCamelCase = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_snake_case , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _lowerCAmelCase = ClapTextModelWithProjection(_snake_case ) _lowerCAmelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) _lowerCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_snake_case , ) _lowerCAmelCase = SpeechTaHifiGan(_snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_snake_case ) else: _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) _lowerCAmelCase = prompt_embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * ["""this is a negative prompt"""] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = [] for p in [prompt, negative_prompt]: _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) embeds.append(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = """egg cracking""" _lowerCAmelCase = audioldm_pipe(**_snake_case , negative_prompt=_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = ["""hey"""] _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase = SpeechTaHifiGan(_snake_case ).to(_snake_case ) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , _snake_case , _snake_case="cpu" , _snake_case=torch.floataa , _snake_case=0 ): """simple docstring""" _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) ) _lowerCAmelCase = torch.from_numpy(_snake_case ).to(device=_snake_case , dtype=_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = 25 _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[77230:77240] _lowerCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[27780:27790] _lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
82
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : List[str] ,**lowercase__ : Optional[Any] ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
52
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __snake_case = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def _A ( _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = EfficientNetConfig() __UpperCamelCase = CONFIG_MAP[model_name]['hidden_dim'] __UpperCamelCase = CONFIG_MAP[model_name]['width_coef'] __UpperCamelCase = CONFIG_MAP[model_name]['depth_coef'] __UpperCamelCase = CONFIG_MAP[model_name]['image_size'] __UpperCamelCase = CONFIG_MAP[model_name]['dropout_rate'] __UpperCamelCase = CONFIG_MAP[model_name]['dw_padding'] __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'imagenet-1k-id2label.json' __UpperCamelCase = 10_00 __UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def _A ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = CONFIG_MAP[model_name]['image_size'] __UpperCamelCase = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=_lowercase , ) return preprocessor def _A ( _lowercase ) -> List[str]: """simple docstring""" __UpperCamelCase = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] __UpperCamelCase = sorted(set(_lowercase ) ) __UpperCamelCase = len(_lowercase ) __UpperCamelCase = {b: str(_lowercase ) for b, i in zip(_lowercase , range(_lowercase ) )} __UpperCamelCase = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: __UpperCamelCase = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) __UpperCamelCase = {} for item in rename_keys: if item[0] in original_param_names: __UpperCamelCase = 'efficientnet.' + item[1] __UpperCamelCase = 'classifier.weight' __UpperCamelCase = 'classifier.bias' return key_mapping def _A ( _lowercase , _lowercase , _lowercase ) -> List[str]: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue __UpperCamelCase = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCamelCase = torch.from_numpy(_lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCamelCase = torch.from_numpy(_lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCamelCase = torch.from_numpy(np.transpose(_lowercase ) ) else: __UpperCamelCase = torch.from_numpy(_lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_lowercase ) @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = model_classes[model_name]( include_top=_lowercase , weights='imagenet' , input_tensor=_lowercase , input_shape=_lowercase , pooling=_lowercase , classes=10_00 , classifier_activation='softmax' , ) __UpperCamelCase = original_model.trainable_variables __UpperCamelCase = original_model.non_trainable_variables __UpperCamelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCamelCase = param.numpy() __UpperCamelCase = list(tf_params.keys() ) # Load HuggingFace model __UpperCamelCase = get_efficientnet_config(_lowercase ) __UpperCamelCase = EfficientNetForImageClassification(_lowercase ).eval() __UpperCamelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) __UpperCamelCase = rename_keys(_lowercase ) replace_params(_lowercase , _lowercase , _lowercase ) # Initialize preprocessor and preprocess input image __UpperCamelCase = convert_image_processor(_lowercase ) __UpperCamelCase = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCamelCase = hf_model(**_lowercase ) __UpperCamelCase = outputs.logits.detach().numpy() # Original model inference __UpperCamelCase = False __UpperCamelCase = CONFIG_MAP[model_name]['image_size'] __UpperCamelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCamelCase = image.img_to_array(_lowercase ) __UpperCamelCase = np.expand_dims(_lowercase , axis=0 ) __UpperCamelCase = original_model.predict(_lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_lowercase , _lowercase , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_lowercase ): os.mkdir(_lowercase ) # Save converted model and image processor hf_model.save_pretrained(_lowercase ) preprocessor.save_pretrained(_lowercase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCamelCase = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_lowercase ) hf_model.push_to_hub(_lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
310
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Union[str, Any],A_: List[str] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = RobertaEmbeddings(A_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _a , ) class __lowerCamelCase (_a ): _lowercase = RobertaConfig _lowercase = """roberta""" def __init__( self: Any,A_: int ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeRobertaModel(A_ ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(A_ ) def snake_case_ ( self: List[str],A_: int=None,A_: List[Any]=None,A_: List[str]=None,A_: List[str]=None,A_: Optional[int]=None,A_: List[str]=None,A_: Any=None,A_: List[Any]=-1,A_: List[Any]=False,): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.roberta( A_,attention_mask=A_,token_type_ids=A_,position_ids=A_,head_mask=A_,inputs_embeds=A_,) __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(A_ ) __UpperCamelCase = self.classifier(A_ ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(A_ ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
310
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( lowerCAmelCase_ ): lowerCAmelCase : Dict = """speech_to_text_2""" lowerCAmelCase : Any = ["""past_key_values"""] lowerCAmelCase : Optional[Any] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , lowerCamelCase__ : List[str]=1_00_00 , lowerCamelCase__ : str=6 , lowerCamelCase__ : Optional[int]=20_48 , lowerCamelCase__ : List[str]=4 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : str="relu" , lowerCamelCase__ : Union[str, Any]=2_56 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Tuple=0.0_2 , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[int]=1 , lowerCamelCase__ : Union[str, Any]=0 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=10_24 , **lowerCamelCase__ : Union[str, Any] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Dict = d_model _UpperCAmelCase : Tuple = decoder_ffn_dim _UpperCAmelCase : Optional[int] = decoder_layers _UpperCAmelCase : List[str] = decoder_attention_heads _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Optional[Any] = attention_dropout _UpperCAmelCase : str = activation_dropout _UpperCAmelCase : str = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : Optional[int] = decoder_layerdrop _UpperCAmelCase : int = use_cache _UpperCAmelCase : List[str] = decoder_layers _UpperCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Tuple = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
352
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
0
"""simple docstring""" A : int = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A : List[Any] = [{"type": "code", "content": INSTALL_CONTENT}] A : List[str] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
57
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __SCREAMING_SNAKE_CASE ( A__ ): def __lowerCamelCase ( self ): lowercase : List[str] = tempfile.mkdtemp() lowercase : Any = 8 # DPR tok lowercase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase : int = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) lowercase : str = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok lowercase : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowercase : str = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase : Union[str, Any] = {'''unk_token''': '''<unk>'''} lowercase : int = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCamelCase ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __lowerCamelCase ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : Optional[Any] = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) lowercase : Dict = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowercase : Dict = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowerCamelCase ( self ): lowercase : Dict = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) lowercase : Optional[int] = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] lowercase : str = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow def __lowerCamelCase ( self ): lowercase : int = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) lowercase : Tuple = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] lowercase : Any = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
173
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __a = 50_00_00 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def __lowercase ( _UpperCamelCase, **_UpperCamelCase ) ->Any: """simple docstring""" lowercase : Optional[Any] = dataset.map(**_UpperCamelCase ) @get_duration def __lowercase ( _UpperCamelCase, **_UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : int = dataset.filter(**_UpperCamelCase ) def __lowercase ( ) ->Union[str, Any]: """simple docstring""" lowercase : Dict = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase : List[str] = generate_example_dataset( os.path.join(_UpperCamelCase, '''dataset.arrow''' ), _UpperCamelCase, num_examples=_UpperCamelCase ) lowercase : List[Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=_UpperCamelCase ) def tokenize(_UpperCamelCase ): return tokenizer(examples['''text'''] ) lowercase : Union[str, Any] = map(_UpperCamelCase ) lowercase : Dict = map(_UpperCamelCase, batched=_UpperCamelCase ) lowercase : Tuple = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''numpy''' ): lowercase : Dict = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''pandas''' ): lowercase : Any = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): lowercase : str = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): lowercase : Tuple = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) lowercase : List[str] = map(_UpperCamelCase, function=_UpperCamelCase, batched=_UpperCamelCase ) lowercase : Any = filter(_UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCamelCase, '''wb''' ) as f: f.write(json.dumps(_UpperCamelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
173
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase_ = True except ImportError: lowercase_ = False lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase ( __lowerCamelCase : Namespace ) ->Optional[Any]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class a_ ( snake_case_ ): '''simple docstring''' @staticmethod def snake_case_( A ) -> Tuple: _SCREAMING_SNAKE_CASE = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=A , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=A , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=A ) def __init__( self , A , A , A=None , *A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = testing _SCREAMING_SNAKE_CASE = testing_file _SCREAMING_SNAKE_CASE = path def snake_case_( self ) -> List[str]: warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _SCREAMING_SNAKE_CASE = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(A ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) _SCREAMING_SNAKE_CASE = ( Path(A ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _SCREAMING_SNAKE_CASE = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(A ) ) else: with open(self._testing_file , """r""" ) as configuration_file: _SCREAMING_SNAKE_CASE = json.load(A ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=A , extra_context=A , ) _SCREAMING_SNAKE_CASE = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: _SCREAMING_SNAKE_CASE = json.load(A ) _SCREAMING_SNAKE_CASE = configuration["""lowercase_modelname"""] _SCREAMING_SNAKE_CASE = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f'{directory}/configuration.json' ) _SCREAMING_SNAKE_CASE = """PyTorch""" in generate_tensorflow_pytorch_and_flax _SCREAMING_SNAKE_CASE = """TensorFlow""" in generate_tensorflow_pytorch_and_flax _SCREAMING_SNAKE_CASE = """Flax""" in generate_tensorflow_pytorch_and_flax _SCREAMING_SNAKE_CASE = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A , exist_ok=A ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=A ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(A ): with open(A , """r""" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() with open(A , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A , A , A ): # Create temp file _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = mkstemp() _SCREAMING_SNAKE_CASE = False with fdopen(A , """w""" ) as new_file: with open(A ) as old_file: for line in old_file: new_file.write(A ) if line_to_copy_below in line: _SCREAMING_SNAKE_CASE = True for line_to_copy in lines_to_copy: new_file.write(A ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A , A ) # Remove original file remove(A ) # Move new file move(A , A ) def skip_units(A ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A ): with open(A ) as datafile: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False for line in datafile: if "# To replace in: " in line and "##" not in line: _SCREAMING_SNAKE_CASE = line.split("""\"""" )[1] _SCREAMING_SNAKE_CASE = skip_units(A ) elif "# Below: " in line and "##" not in line: _SCREAMING_SNAKE_CASE = line.split("""\"""" )[1] _SCREAMING_SNAKE_CASE = skip_units(A ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A , A , A ) _SCREAMING_SNAKE_CASE = [] elif "# Replace with" in line and "##" not in line: _SCREAMING_SNAKE_CASE = [] elif "##" not in line: lines_to_copy.append(A ) remove(A ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A )
58
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): _lowerCAmelCase = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): _lowerCAmelCase = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _lowerCAmelCase = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(snake_case )-1}' ) if "norm" in key: _lowerCAmelCase = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] _lowerCAmelCase = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(snake_case )-1}' ) if "layer_norm1" in key: _lowerCAmelCase = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: _lowerCAmelCase = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _lowerCAmelCase = key[key.find("""block""" ) + len("""block""" )] _lowerCAmelCase = key.replace(F'block{idx}' , F'block.{int(snake_case )-1}' ) if "attn.q" in key: _lowerCAmelCase = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: _lowerCAmelCase = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: _lowerCAmelCase = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: _lowerCAmelCase = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: _lowerCAmelCase = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: _lowerCAmelCase = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: _lowerCAmelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) _lowerCAmelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] _lowerCAmelCase = key.replace(F'linear_c{idx}' , F'linear_c.{int(snake_case )-1}' ) if "bot_conv" in key: _lowerCAmelCase = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: _lowerCAmelCase = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: _lowerCAmelCase = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: _lowerCAmelCase = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: _lowerCAmelCase = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: _lowerCAmelCase = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: _lowerCAmelCase = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): _lowerCAmelCase = key.replace("""module.last_layer_depth""" , """head.head""" ) _lowerCAmelCase = value return new_state_dict def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) _lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict _lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] _lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] _lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( snake_case , snake_case , snake_case=False , snake_case=None ): """simple docstring""" _lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _lowerCAmelCase = GLPNImageProcessor() # prepare image _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=snake_case , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict _lowerCAmelCase = torch.load(snake_case , map_location=torch.device("""cpu""" ) ) # rename keys _lowerCAmelCase = rename_keys(snake_case ) # key and value matrices need special treatment read_in_k_v(snake_case , snake_case ) # create HuggingFace model and load state dict _lowerCAmelCase = GLPNForDepthEstimation(snake_case ) model.load_state_dict(snake_case ) model.eval() # forward pass _lowerCAmelCase = model(snake_case ) _lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: _lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) _lowerCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , snake_case , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=snake_case , ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) A__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
82
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __UpperCAmelCase ( __snake_case ): '''simple docstring''' __lowercase : str = "efficientnet" def __init__( self , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 600 , _SCREAMING_SNAKE_CASE = 2.0 , _SCREAMING_SNAKE_CASE = 3.1 , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = [3, 3, 5, 3, 5, 5, 3] , _SCREAMING_SNAKE_CASE = [32, 16, 24, 40, 80, 112, 192] , _SCREAMING_SNAKE_CASE = [16, 24, 40, 80, 112, 192, 320] , _SCREAMING_SNAKE_CASE = [] , _SCREAMING_SNAKE_CASE = [1, 2, 2, 2, 1, 2, 1] , _SCREAMING_SNAKE_CASE = [1, 2, 2, 3, 3, 4, 1] , _SCREAMING_SNAKE_CASE = [1, 6, 6, 6, 6, 6, 6] , _SCREAMING_SNAKE_CASE = 0.25 , _SCREAMING_SNAKE_CASE = "swish" , _SCREAMING_SNAKE_CASE = 2560 , _SCREAMING_SNAKE_CASE = "mean" , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = 0.001 , _SCREAMING_SNAKE_CASE = 0.99 , _SCREAMING_SNAKE_CASE = 0.5 , _SCREAMING_SNAKE_CASE = 0.2 , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: super().__init__(**lowerCamelCase_ ) A_ = num_channels A_ = image_size A_ = width_coefficient A_ = depth_coefficient A_ = depth_divisor A_ = kernel_sizes A_ = in_channels A_ = out_channels A_ = depthwise_padding A_ = strides A_ = num_block_repeats A_ = expand_ratios A_ = squeeze_expansion_ratio A_ = hidden_act A_ = hidden_dim A_ = pooling_type A_ = initializer_range A_ = batch_norm_eps A_ = batch_norm_momentum A_ = dropout_rate A_ = drop_connect_rate A_ = sum(lowerCamelCase_ ) * 4 class __UpperCAmelCase ( __snake_case ): '''simple docstring''' __lowercase : Tuple = version.parse('1.11' ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A ( self ) -> float: return 1E-5
364
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __lowerCamelCase : Any = logging.get_logger(__name__) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: def run_func(_lowerCAmelCase ): @wraps(_lowerCAmelCase ) def run_in_eager_mode(*_lowerCAmelCase , **_lowerCAmelCase ): return func(*_lowerCAmelCase , **_lowerCAmelCase ) @wraps(_lowerCAmelCase ) @tf.function(experimental_compile=_lowerCAmelCase ) def run_in_graph_mode(*_lowerCAmelCase , **_lowerCAmelCase ): return func(*_lowerCAmelCase , **_lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> ["tf.Tensor"]: UpperCamelCase : Optional[Any] = random.Random() UpperCamelCase : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class A__ ( __snake_case ): _UpperCAmelCase :TensorFlowBenchmarkArguments _UpperCAmelCase :PretrainedConfig _UpperCAmelCase :str = "TensorFlow" @property def __UpperCamelCase( self ): '''simple docstring''' return tf.__version__ def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCamelCase : Optional[Any] = self._prepare_inference_func(A_ , A_ , A_ ) return self._measure_speed(_inference ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCamelCase : Any = self._prepare_train_func(A_ , A_ , A_ ) return self._measure_speed(_train ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A_ ) UpperCamelCase : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCamelCase : Union[str, Any] = self._prepare_inference_func(A_ , A_ , A_ ) return self._measure_memory(_inference ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A_ ) UpperCamelCase : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCamelCase : Union[str, Any] = self._prepare_train_func(A_ , A_ , A_ ) return self._measure_memory(_train ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Tuple = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCamelCase : Union[str, Any] = ( hasattr(A_ , "architectures" ) and isinstance(config.architectures , A_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase : Optional[Any] = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase : str = __import__("transformers" , fromlist=[model_class] ) UpperCamelCase : Dict = getattr(A_ , A_ ) UpperCamelCase : List[str] = model_cls(A_ ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCamelCase : Tuple = TF_MODEL_MAPPING[config.__class__](A_ ) # encoder-decoder has vocab size saved differently UpperCamelCase : Optional[int] = config.vocab_size if hasattr(A_ , "vocab_size" ) else config.encoder.vocab_size UpperCamelCase : str = random_input_ids(A_ , A_ , A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A_ , decoder_input_ids=A_ , training=A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A_ , training=A_ ) UpperCamelCase : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCamelCase : List[Any] = ( hasattr(A_ , "architectures" ) and isinstance(config.architectures , A_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase : Dict = __import__("transformers" , fromlist=[model_class] ) UpperCamelCase : Any = getattr(A_ , A_ ) UpperCamelCase : List[str] = model_cls(A_ ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCamelCase : int = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A_ ) # encoder-decoder has vocab size saved differently UpperCamelCase : Optional[Any] = config.vocab_size if hasattr(A_ , "vocab_size" ) else config.encoder.vocab_size UpperCamelCase : Any = random_input_ids(A_ , A_ , A_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase : List[Any] = model(A_ , decoder_input_ids=A_ , labels=A_ , training=A_ )[0] UpperCamelCase : Dict = tf.gradients(A_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase : Union[str, Any] = model(A_ , labels=A_ , training=A_ )[0] UpperCamelCase : Optional[int] = tf.gradients(A_ , model.trainable_variables ) return gradients UpperCamelCase : Union[str, Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __UpperCamelCase( self , A_ ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(A_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase : str = timeit.repeat( A_ , repeat=self.args.repeat , number=10 , ) return min(A_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) def __UpperCamelCase( self , A_ ): '''simple docstring''' logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCamelCase : Dict = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCamelCase : Any = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCamelCase : List[Any] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase : int = nvml.nvmlDeviceGetMemoryInfo(A_ ) UpperCamelCase : Tuple = meminfo.used UpperCamelCase : List[str] = Memory(A_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCamelCase : Optional[Any] = None else: UpperCamelCase : List[str] = measure_peak_memory_cpu(A_ ) UpperCamelCase : Dict = Memory(A_ ) if isinstance(A_ , A_ ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase : int = stop_memory_tracing(A_ ) if memory is None: UpperCamelCase : str = summary.total else: UpperCamelCase : List[Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) return "N/A", None
52
class A__ : def __init__( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = set_counts UpperCamelCase : int = max(A_ ) UpperCamelCase : Optional[Any] = len(A_ ) UpperCamelCase : Union[str, Any] = [1] * num_sets UpperCamelCase : Union[str, Any] = list(range(A_ ) ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = self.get_parent(A_ ) UpperCamelCase : Optional[int] = self.get_parent(A_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCamelCase : int = 0 UpperCamelCase : Dict = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCamelCase : Optional[int] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCamelCase : Any = 0 UpperCamelCase : Optional[int] = src_parent UpperCamelCase : int = self.set_counts[src_parent] UpperCamelCase : Any = max(self.max_set , A_ ) return True def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set UpperCamelCase : Optional[int] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
52
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} a_ = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } a_ = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } a_ = """▁""" # Segments (not really needed) a_ = 0 a_ = 1 a_ = 2 a_ = 3 a_ = 4 class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = """left""" _lowerCamelCase = XLNetTokenizer def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<sep>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<cls>" , __lowerCamelCase="<mask>" , __lowerCamelCase=["<eop>", "<eod>"] , **__lowerCamelCase , ): '''simple docstring''' __A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) __A : Dict = 3 __A : Optional[Any] = do_lower_case __A : Tuple = remove_space __A : Tuple = keep_accents __A : Optional[Any] = vocab_file __A : Optional[Any] = False if not self.vocab_file else True def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : List[Any] = [self.sep_token_id] __A : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 2_00 ): '''simple docstring''' lowerCAmelCase = [1, 2, 5, 10, 20, 50, 1_00, 2_00] lowerCAmelCase = [0] * (pence + 1) lowerCAmelCase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
46
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __UpperCAmelCase = Mapping[str, np.ndarray] __UpperCAmelCase = Mapping[str, Any] # Is a nested dict. __UpperCAmelCase = 0.01 @dataclasses.dataclass(frozen=a__ ) class a__ : '''simple docstring''' lowercase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowercase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowercase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowercase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowercase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowercase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowercase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowercase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowercase__ : Optional[Sequence[int]] = None def _snake_case ( A ) -> Protein: lowerCAmelCase__ = R'''(\[[A-Z]+\]\n)''' lowerCAmelCase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowerCAmelCase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowerCAmelCase__ = ['''N''', '''CA''', '''C'''] lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowerCAmelCase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowerCAmelCase__ = '''X''' # FIXME: strings are immutable lowerCAmelCase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowerCAmelCase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowerCAmelCase__ = np.array(A ) lowerCAmelCase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowerCAmelCase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowerCAmelCase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowerCAmelCase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowerCAmelCase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _snake_case ( A , A = 0 ) -> List[str]: lowerCAmelCase__ = [] lowerCAmelCase__ = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowerCAmelCase__ = prot.parents lowerCAmelCase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowerCAmelCase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowerCAmelCase__ = ['''N/A'''] pdb_headers.append(F"""PARENT {" ".join(A )}""" ) return pdb_headers def _snake_case ( A , A ) -> str: lowerCAmelCase__ = [] lowerCAmelCase__ = pdb_str.split('''\n''' ) lowerCAmelCase__ = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowerCAmelCase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowerCAmelCase__ = [] if prot.parents_chain_index is not None: lowerCAmelCase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowerCAmelCase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowerCAmelCase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowerCAmelCase__ = [['''N/A''']] def make_parent_line(A ) -> str: return F"""PARENT {" ".join(A )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowerCAmelCase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowerCAmelCase__ = parents_per_chain[chain_counter] else: lowerCAmelCase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _snake_case ( A ) -> str: lowerCAmelCase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowerCAmelCase__ = residue_constants.atom_types lowerCAmelCase__ = [] lowerCAmelCase__ = prot.atom_mask lowerCAmelCase__ = prot.aatype lowerCAmelCase__ = prot.atom_positions lowerCAmelCase__ = prot.residue_index.astype(np.intaa ) lowerCAmelCase__ = prot.b_factors lowerCAmelCase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowerCAmelCase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowerCAmelCase__ = aatype.shape[0] lowerCAmelCase__ = 1 lowerCAmelCase__ = 0 lowerCAmelCase__ = string.ascii_uppercase lowerCAmelCase__ = None # Add all atom sites. for i in range(A ): lowerCAmelCase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowerCAmelCase__ = '''ATOM''' lowerCAmelCase__ = atom_name if len(A ) == 4 else F""" {atom_name}""" lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = 1.00 lowerCAmelCase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''A''' if chain_index is not None: lowerCAmelCase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowerCAmelCase__ = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(A ) atom_index += 1 lowerCAmelCase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowerCAmelCase__ = True lowerCAmelCase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowerCAmelCase__ = '''TER''' lowerCAmelCase__ = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _snake_case ( A ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _snake_case ( A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
364
'''simple docstring''' from collections.abc import Iterable from typing import Any class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ = None ) -> List[str]: lowerCAmelCase__ = value lowerCAmelCase__ = None # Added in order to delete a node easier lowerCAmelCase__ = None lowerCAmelCase__ = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ = None ) -> Union[str, Any]: lowerCAmelCase__ = root def __str__( self ) -> str: return str(self.root ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if new_children is not None: # reset its kids lowerCAmelCase__ = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCamelCase_ ): # If it is the right children lowerCAmelCase__ = new_children else: lowerCAmelCase__ = new_children else: lowerCAmelCase__ = new_children def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __SCREAMING_SNAKE_CASE ( self ) -> bool: return self.root is None def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = Node(lowerCamelCase_ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ = new_node # set its root else: # Tree is not empty lowerCAmelCase__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ = new_node break else: lowerCAmelCase__ = parent_node.right lowerCAmelCase__ = parent_node def __SCREAMING_SNAKE_CASE ( self , *lowerCamelCase_ ) -> None: for value in values: self.__insert(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ = node.left if value < node.value else node.right return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None ) -> Node | None: if node is None: if self.root is None: return None lowerCAmelCase__ = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ = node.right return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None ) -> Node | None: if node is None: lowerCAmelCase__ = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ = self.root while node.left is not None: lowerCAmelCase__ = node.left return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = self.search(lowerCamelCase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCamelCase_ , lowerCamelCase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCamelCase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCamelCase_ , node.left ) else: lowerCAmelCase__ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if node: self.inorder(lowerCamelCase_ , node.left ) arr.append(node.value ) self.inorder(lowerCamelCase_ , node.right ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> int: lowerCAmelCase__ = [] self.inorder(lowerCamelCase_ , lowerCamelCase_ ) # append all values to list using inorder traversal return arr[k - 1] def _snake_case ( A ) -> list[Node]: lowerCAmelCase__ = [] if curr_node is not None: lowerCAmelCase__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _snake_case ( ) -> None: lowerCAmelCase__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ = BinarySearchTree() for i in testlist: t.insert(A ) # Prints all the elements of the list in order traversal print(A ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(A ) print(A ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
228
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """spm_char.model"""} _UpperCAmelCase = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } _UpperCAmelCase = { """microsoft/speecht5_asr""": 1_0_2_4, """microsoft/speecht5_tts""": 1_0_2_4, """microsoft/speecht5_vc""": 1_0_2_4, } class a ( UpperCAmelCase__ ): UpperCamelCase : str = VOCAB_FILES_NAMES UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[str] = ['input_ids', 'attention_mask'] def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]="<s>" , lowerCAmelCase : Optional[Any]="</s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : Tuple="<pad>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Optional[int] , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: int =vocab_file SCREAMING_SNAKE_CASE_: Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) @property def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] ={self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.__dict__.copy() SCREAMING_SNAKE_CASE_: str =None return state def __setstate__( self : Any , lowerCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE_: str ={} SCREAMING_SNAKE_CASE_: List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : List[Any] ) -> str: '''simple docstring''' return self.sp_model.piece_to_id(lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.sp_model.IdToPiece(lowerCAmelCase ) return token def lowerCamelCase__ ( self : str , lowerCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[] SCREAMING_SNAKE_CASE_: Dict ="""""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token SCREAMING_SNAKE_CASE_: str =[] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def lowerCamelCase__ ( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any]=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[1] if token_ids_a is None: return ([0] * len(lowerCAmelCase )) + suffix_ones return ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def lowerCamelCase__ ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_: str =os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , """wb""" ) as fi: SCREAMING_SNAKE_CASE_: List[Any] =self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
173
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCAmelCase = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _UpperCAmelCase = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ _UpperCAmelCase = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ={prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} SCREAMING_SNAKE_CASE_: Tuple =[ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_: str =evaluate(dataset=lowerCAmelCase , predictions=lowerCAmelCase ) return score
173
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def _UpperCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) A__ : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[Any] = self.dummy_uncond_unet A__ : Optional[Any] = KarrasVeScheduler() A__ : List[str] = KarrasVePipeline(unet=snake_case , scheduler=snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A__ : Union[str, Any] = torch.manual_seed(0 ) A__ : Any = pipe(num_inference_steps=2 , generator=snake_case , output_type="""numpy""" ).images A__ : Optional[Any] = torch.manual_seed(0 ) A__ : Dict = pipe(num_inference_steps=2 , generator=snake_case , output_type="""numpy""" , return_dict=snake_case )[0] A__ : List[str] = image[0, -3:, -3:, -1] A__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : int = """google/ncsnpp-celebahq-256""" A__ : List[Any] = UNetaDModel.from_pretrained(snake_case ) A__ : List[str] = KarrasVeScheduler() A__ : Optional[Any] = KarrasVePipeline(unet=snake_case , scheduler=snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A__ : int = torch.manual_seed(0 ) A__ : Tuple = pipe(num_inference_steps=20 , generator=snake_case , output_type="""numpy""" ).images A__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A__ : int = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
366
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets A_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ): '''simple docstring''' A__ : Optional[int] = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
296
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
58
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
0
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A: int = logging.get_logger(__name__) A: Union[str, Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } A: Optional[int] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): for attribute in key.split(""".""" ): UpperCAmelCase : Optional[Any] = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: UpperCAmelCase : Optional[int] = getattr(UpperCamelCase , UpperCamelCase ).shape else: UpperCAmelCase : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase : str = value elif weight_type == "weight_g": UpperCAmelCase : int = value elif weight_type == "weight_v": UpperCAmelCase : Optional[int] = value elif weight_type == "bias": UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Optional[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Tuple ): UpperCAmelCase : Tuple = [] UpperCAmelCase : List[Any] = fairseq_model.state_dict() UpperCAmelCase : Optional[int] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : Dict = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase : int = True if "*" in mapped_key: UpperCAmelCase : List[Any] = name.split(UpperCamelCase )[0].split(""".""" )[-2] UpperCAmelCase : Tuple = mapped_key.replace("""*""" , UpperCamelCase ) if "weight_g" in name: UpperCAmelCase : Optional[Any] = """weight_g""" elif "weight_v" in name: UpperCAmelCase : List[str] = """weight_v""" elif "bias" in name: UpperCAmelCase : Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : Optional[int] = """weight""" else: UpperCAmelCase : Dict = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ): UpperCAmelCase : str = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Any = name.split(""".""" ) UpperCAmelCase : str = int(items[0] ) UpperCAmelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) UpperCAmelCase : int = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Union[str, Any]=True ): if config_path is not None: UpperCAmelCase : Optional[Any] = UniSpeechSatConfig.from_pretrained(UpperCamelCase ) else: UpperCAmelCase : Optional[Any] = UniSpeechSatConfig() UpperCAmelCase : str = """""" if is_finetuned: UpperCAmelCase : int = UniSpeechSatForCTC(UpperCamelCase ) else: UpperCAmelCase : Optional[Any] = UniSpeechSatForPreTraining(UpperCamelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) UpperCAmelCase : int = model[0].eval() recursively_load_weights(UpperCamelCase , UpperCamelCase ) hf_wavavec.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) A: Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
109
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_attention_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_choices def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_attention_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = FlaxRoFormerModelTester(self ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a ) lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowerCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase = model(_a )[0] lowerCamelCase = 50_000 lowerCamelCase = (1, 6, vocab_size) self.assertEqual(output.shape , _a ) lowerCamelCase = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
291
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase__ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase__ = typing.Union[np.floataa, int, float] # noqa: UP007 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> VectorOut: return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def a__ ( ) -> None: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) benchmark()
299
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
1
"""simple docstring""" from __future__ import annotations __A : Union[str, Any] = list[list[int]] # assigning initial values to the grid __A : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if location := find_empty_location(__lowerCamelCase ): _UpperCAmelCase , _UpperCAmelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _UpperCAmelCase = digit if sudoku(__lowerCamelCase ) is not None: return grid _UpperCAmelCase = 0 return None def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' for row in grid: for cell in row: print(__lowerCamelCase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __A : Any = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
260
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase ) -> float: a = sorted(numsa + numsa ) a , a = divmod(len(__lowerCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] __UpperCamelCase : List[Any] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
228
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] UpperCamelCase :str = [] for temp in range(int(__magic_name__ ) ): series.append(f"""1/{temp + 1}""" if series else """1""" ) return series if __name__ == "__main__": UpperCAmelCase_ : str = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
354
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Tuple: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase :List[Any] = model_type_to_module_name(__magic_name__ ) UpperCamelCase :Union[str, Any] = importlib.import_module(f""".{module_name}""" , """transformers.models""" ) try: return getattr(__magic_name__ , __magic_name__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__magic_name__ , """__name__""" , __magic_name__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase :List[str] = importlib.import_module("""transformers""" ) if hasattr(__magic_name__ , __magic_name__ ): return getattr(__magic_name__ , __magic_name__ ) return None def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, os.PathLike] , __magic_name__ : Optional[Union[str, os.PathLike]] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : Optional[Dict[str, str]] = None , __magic_name__ : Optional[Union[bool, str]] = None , __magic_name__ : Optional[str] = None , __magic_name__ : bool = False , **__magic_name__ : Any , ) -> Dict: """simple docstring""" UpperCamelCase :Dict = get_file_from_repo( __magic_name__ , __magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , resume_download=__magic_name__ , proxies=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , local_files_only=__magic_name__ , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(__magic_name__ , encoding="""utf-8""" ) as reader: return json.load(__magic_name__ ) class _SCREAMING_SNAKE_CASE : def __init__( self : Any ): raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def _A ( cls : List[str] , __lowerCamelCase : List[Any] , **__lowerCamelCase : int ): UpperCamelCase :Optional[Any] = kwargs.pop("""config""" , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = kwargs.pop("""trust_remote_code""" , __lowerCamelCase ) UpperCamelCase :Any = True UpperCamelCase , UpperCamelCase :int = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :Union[str, Any] = config_dict.get("""image_processor_type""" , __lowerCamelCase ) UpperCamelCase :int = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): UpperCamelCase :Optional[Any] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCamelCase :Optional[int] = config_dict.pop("""feature_extractor_type""" , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) UpperCamelCase :str = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): UpperCamelCase :Any = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] UpperCamelCase :Dict = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` UpperCamelCase :Optional[Any] = getattr(__lowerCamelCase , """image_processor_type""" , __lowerCamelCase ) if hasattr(__lowerCamelCase , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: UpperCamelCase :Any = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: UpperCamelCase :Tuple = image_processor_class_from_name(__lowerCamelCase ) UpperCamelCase :List[Any] = image_processor_auto_map is not None UpperCamelCase :Any = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING UpperCamelCase :Optional[int] = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: UpperCamelCase :Optional[int] = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :int = kwargs.pop("""code_revision""" , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: UpperCamelCase :int = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _A ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
62
0
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 1.0 , UpperCamelCase_ = None , ): '''simple docstring''' super().__init__() UpperCamelCase__ :Dict = initial_learning_rate UpperCamelCase__ :Optional[int] = warmup_steps UpperCamelCase__ :str = power UpperCamelCase__ :Dict = decay_schedule_fn UpperCamelCase__ :List[Any] = name def __call__( self , UpperCamelCase_ ): '''simple docstring''' with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCamelCase__ :int = tf.cast(UpperCamelCase_ , tf.floataa ) UpperCamelCase__ :int = tf.cast(self.warmup_steps , tf.floataa ) UpperCamelCase__ :Any = global_step_float / warmup_steps_float UpperCamelCase__ :Union[str, Any] = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def a ( __a , __a , __a , __a = 0.0 , __a = 0.9 , __a = 0.9_9_9 , __a = 1e-8 , __a = None , __a = None , __a = 0.0 , __a = 1.0 , __a = None , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__a , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__a , ) if num_warmup_steps: UpperCamelCase__ :int = WarmUp( initial_learning_rate=__a , decay_schedule_fn=__a , warmup_steps=__a , ) if weight_decay_rate > 0.0: UpperCamelCase__ :int = AdamWeightDecay( learning_rate=__a , weight_decay_rate=__a , beta_a=__a , beta_a=__a , epsilon=__a , clipnorm=__a , global_clipnorm=__a , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=__a , ) else: UpperCamelCase__ :Optional[int] = tf.keras.optimizers.Adam( learning_rate=__a , beta_a=__a , beta_a=__a , epsilon=__a , clipnorm=__a , global_clipnorm=__a , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ = 0.001 , UpperCamelCase_ = 0.9 , UpperCamelCase_ = 0.999 , UpperCamelCase_ = 1e-7 , UpperCamelCase_ = False , UpperCamelCase_ = 0.0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "AdamWeightDecay" , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Any = weight_decay_rate UpperCamelCase__ :Union[str, Any] = include_in_weight_decay UpperCamelCase__ :Optional[int] = exclude_from_weight_decay @classmethod def lowerCAmelCase__ ( cls , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :List[str] = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :List[str] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCamelCase__ :Dict = apply_state or {} UpperCamelCase__ :str = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCamelCase__ :List[str] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) UpperCamelCase__ :Dict = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) UpperCamelCase__ :Dict = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class lowercase ( A__ ): """simple docstring""" def __init__( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = [] UpperCamelCase__ :Tuple = None @property def lowerCAmelCase__ ( self ): '''simple docstring''' if self._accum_steps is None: UpperCamelCase__ :List[str] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCAmelCase__ ( self ): '''simple docstring''' if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , UpperCamelCase_ ): '''simple docstring''' if not self._gradients: UpperCamelCase__ :Tuple = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCAmelCase__ ( self ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
97
from collections import defaultdict from math import gcd def __lowercase ( _SCREAMING_SNAKE_CASE = 1_50_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = defaultdict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _SCREAMING_SNAKE_CASE , 2 ): if gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > 1: continue SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
296
0
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" while second != 0: lowerCAmelCase_ : Dict = first & second first ^= second lowerCAmelCase_ : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = int(input("""Enter the first number: """).strip()) lowercase__ = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
161
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase = 50 ) -> int: """simple docstring""" lowerCAmelCase_ : int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
161
1
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = """realm""" def __init__(self : str , UpperCamelCase : List[Any]=30522 , UpperCamelCase : List[Any]=768 , UpperCamelCase : int=128 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Union[str, Any]=3072 , UpperCamelCase : List[str]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : Dict=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=1E-12 , UpperCamelCase : Dict=256 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Optional[int]=1E-3 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : List[str]=13353718 , UpperCamelCase : Optional[Any]=5000 , UpperCamelCase : str=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[Any]=2 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) # Common config lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = retriever_proj_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_candidates lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Reader config lowercase__ = span_hidden_size lowercase__ = max_span_width lowercase__ = reader_layer_norm_eps lowercase__ = reader_beam_size lowercase__ = reader_seq_len # Retrieval config lowercase__ = num_block_records lowercase__ = searcher_beam_size
2
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: UpperCamelCase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(A__ )] ) UpperCamelCase_ = np.array(A__ ) UpperCamelCase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , A__ ) ) , x.transpose() ) , A__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = (1, 2, 1) UpperCamelCase_ = (1, 1, 0, 7) UpperCamelCase_ = SARIMAX( A__ , exog=A__ , order=A__ , seasonal_order=A__ ) UpperCamelCase_ = model.fit(disp=A__ , maxiter=600 , method="nm" ) UpperCamelCase_ = model_fit.predict(1 , len(A__ ) , exog=[test_match] ) return result[0] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(A__ , A__ ) UpperCamelCase_ = regressor.predict(A__ ) return y_pred[0] def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[int]: train_user.sort() UpperCamelCase_ = np.percentile(A__ , 25 ) UpperCamelCase_ = np.percentile(A__ , 75 ) UpperCamelCase_ = qa - qa UpperCamelCase_ = qa - (iqr * 0.1) return low_lim def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = 0 UpperCamelCase_ = 0 for i in list_vote: if i > actual_result: UpperCamelCase_ = not_safe + 1 else: if abs(abs(A__ ) - abs(A__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _UpperCAmelCase = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] _UpperCAmelCase = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) _UpperCAmelCase = Normalizer().fit_transform(data_input_df.values) # split data _UpperCAmelCase = normalize_df[:, 2].tolist() _UpperCAmelCase = normalize_df[:, 0].tolist() _UpperCAmelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _UpperCAmelCase = normalize_df[:, [1, 2]].tolist() _UpperCAmelCase = x[: len(x) - 1] _UpperCAmelCase = x[len(x) - 1 :] # for linear regression & sarimax _UpperCAmelCase = total_date[: len(total_date) - 1] _UpperCAmelCase = total_user[: len(total_user) - 1] _UpperCAmelCase = total_match[: len(total_match) - 1] _UpperCAmelCase = total_date[len(total_date) - 1 :] _UpperCAmelCase = total_user[len(total_user) - 1 :] _UpperCAmelCase = total_match[len(total_match) - 1 :] # voting system with forecasting _UpperCAmelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _UpperCAmelCase = "" if data_safety_checker(res_vote, tst_user) else "not " print('Today\'s data is {not_str}safe.')
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") __UpperCAmelCase = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) UpperCAmelCase_ =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the training data."} ) UpperCAmelCase_ =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the validation data."} ) UpperCAmelCase_ =field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) UpperCAmelCase_ =field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) UpperCAmelCase_ =field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE_ = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE_ = self.validation_dir SCREAMING_SNAKE_CASE_ = data_files if data_files else None @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__SCREAMING_SNAKE_CASE )} , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) UpperCAmelCase_ =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase_ =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name or path of preprocessor config."} ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Stride to use for the encoder."} , ) class UpperCamelCase__ : """simple docstring""" def __init__( self , _A=192 , _A=32 , _A=4 , _A=0.6 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = input_size SCREAMING_SNAKE_CASE_ = mask_patch_size SCREAMING_SNAKE_CASE_ = model_patch_size SCREAMING_SNAKE_CASE_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) SCREAMING_SNAKE_CASE_ = self.input_size // self.mask_patch_size SCREAMING_SNAKE_CASE_ = self.mask_patch_size // self.model_patch_size SCREAMING_SNAKE_CASE_ = self.rand_size**2 SCREAMING_SNAKE_CASE_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = np.random.permutation(self.token_count )[: self.mask_count] SCREAMING_SNAKE_CASE_ = np.zeros(self.token_count , dtype=_A ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = mask.reshape((self.rand_size, self.rand_size) ) SCREAMING_SNAKE_CASE_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = torch.stack([example['''pixel_values'''] for example in examples] ) SCREAMING_SNAKE_CASE_ = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''', __lowerCamelCase, __lowerCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. SCREAMING_SNAKE_CASE_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE_ = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, __lowerCamelCase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE_ = ds['''train'''].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE_ = split['''train'''] SCREAMING_SNAKE_CASE_ = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.config_name_or_path, **__lowerCamelCase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__lowerCamelCase, '''decoder_type''' ): SCREAMING_SNAKE_CASE_ = '''simmim''' # adapt config SCREAMING_SNAKE_CASE_ = model_args.image_size if model_args.image_size is not None else config.image_size SCREAMING_SNAKE_CASE_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size SCREAMING_SNAKE_CASE_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name, **__lowerCamelCase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } SCREAMING_SNAKE_CASE_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=__lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('''Training new model from scratch''' ) SCREAMING_SNAKE_CASE_ = AutoModelForMaskedImageModeling.from_config(__lowerCamelCase ) if training_args.do_train: SCREAMING_SNAKE_CASE_ = ds['''train'''].column_names else: SCREAMING_SNAKE_CASE_ = ds['''validation'''].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE_ = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE_ = '''image''' elif "img" in column_names: SCREAMING_SNAKE_CASE_ = '''img''' else: SCREAMING_SNAKE_CASE_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py SCREAMING_SNAKE_CASE_ = Compose( [ Lambda(lambda __lowerCamelCase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) # create mask generator SCREAMING_SNAKE_CASE_ = MaskGenerator( input_size=model_args.image_size, mask_patch_size=data_args.mask_patch_size, model_patch_size=model_args.patch_size, mask_ratio=data_args.mask_ratio, ) def preprocess_images(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [transforms(__lowerCamelCase ) for image in examples[image_column_name]] SCREAMING_SNAKE_CASE_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowerCamelCase ) # Initialize our trainer SCREAMING_SNAKE_CASE_ = Trainer( model=__lowerCamelCase, args=__lowerCamelCase, train_dataset=ds['''train'''] if training_args.do_train else None, eval_dataset=ds['''validation'''] if training_args.do_eval else None, tokenizer=__lowerCamelCase, data_collator=__lowerCamelCase, ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ = last_checkpoint SCREAMING_SNAKE_CASE_ = trainer.train(resume_from_checkpoint=__lowerCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE_ = trainer.evaluate() trainer.log_metrics('''eval''', __lowerCamelCase ) trainer.save_metrics('''eval''', __lowerCamelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) if __name__ == "__main__": main()
299
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
1
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCamelCase ( a__ ): def __a ( self ) -> Optional[Any]: a : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "depth_multiplier" ) ) class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=3 , lowerCAmelCase__=32 , lowerCAmelCase__=0.25 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=1024 , lowerCAmelCase__=32 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=None , ) -> List[Any]: a : Any = parent a : str = batch_size a : int = num_channels a : Union[str, Any] = image_size a : List[Any] = depth_multiplier a : Union[str, Any] = min_depth a : List[str] = tf_padding a : int = int(last_hidden_size * depth_multiplier ) a : Optional[int] = output_stride a : List[Any] = hidden_act a : List[Any] = classifier_dropout_prob a : Union[str, Any] = use_labels a : Optional[Any] = is_training a : Optional[Any] = num_labels a : Tuple = initializer_range a : str = scope def __a ( self ) -> str: a : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : Optional[Any] = None a : Any = None if self.use_labels: a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) a : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Optional[Any] = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: a : Dict = self.num_labels a : List[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ) -> Optional[int]: a : List[Any] = self.prepare_config_and_inputs() a, a, a, a : Dict = config_and_inputs a : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =(MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowerCamelCase : Any =( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Any =False lowerCamelCase : int =False lowerCamelCase : int =False lowerCamelCase : Optional[int] =False def __a ( self ) -> str: a : Tuple = MobileNetVaModelTester(self ) a : Optional[Any] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __a ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def __a ( self ) -> Union[str, Any]: pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def __a ( self ) -> int: pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def __a ( self ) -> Union[str, Any]: pass def __a ( self ) -> Optional[int]: a, a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Dict = model_class(lowerCAmelCase__ ) a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Optional[Any] = [*signature.parameters.keys()] a : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __a ( self ) -> Optional[int]: a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __a ( self ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a : Any = outputs.hidden_states a : str = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Any = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Tuple: a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __a ( self ) -> Optional[int]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Any = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( ) ->str: '''simple docstring''' a : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __a ( self ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def __a ( self ) -> str: a : List[Any] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(lowerCAmelCase__ ) a : Optional[int] = self.default_image_processor a : int = prepare_img() a : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): a : Dict = model(**lowerCAmelCase__ ) # verify the logits a : int = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a : List[Any] = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
79
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE ( ) ->List[str]: '''simple docstring''' a : Optional[Any] = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowercase ) a : Optional[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go a : int = parser.parse_args() if not hasattr(_lowercase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
79
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
def __UpperCamelCase ( lowerCAmelCase__ : Any=2_8_1_2_3 ): __a : Tuple = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __a : Union[str, Any] = set() __a : Dict = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_SCREAMING_SNAKE_CASE ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
351
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase (self : Tuple ): __a : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=snake_case_ ).to(snake_case_ ) __a : List[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __a : Optional[int] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __a : Dict = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __a : Optional[Any] = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss __a : Tuple = -(labels.shape[-1] * loss.item()) __a : Dict = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
90
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase a__ : Optional[int] = logging.get_logger(__name__) a__ : List[str] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : int = 'longformer' def __init__( self :Tuple , _A :Union[List[int], int] = 512 , _A :int = 2 , _A :int = 1 , _A :int = 0 , _A :int = 2 , _A :int = 30_522 , _A :int = 768 , _A :int = 12 , _A :int = 12 , _A :int = 3_072 , _A :str = "gelu" , _A :float = 0.1 , _A :float = 0.1 , _A :int = 512 , _A :int = 2 , _A :float = 0.02 , _A :float = 1E-12 , _A :bool = False , **_A :Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) __A = attention_window __A = sep_token_id __A = bos_token_id __A = eos_token_id __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = onnx_export class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Dict , _A :"PretrainedConfig" , _A :str = "default" , _A :"List[PatchingSpec]" = None ) -> Optional[Any]: '''simple docstring''' super().__init__(_A , _A , _A ) __A = True @property def lowercase_ ( self :Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowercase_ ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __A = super().outputs if self.task == "default": __A = {0: 'batch'} return outputs @property def lowercase_ ( self :int ) -> float: '''simple docstring''' return 1E-4 @property def lowercase_ ( self :Any ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def lowercase_ ( self :Optional[Any] , _A :"PreTrainedTokenizerBase" , _A :int = -1 , _A :int = -1 , _A :bool = False , _A :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' __A = super().generate_dummy_inputs( preprocessor=_A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __A = torch.zeros_like(inputs['input_ids'] ) # make every second token global __A = 1 return inputs
161
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a__ : List[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : List[str] = 'instructblip_vision_model' def __init__( self :List[str] , _A :str=1_408 , _A :List[str]=6_144 , _A :List[Any]=39 , _A :Optional[Any]=16 , _A :Tuple=224 , _A :Tuple=14 , _A :Tuple="gelu" , _A :Optional[Any]=1E-6 , _A :List[Any]=0.0 , _A :Dict=1E-10 , _A :List[str]=True , **_A :Dict , ) -> Dict: '''simple docstring''' super().__init__(**_A ) __A = hidden_size __A = intermediate_size __A = num_hidden_layers __A = num_attention_heads __A = patch_size __A = image_size __A = initializer_range __A = attention_dropout __A = layer_norm_eps __A = hidden_act __A = qkv_bias @classmethod def lowercase_ ( cls :Any , _A :Union[str, os.PathLike] , **_A :Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_A ) __A , __A = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : List[str] = 'instructblip_qformer' def __init__( self :Tuple , _A :int=30_522 , _A :List[str]=768 , _A :str=12 , _A :Optional[Any]=12 , _A :Union[str, Any]=3_072 , _A :str="gelu" , _A :Tuple=0.1 , _A :Dict=0.1 , _A :Dict=512 , _A :Union[str, Any]=0.02 , _A :int=1E-12 , _A :str=0 , _A :Union[str, Any]="absolute" , _A :List[str]=2 , _A :Optional[Any]=1_408 , **_A :Any , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = cross_attention_frequency __A = encoder_hidden_size @classmethod def lowercase_ ( cls :int , _A :Union[str, os.PathLike] , **_A :int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_A ) __A , __A = cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __A = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : Any = 'instructblip' UpperCAmelCase__ : List[Any] = True def __init__( self :Dict , _A :int=None , _A :Optional[Any]=None , _A :Optional[Any]=None , _A :Optional[Any]=32 , **_A :List[Any] ) -> Tuple: '''simple docstring''' super().__init__(**_A ) if vision_config is None: __A = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __A = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __A = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __A = InstructBlipVisionConfig(**_A ) __A = InstructBlipQFormerConfig(**_A ) __A = text_config['model_type'] if 'model_type' in text_config else 'opt' __A = CONFIG_MAPPING[text_model_type](**_A ) __A = self.text_config.tie_word_embeddings __A = self.text_config.is_encoder_decoder __A = num_query_tokens __A = self.vision_config.hidden_size __A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __A = 1.0 __A = 0.02 @classmethod def lowercase_ ( cls :int , _A :InstructBlipVisionConfig , _A :InstructBlipQFormerConfig , _A :PretrainedConfig , **_A :Any , ) -> Any: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def lowercase_ ( self :int ) -> Tuple: '''simple docstring''' __A = copy.deepcopy(self.__dict__ ) __A = self.vision_config.to_dict() __A = self.qformer_config.to_dict() __A = self.text_config.to_dict() __A = self.__class__.model_type return output
161
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger() @dataclass class _A : """simple docstring""" UpperCAmelCase : nn.Module UpperCAmelCase : List[nn.Module] = field(default_factory=_a ) UpperCAmelCase : list = field(default_factory=_a ) def __snake_case ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tensor , __UpperCAmelCase : Tensor): a : Any = len(list(m.modules())) == 1 or isinstance(__UpperCAmelCase , nn.Convad) or isinstance(__UpperCAmelCase , nn.BatchNormad) if has_not_submodules: self.traced.append(__UpperCAmelCase) def __call__( self : Dict , __UpperCAmelCase : Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(__UpperCAmelCase) [x.remove() for x in self.handles] return self @property def __snake_case ( self : Any): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __UpperCAmelCase: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class _A : """simple docstring""" UpperCAmelCase : nn.Module UpperCAmelCase : nn.Module UpperCAmelCase : int = 0 UpperCAmelCase : List = field(default_factory=_a ) UpperCAmelCase : List = field(default_factory=_a ) def __call__( self : str , __UpperCAmelCase : Tensor): a : Any = Tracker(self.dest)(__UpperCAmelCase).parametrized a : Union[str, Any] = Tracker(self.src)(__UpperCAmelCase).parametrized a : Any = list(filter(lambda __UpperCAmelCase: type(__UpperCAmelCase) not in self.src_skip , __UpperCAmelCase)) a : Dict = list(filter(lambda __UpperCAmelCase: type(__UpperCAmelCase) not in self.dest_skip , __UpperCAmelCase)) if len(__UpperCAmelCase) != len(__UpperCAmelCase): raise Exception( f'''Numbers of operations are different. Source module has {len(__UpperCAmelCase)} operations while''' f''' destination module has {len(__UpperCAmelCase)}.''') for dest_m, src_m in zip(__UpperCAmelCase , __UpperCAmelCase): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''') def lowercase ( A_ , A_ , A_ , A_ = True )-> int: '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): a : Dict = timm.create_model(A_ , pretrained=A_ ).eval() a : Tuple = ResNetForImageClassification(A_ ).eval() a : str = ModuleTransfer(src=A_ , dest=A_ ) a : Any = torch.randn((1, 3, 224, 224) ) module_transfer(A_ ) assert torch.allclose(from_model(A_ ) , our_model(A_ ).logits ), "The model logits don't match the original one." a : List[Any] = F'''resnet{"-".join(name.split("resnet" ) )}''' print(A_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=A_ , ) # we can use the convnext one a : str = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=A_ , ) print(F'''Pushed {checkpoint_name}''' ) def lowercase ( A_ , A_ = None , A_ = True )-> Optional[Any]: '''simple docstring''' a : str = "imagenet-1k-id2label.json" a : Any = 1_000 a : Dict = (1, num_labels) a : str = "huggingface/label-files" a : List[Any] = num_labels a : Optional[int] = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : List[str] = {int(A_ ): v for k, v in idalabel.items()} a : Union[str, Any] = idalabel a : str = {v: k for k, v in idalabel.items()} a : List[Any] = partial(A_ , num_labels=A_ , idalabel=A_ , labelaid=A_ ) a : Optional[int] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(A_ , names_to_config[model_name] , A_ , A_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(A_ , A_ , A_ , A_ ) return config, expected_shape if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __lowercase = parser.parse_args() __lowercase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
359
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowercase = True except ImportError: __lowercase = False try: from torch.hub import _get_torch_home __lowercase = _get_torch_home() except ImportError: __lowercase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) __lowercase = os.path.join(torch_cache_home, """transformers""") __lowercase = """https://cdn.huggingface.co""" __lowercase = """https://s3.amazonaws.com/models.huggingface.co/bert""" __lowercase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) __lowercase = os.path.join(PATH, """config.yaml""") __lowercase = os.path.join(PATH, """attributes.txt""") __lowercase = os.path.join(PATH, """objects.txt""") __lowercase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) __lowercase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) __lowercase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) __lowercase = """pytorch_model.bin""" __lowercase = """config.yaml""" def lowercase ( A_=OBJECTS , A_=ATTRIBUTES )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) a : Union[str, Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Dict = OrderedDict() with open(A_ , "rb" ) as f: a : Optional[Any] = pkl.load(A_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): a : Dict = ckp.pop(A_ ) if isinstance(A_ , np.ndarray ): a : Optional[Any] = torch.tensor(A_ ) else: assert isinstance(A_ , torch.tensor ), type(A_ ) a : int = v return r class _A : """simple docstring""" UpperCAmelCase : int = {} def __init__( self : Any , __UpperCAmelCase : dict , __UpperCAmelCase : str = "root" , __UpperCAmelCase : Optional[int]=0): a : List[str] = name a : Tuple = level a : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() a : List[Any] = copy.deepcopy(__UpperCAmelCase) a : int = copy.deepcopy(__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Union[str, Any] = Config(__UpperCAmelCase , name=__UpperCAmelCase , level=level + 1) a : Dict = v setattr(self , __UpperCAmelCase , __UpperCAmelCase) a : Tuple = d def __repr__( self : List[str]): return str(list((self._pointer.keys()))) def __setattr__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : Optional[Any] = val a : Tuple = val a : Dict = key.split(".") a : Union[str, Any] = len(__UpperCAmelCase) - 1 a : Optional[int] = self._pointer if len(__UpperCAmelCase) > 1: for i, l in enumerate(__UpperCAmelCase): if hasattr(self , __UpperCAmelCase) and isinstance(getattr(self , __UpperCAmelCase) , __UpperCAmelCase): setattr(getattr(self , __UpperCAmelCase) , ".".join(levels[i:]) , __UpperCAmelCase) if l == last_level: a : int = val else: a : str = pointer[l] def __snake_case ( self : str): return self._pointer def __snake_case ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]): with open(f'''{file_name}''' , "w") as stream: dump(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int): with open(f'''{file_name}''' , "w") as stream: json.dump(__UpperCAmelCase , __UpperCAmelCase) @staticmethod def __snake_case ( __UpperCAmelCase : Dict): with open(__UpperCAmelCase) as stream: a : List[str] = load(__UpperCAmelCase , Loader=__UpperCAmelCase) return data def __str__( self : Tuple): a : str = " " if self._name != "root": a : List[str] = f'''{t * (self._level-1)}{self._name}:\n''' else: a : Optional[Any] = "" a : List[Any] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(__UpperCAmelCase , __UpperCAmelCase): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__UpperCAmelCase).__name__})\n''' a : Tuple = level return r[:-1] @classmethod def __snake_case ( cls : str , __UpperCAmelCase : str , **__UpperCAmelCase : List[Any]): a , a : Tuple = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) return cls(__UpperCAmelCase) @classmethod def __snake_case ( cls : Union[str, Any] , __UpperCAmelCase : str , **__UpperCAmelCase : List[str]): a : int = kwargs.pop("cache_dir" , __UpperCAmelCase) a : List[Any] = kwargs.pop("force_download" , __UpperCAmelCase) a : Optional[int] = kwargs.pop("resume_download" , __UpperCAmelCase) a : Tuple = kwargs.pop("proxies" , __UpperCAmelCase) a : int = kwargs.pop("local_files_only" , __UpperCAmelCase) if os.path.isdir(__UpperCAmelCase): a : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase) elif os.path.isfile(__UpperCAmelCase) or is_remote_url(__UpperCAmelCase): a : List[Any] = pretrained_model_name_or_path else: a : int = hf_bucket_url(__UpperCAmelCase , filename=__UpperCAmelCase , use_cdn=__UpperCAmelCase) try: # Load from URL or cache if already cached a : Optional[Any] = cached_path( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a : Union[str, Any] = Config.load_yaml(__UpperCAmelCase) except EnvironmentError: a : str = "Can't load config for" raise EnvironmentError(__UpperCAmelCase) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(__UpperCAmelCase), kwargs def lowercase ( A_ )-> str: '''simple docstring''' a : Tuple = torch.load("dump.pt" , map_location=in_tensor.device ) a : Any = in_tensor.numpy() a : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = urlparse(A_ ) return parsed.scheme in ("http", "https") def lowercase ( A_ , A_ , A_=True )-> str: '''simple docstring''' a : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a : str = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase ( A_ , A_ , A_=None , A_=0 , A_=None , )-> List[str]: '''simple docstring''' a : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A_ , A_ ): ua += "; " + "; ".join("{}/{}".format(A_ , A_ ) for k, v in user_agent.items() ) elif isinstance(A_ , A_ ): ua += "; " + user_agent a : str = {"user-agent": ua} if resume_size > 0: a : List[Any] = "bytes=%d-" % (resume_size,) a : str = requests.get(A_ , stream=A_ , proxies=A_ , headers=A_ ) if response.status_code == 416: # Range not satisfiable return a : Optional[int] = response.headers.get("Content-Length" ) a : List[Any] = resume_size + int(A_ ) if content_length is not None else None a : List[Any] = tqdm( unit="B" , unit_scale=A_ , total=A_ , initial=A_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A_ ) ) temp_file.write(A_ ) progress.close() def lowercase ( A_ , A_=None , A_=False , A_=None , A_=10 , A_=False , A_=None , A_=False , )-> str: '''simple docstring''' if cache_dir is None: a : List[Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : Tuple = str(A_ ) os.makedirs(A_ , exist_ok=A_ ) a : Optional[Any] = None if not local_files_only: try: a : Dict = requests.head(A_ , allow_redirects=A_ , proxies=A_ , timeout=A_ ) if response.status_code == 200: a : int = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a : List[str] = url_to_filename(A_ , A_ ) # get cache path to put the file a : List[str] = os.path.join(A_ , A_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A_ ): return cache_path else: a : Any = [ file for file in fnmatch.filter(os.listdir(A_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(A_ ) > 0: return os.path.join(A_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(A_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a : Dict = cache_path + ".lock" with FileLock(A_ ): # If the download just completed while the lock was activated. if os.path.exists(A_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a : Optional[Any] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(A_ , "a+b" ) as f: yield f a : Tuple = _resumable_file_manager if os.path.exists(A_ ): a : Optional[Any] = os.stat(A_ ).st_size else: a : Optional[int] = 0 else: a : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=A_ , delete=A_ ) a : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , A_ , temp_file.name , ) http_get( A_ , A_ , proxies=A_ , resume_size=A_ , user_agent=A_ , ) os.replace(temp_file.name , A_ ) a : List[str] = {"url": url, "etag": etag} a : Tuple = cache_path + ".json" with open(A_ , "w" ) as meta_file: json.dump(A_ , A_ ) return cache_path def lowercase ( A_ , A_=None )-> Any: '''simple docstring''' a : Dict = url.encode("utf-8" ) a : Optional[Any] = shaaaa(A_ ) a : Any = url_hash.hexdigest() if etag: a : Union[str, Any] = etag.encode("utf-8" ) a : Tuple = shaaaa(A_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase ( A_ , A_=None , A_=False , A_=None , A_=False , A_=None , A_=False , A_=False , A_=False , )-> Tuple: '''simple docstring''' if cache_dir is None: a : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : List[Any] = str(A_ ) if isinstance(A_ , A_ ): a : int = str(A_ ) if is_remote_url(A_ ): # URL, so get it from the cache (downloading if necessary) a : Optional[Any] = get_from_cache( A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , user_agent=A_ , local_files_only=A_ , ) elif os.path.exists(A_ ): # File, and it exists. a : Union[str, Any] = url_or_filename elif urlparse(A_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(A_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(A_ ) ) if extract_compressed_file: if not is_zipfile(A_ ) and not tarfile.is_tarfile(A_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a , a : Dict = os.path.split(A_ ) a : List[str] = output_file.replace("." , "-" ) + "-extracted" a : Optional[Any] = os.path.join(A_ , A_ ) if os.path.isdir(A_ ) and os.listdir(A_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a : Tuple = output_path + ".lock" with FileLock(A_ ): shutil.rmtree(A_ , ignore_errors=A_ ) os.makedirs(A_ ) if is_zipfile(A_ ): with ZipFile(A_ , "r" ) as zip_file: zip_file.extractall(A_ ) zip_file.close() elif tarfile.is_tarfile(A_ ): a : List[str] = tarfile.open(A_ ) tar_file.extractall(A_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(A_ ) ) return output_path_extracted return output_path def lowercase ( A_ , A_="," )-> Union[str, Any]: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): with open(A_ ) as f: a : str = eval(f.read() ) else: a : List[Any] = requests.get(A_ ) try: a : Any = requests.json() except Exception: a : Any = req.content.decode() assert data is not None, "could not connect" try: a : Optional[Any] = eval(A_ ) except Exception: a : Any = data.split("\n" ) req.close() return data def lowercase ( A_ )-> str: '''simple docstring''' a : Optional[int] = requests.get(A_ ) a : List[str] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( A_ )-> Any: '''simple docstring''' a : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A_ ) with open(A_ , "rb" ) as stream: a : Any = pkl.load(A_ ) a : List[str] = weights.pop("model" ) a : Dict = {} for k, v in model.items(): a : List[str] = torch.from_numpy(A_ ) if "running_var" in k: a : Dict = torch.tensor([0] ) a : Any = k.replace("running_var" , "num_batches_tracked" ) a : List[Any] = zero return new def lowercase ( )-> Optional[int]: '''simple docstring''' print(F'''{os.path.abspath(os.path.join(A_ , os.pardir ) )}/demo.ipynb''' ) def lowercase ( A_ , A_="RGB" )-> Any: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): a : Dict = cva.imread(A_ ) else: a : Union[str, Any] = get_image_from_url(A_ ) assert img is not None, F'''could not connect to: {im}''' a : int = cva.cvtColor(A_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": a : List[str] = img[:, :, ::-1] return img def lowercase ( A_ , A_=1 )-> int: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(A_ ) , A_ ))
226
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[str] = {'vocab_file': 'spiece.model'} _lowercase : str = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } _lowercase : List[Any] = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } _lowercase : Any = '▁' class _UpperCAmelCase ( _lowerCAmelCase ): a__ : int = VOCAB_FILES_NAMES a__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : List[Any] , _lowercase : Union[str, Any]=True , _lowercase : Union[str, Any]=True , _lowercase : str=False , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[SEP]" , _lowercase : Optional[Any]="<unk>" , _lowercase : Optional[int]="[SEP]" , _lowercase : Tuple="<pad>" , _lowercase : int="[CLS]" , _lowercase : Tuple="[MASK]" , _lowercase : Optional[Dict[str, Any]] = None , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __UpperCAmelCase = ( AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase , normalized=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token ) __UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) @property def a ( self : Optional[int] ): return len(self.sp_model ) def a ( self : Union[str, Any] ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Union[str, Any] , _lowercase : List[str] ): __UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCAmelCase = {} __UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Any , _lowercase : List[Any] ): if self.remove_space: __UpperCAmelCase = ''' '''.join(inputs.strip().split() ) else: __UpperCAmelCase = inputs __UpperCAmelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __UpperCAmelCase = unicodedata.normalize('''NFKD''' , _lowercase ) __UpperCAmelCase = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase )] ) if self.do_lower_case: __UpperCAmelCase = outputs.lower() return outputs def a ( self : Any , _lowercase : str ): __UpperCAmelCase = self.preprocess_text(_lowercase ) __UpperCAmelCase = self.sp_model.encode(_lowercase , out_type=_lowercase ) __UpperCAmelCase = [] for piece in pieces: if len(_lowercase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __UpperCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCAmelCase = cur_pieces[1:] else: __UpperCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowercase ) else: new_pieces.append(_lowercase ) return new_pieces def a ( self : Optional[Any] , _lowercase : List[Any] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Optional[Any] , _lowercase : List[Any] ): __UpperCAmelCase = [] __UpperCAmelCase = '''''' __UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowercase ) + token __UpperCAmelCase = True __UpperCAmelCase = [] else: current_sub_tokens.append(_lowercase ) __UpperCAmelCase = False out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Dict , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : int , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , '''wb''' ) as fi: __UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,)
332
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
119
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCAmelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = {} with open(lowerCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(lowerCAmelCase__ ): lowerCAmelCase__ = line.strip() if line: lowerCAmelCase__ = line.split() lowerCAmelCase__ = line_number lowerCAmelCase__ = words[0] lowerCAmelCase__ = value return result def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase__ ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCAmelCase__ = 'param' if weight_type is not None and weight_type != "param": lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = hf_pointer for attribute in hf_param_name.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = shape_pointer.shape # let's reduce dimension lowerCAmelCase__ = value[0] else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase__ ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCAmelCase__ = 'param' if weight_type is not None and weight_type != "param": lowerCAmelCase__ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = '.'.join([key, hf_param_name] ) else: lowerCAmelCase__ = key lowerCAmelCase__ = value if 'lm_head' in full_key else value[0] lowerCAmelCase__ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): lowerCAmelCase__ = False for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCAmelCase__ )[0].split('.' )[-2] lowerCAmelCase__ = mapped_key.replace('*' , lowerCAmelCase__ ) if "weight_g" in name: lowerCAmelCase__ = 'weight_g' elif "weight_v" in name: lowerCAmelCase__ = 'weight_v' elif "bias" in name: lowerCAmelCase__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = 'weight' else: lowerCAmelCase__ = None if hf_dict is not None: rename_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return is_used return is_used def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase__ = True else: lowerCAmelCase__ = load_wavaveca_layer(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = full_name.split('conv_layers.' )[-1] lowerCAmelCase__ = name.split('.' ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=False ): if config_path is not None: lowerCAmelCase__ = WavaVecaConfig.from_pretrained(lowerCAmelCase__ ) else: lowerCAmelCase__ = WavaVecaConfig() if is_seq_class: lowerCAmelCase__ = read_txt_into_dict(lowerCAmelCase__ ) lowerCAmelCase__ = idalabel lowerCAmelCase__ = WavaVecaForSequenceClassification(lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) feature_extractor.save_pretrained(lowerCAmelCase__ ) elif is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(lowerCAmelCase__ , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase__ , ) lowerCAmelCase__ = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaForCTC(lowerCAmelCase__ ) else: lowerCAmelCase__ = WavaVecaForPreTraining(lowerCAmelCase__ ) if is_finetuned or is_seq_class: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task='audio_pretraining' ) lowerCAmelCase__ = fairseq.tasks.setup_task(lowerCAmelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
119
1
'''simple docstring''' lowerCamelCase_ = 8.314462 # Unit - J mol-1 K-1 def __lowercase ( __lowercase , __lowercase , __lowercase ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __lowercase ( __lowercase , __lowercase , __lowercase ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
79
'''simple docstring''' class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : list[int] ): '''simple docstring''' _A = len(__UpperCAmelCase ) _A = [0] * len_array if len_array > 0: _A = array[0] for i in range(1 , __UpperCAmelCase ): _A = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : int ): '''simple docstring''' _A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
79
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCAmelCase__ : List[str] =logging.get_logger('transformers.models.speecht5') def a__ ( A__, A__, A__ ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_ : str = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE_ : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE_ : Tuple = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_ : int = checkpoint[F'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_ : int = checkpoint[F'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_ : Dict = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_ : str = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_ : Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_ : List[Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_ : List[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_ : List[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_ : Tuple = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE_ : Tuple = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE_ : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def a__ ( A__, A__, A__, A__=None, A__=None, ): if config_path is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(A__ ) else: SCREAMING_SNAKE_CASE_ : Tuple = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_ : List[str] = SpeechTaHifiGan(A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.load(A__ ) load_weights(orig_checkpoint['model']['generator'], A__, A__ ) SCREAMING_SNAKE_CASE_ : List[str] = np.load(A__ ) SCREAMING_SNAKE_CASE_ : int = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_ : int = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.from_numpy(A__ ).float() SCREAMING_SNAKE_CASE_ : List[Any] = torch.from_numpy(A__ ).float() model.save_pretrained(A__ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(A__ ) if __name__ == "__main__": lowerCAmelCase__ : List[str] =argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCAmelCase__ : Optional[Any] =parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
162
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def a__ ( A__ ): if is_torch_version('<', '2.0.0' ) or not hasattr(A__, '_dynamo' ): return False return isinstance(A__, torch._dynamo.eval_frame.OptimizedModule ) def a__ ( A__, A__ = True ): SCREAMING_SNAKE_CASE_ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE_ : List[str] = is_compiled_module(A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[Any] = model SCREAMING_SNAKE_CASE_ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : int = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE_ : str = getattr(A__, 'forward' ) SCREAMING_SNAKE_CASE_ : Any = model.__dict__.pop('_original_forward', A__ ) if original_forward is not None: while hasattr(A__, '__wrapped__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE_ : Any = forward if getattr(A__, '_converted_to_transformer_engine', A__ ): convert_model(A__, to_transformer_engine=A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[str] = model SCREAMING_SNAKE_CASE_ : Dict = compiled_model return model def a__ ( ): PartialState().wait_for_everyone() def a__ ( A__, A__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(A__, A__ ) elif PartialState().local_process_index == 0: torch.save(A__, A__ ) @contextmanager def a__ ( **A__ ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE_ : List[Any] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def a__ ( A__ ): if not hasattr(A__, '__qualname__' ) and not hasattr(A__, '__name__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(A__, '__class__', A__ ) if hasattr(A__, '__qualname__' ): return obj.__qualname__ if hasattr(A__, '__name__' ): return obj.__name__ return str(A__ ) def a__ ( A__, A__ ): for key, value in source.items(): if isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = destination.setdefault(A__, {} ) merge_dicts(A__, A__ ) else: SCREAMING_SNAKE_CASE_ : Tuple = value return destination def a__ ( A__ = None ): if port is None: SCREAMING_SNAKE_CASE_ : Tuple = 2_9_5_0_0 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
162
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = ['input_values', 'attention_mask'] def __init__(self : Any , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 1_6_0_0_0 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : bool = False , __UpperCAmelCase : int = 8_0 , __UpperCAmelCase : int = 1_6 , __UpperCAmelCase : int = 6_4 , __UpperCAmelCase : str = "hann_window" , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : float = 8_0 , __UpperCAmelCase : float = 7_6_0_0 , __UpperCAmelCase : float = 1E-10 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : bool = True , **__UpperCAmelCase : Any , ) -> str: """simple docstring""" super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = do_normalize UpperCAmelCase__ = return_attention_mask UpperCAmelCase__ = num_mel_bins UpperCAmelCase__ = hop_length UpperCAmelCase__ = win_length UpperCAmelCase__ = win_function UpperCAmelCase__ = frame_signal_scale UpperCAmelCase__ = fmin UpperCAmelCase__ = fmax UpperCAmelCase__ = mel_floor UpperCAmelCase__ = reduction_factor UpperCAmelCase__ = win_length * sampling_rate // 1_0_0_0 UpperCAmelCase__ = hop_length * sampling_rate // 1_0_0_0 UpperCAmelCase__ = optimal_fft_length(self.sample_size ) UpperCAmelCase__ = (self.n_fft // 2) + 1 UpperCAmelCase__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCAmelCase ) UpperCAmelCase__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , __UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , __UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase_ (__UpperCAmelCase : List[np.ndarray] , __UpperCAmelCase : List[np.ndarray] , __UpperCAmelCase : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: UpperCAmelCase__ = np.array(__UpperCAmelCase , np.intaa ) UpperCAmelCase__ = [] for vector, length in zip(__UpperCAmelCase , attention_mask.sum(-1 ) ): UpperCAmelCase__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: UpperCAmelCase__ = padding_value normed_input_values.append(__UpperCAmelCase ) else: UpperCAmelCase__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowercase_ (self : Optional[int] , __UpperCAmelCase : np.ndarray , ) -> np.ndarray: """simple docstring""" UpperCAmelCase__ = spectrogram( __UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__(self : Any , __UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : str , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: UpperCAmelCase__ = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) else: UpperCAmelCase__ = None if audio_target is not None: UpperCAmelCase__ = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) if inputs is None: return inputs_target else: UpperCAmelCase__ = inputs_target["input_values"] UpperCAmelCase__ = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: UpperCAmelCase__ = decoder_attention_mask return inputs def lowercase_ (self : Optional[int] , __UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCAmelCase : bool = False , __UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , **__UpperCAmelCase : Any , ) -> BatchFeature: """simple docstring""" UpperCAmelCase__ = isinstance(__UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase__ = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): UpperCAmelCase__ = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ = [speech] # needed to make pad() work on spectrogram inputs UpperCAmelCase__ = self.feature_size # convert into correct format for padding if is_target: UpperCAmelCase__ = [self._extract_mel_features(__UpperCAmelCase ) for waveform in speech] UpperCAmelCase__ = BatchFeature({"input_values": features} ) UpperCAmelCase__ = self.num_mel_bins else: UpperCAmelCase__ = BatchFeature({"input_values": speech} ) UpperCAmelCase__ = self.pad( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = feature_size_hack # convert input values to correct format UpperCAmelCase__ = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): UpperCAmelCase__ = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCAmelCase__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(__UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCAmelCase__ = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCAmelCase__ = padded_inputs.get("attention_mask" ) if attention_mask is not None: UpperCAmelCase__ = [np.asarray(__UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCAmelCase__ = ( attention_mask if self._get_padding_strategies(__UpperCAmelCase , max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase__ = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=__UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: UpperCAmelCase__ = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs def lowercase_ (self : Tuple ) -> Dict[str, Any]: """simple docstring""" UpperCAmelCase__ = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCAmelCase__ = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
65
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } __lowerCamelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , x.transpose() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , transpose(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , transpose(lowerCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , transpose(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , transpose(lowerCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , np.asarray(transpose(lowerCamelCase__ ) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , np.reshape(lowerCamelCase__ , (4, 3) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , np.reshape(lowerCamelCase__ , (12, 5) ) ) ) @require_torch def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , reshape(lowerCamelCase__ , (4, 3) ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , reshape(lowerCamelCase__ , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , reshape(lowerCamelCase__ , (4, 3) ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , reshape(lowerCamelCase__ , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , np.asarray(reshape(lowerCamelCase__ , (4, 3) ) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , np.asarray(reshape(lowerCamelCase__ , (12, 5) ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , np.squeeze(lowerCamelCase__ ) ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , np.squeeze(lowerCamelCase__ , axis=2 ) ) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , squeeze(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , squeeze(lowerCamelCase__ , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , squeeze(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , squeeze(lowerCamelCase__ , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , np.asarray(squeeze(lowerCamelCase__ ) ) ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , np.asarray(squeeze(lowerCamelCase__ , axis=2 ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , np.expand_dims(lowerCamelCase__ , axis=1 ) ) ) @require_torch def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , expand_dims(lowerCamelCase__ , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , expand_dims(lowerCamelCase__ , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , np.asarray(expand_dims(lowerCamelCase__ , axis=1 ) ) ) )
90
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowerCAmelCase__ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split("." ): UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value else: UpperCamelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(SCREAMING_SNAKE_CASE_ )[0].split("." )[-2] UpperCamelCase = mapped_key.replace("*" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: UpperCamelCase = "weight_g" elif "weight_v" in name: UpperCamelCase = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = "weight" else: UpperCamelCase = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(F"Unused weights: {unused_weights}" ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = full_name.split("conv_layers." )[-1] UpperCamelCase = name.split("." ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase = torch.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = WavLMConfigOrig(checkpoint["cfg"] ) UpperCamelCase = WavLMOrig(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: UpperCamelCase = WavLMConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase = WavLMConfig() UpperCamelCase = WavLMModel(SCREAMING_SNAKE_CASE_ ) recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_wavlm.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
366
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) UpperCamelCase = DetaConfig( backbone_config=_SCREAMING_SNAKE_CASE , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=_SCREAMING_SNAKE_CASE , with_box_refine=_SCREAMING_SNAKE_CASE , two_stage=_SCREAMING_SNAKE_CASE , ) # set labels UpperCamelCase = "huggingface/label-files" if "o365" in model_name: UpperCamelCase = 366 UpperCamelCase = "object365-id2label.json" else: UpperCamelCase = 91 UpperCamelCase = "coco-detection-id2label.json" UpperCamelCase = num_labels UpperCamelCase = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) ) , "r" ) ) UpperCamelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} return config def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = dct.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) UpperCamelCase = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:dim, :] UpperCamelCase = in_proj_bias[: dim] UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase = in_proj_bias[ dim : dim * 2 ] UpperCamelCase = in_proj_weight[ -dim :, : ] UpperCamelCase = in_proj_bias[-dim :] # fmt: on def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) UpperCamelCase = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:hidden_size, :] UpperCamelCase = in_proj_bias[:hidden_size] UpperCamelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase = in_proj_weight[-hidden_size:, :] UpperCamelCase = in_proj_bias[-hidden_size:] def a__ ( ): """simple docstring""" UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = get_deta_config(_SCREAMING_SNAKE_CASE ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": UpperCamelCase = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) UpperCamelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(_SCREAMING_SNAKE_CASE , param.shape ) # rename keys UpperCamelCase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(_SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val if "input_proj" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = DetaForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = "cuda" if torch.cuda.is_available() else "cpu" model.to(_SCREAMING_SNAKE_CASE ) # load image processor UpperCamelCase = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image UpperCamelCase = prepare_img() UpperCamelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCamelCase = encoding["pixel_values"] UpperCamelCase = model(pixel_values.to(_SCREAMING_SNAKE_CASE ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) UpperCamelCase = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) UpperCamelCase = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
244
0
'''simple docstring''' from scipy.stats import spearmanr import datasets __snake_case ="""\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n""" __snake_case ="""\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n""" __snake_case =R"""\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : str ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]=False ) -> Tuple: lowerCAmelCase = spearmanr(a_ , a_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
4
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase__ ( unittest.TestCase ,__UpperCamelCase ): '''simple docstring''' def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = load_tool('''text-to-speech''' ) self.tool.setup() def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = self.tool('''hey''' ) __UpperCAmelCase : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = self.tool('''hey''' ) __UpperCAmelCase : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
226
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_( lowercase_ : str , lowercase_ : List[str] ) -> Tuple: assert isinstance(lowercase_ , lowercase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase_( lowercase_ : str , lowercase_ : str , lowercase_ : Tuple ) -> List[str]: _lowerCamelCase = tmp_path / '''cache''' _lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[int] ) -> List[str]: _lowerCamelCase = tmp_path / '''cache''' _lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCamelCase = features.copy() if features else default_expected_features _lowerCamelCase = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase = ParquetDatasetReader(lowercase_ , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase_( lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : List[str] ) -> List[Any]: _lowerCamelCase = tmp_path / '''cache''' _lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCamelCase = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , split=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase_( lowercase_ : int , lowercase_ : List[str] , lowercase_ : Optional[int] ) -> Any: if issubclass(lowercase_ , lowercase_ ): _lowerCamelCase = parquet_path elif issubclass(lowercase_ , lowercase_ ): _lowerCamelCase = [parquet_path] _lowerCamelCase = tmp_path / '''cache''' _lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCamelCase = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : List[str]=("train",) ) -> Dict: assert isinstance(lowercase_ , lowercase_ ) for split in splits: _lowerCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase_( lowercase_ : int , lowercase_ : str , lowercase_ : int ) -> Union[str, Any]: _lowerCamelCase = tmp_path / '''cache''' _lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Tuple ) -> str: _lowerCamelCase = tmp_path / '''cache''' _lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCamelCase = features.copy() if features else default_expected_features _lowerCamelCase = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase = ParquetDatasetReader({'''train''': parquet_path} , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Dict ) -> Any: if split: _lowerCamelCase = {split: parquet_path} else: _lowerCamelCase = '''train''' _lowerCamelCase = {'''train''': parquet_path, '''test''': parquet_path} _lowerCamelCase = tmp_path / '''cache''' _lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCamelCase = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_( lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] ) -> Any: _lowerCamelCase = ParquetDatasetWriter(lowercase_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 _lowerCamelCase = pq.ParquetFile(tmp_path / '''foo.parquet''' ) _lowerCamelCase = pf.read() assert dataset.data.table == output_table def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : Optional[int] ) -> Union[str, Any]: _lowerCamelCase = str(shared_datadir / '''test_image_rgb.jpg''' ) _lowerCamelCase = {'''image''': [image_path]} _lowerCamelCase = Features({'''image''': Image()} ) _lowerCamelCase = Dataset.from_dict(lowercase_ , features=lowercase_ ) _lowerCamelCase = ParquetDatasetWriter(lowercase_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 _lowerCamelCase = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features _lowerCamelCase = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=lowercase_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : Any ) -> Tuple: assert get_writer_batch_size(lowercase_ ) == expected
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __UpperCAmelCase = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Any=None , snake_case__ : int=None , snake_case__ : List[str]=None ) -> Union[str, Any]: UpperCamelCase : str = True while ask_again: UpperCamelCase : Any = input(snake_case__ ) try: if default is not None and len(snake_case__ ) == 0: return default return convert_value(snake_case__ ) if convert_value is not None else result except Exception: if error_message is not None: print(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int=[] , snake_case__ : Optional[Any]=None , snake_case__ : str=0 ) -> Any: UpperCamelCase : Dict = BulletMenu(snake_case__ , snake_case__ ) UpperCamelCase : List[Any] = menu.run(default_choice=snake_case__ ) return convert_value(snake_case__ ) if convert_value is not None else result def UpperCamelCase ( snake_case__ : Tuple ) -> Dict: UpperCamelCase : Any = int(snake_case__ ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : Dict = int(snake_case__ ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: UpperCamelCase : Optional[Any] = int(snake_case__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: UpperCamelCase : Any = int(snake_case__ ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : Union[str, Any] = int(snake_case__ ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def UpperCamelCase ( snake_case__ : Optional[int] ) -> Union[str, Any]: return {"yes": True, "no": False}[value.lower()] class lowerCAmelCase_ ( argparse.RawDescriptionHelpFormatter ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : Dict = super()._format_usage(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = usage.replace('<command> [<args>] ', '' ) return usage
119
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=[10, 20, 30, 40], SCREAMING_SNAKE_CASE_=[2, 2, 3, 2], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=["stage2", "stage3", "stage4"], SCREAMING_SNAKE_CASE_=[2, 3, 4], SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCamelCase : Dict = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : List[Any] = num_stages UpperCamelCase : Any = hidden_sizes UpperCamelCase : Optional[int] = depths UpperCamelCase : Optional[int] = is_training UpperCamelCase : List[str] = use_labels UpperCamelCase : Dict = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Union[str, Any] = num_labels UpperCamelCase : str = initializer_range UpperCamelCase : List[str] = out_features UpperCamelCase : List[str] = out_indices UpperCamelCase : str = scope def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Any = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Any: return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Dict = ConvNextModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Optional[int] = ConvNextForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : int = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase : Any = None UpperCamelCase : List[str] = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = config_and_inputs UpperCamelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = True UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = ConvNextModelTester(self ) UpperCamelCase : int = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def snake_case_ ( self ) -> str: pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def snake_case_ ( self ) -> str: pass def snake_case_ ( self ) -> Any: UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[Any] = [*signature.parameters.keys()] UpperCamelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase : int = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : str = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Tuple: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Union[str, Any] = ConvNextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> int: UpperCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def snake_case_ ( self ) -> str: UpperCamelCase : Dict = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : List[str] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase , a__ ): UpperCAmelCase__ : Tuple = (ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase__ : List[str] = ConvNextConfig UpperCAmelCase__ : Tuple = False def snake_case_ ( self ) -> int: UpperCamelCase : List[Any] = ConvNextModelTester(self )
119
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __snake_case = '''\ ''' __snake_case = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' __snake_case = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ = 16 , snake_case__ = True , snake_case__=None ) -> List[str]: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase : List[str] ='''cuda''' else: UpperCAmelCase : Dict ='''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase : Any =AutoModelForCausalLM.from_pretrained(snake_case__ ) UpperCAmelCase : Union[str, Any] =model.to(snake_case__ ) UpperCAmelCase : int =AutoTokenizer.from_pretrained(snake_case__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase : Dict =list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(snake_case__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase : Tuple =model.config.max_length - 1 else: UpperCAmelCase : List[Any] =model.config.max_length UpperCAmelCase : List[str] =tokenizer( snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors='''pt''' , return_attention_mask=snake_case__ , ).to(snake_case__ ) UpperCAmelCase : List[Any] =encodings['''input_ids'''] UpperCAmelCase : List[str] =encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase : List[Any] =[] UpperCAmelCase : List[str] =CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(snake_case__ ) , snake_case__ ) ): UpperCAmelCase : List[Any] =min(start_index + batch_size , len(snake_case__ ) ) UpperCAmelCase : Optional[int] =encoded_texts[start_index:end_index] UpperCAmelCase : Optional[Any] =attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase : List[str] =torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(snake_case__ ) UpperCAmelCase : str =torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase : Optional[int] =torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(snake_case__ ), attn_mask] , dim=1 ) UpperCAmelCase : str =encoded_batch with torch.no_grad(): UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ ).logits UpperCAmelCase : Optional[Any] =out_logits[..., :-1, :].contiguous() UpperCAmelCase : Tuple =labels[..., 1:].contiguous() UpperCAmelCase : List[str] =attn_mask[..., 1:].contiguous() UpperCAmelCase : List[str] =torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , snake_case__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(snake_case__ )}
78
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
78
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( _snake_case ): lowercase = "unispeech" def __init__( self , UpperCamelCase__=32 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-5 , UpperCamelCase__="group" , UpperCamelCase__="gelu" , UpperCamelCase__=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase__=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase__=False , UpperCamelCase__=128 , UpperCamelCase__=16 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0.05 , UpperCamelCase__=10 , UpperCamelCase__=2 , UpperCamelCase__=0.0 , UpperCamelCase__=10 , UpperCamelCase__=0 , UpperCamelCase__=320 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=100 , UpperCamelCase__=256 , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__="mean" , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=256 , UpperCamelCase__=80 , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , UpperCamelCase__=0.5 , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) A_ = hidden_size A_ = feat_extract_norm A_ = feat_extract_activation A_ = list(UpperCamelCase__ ) A_ = list(UpperCamelCase__ ) A_ = list(UpperCamelCase__ ) A_ = conv_bias A_ = num_conv_pos_embeddings A_ = num_conv_pos_embedding_groups A_ = len(self.conv_dim ) A_ = num_hidden_layers A_ = intermediate_size A_ = hidden_act A_ = num_attention_heads A_ = hidden_dropout A_ = attention_dropout A_ = activation_dropout A_ = feat_proj_dropout A_ = final_dropout A_ = layerdrop A_ = layer_norm_eps A_ = initializer_range A_ = num_ctc_classes A_ = vocab_size A_ = do_stable_layer_norm A_ = use_weighted_layer_sum A_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ = apply_spec_augment A_ = mask_time_prob A_ = mask_time_length A_ = mask_time_min_masks A_ = mask_feature_prob A_ = mask_feature_length A_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A_ = num_codevectors_per_group A_ = num_codevector_groups A_ = contrastive_logits_temperature A_ = feat_quantizer_dropout A_ = num_negatives A_ = codevector_dim A_ = proj_codevector_dim A_ = diversity_loss_weight # ctc loss A_ = ctc_loss_reduction A_ = ctc_zero_infinity # pretraining loss A_ = replace_prob @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
162
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] __lowerCamelCase = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
162
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): """simple docstring""" __UpperCAmelCase : List[str] = ObjectDetectionPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowerCamelCase_ ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCAmelCase_ , { "score": ANY(UpperCAmelCase_ ), "label": ANY(UpperCAmelCase_ ), "box": {"xmin": ANY(UpperCAmelCase_ ), "ymin": ANY(UpperCAmelCase_ ), "xmax": ANY(UpperCAmelCase_ ), "ymax": ANY(UpperCAmelCase_ )}, } , ) import datasets __UpperCAmelCase : List[str] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __UpperCAmelCase : Optional[int] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] __UpperCAmelCase : int = object_detector(UpperCAmelCase_ , threshold=0.0 ) self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for outputs in batch_outputs: self.assertGreater(len(UpperCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCAmelCase_ , { "score": ANY(UpperCAmelCase_ ), "label": ANY(UpperCAmelCase_ ), "box": {"xmin": ANY(UpperCAmelCase_ ), "ymin": ANY(UpperCAmelCase_ ), "xmax": ANY(UpperCAmelCase_ ), "ymax": ANY(UpperCAmelCase_ )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass @require_torch def lowerCamelCase_ ( self : int ): """simple docstring""" __UpperCAmelCase : int = "hf-internal-testing/tiny-detr-mobilenetsv3" __UpperCAmelCase : Dict = AutoModelForObjectDetection.from_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : str = ObjectDetectionPipeline(model=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) __UpperCAmelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) __UpperCAmelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = "facebook/detr-resnet-50" __UpperCAmelCase : Tuple = AutoModelForObjectDetection.from_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = ObjectDetectionPipeline(model=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) __UpperCAmelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) __UpperCAmelCase : List[Any] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : int = "facebook/detr-resnet-50" __UpperCAmelCase : List[str] = pipeline("object-detection" , model=UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) __UpperCAmelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 0.9985 __UpperCAmelCase : Optional[Any] = "facebook/detr-resnet-50" __UpperCAmelCase : int = pipeline("object-detection" , model=UpperCAmelCase_ ) __UpperCAmelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=UpperCAmelCase_ ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : List[str] = "Narsil/layoutlmv3-finetuned-funsd" __UpperCAmelCase : Dict = 0.9993 __UpperCAmelCase : List[str] = pipeline("object-detection" , model=UpperCAmelCase_ , threshold=UpperCAmelCase_ ) __UpperCAmelCase : Tuple = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
37
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ : Optional[Any] = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __UpperCamelCase ( _UpperCAmelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __UpperCAmelCase : List[str] = list(s_dict.keys() ) for key in keys: __UpperCAmelCase : int = R".*/layers_(\d+)" __UpperCAmelCase : List[str] = key if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = re.sub(R"layers_(\d+)", R"block/\1/layer", _UpperCAmelCase ) __UpperCAmelCase : Any = R"(encoder|decoder)\/" if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = re.match(_UpperCAmelCase, _UpperCAmelCase ).groups() if groups[0] == "encoder": __UpperCAmelCase : Optional[Any] = re.sub(R"/mlp/", R"/1/mlp/", _UpperCAmelCase ) __UpperCAmelCase : List[Any] = re.sub(R"/pre_mlp_layer_norm/", R"/1/layer_norm/", _UpperCAmelCase ) elif groups[0] == "decoder": __UpperCAmelCase : List[Any] = re.sub(R"/mlp/", R"/2/mlp/", _UpperCAmelCase ) __UpperCAmelCase : Any = re.sub(R"/pre_mlp_layer_norm/", R"/2/layer_norm/", _UpperCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __UpperCAmelCase : List[str] = new_key.replace(_UpperCAmelCase, _UpperCAmelCase ) print(F"{key} -> {new_key}" ) __UpperCAmelCase : Any = s_dict.pop(_UpperCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Tuple = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Optional[Any] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __UpperCAmelCase : Any = s_dict[key].shape[0] __UpperCAmelCase : str = s_dict[key] for idx in range(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"{key} -> {key.replace('expert/', 'nested fstring' )}" ) s_dict.pop(_UpperCAmelCase ) return s_dict lowerCAmelCase__ : Optional[Any] = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(_UpperCAmelCase, "r" ) as f: __UpperCAmelCase : List[Any] = f.read() __UpperCAmelCase : Union[str, Any] = re.findall(R"(.*) = ([0-9.]*)", _UpperCAmelCase ) __UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __UpperCAmelCase : Tuple = float(_UpperCAmelCase ) if "." in value else int(_UpperCAmelCase ) __UpperCAmelCase : str = re.findall(R"(.*activations) = \(\'(.*)\',\)", _UpperCAmelCase )[0] __UpperCAmelCase : int = str(activation[1] ) __UpperCAmelCase : int = num_experts __UpperCAmelCase : List[str] = SwitchTransformersConfig(**_UpperCAmelCase ) return config def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase="./", _UpperCAmelCase=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) __UpperCAmelCase : Dict = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) if gin_file is not None: __UpperCAmelCase : int = convert_gin_to_config(_UpperCAmelCase, _UpperCAmelCase ) else: __UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(_UpperCAmelCase ) __UpperCAmelCase : Any = SwitchTransformersForConditionalGeneration(_UpperCAmelCase ) __UpperCAmelCase : str = flax_params["target"] __UpperCAmelCase : Any = flatten_dict(_UpperCAmelCase, sep="/" ) __UpperCAmelCase : Optional[Any] = rename_keys(_UpperCAmelCase ) __UpperCAmelCase : Any = unflatten_dict(_UpperCAmelCase, sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_UpperCAmelCase, _UpperCAmelCase ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowerCAmelCase__ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
37
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase_ : Tuple = 5_0000 UpperCAmelCase_ : str = 5000 UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = os.path.split(__file__) UpperCAmelCase_ : Any = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def SCREAMING_SNAKE_CASE_ ( __A : datasets.Dataset , __A : Any ) -> Optional[Any]: """simple docstring""" for i in range(__A ): a_ : List[Any] = dataset[i] @get_duration def SCREAMING_SNAKE_CASE_ ( __A : datasets.Dataset , __A : Tuple , __A : List[Any] ) -> str: """simple docstring""" for i in range(0 , len(__A ) , __A ): a_ : Tuple = dataset[i : i + batch_size] @get_duration def SCREAMING_SNAKE_CASE_ ( __A : datasets.Dataset , __A : int , __A : Optional[Any] ) -> Optional[int]: """simple docstring""" with dataset.formatted_as(type=__A ): for i in range(__A ): a_ : int = dataset[i] @get_duration def SCREAMING_SNAKE_CASE_ ( __A : datasets.Dataset , __A : Tuple , __A : Any , __A : Optional[Any] ) -> int: """simple docstring""" with dataset.formatted_as(type=__A ): for i in range(0 , __A , __A ): a_ : str = dataset[i : i + batch_size] def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: """simple docstring""" a_ : Any = {'num examples': SPEED_TEST_N_EXAMPLES} a_ : Optional[int] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] a_ : Dict = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) a_ : Optional[int] = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) a_ : str = generate_example_dataset( os.path.join(__A , 'dataset.arrow' ) , __A , num_examples=__A , seq_shapes={'list': (1_00,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(__A ) ) a_ : Any = func(__A , **__A ) print('shuffling dataset' ) a_ : int = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(__A ) ) a_ : Any = func( __A , **__A ) with open(__A , 'wb' ) as f: f.write(json.dumps(__A ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
32
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCamelCase_ = ['''small''', '''medium''', '''large'''] lowerCamelCase_ = '''lm_head.decoder.weight''' lowerCamelCase_ = '''lm_head.weight''' def __magic_name__ ( __a : str , __a : str ): '''simple docstring''' UpperCamelCase__ = torch.load(__a ) UpperCamelCase__ = d.pop(__a ) os.makedirs(__a , exist_ok=__a ) torch.save(__a , os.path.join(__a , __a ) ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) lowerCamelCase_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCamelCase_ = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') lowerCamelCase_ = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
244
0
from typing import Dict, Optional import numpy as np import datasets a__ = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' a__ = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' a__ = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ,__a : Tuple ,__a : bool ,__a : Optional[Dict[int, int]] = None ,__a : bool = False ,) -> Any: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _a : Dict = new_id # turn into Numpy arrays _a : Union[str, Any] = np.array(__a ) _a : Optional[Any] = np.array(__a ) if reduce_labels: _a : List[str] = 255 _a : Optional[int] = label - 1 _a : int = 255 _a : str = label != ignore_index _a : List[Any] = np.not_equal(__a ,__a ) _a : str = pred_label[mask] _a : List[Any] = np.array(__a )[mask] _a : Union[str, Any] = pred_label[pred_label == label] _a : List[str] = np.histogram(__a ,bins=__a ,range=(0, num_labels - 1) )[0] _a : Union[str, Any] = np.histogram(__a ,bins=__a ,range=(0, num_labels - 1) )[0] _a : Optional[Any] = np.histogram(__a ,bins=__a ,range=(0, num_labels - 1) )[0] _a : Dict = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __UpperCAmelCase ( __a : Tuple ,__a : Union[str, Any] ,__a : Any ,__a : bool ,__a : Optional[Dict[int, int]] = None ,__a : bool = False ,) -> Tuple: """simple docstring""" _a : List[str] = np.zeros((num_labels,) ,dtype=np.floataa ) _a : str = np.zeros((num_labels,) ,dtype=np.floataa ) _a : str = np.zeros((num_labels,) ,dtype=np.floataa ) _a : Union[str, Any] = np.zeros((num_labels,) ,dtype=np.floataa ) for result, gt_seg_map in zip(__a ,__a ): _a , _a , _a , _a : List[str] = intersect_and_union( __a ,__a ,__a ,__a ,__a ,__a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Tuple ,__a : List[Any] ,__a : bool ,__a : Optional[int] = None ,__a : Optional[Dict[int, int]] = None ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a , _a , _a , _a : Union[str, Any] = total_intersect_and_union( __a ,__a ,__a ,__a ,__a ,__a ) # compute metrics _a : Union[str, Any] = {} _a : Tuple = total_area_intersect.sum() / total_area_label.sum() _a : int = total_area_intersect / total_area_union _a : Optional[int] = total_area_intersect / total_area_label _a : Tuple = np.nanmean(__a ) _a : str = np.nanmean(__a ) _a : Any = all_acc _a : Dict = iou _a : str = acc if nan_to_num is not None: _a : List[Any] = {metric: np.nan_to_num(__a ,nan=__a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def __lowercase ( self , _a , _a , _a , _a , _a = None , _a = None , _a = False , ) -> Any: _a : List[Any] = mean_iou( results=_a , gt_seg_maps=_a , num_labels=_a , ignore_index=_a , nan_to_num=_a , label_map=_a , reduce_labels=_a , ) return iou_result
15
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a =["""text""", """image""", """audio"""] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): inputs.append(create_inputs(lowerCamelCase__ ) ) else: raise ValueError(F"Invalid type requested: {input_type}" ) return inputs def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : List[Any] = [] for output in outputs: if isinstance(lowerCamelCase__ , (str, AgentText) ): output_types.append('text' ) elif isinstance(lowerCamelCase__ , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(lowerCamelCase__ , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F"Invalid output: {output}" ) return output_types @is_tool_test class A_ : def lowerCAmelCase ( self : Union[str, Any]): self.assertTrue(hasattr(self.tool ,'inputs')) self.assertTrue(hasattr(self.tool ,'outputs')) __lowerCamelCase : Dict = self.tool.inputs for _input in inputs: if isinstance(_input ,SCREAMING_SNAKE_CASE__): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) __lowerCamelCase : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Optional[int] = create_inputs(self.tool.inputs) __lowerCamelCase : Tuple = self.tool(*SCREAMING_SNAKE_CASE__) # There is a single output if len(self.tool.outputs) == 1: __lowerCamelCase : Optional[int] = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE__) ,self.tool.outputs) def lowerCAmelCase ( self : Union[str, Any]): self.assertTrue(hasattr(self.tool ,'description')) self.assertTrue(hasattr(self.tool ,'default_checkpoint')) self.assertTrue(self.tool.description.startswith('This is a tool that')) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Union[str, Any] = create_inputs(self.tool.inputs) __lowerCamelCase : List[str] = self.tool(*SCREAMING_SNAKE_CASE__) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : List[str] = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,len(self.tool.outputs)) for output, output_type in zip(SCREAMING_SNAKE_CASE__ ,self.tool.outputs): __lowerCamelCase : List[str] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Any): __lowerCamelCase : Optional[Any] = create_inputs(self.tool.inputs) __lowerCamelCase : Optional[Any] = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE__ ,self.tool.inputs): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error __lowerCamelCase : Tuple = self.tool(*SCREAMING_SNAKE_CASE__) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : int = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,len(self.tool.outputs))
73
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A_ ( unittest.TestCase ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any=1_3 ,SCREAMING_SNAKE_CASE__ : int=7 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : List[Any]=9_9 ,SCREAMING_SNAKE_CASE__ : List[Any]=3_2 ,SCREAMING_SNAKE_CASE__ : int=5 ,SCREAMING_SNAKE_CASE__ : List[Any]=4 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_7 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 ,SCREAMING_SNAKE_CASE__ : Dict=1_6 ,SCREAMING_SNAKE_CASE__ : Dict=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,): __lowerCamelCase : int = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : Union[str, Any] = seq_length __lowerCamelCase : List[Any] = is_training __lowerCamelCase : Tuple = use_attention_mask __lowerCamelCase : List[str] = use_token_type_ids __lowerCamelCase : Any = use_labels __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Any = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Union[str, Any] = type_vocab_size __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : Optional[int] = num_choices def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) __lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length]) __lowerCamelCase : str = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=SCREAMING_SNAKE_CASE__ ,) return config, input_ids, attention_mask def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = config_and_inputs __lowerCamelCase : Any = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Dict = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Tuple = FlaxDistilBertModelTester(self) @slow def lowerCAmelCase ( self : int): for model_class_name in self.all_model_classes: __lowerCamelCase : List[Any] = model_class_name.from_pretrained('distilbert-base-uncased') __lowerCamelCase : List[str] = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) @require_flax class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : str): __lowerCamelCase : Union[str, Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased') __lowerCamelCase : str = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __lowerCamelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__)[0] __lowerCamelCase : Optional[int] = (1, 1_1, 7_6_8) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
73
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _snake_case = "\nHuman: <<task>>\n\nAssistant: " _snake_case = "huggingface-tools/default-prompts" _snake_case = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="run" ): '''simple docstring''' if prompt_or_repo_id is None: _lowerCAmelCase : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCamelCase ) is not None: return prompt_or_repo_id _lowerCAmelCase : Dict = cached_file( _lowerCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType snake_case_ = logging.get_logger(__name__) snake_case_ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off snake_case_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] snake_case_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """whisper""" __UpperCamelCase = ["""past_key_values"""] __UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Optional[Any] , lowercase_ :Dict=5_18_65 , lowercase_ :Tuple=80 , lowercase_ :str=6 , lowercase_ :Optional[Any]=4 , lowercase_ :Union[str, Any]=6 , lowercase_ :Any=4 , lowercase_ :Optional[int]=15_36 , lowercase_ :Optional[Any]=15_36 , lowercase_ :Tuple=0.0 , lowercase_ :List[Any]=0.0 , lowercase_ :List[Any]=5_02_57 , lowercase_ :str=True , lowercase_ :Optional[int]=True , lowercase_ :Tuple="gelu" , lowercase_ :Union[str, Any]=2_56 , lowercase_ :Optional[int]=0.0 , lowercase_ :List[Any]=0.0 , lowercase_ :List[str]=0.0 , lowercase_ :Dict=0.02 , lowercase_ :Any=False , lowercase_ :str=15_00 , lowercase_ :Union[str, Any]=4_48 , lowercase_ :List[str]=5_02_56 , lowercase_ :Any=5_02_56 , lowercase_ :Optional[int]=5_02_56 , lowercase_ :List[Any]=None , lowercase_ :Dict=[2_20, 5_02_56] , lowercase_ :Optional[int]=False , lowercase_ :Optional[int]=2_56 , lowercase_ :Tuple=False , lowercase_ :Any=0.05 , lowercase_ :Tuple=10 , lowercase_ :Dict=2 , lowercase_ :Union[str, Any]=0.0 , lowercase_ :List[str]=10 , lowercase_ :str=0 , lowercase_ :Tuple=7 , **lowercase_ :Optional[int] , ) -> Optional[Any]: UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def UpperCAmelCase__ ( self :Any ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase = {0: 'batch'} else: UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase__ ( self :int , lowercase_ :Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ :int = -1 , lowercase_ :int = -1 , lowercase_ :bool = False , lowercase_ :Optional["TensorType"] = None , lowercase_ :int = 2_20_50 , lowercase_ :float = 5.0 , lowercase_ :int = 2_20 , ) -> Mapping[str, Any]: UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase = encoder_inputs['input_features'].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = encoder_inputs.pop('input_features' ) UpperCAmelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase__ ( self :Dict ) -> float: return 1E-3
78
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=8 ): UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCAmelCase ( lowercase_ , lowercase_=512 , lowercase_=512 ): UpperCAmelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase = np.array(pil_image.convert('RGB' ) ) UpperCAmelCase = arr.astype(np.floataa ) / 1_2_7.5 - 1 UpperCAmelCase = np.transpose(lowercase_ , [2, 0, 1] ) UpperCAmelCase = torch.from_numpy(lowercase_ ).unsqueeze(0 ) return image class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :UNetaDConditionModel , lowercase_ :DDPMScheduler , lowercase_ :VQModel , ) -> List[str]: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :Tuple , lowercase_ :Any ) -> Optional[int]: # get the original timestep using init_timestep UpperCAmelCase = min(int(num_inference_steps * strength ) , lowercase_ ) UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Dict , lowercase_ :str , lowercase_ :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Optional[Any] , lowercase_ :Any=None ) -> Any: if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}""" ) UpperCAmelCase = image.to(device=lowercase_ , dtype=lowercase_ ) UpperCAmelCase = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase = image else: if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase_ ) ] UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) else: UpperCAmelCase = self.movq.encode(lowercase_ ).latent_dist.sample(lowercase_ ) UpperCAmelCase = self.movq.config.scaling_factor * init_latents UpperCAmelCase = torch.cat([init_latents] , dim=0 ) UpperCAmelCase = init_latents.shape UpperCAmelCase = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents UpperCAmelCase = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = init_latents return latents def UpperCAmelCase__ ( self :int , lowercase_ :int=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :str=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self :List[Any] ) -> Dict: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self :str , lowercase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ :Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowercase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ :int = 5_12 , lowercase_ :int = 5_12 , lowercase_ :int = 1_00 , lowercase_ :float = 4.0 , lowercase_ :float = 0.3 , lowercase_ :int = 1 , lowercase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ :Optional[str] = "pil" , lowercase_ :bool = True , ) -> List[str]: UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase = image_embeds.shape[0] if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [image] if not all(isinstance(lowercase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(lowercase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCAmelCase = torch.cat([prepare_image(lowercase_ , lowercase_ , lowercase_ ) for i in image] , dim=0 ) UpperCAmelCase = image.to(dtype=image_embeds.dtype , device=lowercase_ ) UpperCAmelCase = self.movq.encode(lowercase_ )['latents'] UpperCAmelCase = latents.repeat_interleave(lowercase_ , dim=0 ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase , UpperCAmelCase = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) UpperCAmelCase = self.prepare_latents( lowercase_ , lowercase_ , lowercase_ , lowercase_ , image_embeds.dtype , lowercase_ , lowercase_ ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'image_embeds': image_embeds} UpperCAmelCase = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
78
1
"""simple docstring""" import string import numpy def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return b if a == 0 else greatest_common_divisor(b % a , A_ ) class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase__ = numpy.vectorize(lambda a_ : x % 36 ) lowercase__ = numpy.vectorize(a_ ) def __init__( self : Any ,lowercase_ : numpy.ndarray ): lowerCAmelCase__ : Any = self.modulus(lowercase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCAmelCase__ : int = encrypt_key.shape[0] def __lowerCAmelCase ( self : Any ,lowercase_ : str ): return self.key_string.index(lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : int ): return self.key_string[round(lowercase_ )] def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase__ : str = det % len(self.key_string ) lowerCAmelCase__ : Union[str, Any] = len(self.key_string ) if greatest_common_divisor(lowercase_ ,len(self.key_string ) ) != 1: lowerCAmelCase__ : str = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : str ): lowerCAmelCase__ : Optional[Any] = [char for char in text.upper() if char in self.key_string] lowerCAmelCase__ : Optional[Any] = chars[-1] while len(lowercase_ ) % self.break_key != 0: chars.append(lowercase_ ) return "".join(lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : str ): lowerCAmelCase__ : List[Any] = self.process_text(text.upper() ) lowerCAmelCase__ : List[Any] = '''''' for i in range(0 ,len(lowercase_ ) - self.break_key + 1 ,self.break_key ): lowerCAmelCase__ : int = text[i : i + self.break_key] lowerCAmelCase__ : List[str] = [self.replace_letters(lowercase_ ) for char in batch] lowerCAmelCase__ : Dict = numpy.array([vec] ).T lowerCAmelCase__ : List[str] = self.modulus(self.encrypt_key.dot(lowercase_ ) ).T.tolist()[ 0 ] lowerCAmelCase__ : int = ''''''.join( self.replace_digits(lowercase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase__ : Any = det % len(self.key_string ) lowerCAmelCase__ : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowerCAmelCase__ : Union[str, Any] = i break lowerCAmelCase__ : List[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowercase_ ) ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : str ): lowerCAmelCase__ : int = self.make_decrypt_key() lowerCAmelCase__ : Any = self.process_text(text.upper() ) lowerCAmelCase__ : str = '''''' for i in range(0 ,len(lowercase_ ) - self.break_key + 1 ,self.break_key ): lowerCAmelCase__ : Optional[int] = text[i : i + self.break_key] lowerCAmelCase__ : Union[str, Any] = [self.replace_letters(lowercase_ ) for char in batch] lowerCAmelCase__ : Optional[Any] = numpy.array([vec] ).T lowerCAmelCase__ : Dict = self.modulus(decrypt_key.dot(lowercase_ ) ).T.tolist()[0] lowerCAmelCase__ : Any = ''''''.join( self.replace_digits(lowercase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Any = int(input('''Enter the order of the encryption key: ''' ) ) lowerCAmelCase__ : Any = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(A_ ): lowerCAmelCase__ : int = [int(A_ ) for x in input().split()] hill_matrix.append(A_ ) lowerCAmelCase__ : List[Any] = HillCipher(numpy.array(A_ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) lowerCAmelCase__ : Optional[Any] = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": lowerCAmelCase__ : str = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(A_ ) ) elif option == "2": lowerCAmelCase__ : Dict = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(A_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
74
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = [] for line in lines: lowerCAmelCase__ : int = re.sub(r'''#.*''' , '''''' , A_ ) # remove comments if line: filtered_lines.append(A_ ) lowerCAmelCase__ : Optional[int] = '''\n'''.join(A_ ) # Make a hash from all this code lowerCAmelCase__ : int = full_str.encode('''utf-8''' ) return shaaaa(A_ ).hexdigest() # get importable module names and hash for caching __UpperCamelCase : Any = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __UpperCamelCase : Optional[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __UpperCamelCase : Union[str, Any] = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name __UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
74
1