code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> str: super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__UpperCAmelCase ,speech_processor=__UpperCAmelCase ,vae=__UpperCAmelCase ,text_encoder=__UpperCAmelCase ,tokenizer=__UpperCAmelCase ,unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ,feature_extractor=__UpperCAmelCase ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase = "auto" ) -> str: if slice_size == "auto": lowerCAmelCase__ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.enable_attention_slicing(__UpperCAmelCase ) @torch.no_grad() def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase=1_6000 ,__UpperCAmelCase = 512 ,__UpperCAmelCase = 512 ,__UpperCAmelCase = 50 ,__UpperCAmelCase = 7.5 ,__UpperCAmelCase = None ,__UpperCAmelCase = 1 ,__UpperCAmelCase = 0.0 ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = "pil" ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = 1 ,**__UpperCAmelCase ,) -> List[str]: lowerCAmelCase__ : Optional[int] = self.speech_processor.feature_extractor( __UpperCAmelCase ,return_tensors="""pt""" ,sampling_rate=__UpperCAmelCase ).input_features.to(self.device ) lowerCAmelCase__ : Any = self.speech_model.generate(__UpperCAmelCase ,max_length=48_0000 ) lowerCAmelCase__ : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(__UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ,normalize=__UpperCAmelCase )[ 0 ] if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Any = 1 elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Tuple = len(__UpperCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__UpperCAmelCase )}.""" ) # get prompt text embeddings lowerCAmelCase__ : Union[str, Any] = self.tokenizer( __UpperCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) lowerCAmelCase__ : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase__ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCAmelCase__ : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase__ : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = text_embeddings.shape lowerCAmelCase__ : Tuple = text_embeddings.repeat(1 ,__UpperCAmelCase ,1 ) lowerCAmelCase__ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt ,__UpperCAmelCase ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase__ : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase__ : List[str] if negative_prompt is None: lowerCAmelCase__ : Any = [""""""] * batch_size elif type(__UpperCAmelCase ) is not type(__UpperCAmelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase )} !=""" F""" {type(__UpperCAmelCase )}.""" ) elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Any = [negative_prompt] elif batch_size != len(__UpperCAmelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: lowerCAmelCase__ : List[Any] = negative_prompt lowerCAmelCase__ : List[str] = text_input_ids.shape[-1] lowerCAmelCase__ : Union[str, Any] = self.tokenizer( __UpperCAmelCase ,padding="""max_length""" ,max_length=__UpperCAmelCase ,truncation=__UpperCAmelCase ,return_tensors="""pt""" ,) lowerCAmelCase__ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ : Optional[int] = uncond_embeddings.shape[1] lowerCAmelCase__ : int = uncond_embeddings.repeat(1 ,__UpperCAmelCase ,1 ) lowerCAmelCase__ : Any = uncond_embeddings.view(batch_size * num_images_per_prompt ,__UpperCAmelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase__ : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase__ : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase__ : Dict = torch.randn(__UpperCAmelCase ,generator=__UpperCAmelCase ,device="""cpu""" ,dtype=__UpperCAmelCase ).to( self.device ) else: lowerCAmelCase__ : int = torch.randn(__UpperCAmelCase ,generator=__UpperCAmelCase ,device=self.device ,dtype=__UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowerCAmelCase__ : int = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase__ : Any = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase__ : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase__ : List[str] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase__ : int = {} if accepts_eta: lowerCAmelCase__ : List[str] = eta for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ : Any = self.scheduler.scale_model_input(__UpperCAmelCase ,__UpperCAmelCase ) # predict the noise residual lowerCAmelCase__ : List[str] = self.unet(__UpperCAmelCase ,__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = noise_pred.chunk(2 ) lowerCAmelCase__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ : Dict = self.scheduler.step(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase__ : Optional[int] = self.vae.decode(__UpperCAmelCase ).sample lowerCAmelCase__ : Any = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase__ : Any = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowerCAmelCase__ : Dict = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__UpperCAmelCase ,nsfw_content_detected=__UpperCAmelCase )
37
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] _lowerCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowerCAmelCase = F"""down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowerCAmelCase = F"""up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowerCAmelCase = F"""up_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.conv.""" _lowerCAmelCase = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowerCAmelCase = '''mid_block.attentions.0.''' _lowerCAmelCase = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowerCAmelCase = F"""mid_block.resnets.{j}.""" _lowerCAmelCase = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase__ : Optional[int] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase__ : Any = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase__ : List[Any] = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v lowerCAmelCase__ : Tuple = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowerCAmelCase = F"""encoder.down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.""" _lowerCAmelCase = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowerCAmelCase = F"""decoder.up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowerCAmelCase = F"""mid_block.resnets.{i}.""" _lowerCAmelCase = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase__ : str = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase__ : Dict = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v lowerCAmelCase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase__ : Tuple = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) lowerCAmelCase__ : Optional[int] = reshape_weight_for_sd(UpperCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] _lowerCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowerCAmelCase = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowerCAmelCase = {'''q''': 0, '''k''': 1, '''v''': 2} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : int = {} lowerCAmelCase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCAmelCase__ : Optional[int] = k[: -len(""".q_proj.weight""" )] lowerCAmelCase__ : Tuple = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCAmelCase__ : List[Any] = [None, None, None] lowerCAmelCase__ : Dict = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCAmelCase__ : str = k[: -len(""".q_proj.bias""" )] lowerCAmelCase__ : List[str] = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCAmelCase__ : Union[str, Any] = [None, None, None] lowerCAmelCase__ : Any = v continue lowerCAmelCase__ : Dict = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : Any = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.cat(UpperCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : str = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : List[Any] = torch.cat(UpperCamelCase ) return new_state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return text_enc_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) _lowerCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowerCAmelCase = load_file(unet_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): _lowerCAmelCase = load_file(vae_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): _lowerCAmelCase = load_file(text_enc_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') _lowerCAmelCase = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model _lowerCAmelCase = convert_unet_state_dict(unet_state_dict) _lowerCAmelCase = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowerCAmelCase = convert_vae_state_dict(vae_state_dict) _lowerCAmelCase = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowerCAmelCase = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowerCAmelCase = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} _lowerCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: _lowerCAmelCase = convert_text_enc_state_dict(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowerCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowerCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowerCAmelCase = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
37
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : list[float] ): if len(snake_case_ ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) snake_case__ : Union[str, Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
286
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : str , snake_case_ : Union[str, Any] ): # Initialise PyTorch model snake_case__ : List[str] = MobileBertConfig.from_json_file(snake_case_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case__ : Dict = MobileBertForPreTraining(snake_case_ ) # Load weights from tf checkpoint snake_case__ : Any = load_tf_weights_in_mobilebert(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
286
1
from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' SCREAMING_SNAKE_CASE :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' SCREAMING_SNAKE_CASE :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Tuple: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): __A = new_id # turn into Numpy arrays __A = np.array(a_ ) __A = np.array(a_ ) if reduce_labels: __A = 2_5_5 __A = label - 1 __A = 2_5_5 __A = label != ignore_index __A = np.not_equal(a_ , a_ ) __A = pred_label[mask] __A = np.array(a_ )[mask] __A = pred_label[pred_label == label] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Union[str, Any]: """simple docstring""" __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a_ , a_ ): __A , __A , __A , __A = intersect_and_union( a_ , a_ , a_ , a_ , a_ , a_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = False , ) -> str: """simple docstring""" __A , __A , __A , __A = total_intersect_and_union( a_ , a_ , a_ , a_ , a_ , a_ ) # compute metrics __A = {} __A = total_area_intersect.sum() / total_area_label.sum() __A = total_area_intersect / total_area_union __A = total_area_intersect / total_area_label __A = np.nanmean(a_ ) __A = np.nanmean(a_ ) __A = all_acc __A = iou __A = acc if nan_to_num is not None: __A = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) ,reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] ,) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : bool ,A : Optional[int] = None ,A : Optional[Dict[int, int]] = None ,A : bool = False ,): __A = mean_iou( results=A ,gt_seg_maps=A ,num_labels=A ,ignore_index=A ,nan_to_num=A ,label_map=A ,reduce_labels=A ,) return iou_result
15
SCREAMING_SNAKE_CASE :Any = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003 def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = len(a_ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: """simple docstring""" __A = "abc1abc12" __A = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A = "alskfjaldsk23adsfabcabc" assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A = "ABABX" __A = "ABABZABABYABABX" assert rabin_karp(a_ , a_ ) # Test 3) __A = "AAAB" __A = "ABAAAAAB" assert rabin_karp(a_ , a_ ) # Test 4) __A = "abcdabcy" __A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(a_ , a_ ) # Test 5) __A = "Lü" __A = "Lüsai" assert rabin_karp(a_ , a_ ) __A = "Lue" assert not rabin_karp(a_ , a_ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
15
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _a : Optional[Any] = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
126
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 100 ) -> int: _lowerCAmelCase : Optional[Any] = n * (n + 1) * (2 * n + 1) / 6 _lowerCAmelCase : Tuple = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
126
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[str] , snake_case :Any , snake_case :Optional[int]=7 , snake_case :str=3 , snake_case :Optional[int]=18 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :Optional[int]=True , snake_case :Optional[Any]=None , snake_case :Tuple=True , snake_case :Tuple=None , snake_case :str=True , snake_case :List[Any]=[0.48145466, 0.4578275, 0.40821073] , snake_case :str=[0.26862954, 0.26130258, 0.27577711] , snake_case :List[Any]=True , ): '''simple docstring''' A_ : Tuple = size if size is not None else {"height": 224, "width": 224} A_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} A_ : Tuple = parent A_ : str = batch_size A_ : Any = num_channels A_ : Tuple = image_size A_ : Tuple = min_resolution A_ : List[str] = max_resolution A_ : Dict = do_resize A_ : Any = size A_ : Optional[int] = do_center_crop A_ : str = crop_size A_ : List[str] = do_normalize A_ : Optional[int] = image_mean A_ : List[str] = image_std A_ : Union[str, Any] = do_convert_rgb def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE ( self :str , snake_case :Optional[Any]=False , snake_case :Optional[Any]=False , snake_case :Optional[Any]=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: A_ : Any = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: A_ : Tuple = [] for i in range(self.batch_size ): A_ , A_ : Union[str, Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension A_ : Any = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] if torchify: A_ : Union[str, Any] = [torch.from_numpy(snake_case ) for x in image_inputs] return image_inputs @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Any = ChineseCLIPImageProcessingTester(self , do_center_crop=snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case , "center_crop" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_convert_rgb" ) ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) A_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A_ : str = image_processing(snake_case , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A_ : int = image_processing(snake_case , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : str = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A_ : Any = image_processing(snake_case , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=snake_case ) A_ : Dict = 3 @property def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case , "center_crop" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_convert_rgb" ) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : int = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A_ : Optional[int] = image_processing(snake_case , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
300
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Tuple = tmp_path / "cache" A_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Optional[Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: A_ : List[Any] = tmp_path / "cache" A_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : int = features.copy() if features else default_expected_features A_ : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> Optional[Any]: A_ : Dict = tmp_path / "cache" A_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> List[str]: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : int = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): A_ : Optional[int] = [parquet_path] A_ : Optional[int] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Optional[int] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=("train",) ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: A_ : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Optional[int]: A_ : Optional[Any] = tmp_path / "cache" A_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Tuple: A_ : Optional[Any] = tmp_path / "cache" A_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : List[str] = features.copy() if features else default_expected_features A_ : Tuple = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : Optional[int] = ParquetDatasetReader({"train": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Union[str, Any]: if split: A_ : Any = {split: parquet_path} else: A_ : Optional[Any] = "train" A_ : str = {"train": parquet_path, "test": parquet_path} A_ : Any = tmp_path / "cache" A_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ : Dict = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> Dict: A_ : List[str] = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) A_ : Dict = pf.read() assert dataset.data.table == output_table def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> List[Any]: A_ : Tuple = str(shared_datadir / "test_image_rgb.jpg" ) A_ : int = {"image": [image_path]} A_ : Optional[Any] = Features({"image": Image()} ) A_ : Union[str, Any] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) A_ : Tuple = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features A_ : int = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Any: assert get_writer_batch_size(_lowerCAmelCase ) == expected
300
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCamelCase : Tuple = False class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A (self : Optional[Any] ): A = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) A = torch.manual_seed(0 ) A = pipe.dual_guided( prompt="""first prompt""" , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) A = VersatileDiffusionPipeline.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = generator.manual_seed(0 ) A = pipe.dual_guided( prompt="""first prompt""" , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A (self : str ): A = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = """cyberpunk 2077""" A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) A = torch.manual_seed(0 ) A = pipe.dual_guided( prompt=_lowerCAmelCase , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images A = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 A = """A painting of a squirrel eating a burger """ A = torch.manual_seed(0 ) A = pipe.text_to_image( prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 A = pipe.image_variation(_lowerCAmelCase , generator=_lowerCAmelCase , output_type="""numpy""" ).images A = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
337
'''simple docstring''' _lowerCamelCase : List[Any] = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase : str = 'TRWAGMYFPDXBNJZSQVHLCKE' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Expected string as input, found {type(UpperCAmelCase ).__name__}""" raise TypeError(UpperCAmelCase ) A = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCAmelCase ) != 9: raise ValueError(UpperCAmelCase ) try: A = int(spanish_id_clean[0:8] ) A = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = (PNDMScheduler,) _lowerCamelCase: Tuple = (('''num_inference_steps''', 50),) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,**A_ : List[Any] ) -> Union[str, Any]: A = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**A_ ) return config def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=0 ,**A_ : Optional[int] ) -> Optional[Any]: A = dict(self.forward_default_kwargs ) A = kwargs.pop('num_inference_steps' ,A_ ) A = self.dummy_sample A = 0.1 * sample A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config(**A_ ) A = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals A = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) A = scheduler_class.from_pretrained(A_ ) new_scheduler.set_timesteps(A_ ) # copy over dummy past residuals A = dummy_past_residuals[:] A = scheduler.step_prk(A_ ,A_ ,A_ ,**A_ ).prev_sample A = new_scheduler.step_prk(A_ ,A_ ,A_ ,**A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A = scheduler.step_plms(A_ ,A_ ,A_ ,**A_ ).prev_sample A = new_scheduler.step_plms(A_ ,A_ ,A_ ,**A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: pass def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[Any]=0 ,**A_ : List[str] ) -> Tuple: A = dict(self.forward_default_kwargs ) A = kwargs.pop('num_inference_steps' ,A_ ) A = self.dummy_sample A = 0.1 * sample A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config() A = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals (must be after setting timesteps) A = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) A = scheduler_class.from_pretrained(A_ ) # copy over dummy past residuals new_scheduler.set_timesteps(A_ ) # copy over dummy past residual (must be after setting timesteps) A = dummy_past_residuals[:] A = scheduler.step_prk(A_ ,A_ ,A_ ,**A_ ).prev_sample A = new_scheduler.step_prk(A_ ,A_ ,A_ ,**A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A = scheduler.step_plms(A_ ,A_ ,A_ ,**A_ ).prev_sample A = new_scheduler.step_plms(A_ ,A_ ,A_ ,**A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,**A_ : List[Any] ) -> Any: A = self.scheduler_classes[0] A = self.get_scheduler_config(**A_ ) A = scheduler_class(**A_ ) A = 10 A = self.dummy_model() A = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.prk_timesteps ): A = model(A_ ,A_ ) A = scheduler.step_prk(A_ ,A_ ,A_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): A = model(A_ ,A_ ) A = scheduler.step_plms(A_ ,A_ ,A_ ).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = dict(self.forward_default_kwargs ) A = kwargs.pop('num_inference_steps' ,A_ ) for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config() A = scheduler_class(**A_ ) A = self.dummy_sample A = 0.1 * sample if num_inference_steps is not None and hasattr(A_ ,'set_timesteps' ): scheduler.set_timesteps(A_ ) elif num_inference_steps is not None and not hasattr(A_ ,'set_timesteps' ): A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A = dummy_past_residuals[:] A = scheduler.step_prk(A_ ,0 ,A_ ,**A_ ).prev_sample A = scheduler.step_prk(A_ ,1 ,A_ ,**A_ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) A = scheduler.step_plms(A_ ,0 ,A_ ,**A_ ).prev_sample A = scheduler.step_plms(A_ ,1 ,A_ ,**A_ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def _SCREAMING_SNAKE_CASE ( self : str ) -> str: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A_ ) A = self.scheduler_classes[0] A = self.get_scheduler_config(steps_offset=1 ) A = scheduler_class(**A_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: for beta_start, beta_end in zip([0.00_01, 0.0_01] ,[0.0_02, 0.02] ): self.check_over_configs(beta_start=A_ ,beta_end=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: for t in [1, 5, 10]: self.check_over_forward(time_step=A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 A = 27 for scheduler_class in self.scheduler_classes: A = self.dummy_sample A = 0.1 * sample A = self.get_scheduler_config() A = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): A = scheduler.step_prk(A_ ,A_ ,A_ ).prev_sample def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: with self.assertRaises(A_ ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**A_ ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = self.full_loop() A = torch.sum(torch.abs(A_ ) ) A = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2 assert abs(result_mean.item() - 0.25_80 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = self.full_loop(prediction_type='v_prediction' ) A = torch.sum(torch.abs(A_ ) ) A = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1e-2 assert abs(result_mean.item() - 0.08_78 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: # We specify different beta, so that the first alpha is 0.99 A = self.full_loop(set_alpha_to_one=A_ ,beta_start=0.01 ) A = torch.sum(torch.abs(A_ ) ) A = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2 assert abs(result_mean.item() - 0.29_95 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 A = self.full_loop(set_alpha_to_one=A_ ,beta_start=0.01 ) A = torch.sum(torch.abs(A_ ) ) A = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2 assert abs(result_mean.item() - 0.24_34 ) < 1e-3
74
"""simple docstring""" import argparse import struct import unittest class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : bytes ) -> None: A = data # Initialize hash values A = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants A = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] A = self.preprocessing(self.data ) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : bytes ) -> bytes: A = B'\x80' + (B'\x00' * (63 - (len(A_ ) + 8) % 64)) A = struct.pack('>Q' ,(len(A_ ) * 8) ) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: # Convert into blocks of 64 bytes A = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A = list(struct.unpack('>16L' ,A_ ) ) # add 48 0-ed integers words += [0] * 48 A , A , A , A , A , A , A , A = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array A = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) A = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A = self.ror(A_ ,6 ) ^ self.ror(A_ ,11 ) ^ self.ror(A_ ,25 ) A = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A = self.ror(A_ ,2 ) ^ self.ror(A_ ,13 ) ^ self.ror(A_ ,22 ) A = (a & b) ^ (a & c) ^ (b & c) A = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A , A , A , A , A , A , A , A = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A = [a, b, c, d, e, f, g, h] # Modify final values A = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A = ''.join([hex(A_ )[2:].zfill(8 ) for value in self.hashes] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : int ) -> int: return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: import hashlib A = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(A_ ).hash ,hashlib.shaaaa(A_ ).hexdigest() ) def _snake_case ( ): import doctest doctest.testmod() A = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A = parser.parse_args() A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A = f.read() else: A = bytes(snake_case__ , 'utf-8' ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
74
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {"vocab_file": "vocab.json"} snake_case_ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } snake_case_ = {"mgp-str": 27} class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : List[str]="[GO]" ,lowerCamelCase__ : Union[str, Any]="[GO]" ,lowerCamelCase__ : Dict="[s]" ,lowerCamelCase__ : List[str]="[GO]" ,**lowerCamelCase__ : Any ): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,**_A ,) with open(_A ,encoding='utf-8' ) as vocab_handle: _UpperCamelCase : Optional[int] = json.load(_A ) _UpperCamelCase : Union[str, Any] = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return len(self.vocab ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return dict(self.vocab ,**self.added_tokens_encoder ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = [] for s in text: char_tokens.extend(_A ) return char_tokens def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Dict ): '''simple docstring''' return self.vocab.get(_A ,self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Tuple ): '''simple docstring''' return self.decoder.get(_A ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error('Vocabulary path ({}) should be a directory'.format(_A ) ) return _UpperCamelCase : Optional[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) return (vocab_file,)
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : Any = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
0
"""simple docstring""" lowerCamelCase_ : Union[str, Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : int = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCamelCase_ : list[bool | None] = [None] * 10_00_00_00 lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : Tuple = False def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore A_ : Optional[int] = chain(next_number(_UpperCAmelCase ) ) A_ : List[str] = number_chain while number < 10000000: A_ : List[Any] = number_chain number *= 10 return number_chain def UpperCAmelCase__ ( _UpperCAmelCase = 10000000 ): """simple docstring""" for i in range(1 , _UpperCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
286
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase_ : str = logging.get_logger(__name__) @add_end_docstrings( UpperCAmelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if self.framework == "tf": A_ : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A_ : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=snake_case_ ) else: raise ValueError('Unsupported framework' ) return masked_index def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = self.get_masked_index(snake_case_ ) A_ : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_=None , **snake_case_ ): """simple docstring""" if return_tensors is None: A_ : Any = self.framework A_ : Dict = self.tokenizer(snake_case_ , return_tensors=snake_case_ ) self.ensure_exactly_one_mask_token(snake_case_ ) return model_inputs def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Dict = self.model(**snake_case_ ) A_ : Optional[int] = model_inputs['input_ids'] return model_outputs def lowerCamelCase_ ( self , snake_case_ , snake_case_=5 , snake_case_=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: A_ : str = target_ids.shape[0] A_ : Optional[Any] = model_outputs['input_ids'][0] A_ : List[Any] = model_outputs['logits'] if self.framework == "tf": A_ : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A_ : Union[str, Any] = outputs.numpy() A_ : Optional[int] = outputs[0, masked_index, :] A_ : Optional[Any] = stable_softmax(snake_case_ , axis=-1 ) if target_ids is not None: A_ : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case_ , 0 ) , target_ids.reshape(-1 , 1 ) ) A_ : Optional[int] = tf.expand_dims(snake_case_ , 0 ) A_ : Any = tf.math.top_k(snake_case_ , k=snake_case_ ) A_ , A_ : str = topk.values.numpy(), topk.indices.numpy() else: A_ : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=snake_case_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A_ : Tuple = outputs[0, masked_index, :] A_ : List[str] = logits.softmax(dim=-1 ) if target_ids is not None: A_ : str = probs[..., target_ids] A_ , A_ : List[str] = probs.topk(snake_case_ ) A_ : List[Any] = [] A_ : int = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A_ : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A_ : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: A_ : str = target_ids[p].tolist() A_ : Union[str, Any] = p # Filter padding out: A_ : Any = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A_ : Any = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) A_ : Any = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(snake_case_ ) result.append(snake_case_ ) if single_mask: return result[0] return result def lowerCamelCase_ ( self , snake_case_ , snake_case_=None ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): A_ : List[str] = [targets] try: A_ : Optional[int] = self.tokenizer.get_vocab() except Exception: A_ : int = {} A_ : Tuple = [] for target in targets: A_ : int = vocab.get(snake_case_ , snake_case_ ) if id_ is None: A_ : Tuple = self.tokenizer( snake_case_ , add_special_tokens=snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , max_length=1 , truncation=snake_case_ , )['input_ids'] if len(snake_case_ ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue A_ : str = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) A_ : Tuple = list(set(snake_case_ ) ) if len(snake_case_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) A_ : Optional[Any] = np.array(snake_case_ ) return target_ids def lowerCamelCase_ ( self , snake_case_=None , snake_case_=None ): """simple docstring""" A_ : List[str] = {} if targets is not None: A_ : Any = self.get_target_ids(snake_case_ , snake_case_ ) A_ : Optional[Any] = target_ids if top_k is not None: A_ : int = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" A_ : List[str] = super().__call__(snake_case_ , **snake_case_ ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) == 1: return outputs[0] return outputs
286
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' a : List[Any] = "dinat" a : List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, __magic_name__=4, __magic_name__=3, __magic_name__=64, __magic_name__=[3, 4, 6, 5], __magic_name__=[2, 4, 8, 16], __magic_name__=7, __magic_name__=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]], __magic_name__=3.0, __magic_name__=True, __magic_name__=0.0, __magic_name__=0.0, __magic_name__=0.1, __magic_name__="gelu", __magic_name__=0.02, __magic_name__=1E-5, __magic_name__=0.0, __magic_name__=None, __magic_name__=None, **__magic_name__, ) -> List[str]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = patch_size UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Optional[int] = embed_dim UpperCamelCase__ : str = depths UpperCamelCase__ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = num_heads UpperCamelCase__ : List[Any] = kernel_size UpperCamelCase__ : List[Any] = dilations UpperCamelCase__ : Any = mlp_ratio UpperCamelCase__ : Dict = qkv_bias UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : Dict = attention_probs_dropout_prob UpperCamelCase__ : Any = drop_path_rate UpperCamelCase__ : Tuple = hidden_act UpperCamelCase__ : Union[str, Any] = layer_norm_eps UpperCamelCase__ : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ : str = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) UpperCamelCase__ : Optional[int] = layer_scale_init_value UpperCamelCase__ : Optional[int] = ["stem"] + [f"stage{idx}" for idx in range(1, len(_SCREAMING_SNAKE_CASE ) + 1 )] UpperCamelCase__ : Any = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE, out_indices=_SCREAMING_SNAKE_CASE, stage_names=self.stage_names )
364
from collections import deque def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> str: UpperCamelCase__ : Optional[int] = len(__UpperCAmelCase ) UpperCamelCase__ : str = deque() UpperCamelCase__ : int = [False for _ in range(__UpperCAmelCase )] UpperCamelCase__ : Optional[int] = [-1 for _ in range(__UpperCAmelCase )] UpperCamelCase__ : str = index_of[:] def strong_connect(__UpperCAmelCase: Optional[int] , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Union[str, Any] ): UpperCamelCase__ : str = index # the number when this node is seen UpperCamelCase__ : Any = index # lowest rank node reachable from here index += 1 stack.append(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = True for w in g[v]: if index_of[w] == -1: UpperCamelCase__ : str = strong_connect(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCamelCase__ : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCamelCase__ : Tuple = [] UpperCamelCase__ : str = stack.pop() UpperCamelCase__ : int = False component.append(__UpperCAmelCase ) while w != v: UpperCamelCase__ : int = stack.pop() UpperCamelCase__ : Optional[Any] = False component.append(__UpperCAmelCase ) components.append(__UpperCAmelCase ) return index UpperCamelCase__ : Optional[Any] = [] for v in range(__UpperCAmelCase ): if index_of[v] == -1: strong_connect(__UpperCAmelCase , 0 , __UpperCAmelCase ) return components def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: List[Any] ) -> str: UpperCamelCase__ : Dict = [[] for _ in range(__UpperCAmelCase )] for u, v in edges: g[u].append(__UpperCAmelCase ) return g if __name__ == "__main__": # Test UpperCAmelCase_ = 7 UpperCAmelCase_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase_ = [(u, v) for u, v in zip(source, target)] UpperCAmelCase_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
247
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""GLPNFeatureExtractor"""] lowerCAmelCase = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
126
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
126
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = emb.weight.shape A__ = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) A__ = emb.weight.data return lin_layer def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__="facebook/mbart-large-en-ro" , UpperCamelCase__=False , UpperCamelCase__=False ): """simple docstring""" A__ = torch.load(__UpperCAmelCase , map_location='cpu' )['''model'''] remove_ignore_keys_(__UpperCAmelCase ) A__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] A__ = MBartConfig.from_pretrained(__UpperCAmelCase , vocab_size=__UpperCAmelCase ) if mbart_aa and finetuned: A__ = '''relu''' A__ = state_dict['''decoder.embed_tokens.weight'''] A__ = MBartForConditionalGeneration(__UpperCAmelCase ) model.model.load_state_dict(__UpperCAmelCase ) if finetuned: A__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __lowerCamelCase = parser.parse_args() __lowerCamelCase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
352
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Optional[int]: A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def snake_case__ ( self ) -> int: A__ = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() A__ = [sys.executable] + distributed_args execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() )
154
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __a = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): lowercase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowercase : Optional[int] = torch.manual_seed(0 ) lowercase : int = pipe.dual_guided( prompt='''first prompt''' , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = VersatileDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = generator.manual_seed(0 ) lowercase : Tuple = pipe.dual_guided( prompt='''first prompt''' , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCamelCase ( self ): lowercase : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : str = '''cyberpunk 2077''' lowercase : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowercase : Optional[int] = torch.manual_seed(0 ) lowercase : List[Any] = pipe.dual_guided( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowercase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase : Optional[int] = '''A painting of a squirrel eating a burger ''' lowercase : int = torch.manual_seed(0 ) lowercase : int = pipe.text_to_image( prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowercase : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : List[str] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase : Tuple = pipe.image_variation(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='''numpy''' ).images lowercase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
337
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __a = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Optional[int]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(_UpperCamelCase ), version.parse(_UpperCamelCase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def __lowercase ( _UpperCamelCase, _UpperCamelCase = None ) ->None: """simple docstring""" lowercase : List[Any] = f"""\n{hint}""" if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''', _UpperCamelCase ): lowercase , lowercase , lowercase : Optional[Any] = requirement, None, None else: lowercase : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''', _UpperCamelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f""" got {requirement}""" ) lowercase , lowercase : str = match[0] lowercase : Tuple = want_full.split(''',''' ) # there could be multiple requirements lowercase : List[Any] = {} for w in want_range: lowercase : str = re.findall(R'''^([\s!=<>]{1,2})(.+)''', _UpperCamelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f""" but got {requirement}""" ) lowercase , lowercase : Optional[int] = match[0] lowercase : Dict = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": lowercase : int = '''.'''.join([str(_UpperCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) return # check if any version is installed try: lowercase : List[str] = importlib.metadata.version(_UpperCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" lowercase : Optional[int] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(_UpperCamelCase, _UpperCamelCase )
337
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)]) def snake_case_ ( self , a): lowercase__ : Union[str, Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a) lowercase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , a) def snake_case_ ( self): lowercase__ : int = AutoConfig.from_pretrained('gpt2') lowercase__ : List[Any] = GenerationConfig.from_model_config(a) lowercase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def snake_case_ ( self): lowercase__ : List[str] = GenerationConfig() lowercase__ : Optional[Any] = { 'max_new_tokens': 1024, 'foo': 'bar', } lowercase__ : Optional[Any] = copy.deepcopy(a) lowercase__ : Optional[Any] = generation_config.update(**a) # update_kwargs was not modified (no side effects) self.assertEqual(a , a) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'}) def snake_case_ ( self): lowercase__ : Tuple = GenerationConfig() lowercase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config') as tmp_dir: generation_config.save_pretrained(a) lowercase__ : List[str] = GenerationConfig.from_pretrained(a) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar') lowercase__ : Optional[Any] = GenerationConfig.from_model_config(a) assert not hasattr(a , 'foo') # no new kwargs should be initialized if from config def snake_case_ ( self): lowercase__ : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , a) self.assertEqual(default_config.num_beams , 1) lowercase__ : str = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , a) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a) lowercase__ : Optional[Any] = GenerationConfig.from_pretrained(a , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , a) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): @classmethod def snake_case_ ( cls): lowercase__ : int = TOKEN HfFolder.save_token(a) @classmethod def snake_case_ ( cls): try: delete_repo(token=cls._token , repo_id='test-generation-config') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org') except HTTPError: pass def snake_case_ ( self): lowercase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token) lowercase__ : str = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a)) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token) lowercase__ : Any = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a)) def snake_case_ ( self): lowercase__ : Dict = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token) lowercase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token) lowercase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a))
356
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } snake_case_ = { '''gpt2''': 1_024, '''gpt2-medium''': 1_024, '''gpt2-large''': 1_024, '''gpt2-xl''': 1_024, '''distilgpt2''': 1_024, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["""input_ids""", """attention_mask"""] __lowerCamelCase : str = GPTaTokenizer def __init__( self , a=None , a=None , a=None , a="<|endoftext|>" , a="<|endoftext|>" , a="<|endoftext|>" , a=False , **a , ): super().__init__( a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , add_prefix_space=a , **a , ) lowercase__ : int = kwargs.pop('add_bos_token' , a) lowercase__ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , a) != add_prefix_space: lowercase__ : Optional[Any] = getattr(a , pre_tok_state.pop('type')) lowercase__ : List[Any] = add_prefix_space lowercase__ : str = pre_tok_class(**a) lowercase__ : Tuple = add_prefix_space def snake_case_ ( self , *a , **a): lowercase__ : Tuple = kwargs.get('is_split_into_words' , a) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a , **a) def snake_case_ ( self , *a , **a): lowercase__ : Optional[Any] = kwargs.get('is_split_into_words' , a) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a , **a) def snake_case_ ( self , a , a = None): lowercase__ : Any = self._tokenizer.model.save(a , name=a) return tuple(a) def snake_case_ ( self , a): lowercase__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: lowercase__ : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
216
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> int: if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _a : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Optional[int] = 0 _a : str = 2 while digits < n: index += 1 _a : Optional[int] = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def __lowerCamelCase ( lowerCAmelCase_ = 1000 ) -> int: return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
89
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } _UpperCAmelCase : Any = { "camembert-base": 512, } _UpperCAmelCase : List[Any] = "▁" class __lowerCAmelCase ( lowerCAmelCase): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Dict="<s>" , _lowerCAmelCase: Union[str, Any]="</s>" , _lowerCAmelCase: Optional[int]="</s>" , _lowerCAmelCase: List[Any]="<s>" , _lowerCAmelCase: Tuple="<unk>" , _lowerCAmelCase: Union[str, Any]="<pad>" , _lowerCAmelCase: str="<mask>" , _lowerCAmelCase: int=["<s>NOTUSED", "</s>NOTUSED"] , _lowerCAmelCase: Optional[Dict[str, Any]] = None , **_lowerCAmelCase: Any , ): # Mask token behave like a normal word, i.e. include the space before it lowercase :Dict = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token lowercase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase :Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowercase :Tuple = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowercase :int = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} lowercase :Tuple = len(self.fairseq_tokens_to_ids ) lowercase :int = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowercase :Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :List[Any] = [self.cls_token_id] lowercase :List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ): lowercase :Any = [self.sep_token_id] lowercase :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Any = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] ): lowercase :Tuple = [] lowercase :Any = "" lowercase :str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase :Optional[int] = True lowercase :Any = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase :str = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self: Dict ): lowercase :int = self.__dict__.copy() lowercase :List[str] = None return state def __setstate__( self: Optional[Any] , _lowerCAmelCase: Dict ): lowercase :int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase :Optional[int] = {} lowercase :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowercase :Any = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: lowercase :Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
236
0
import copy import re class UpperCAmelCase_ : lowerCamelCase__ = """hp""" lowerCamelCase__ = {} lowerCamelCase__ = None @classmethod def snake_case__ ( cls, __a, __a): '''simple docstring''' _lowerCAmelCase : str = prefix _lowerCAmelCase : Optional[int] = defaults cls.build_naming_info() @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' if len(lowerCAmelCase__) == 0: return "" _lowerCAmelCase : str = None if any(char.isdigit() for char in word): raise Exception(f"Parameters should not contain numbers: \'{word}\' contains a number") if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): _lowerCAmelCase : Dict = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _lowerCAmelCase : Union[str, Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__a): _lowerCAmelCase : List[str] = "" while integer != 0: _lowerCAmelCase : Any = chr(ord("A") + integer % 10) + s integer //= 10 return s _lowerCAmelCase : Dict = 0 while True: _lowerCAmelCase : int = word + "#" + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: _lowerCAmelCase : Dict = sword break _lowerCAmelCase : int = short_word _lowerCAmelCase : int = word return short_word @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = param_name.split("_") _lowerCAmelCase : List[str] = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _lowerCAmelCase : Dict = ["", "_"] for separator in separators: _lowerCAmelCase : str = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: _lowerCAmelCase : Optional[Any] = shortname _lowerCAmelCase : List[str] = param_name return shortname return param_name @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : int = short_name _lowerCAmelCase : List[Any] = param_name @classmethod def snake_case__ ( cls): '''simple docstring''' if cls.NAMING_INFO is not None: return _lowerCAmelCase : Tuple = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } _lowerCAmelCase : Optional[int] = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : List[str] = info @classmethod def snake_case__ ( cls, __a): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None _lowerCAmelCase : str = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}") if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _lowerCAmelCase : List[Any] = cls.NAMING_INFO["short_param"][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): _lowerCAmelCase : List[str] = 1 if v else 0 _lowerCAmelCase : int = "" if isinstance(lowerCAmelCase__, (int, float)) else "-" _lowerCAmelCase : Dict = f"{key}{sep}{v}" name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def snake_case__ ( cls, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = repr[len(cls.PREFIX) + 1 :] if repr == "": _lowerCAmelCase : Optional[int] = [] else: _lowerCAmelCase : List[str] = repr.split("_") _lowerCAmelCase : str = {} for value in values: if "-" in value: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = value.split("-") else: _lowerCAmelCase : Tuple = re.sub("[0-9.]", "", lowerCAmelCase__) _lowerCAmelCase : Union[str, Any] = float(re.sub("[^0-9.]", "", lowerCAmelCase__)) _lowerCAmelCase : Any = cls.NAMING_INFO["reverse_short_param"][p_k] _lowerCAmelCase : Optional[Any] = p_v for k in cls.DEFAULTS: if k not in parameters: _lowerCAmelCase : List[Any] = cls.DEFAULTS[k] return parameters
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __lowerCamelCase : str = random.Random() if is_torch_available(): import torch def A_ ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: if rng is None: UpperCamelCase : Optional[int] = global_rng UpperCamelCase : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A__ ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=1 , A_=0.0 , A_=1_6000 , A_=True , A_=True , ): '''simple docstring''' UpperCamelCase : Tuple = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : List[Any] = min_seq_length UpperCamelCase : List[str] = max_seq_length UpperCamelCase : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Union[str, Any] = feature_size UpperCamelCase : List[str] = padding_value UpperCamelCase : Optional[Any] = sampling_rate UpperCamelCase : List[str] = return_attention_mask UpperCamelCase : List[Any] = do_normalize def __UpperCamelCase( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase( self , A_=False , A_=False ): '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Dict = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase : Union[str, Any] = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :Optional[Any] = ASTFeatureExtractor def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = ASTFeatureExtractionTester(self ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : Dict = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched UpperCamelCase : Any = feat_extract(A_ , padding=A_ , return_tensors="np" ).input_values UpperCamelCase : Any = feat_extract(A_ , padding=A_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : int = np.asarray(A_ ) UpperCamelCase : Any = feat_extract(A_ , return_tensors="np" ).input_values UpperCamelCase : List[str] = feat_extract(A_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) @require_torch def __UpperCamelCase( self ): '''simple docstring''' import torch UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : int = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : List[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : List[str] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCamelCase( self , A_ ): '''simple docstring''' from datasets import load_dataset UpperCamelCase : Dict = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase : Any = ds.sort("id" ).select(range(A_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on UpperCamelCase : List[Any] = self._load_datasamples(1 ) UpperCamelCase : Tuple = ASTFeatureExtractor() UpperCamelCase : str = feature_extractor(A_ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A_ , atol=1e-4 ) )
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ ( A_ ): lowercase__ = '''megatron-bert''' def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=29_056 , snake_case_ : int=1_024 , snake_case_ : Optional[int]=24 , snake_case_ : str=16 , snake_case_ : str=4_096 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=512 , snake_case_ : Optional[int]=2 , snake_case_ : Dict=0.02 , snake_case_ : Optional[Any]=1e-12 , snake_case_ : Optional[Any]=0 , snake_case_ : int="absolute" , snake_case_ : List[str]=True , **snake_case_ : Tuple , ) -> int: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , **snake_case_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache
247
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : int = 4 ): __lowercase = abs(SCREAMING_SNAKE_CASE_ ) or 4 return [[1 + x + y * row_size for x in range(SCREAMING_SNAKE_CASE_ )] for y in range(SCREAMING_SNAKE_CASE_ )] def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] ): return reverse_row(transpose(SCREAMING_SNAKE_CASE_ ) ) # OR.. transpose(reverse_column(matrix)) def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] ): return reverse_row(reverse_column(SCREAMING_SNAKE_CASE_ ) ) # OR.. reverse_column(reverse_row(matrix)) def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] ): return reverse_column(transpose(SCREAMING_SNAKE_CASE_ ) ) # OR.. transpose(reverse_row(matrix)) def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] ): __lowercase = [list(SCREAMING_SNAKE_CASE_ ) for x in zip(*SCREAMING_SNAKE_CASE_ )] return matrix def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] ): __lowercase = matrix[::-1] return matrix def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] ): __lowercase = [x[::-1] for x in matrix] return matrix def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] ): for i in matrix: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) _SCREAMING_SNAKE_CASE = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) _SCREAMING_SNAKE_CASE = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
364
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''google/electra-small-generator''': 5_1_2, '''google/electra-base-generator''': 5_1_2, '''google/electra-large-generator''': 5_1_2, '''google/electra-small-discriminator''': 5_1_2, '''google/electra-base-discriminator''': 5_1_2, '''google/electra-large-discriminator''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = VOCAB_FILES_NAMES a : Dict = PRETRAINED_VOCAB_FILES_MAP a : int = PRETRAINED_INIT_CONFIGURATION a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = ElectraTokenizer def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase="[UNK]" ,_lowerCamelCase="[SEP]" ,_lowerCamelCase="[PAD]" ,_lowerCamelCase="[CLS]" ,_lowerCamelCase="[MASK]" ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> List[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,do_lower_case=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,tokenize_chinese_chars=_lowerCamelCase ,strip_accents=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_lowerCamelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCamelCase ,normalizer_state.pop('''type''' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCamelCase ) __lowercase = do_lower_case def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> str: '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase )
217
0
from __future__ import annotations from math import pi, sqrt def __UpperCamelCase ( _A : float , _A : float ) ->tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
154
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : int = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
1
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' UpperCAmelCase__ = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' UpperCAmelCase__ = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' UpperCAmelCase__ = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowercase ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def lowercase ( self : Any , _lowerCamelCase : Union[str, Any] ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) _snake_case = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: _snake_case = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _snake_case = self.config_name.upper() else: raise KeyError( f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer _snake_case = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _snake_case = score.BleurtScorer(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): _snake_case = self.scorer.score(references=_SCREAMING_SNAKE_CASE , candidates=_SCREAMING_SNAKE_CASE ) return {"scores": scores}
368
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
40
0
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : float ) -> Optional[Any]: '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase_ ( snake_case_ : float ) -> Tuple: '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
229
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowercase__ =['text', 'image', 'audio'] def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): __a : Optional[int] = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): inputs.append(create_inputs(lowerCAmelCase__ ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def __UpperCamelCase ( lowerCAmelCase__ : List ): __a : List[str] = [] for output in outputs: if isinstance(lowerCAmelCase__ , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(lowerCAmelCase__ , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(lowerCAmelCase__ , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class UpperCamelCase__ : def lowerCAmelCase (self : Any ): self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) __a : Any = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __a : Optional[int] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase (self : List[Any] ): __a : Union[str, Any] = create_inputs(self.tool.inputs ) __a : List[Any] = self.tool(*snake_case_ ) # There is a single output if len(self.tool.outputs ) == 1: __a : Tuple = [outputs] self.assertListEqual(output_types(snake_case_ ) , self.tool.outputs ) def lowerCAmelCase (self : List[Any] ): self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def lowerCAmelCase (self : Any ): __a : Any = create_inputs(self.tool.inputs ) __a : Union[str, Any] = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __a : Tuple = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case_ , self.tool.outputs ): __a : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case_ , snake_case_ ) ) def lowerCAmelCase (self : Optional[int] ): __a : Any = create_inputs(self.tool.inputs ) __a : Dict = [] for _input, input_type in zip(snake_case_ , self.tool.inputs ): if isinstance(snake_case_ , snake_case_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __a : Optional[Any] = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __a : Dict = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) )
216
0
'''simple docstring''' from math import sqrt def _A ( _lowerCAmelCase = 1_000_000 ): """simple docstring""" __lowercase =0 __lowercase =0 __lowercase =42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"{solution() = }")
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
48
1
'''simple docstring''' from __future__ import annotations __SCREAMING_SNAKE_CASE : Dict = """#""" class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] ): _UpperCAmelCase : dict = {} def _A ( self : int , A : str ): _UpperCAmelCase : Optional[Any] = self._trie for char in text: if char not in trie: _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = trie[char] _UpperCAmelCase : Tuple = True def _A ( self : Optional[Any] , A : str ): _UpperCAmelCase : str = self._trie for char in prefix: if char in trie: _UpperCAmelCase : Optional[int] = trie[char] else: return [] return self._elements(A ) def _A ( self : str , A : dict ): _UpperCAmelCase : Tuple = [] for c, v in d.items(): _UpperCAmelCase : List[Any] = [" "] if c == END else [(c + s) for s in self._elements(A )] result.extend(A ) return tuple(A ) __SCREAMING_SNAKE_CASE : Any = Trie() __SCREAMING_SNAKE_CASE : Optional[Any] = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def UpperCamelCase_ ( _UpperCAmelCase : str ) -> tuple: """simple docstring""" _UpperCAmelCase : List[Any] = trie.find_word(_UpperCAmelCase ) return tuple(string + word for word in suffixes ) def UpperCamelCase_ ( ) -> None: """simple docstring""" print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[Any] = logging.get_logger(__name__) __lowercase : Dict = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class _lowercase ( __a ): """simple docstring""" lowercase__ = """falcon""" lowercase__ = ["""past_key_values"""] def __init__( self : str , UpperCamelCase__ : List[str]=65024 , UpperCamelCase__ : Optional[int]=4544 , UpperCamelCase__ : str=32 , UpperCamelCase__ : Any=71 , UpperCamelCase__ : int=1E-5 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : str=False , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Optional[Any]=11 , UpperCamelCase__ : List[Any]=11 , **UpperCamelCase__ : Dict , ) -> Dict: '''simple docstring''' __UpperCamelCase =vocab_size # Backward compatibility with n_embed kwarg __UpperCamelCase =kwargs.pop('''n_embed''' , _lowercase ) __UpperCamelCase =hidden_size if n_embed is None else n_embed __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =layer_norm_epsilon __UpperCamelCase =initializer_range __UpperCamelCase =use_cache __UpperCamelCase =hidden_dropout __UpperCamelCase =attention_dropout __UpperCamelCase =bos_token_id __UpperCamelCase =eos_token_id __UpperCamelCase =num_attention_heads if num_kv_heads is None else num_kv_heads __UpperCamelCase =alibi __UpperCamelCase =new_decoder_architecture __UpperCamelCase =multi_query # Ignored when new_decoder_architecture is True __UpperCamelCase =parallel_attn __UpperCamelCase =bias super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return not self.alibi
366
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = LongformerTokenizer lowercase__ = True lowercase__ = LongformerTokenizerFast lowercase__ = True def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase ={'''unk_token''': '''<unk>'''} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] , **UpperCamelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , **UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase ='''lower newer''' __UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='''lower newer''' __UpperCamelCase =['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokens + [tokenizer.unk_token] __UpperCamelCase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCamelCase =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() __UpperCamelCase ='''Encode this sequence.''' __UpperCamelCase =tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens __UpperCamelCase ='''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space __UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) __UpperCamelCase ='''Encode <mask> sequence''' __UpperCamelCase ='''Encode <mask>sequence''' __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase ='''A, <mask> AllenNLP sentence.''' __UpperCamelCase =tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) __UpperCamelCase =tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase =f"""{text_of_1_token} {text_of_1_token}""" __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
85
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowercase ( A__ ): """simple docstring""" _a = 'trajectory_transformer' _a = ['past_key_values'] _a = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCamelCase_=100 , UpperCamelCase_=5 , UpperCamelCase_=1 , UpperCamelCase_=1 , UpperCamelCase_=249 , UpperCamelCase_=6 , UpperCamelCase_=17 , UpperCamelCase_=25 , UpperCamelCase_=4 , UpperCamelCase_=4 , UpperCamelCase_=128 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0006 , UpperCamelCase_=512 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-12 , UpperCamelCase_=1 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=50256 , UpperCamelCase_=50256 , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :int = vocab_size UpperCamelCase__ :str = action_weight UpperCamelCase__ :Dict = reward_weight UpperCamelCase__ :Optional[int] = value_weight UpperCamelCase__ :List[Any] = max_position_embeddings UpperCamelCase__ :int = block_size UpperCamelCase__ :Optional[Any] = action_dim UpperCamelCase__ :Union[str, Any] = observation_dim UpperCamelCase__ :int = transition_dim UpperCamelCase__ :int = learning_rate UpperCamelCase__ :int = n_layer UpperCamelCase__ :int = n_head UpperCamelCase__ :List[Any] = n_embd UpperCamelCase__ :Optional[int] = embd_pdrop UpperCamelCase__ :Dict = attn_pdrop UpperCamelCase__ :List[str] = resid_pdrop UpperCamelCase__ :Optional[Any] = initializer_range UpperCamelCase__ :Any = layer_norm_eps UpperCamelCase__ :Optional[int] = kaiming_initializer_range UpperCamelCase__ :Dict = use_cache super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
97
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Tuple = """beit""" def __init__( self : List[Any] , UpperCamelCase__ : List[str]=8_1_9_2 , UpperCamelCase__ : Dict=7_6_8 , UpperCamelCase__ : List[str]=1_2 , UpperCamelCase__ : Union[str, Any]=1_2 , UpperCamelCase__ : Dict=3_0_7_2 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Optional[Any]=1e-12 , UpperCamelCase__ : str=2_2_4 , UpperCamelCase__ : str=1_6 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Optional[Any]=[3, 5, 7, 1_1] , UpperCamelCase__ : Optional[Any]=[1, 2, 3, 6] , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Tuple=0.4 , UpperCamelCase__ : Optional[Any]=2_5_6 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=2_5_5 , **UpperCamelCase__ : Optional[int] , )-> int: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: str = vocab_size __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: str = num_hidden_layers __lowerCAmelCase: Tuple = num_attention_heads __lowerCAmelCase: Union[str, Any] = intermediate_size __lowerCAmelCase: List[Any] = hidden_act __lowerCAmelCase: Optional[Any] = hidden_dropout_prob __lowerCAmelCase: List[Any] = attention_probs_dropout_prob __lowerCAmelCase: str = initializer_range __lowerCAmelCase: Optional[Any] = layer_norm_eps __lowerCAmelCase: Any = image_size __lowerCAmelCase: Any = patch_size __lowerCAmelCase: Union[str, Any] = num_channels __lowerCAmelCase: Tuple = use_mask_token __lowerCAmelCase: Optional[Any] = use_absolute_position_embeddings __lowerCAmelCase: List[Any] = use_relative_position_bias __lowerCAmelCase: Optional[Any] = use_shared_relative_position_bias __lowerCAmelCase: List[str] = layer_scale_init_value __lowerCAmelCase: str = drop_path_rate __lowerCAmelCase: str = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase: Optional[Any] = out_indices __lowerCAmelCase: Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase: List[str] = use_auxiliary_head __lowerCAmelCase: Union[str, Any] = auxiliary_loss_weight __lowerCAmelCase: Optional[int] = auxiliary_channels __lowerCAmelCase: Dict = auxiliary_num_convs __lowerCAmelCase: List[Any] = auxiliary_concat_input __lowerCAmelCase: str = semantic_loss_ignore_index class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Optional[Any] = version.parse("""1.11""" ) @property def lowercase_ ( self : str)-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def lowercase_ ( self : Any)-> float: '''simple docstring''' return 1e-4
217
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a :Optional[int] = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase_) class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , **_a ) -> str: """simple docstring""" super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ) -> Any: """simple docstring""" return super().__call__(_a , **_a ) def _a ( self , **_a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE__ : Optional[Any] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE__ : str = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _a ( self , _a , _a=None , _a="This is a sound of {}." ) -> List[str]: """simple docstring""" if isinstance(_a , _a ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png SCREAMING_SNAKE_CASE__ : Tuple = requests.get(_a ).content else: with open(_a , """rb""" ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f.read() if isinstance(_a , _a ): SCREAMING_SNAKE_CASE__ : Any = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) SCREAMING_SNAKE_CASE__ : Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Any = candidate_labels SCREAMING_SNAKE_CASE__ : int = [hypothesis_template.format(_a ) for x in candidate_labels] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = [text_inputs] return inputs def _a ( self , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = model_inputs.pop("""candidate_labels""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _a ): SCREAMING_SNAKE_CASE__ : Optional[Any] = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE__ : Union[str, Any] = text_inputs[0][0] SCREAMING_SNAKE_CASE__ : int = self.model(**_a , **_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _a ( self , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = model_outputs.pop("""candidate_labels""" ) SCREAMING_SNAKE_CASE__ : Any = model_outputs["""logits"""][0] if self.framework == "pt": SCREAMING_SNAKE_CASE__ : Dict = logits.softmax(dim=0 ) SCREAMING_SNAKE_CASE__ : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
56
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a :List[str] = logging.get_logger(__name__) a :Union[str, Any] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = """audio-spectrogram-transformer""" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-1_2 , _a=16 , _a=True , _a=10 , _a=10 , _a=1_024 , _a=128 , **_a , ) -> List[Any]: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : Dict = qkv_bias SCREAMING_SNAKE_CASE__ : Any = frequency_stride SCREAMING_SNAKE_CASE__ : int = time_stride SCREAMING_SNAKE_CASE__ : int = max_length SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_mel_bins
56
1
"""simple docstring""" _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Tuple, UpperCamelCase_ : str) -> Any: '''simple docstring''' __lowercase = [False] * len(UpperCamelCase_) __lowercase = [s] __lowercase = True while queue: __lowercase = queue.pop(0) for ind in range(len(graph[u])): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCamelCase_) __lowercase = True __lowercase = u return visited[t] def _A ( UpperCamelCase_ : int, UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' __lowercase = [-1] * (len(UpperCamelCase_)) __lowercase = 0 __lowercase = [] __lowercase = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_): __lowercase = float("Inf") __lowercase = sink while s != source: # Find the minimum value in select path __lowercase = min(UpperCamelCase_, graph[parent[s]][s]) __lowercase = parent[s] max_flow += path_flow __lowercase = sink while v != source: __lowercase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase = parent[v] for i in range(len(UpperCamelCase_)): for j in range(len(graph[0])): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j)) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
17
"""simple docstring""" from __future__ import annotations class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : int = 0): a : Tuple = key def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__UpperCAmelCase) ^ key) for ch in content] def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__UpperCAmelCase) ^ key) for ch in content] def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a : Any = "" for ch in content: ans += chr(ord(__UpperCAmelCase) ^ key) return ans def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a : str = "" for ch in content: ans += chr(ord(__UpperCAmelCase) ^ key) return ans def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) try: with open(__UpperCAmelCase) as fin, open("encrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__UpperCAmelCase , __UpperCAmelCase)) except OSError: return False return True def __snake_case ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) try: with open(__UpperCAmelCase) as fin, open("decrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__UpperCAmelCase , __UpperCAmelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
40
0
"""simple docstring""" import enum import shutil import sys _lowercase ,_lowercase : Tuple = shutil.get_terminal_size() _lowercase : List[str] = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class _UpperCAmelCase ( enum.Enum ): a__ : Optional[Any] = 0 a__ : str = 1 def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any]="" ): sys.stdout.write(str(snake_case_ ) + end ) sys.stdout.flush() def lowercase__ ( snake_case_ :List[str] , snake_case_ :Union[str, Any] , snake_case_ :Optional[Any]="" ): forceWrite(F'''\u001b[{color}m{content}\u001b[0m''' , snake_case_ ) def lowercase__ ( ): forceWrite('''\r''' ) def lowercase__ ( snake_case_ :int , snake_case_ :str ): forceWrite(F'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def lowercase__ ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def lowercase__ ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
86
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : Tuple = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } _lowercase : str = {'allegro/herbert-base-cased': 5_14} _lowercase : Tuple = {} class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_INIT_CONFIGURATION a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = HerbertTokenizer def __init__( self : List[Any] , _lowercase : Optional[int]=None , _lowercase : int=None , _lowercase : Tuple=None , _lowercase : str="<s>" , _lowercase : List[str]="<unk>" , _lowercase : int="<pad>" , _lowercase : str="<mask>" , _lowercase : List[Any]="</s>" , **_lowercase : List[Any] , ): super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sep_token=_lowercase , **_lowercase , ) def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
86
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: lowerCamelCase : List[str] = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = val def A ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCamelCase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCamelCase : Optional[int] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) lowerCamelCase : Optional[int] = value else: lowerCamelCase : List[Any] = value return new_state_dict def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> List[str]: lowerCamelCase : int = "" if is_panoptic: lowerCamelCase : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase : List[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowerCamelCase : Any = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase : List[Any] = in_proj_weight[:256, :] lowerCamelCase : int = in_proj_bias[:256] lowerCamelCase : Optional[int] = in_proj_weight[256:512, :] lowerCamelCase : int = in_proj_bias[256:512] lowerCamelCase : Any = in_proj_weight[-256:, :] lowerCamelCase : Dict = in_proj_bias[-256:] def A ( ) -> List[str]: lowerCamelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : int = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: lowerCamelCase : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCamelCase : str = "resnet101" if "dc5" in model_name: lowerCamelCase : int = True lowerCamelCase : int = "panoptic" in model_name if is_panoptic: lowerCamelCase : List[str] = 250 else: lowerCamelCase : int = 91 lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : Optional[Any] = "coco-detection-id2label.json" lowerCamelCase : Dict = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) ) lowerCamelCase : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Optional[Any] = idalabel lowerCamelCase : str = {v: k for k, v in idalabel.items()} # load image processor lowerCamelCase : Tuple = "coco_panoptic" if is_panoptic else "coco_detection" lowerCamelCase : List[str] = ConditionalDetrImageProcessor(format=_SCREAMING_SNAKE_CASE ) # prepare image lowerCamelCase : List[str] = prepare_img() lowerCamelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors="pt" ) lowerCamelCase : int = encoding["pixel_values"] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub lowerCamelCase : Tuple = torch.hub.load("DeppMeng/ConditionalDETR" ,_SCREAMING_SNAKE_CASE ,pretrained=_SCREAMING_SNAKE_CASE ).eval() lowerCamelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCamelCase : Optional[Any] = "conditional_detr." + src rename_key(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ,is_panoptic=_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase : Optional[int] = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): lowerCamelCase : Dict = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase : Optional[int] = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: lowerCamelCase : str = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowerCamelCase : Dict = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = val # finally, create HuggingFace model and load state dict lowerCamelCase : List[str] = ConditionalDetrForSegmentation(_SCREAMING_SNAKE_CASE ) if is_panoptic else ConditionalDetrForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() model.push_to_hub(repo_id=_SCREAMING_SNAKE_CASE ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion lowerCamelCase : Any = conditional_detr(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1e-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
48
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A ( _SCREAMING_SNAKE_CASE ) -> tuple: return (data["data"], data["target"]) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> np.ndarray: lowerCamelCase : List[str] = XGBRegressor(verbosity=0 ,random_state=42 ) xgb.fit(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Predict target for test data lowerCamelCase : List[Any] = xgb.predict(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = predictions.reshape(len(_SCREAMING_SNAKE_CASE ) ,1 ) return predictions def A ( ) -> None: lowerCamelCase : Dict = fetch_california_housing() lowerCamelCase , lowerCamelCase : Tuple = data_handling(_SCREAMING_SNAKE_CASE ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = train_test_split( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,test_size=0.25 ,random_state=1 ) lowerCamelCase : Any = xgboost(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )}''' ) print(f'''Mean Square Error : {mean_squared_error(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
48
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp snake_case_ : Optional[int] = 5 snake_case_ : str = 10 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ (__snake_case , unittest.TestCase ): __lowerCamelCase : List[Any] = SpeechaTextTokenizer __lowerCamelCase : Optional[int] = False __lowerCamelCase : Union[str, Any] = True def snake_case_ ( self): super().setUp() lowercase__ : List[Any] = sp.SentencePieceProcessor() spm_model.Load(a) lowercase__ : Optional[Any] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(a))] lowercase__ : Optional[int] = dict(zip(a , range(len(a)))) lowercase__ : Dict = Path(self.tmpdirname) save_json(a , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a , save_dir / VOCAB_FILES_NAMES['spm_file']) lowercase__ : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self): lowercase__ : Union[str, Any] = '<pad>' lowercase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a) , a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a) , a) def snake_case_ ( self): lowercase__ : List[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(a) , 1001) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1001) def snake_case_ ( self): lowercase__ : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) lowercase__ : Tuple = tokenizer.tokenize('This is a test') self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(a) , [289, 50, 14, 174, 386] , ) lowercase__ : str = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( a , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowercase__ : Tuple = tokenizer.convert_tokens_to_ids(a) self.assertListEqual(a , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8]) lowercase__ : Dict = tokenizer.convert_ids_to_tokens(a) self.assertListEqual( a , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def snake_case_ ( self): # fmt: off lowercase__ : Any = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): __lowerCamelCase : int = """valhalla/s2t_mustc_multilinguial_medium""" __lowerCamelCase : str = """C'est trop cool""" __lowerCamelCase : Tuple = """Esto es genial""" @classmethod def snake_case_ ( cls): lowercase__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def snake_case_ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def snake_case_ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_0000) def snake_case_ ( self): self.assertIn(a , self.tokenizer.all_special_ids) lowercase__ : Tuple = [ES_CODE, 4, 1601, 47, 7647, 2] lowercase__ : Union[str, Any] = self.tokenizer.decode(a , skip_special_tokens=a) lowercase__ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a) self.assertEqual(a , a) self.assertNotIn(self.tokenizer.eos_token , a) def snake_case_ ( self): lowercase__ : Any = 'fr' lowercase__ : Union[str, Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , a) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def snake_case_ ( self): lowercase__ : List[str] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) lowercase__ : Any = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
365
import math import sys def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowercase__ : Tuple = [-1] * (number + 1) lowercase__ : Tuple = 0 for i in range(1 , number + 1 ): lowercase__ : Tuple = sys.maxsize lowercase__ : str = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): lowercase__ : List[Any] = 1 + answers[i - (j**2)] lowercase__ : str = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
216
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) lowercase_ = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: lowercase_ = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowercase_ = Counter() for tk_ids in data: counter.update(tk_ids) lowercase_ = [0] * args.vocab_size for k, v in counter.items(): lowercase_ = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
58
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case_ = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
85
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : Dict = 'src/diffusers' _lowerCamelCase : Dict = '.' # This is to make sure the diffusers module imported is the one in the repo. _lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCamelCase : Tuple = spec.loader.load_module() def __a ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCAmelCase ) is not None def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = object_name.split(""".""" ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , f"""{module}.py""" ) ): i += 1 if i < len(UpperCAmelCase ): A = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(UpperCAmelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() # Now let's find the class / func in the code! A = """""" A = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(UpperCAmelCase ) _lowerCamelCase : str = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _lowerCamelCase : Any = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') _lowerCamelCase : str = re.compile(R'<FILL\s+[^>]*>') def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = code.split("""\n""" ) A = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: A = f"""class Bla:\n{code}""" A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) A = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) A , A = style_docstrings_in_code(UpperCAmelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __a ( UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" with open(UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(UpperCAmelCase ) A = get_indent(UpperCAmelCase ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break A = lines[line_index] A = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(f"""^{indent}# End copy""" , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = """""".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase ) is None] A = """\n""".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: A = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) A = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase ) return diffs def __a ( UpperCAmelCase = False ) ->int: """simple docstring""" A = glob.glob(os.path.join(UpperCAmelCase , """**/*.py""" ) , recursive=UpperCAmelCase ) A = [] for filename in all_files: A = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: A = """\n""".join(UpperCAmelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
337
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
1
'''simple docstring''' class a : def __init__( self : Tuple , lowercase_ : Union[str, Any] ): # we need a list not a string, so do something to change the type snake_case_ = arr.split(''',''' ) def A_ ( self : Union[str, Any] ): snake_case_ = [int(self.array[0] )] * len(self.array ) snake_case_ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): snake_case_ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) snake_case_ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": a : Dict = input('please input some numbers:') a : str = SubArray(whole_array) a : Dict = array.solve_sub_array() print(('the results is:', re))
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = "sample" snake_case_ = 1e-2 @property def A_ ( self : Dict ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) return {"sample": image} @property def A_ ( self : List[Any] ): return (3, 32, 32) @property def A_ ( self : Dict ): return (3, 32, 32) def A_ ( self : Union[str, Any] ): snake_case_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict def A_ ( self : Any ): pass def A_ ( self : str ): pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def A_ ( self : Dict ): # enable deterministic behavior for gradient checkpointing snake_case_ ,snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.model_class(**lowercase_ ) model.to(lowercase_ ) assert not model.is_gradient_checkpointing and model.training snake_case_ = model(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case_ = torch.randn_like(lowercase_ ) snake_case_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case_ = self.model_class(**lowercase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowercase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case_ = model_a(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) snake_case_ = dict(model.named_parameters() ) snake_case_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def A_ ( self : Tuple ): snake_case_ ,snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowercase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A_ ( self : Tuple ): snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) snake_case_ = model.to(lowercase_ ) model.eval() if torch_device == "mps": snake_case_ = torch.manual_seed(0 ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = image.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , sample_posterior=lowercase_ , generator=lowercase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case_ = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": snake_case_ = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: snake_case_ = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1e-2 ) ) @slow class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(lowercase_ ) for s in shape] )}.npy" def A_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Dict , lowercase_ : List[Any]=0 , lowercase_ : Union[str, Any]=(4, 3, 512, 512) , lowercase_ : Optional[Any]=False ): snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = torch.from_numpy(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) ).to(lowercase_ ).to(lowercase_ ) return image def A_ ( self : Any , lowercase_ : Dict="CompVis/stable-diffusion-v1-4" , lowercase_ : List[str]=False ): snake_case_ = '''fp16''' if fpaa else None snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = AutoencoderKL.from_pretrained( lowercase_ , subfolder='''vae''' , torch_dtype=lowercase_ , revision=lowercase_ , ) model.to(lowercase_ ).eval() return model def A_ ( self : Any , lowercase_ : int=0 ): if torch_device == "mps": return torch.manual_seed(lowercase_ ) return torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , fpaa=lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[Any] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : List[str] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : Any ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def A_ ( self : str , lowercase_ : Optional[int] , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model.encode(lowercase_ ).latent_dist snake_case_ = dist.sample(generator=lowercase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case_ = sample[0, -1, -3:, -3:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) snake_case_ = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(lowercase_ , lowercase_ , atol=lowercase_ )
56
1
"""simple docstring""" from __future__ import annotations from random import random class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = random() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __repr__( self): from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1) def __str__( self): __SCREAMING_SNAKE_CASE = str(self.value) + """ """ __SCREAMING_SNAKE_CASE = str(self.left or """""") __SCREAMING_SNAKE_CASE = str(self.right or """""") return value + left + right def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = split(root.left , lowercase_ ) return left, root else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = split(root.right , lowercase_ ) return root, right def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __SCREAMING_SNAKE_CASE = merge(left.right , lowercase_ ) return left else: __SCREAMING_SNAKE_CASE = merge(lowercase_ , right.left ) return right def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = Node(lowercase_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = split(lowercase_ , lowercase_ ) return merge(merge(lowercase_ , lowercase_ ) , lowercase_ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = split(lowercase_ , value - 1 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = split(lowercase_ , lowercase_ ) return merge(lowercase_ , lowercase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): if not root: # None return else: inorder(root.left ) print(root.value , end=""",""" ) inorder(root.right ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): for arg in args.split(): if arg[0] == "+": __SCREAMING_SNAKE_CASE = insert(lowercase_ , int(arg[1:] ) ) elif arg[0] == "-": __SCREAMING_SNAKE_CASE = erase(lowercase_ , int(arg[1:] ) ) else: print("""Unknown command""" ) return root def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. \'q\' to quit. """ ) __SCREAMING_SNAKE_CASE = input() while args != "q": __SCREAMING_SNAKE_CASE = interact_treap(lowercase_ , lowercase_ ) print(lowercase_ ) __SCREAMING_SNAKE_CASE = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
357
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __magic_name__ = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __magic_name__ = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __magic_name__ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } __magic_name__ = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def _lowerCAmelCase ( UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.0.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.0.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.2.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.in_layers.2.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.emb_layers.1.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.emb_layers.1.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.0.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.0.bias"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.3.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.skip_connection.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.norm.weight"] __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.norm.bias"] __SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) __SCREAMING_SNAKE_CASE = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase_ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: __SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] __SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] __SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] __SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] __SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = channels_list[i] __SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.attentions.{j}" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.1" __SCREAMING_SNAKE_CASE = convert_attention( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"down_blocks.{i}.downsamplers.0" __SCREAMING_SNAKE_CASE = f"input_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 __SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now __SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" __SCREAMING_SNAKE_CASE = """middle_block.0""" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" __SCREAMING_SNAKE_CASE = """middle_block.1""" __SCREAMING_SNAKE_CASE = convert_attention(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" __SCREAMING_SNAKE_CASE = """middle_block.2""" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(UpperCamelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.upsamplers.0" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer-1}.1" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.resnets.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.0" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , has_skip=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.attentions.{j}" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer}.1" __SCREAMING_SNAKE_CASE = convert_attention( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) current_layer += 1 if i != len(UpperCamelCase_ ) - 1: __SCREAMING_SNAKE_CASE = f"up_blocks.{i}.upsamplers.0" __SCREAMING_SNAKE_CASE = f"output_blocks.{current_layer-1}.2" __SCREAMING_SNAKE_CASE = convert_resnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] __SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __magic_name__ = parser.parse_args() __magic_name__ = strabool(args.class_cond) __magic_name__ = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __magic_name__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __magic_name__ = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __magic_name__ = None __magic_name__ = con_pt_to_diffuser(args.unet_path, unet_config) __magic_name__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __magic_name__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __magic_name__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") __magic_name__ = CMStochasticIterativeScheduler(**scheduler_config) __magic_name__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
255
0
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowerCAmelCase (_UpperCamelCase = "laptop" ): __lowerCAmelCase : Any = F"https://www.amazon.in/laptop/s?k={product}" __lowerCAmelCase : Dict = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } __lowerCAmelCase : List[Any] = BeautifulSoup(requests.get(_UpperCamelCase , headers=_UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles __lowerCAmelCase : Union[str, Any] = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: __lowerCAmelCase : str = item.ha.text __lowerCAmelCase : Tuple = 'https://www.amazon.in/' + item.ha.a['href'] __lowerCAmelCase : Optional[Any] = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: __lowerCAmelCase : List[Any] = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: __lowerCAmelCase : List[str] = 'Not available' try: __lowerCAmelCase : Any = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: __lowerCAmelCase : Optional[int] = '' try: __lowerCAmelCase : List[Any] = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: __lowerCAmelCase : str = float('nan' ) except AttributeError: pass __lowerCAmelCase : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __lowerCAmelCase : List[Any] = ' ' __lowerCAmelCase : Tuple = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase__ = """headphones""" get_amazon_product_data(product).to_csv(f'Amazon Product Data for {product}.csv')
86
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : Union[str, Any] = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : Dict = is_training __lowerCAmelCase : List[str] = use_input_mask __lowerCAmelCase : int = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : Tuple = embedding_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Union[str, Any] = intermediate_size __lowerCAmelCase : Optional[Any] = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : Any = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : str = num_labels __lowerCAmelCase : int = num_choices __lowerCAmelCase : Union[str, Any] = scope def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Optional[int] = None if self.use_input_mask: __lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : str = None if self.use_token_type_ids: __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Union[str, Any] = None if self.use_labels: __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = MobileBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = MobileBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = MobileBertForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.num_labels __lowerCAmelCase : Tuple = MobileBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : int = MobileBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.num_choices __lowerCAmelCase : List[str] = MobileBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs __lowerCAmelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : str = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A_ : List[str] = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) A_ : Dict = True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowerCAmelCase : List[str] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = MobileBertModelTester(self ) __lowerCAmelCase : str = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (_UpperCamelCase ): return torch.tensor( _UpperCamelCase , dtype=torch.long , device=_UpperCamelCase , ) lowerCamelCase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase : Dict = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=_SCREAMING_SNAKE_CASE , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Tuple = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
86
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ = AltDiffusionPipeline lowercase_ = TEXT_TO_IMAGE_PARAMS lowercase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self ) -> int: torch.manual_seed(0 ) lowerCamelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCamelCase : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) lowerCamelCase : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) lowerCamelCase : int = CLIPTextModel(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) lowerCamelCase : List[Any] = 77 lowerCamelCase : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ) -> str: if str(UpperCAmelCase_ ).startswith('mps' ): lowerCamelCase : str = torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self ) -> int: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _UpperCamelCase ( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase : str = self.get_dummy_components() torch.manual_seed(0 ) lowerCamelCase : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCamelCase : Optional[Any] = RobertaSeriesModelWithTransformation(UpperCAmelCase_ ) lowerCamelCase : List[str] = text_encoder lowerCamelCase : str = AltDiffusionPipeline(**UpperCAmelCase_ ) lowerCamelCase : List[Any] = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_ ) lowerCamelCase : str = 'A photo of an astronaut' lowerCamelCase : Any = alt_pipe(**UpperCAmelCase_ ) lowerCamelCase : str = output.images lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase : Union[str, Any] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase : Dict = self.get_dummy_components() lowerCamelCase : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) torch.manual_seed(0 ) lowerCamelCase : Union[str, Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCamelCase : int = RobertaSeriesModelWithTransformation(UpperCAmelCase_ ) lowerCamelCase : List[Any] = text_encoder lowerCamelCase : Union[str, Any] = AltDiffusionPipeline(**UpperCAmelCase_ ) lowerCamelCase : Any = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : str = self.get_dummy_inputs(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = alt_pipe(**UpperCAmelCase_ ) lowerCamelCase : Any = output.images lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase : str = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> List[Any]: # make sure here that pndm scheduler skips prk lowerCamelCase : Any = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=UpperCAmelCase_ ) lowerCamelCase : str = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : List[str] = 'A painting of a squirrel eating a burger' lowerCamelCase : List[str] = torch.manual_seed(0 ) lowerCamelCase : List[Any] = alt_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) lowerCamelCase : Optional[Any] = output.images lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase : int = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Optional[int] = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) lowerCamelCase : Tuple = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ ) lowerCamelCase : Dict = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : int = 'A painting of a squirrel eating a burger' lowerCamelCase : str = torch.manual_seed(0 ) lowerCamelCase : List[str] = alt_pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='numpy' ) lowerCamelCase : Optional[int] = output.images lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase : Optional[int] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
357
"""simple docstring""" def UpperCAmelCase ( a_ = 10 ): '''simple docstring''' if not isinstance(a_, a_ ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase : Union[str, Any] = 10**n lowerCamelCase : int = 2_8433 * (pow(2, 783_0457, a_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
205
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _a = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCAmelCase( __lowercase ): lowercase__ = ["pixel_values"] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = None , __a = True , __a = 1 / 2_55 , __a = True , __a = None , __a = None , __a = True , **__a , ) -> List[str]: '''simple docstring''' super().__init__(**snake_case_) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 2_24} _UpperCamelCase = get_size_dict(snake_case_ , default_to_square=snake_case_) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase = do_convert_rgb def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ) -> Dict: '''simple docstring''' _UpperCamelCase = get_size_dict(snake_case_ , default_to_square=snake_case_) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') _UpperCamelCase = get_resize_output_image_size(snake_case_ , size=size['''shortest_edge'''] , default_to_square=snake_case_) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> Tuple: '''simple docstring''' _UpperCamelCase = get_size_dict(snake_case_) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(snake_case_ , size=(size['''height'''], size['''width''']) , data_format=snake_case_ , **snake_case_) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> List[str]: '''simple docstring''' return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> Union[str, Any]: '''simple docstring''' return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(snake_case_ , param_name='''size''' , default_to_square=snake_case_) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(snake_case_ , param_name='''crop_size''' , default_to_square=snake_case_) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase = make_list_of_images(snake_case_) if not valid_images(snake_case_): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase = [convert_to_rgb(snake_case_) for image in images] # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(snake_case_) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=snake_case_ , size=snake_case_) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=snake_case_ , scale=snake_case_) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_) for image in images] _UpperCamelCase = [to_channel_dimension_format(snake_case_ , snake_case_) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_)
194
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ ={ 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowercase__ ='ETAOINSHRDLCUMWFGYPBVKJXQZ' lowercase__ ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : List[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( lowerCAmelCase__ : tuple ): return x[0] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : Optional[Any] = get_letter_count(lowerCAmelCase__ ) __a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) __a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) __a : int = ''''''.join(freq_to_letter[freq] ) __a : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = get_frequency_order(lowerCAmelCase__ ) __a : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
216
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class __lowerCamelCase ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __UpperCamelCase = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) __UpperCamelCase = Features({'question': Value('string' ), 'context': Value('string' )} ) __UpperCamelCase = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) __UpperCamelCase = "question" __UpperCamelCase = "context" __UpperCamelCase = "answers" @property def A__ (self ): '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __a = '''src/diffusers''' __a = '''.''' # This is to make sure the diffusers module imported is the one in the repo. __a = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) __a = spec.loader.load_module() def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[Any]: """simple docstring""" return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''', _UpperCamelCase ) is not None def __lowercase ( _UpperCamelCase ) ->Optional[Any]: """simple docstring""" lowercase : List[str] = object_name.split('''.''' ) lowercase : List[str] = 0 # First let's find the module where our object lives. lowercase : Dict = parts[i] while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(_UpperCamelCase ): lowercase : int = os.path.join(_UpperCamelCase, parts[i] ) if i >= len(_UpperCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(_UpperCamelCase, f"""{module}.py""" ), '''r''', encoding='''utf-8''', newline='''\n''' ) as f: lowercase : List[Any] = f.readlines() # Now let's find the class / func in the code! lowercase : Optional[Any] = '''''' lowercase : Optional[Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase : Tuple = line_index while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index], _UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase : str = lines[start_index:line_index] return "".join(_UpperCamelCase ) __a = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') __a = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') __a = re.compile(r'''<FILL\s+[^>]*>''') def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : str = code.split('''\n''' ) lowercase : str = 0 while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCamelCase ): return re.search(R'''^(\s*)\S''', lines[idx] ).groups()[0] return "" def __lowercase ( _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : List[Any] = len(get_indent(_UpperCamelCase ) ) > 0 if has_indent: lowercase : Dict = f"""class Bla:\n{code}""" lowercase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=_UpperCamelCase ) lowercase : List[Any] = black.format_str(_UpperCamelCase, mode=_UpperCamelCase ) lowercase , lowercase : str = style_docstrings_in_code(_UpperCamelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def __lowercase ( _UpperCamelCase, _UpperCamelCase=False ) ->Optional[Any]: """simple docstring""" with open(_UpperCamelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: lowercase : List[Any] = f.readlines() lowercase : Tuple = [] lowercase : List[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCamelCase ): lowercase : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase , lowercase , lowercase : Any = search.groups() lowercase : Any = find_code_in_diffusers(_UpperCamelCase ) lowercase : Dict = get_indent(_UpperCamelCase ) lowercase : Optional[int] = line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase : int = theoretical_indent lowercase : Union[str, Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase : Optional[Any] = True while line_index < len(_UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCamelCase ): break lowercase : List[Any] = lines[line_index] lowercase : str = _should_continue(_UpperCamelCase, _UpperCamelCase ) and re.search(f"""^{indent}# End copy""", _UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase : List[str] = lines[start_index:line_index] lowercase : Tuple = ''''''.join(_UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies lowercase : Dict = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(_UpperCamelCase ) is None] lowercase : Dict = '''\n'''.join(_UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCamelCase ) > 0: lowercase : Any = replace_pattern.replace('''with''', '''''' ).split(''',''' ) lowercase : Dict = [_re_replace_pattern.search(_UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase , lowercase , lowercase : Any = pattern.groups() lowercase : int = re.sub(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if option.strip() == "all-casing": lowercase : List[str] = re.sub(obja.lower(), obja.lower(), _UpperCamelCase ) lowercase : Optional[int] = re.sub(obja.upper(), obja.upper(), _UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase : List[Any] = blackify(lines[start_index - 1] + theoretical_code ) lowercase : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowercase : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase : Optional[Any] = start_index + 1 if overwrite and len(_UpperCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(_UpperCamelCase ) return diffs def __lowercase ( _UpperCamelCase = False ) ->Any: """simple docstring""" lowercase : Dict = glob.glob(os.path.join(_UpperCamelCase, '''**/*.py''' ), recursive=_UpperCamelCase ) lowercase : Dict = [] for filename in all_files: lowercase : Any = is_copy_consistent(_UpperCamelCase, _UpperCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_UpperCamelCase ) > 0: lowercase : Tuple = '''\n'''.join(_UpperCamelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __a = parser.parse_args() check_copies(args.fix_and_overwrite)
337
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
1
"""simple docstring""" from __future__ import annotations import math def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" if len(__UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(__UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) __UpperCamelCase =[ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def lowerCAmelCase (__UpperCamelCase : list ): """simple docstring""" if len(__UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) __UpperCamelCase =len(__UpperCamelCase ) __UpperCamelCase =matrix_length // 2 __UpperCamelCase =[[a[i][j] for j in range(__UpperCamelCase , __UpperCamelCase )] for i in range(__UpperCamelCase )] __UpperCamelCase =[ [a[i][j] for j in range(__UpperCamelCase , __UpperCamelCase )] for i in range(__UpperCamelCase , __UpperCamelCase ) ] __UpperCamelCase =[[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase )] __UpperCamelCase =[[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase , __UpperCamelCase )] return top_left, top_right, bot_left, bot_right def lowerCAmelCase (__UpperCamelCase : list ): """simple docstring""" return len(__UpperCamelCase ), len(matrix[0] ) def lowerCAmelCase (__UpperCamelCase : list ): """simple docstring""" print('''\n'''.join(str(__UpperCamelCase ) for line in matrix ) ) def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" if matrix_dimensions(__UpperCamelCase ) == (2, 2): return default_matrix_multiplication(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =split_matrix(__UpperCamelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =split_matrix(__UpperCamelCase ) __UpperCamelCase =actual_strassen(__UpperCamelCase , matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) __UpperCamelCase =actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) __UpperCamelCase =actual_strassen(__UpperCamelCase , matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =actual_strassen(matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =actual_strassen(matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =matrix_addition(matrix_subtraction(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) , __UpperCamelCase ) __UpperCamelCase =matrix_addition(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =matrix_addition(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =matrix_subtraction(matrix_subtraction(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) , __UpperCamelCase ) # construct the new matrix from our 4 quadrants __UpperCamelCase =[] for i in range(len(__UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" if matrix_dimensions(__UpperCamelCase )[1] != matrix_dimensions(__UpperCamelCase )[0]: __UpperCamelCase =( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__UpperCamelCase ) __UpperCamelCase =matrix_dimensions(__UpperCamelCase ) __UpperCamelCase =matrix_dimensions(__UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __UpperCamelCase =max(*__UpperCamelCase , *__UpperCamelCase ) __UpperCamelCase =int(math.pow(2 , math.ceil(math.loga(__UpperCamelCase ) ) ) ) __UpperCamelCase =matrixa __UpperCamelCase =matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __UpperCamelCase =actual_strassen(__UpperCamelCase , __UpperCamelCase ) # Removing the additional zeros for i in range(0 , __UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __lowercase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __lowercase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
353
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowercase : """simple docstring""" def __init__( self : int , UpperCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =data __UpperCamelCase =None class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCamelCase =None __UpperCamelCase =None def __iter__( self : int ) -> Iterator[Any]: '''simple docstring''' __UpperCamelCase =self.head while self.head: yield node.data __UpperCamelCase =node.next if node == self.head: break def __len__( self : Union[str, Any] ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ) -> Union[str, Any]: '''simple docstring''' return "->".join(str(UpperCamelCase__ ) for item in iter(self ) ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Any ) -> None: '''simple docstring''' self.insert_nth(0 , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Any ) -> None: '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) __UpperCamelCase =Node(UpperCamelCase__ ) if self.head is None: __UpperCamelCase =new_node # first node points itself __UpperCamelCase =__UpperCamelCase =new_node elif index == 0: # insert at head __UpperCamelCase =self.head __UpperCamelCase =__UpperCamelCase =new_node else: __UpperCamelCase =self.head for _ in range(index - 1 ): __UpperCamelCase =temp.next __UpperCamelCase =temp.next __UpperCamelCase =new_node if index == len(self ) - 1: # insert at tail __UpperCamelCase =new_node def UpperCAmelCase_ ( self : Any ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) __UpperCamelCase =self.head if self.head == self.tail: # just one node __UpperCamelCase =__UpperCamelCase =None elif index == 0: # delete head node __UpperCamelCase =self.tail.next.next __UpperCamelCase =self.head.next else: __UpperCamelCase =self.head for _ in range(index - 1 ): __UpperCamelCase =temp.next __UpperCamelCase =temp.next __UpperCamelCase =temp.next.next if index == len(self ) - 1: # delete at tail __UpperCamelCase =temp return delete_node.data def UpperCAmelCase_ ( self : str ) -> bool: '''simple docstring''' return len(self ) == 0 def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =CircularLinkedList() assert len(__UpperCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__UpperCamelCase ) == i circular_linked_list.insert_nth(__UpperCamelCase , i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
85
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __UpperCAmelCase =["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
"""simple docstring""" import math def lowercase__ ( _UpperCAmelCase = 1_00 ) -> int: '''simple docstring''' lowercase : List[str] = sum(i * i for i in range(1 , n + 1 ) ) lowercase : Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
255
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowerCAmelCase_ = None lowerCAmelCase_ = { '''7B''': 1_1_0_0_8, '''13B''': 1_3_8_2_4, '''30B''': 1_7_9_2_0, '''65B''': 2_2_0_1_6, '''70B''': 2_8_6_7_2, } lowerCAmelCase_ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1 , _UpperCamelCase=256 ) -> Optional[int]: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" with open(_UpperCamelCase , '''r''' ) as f: return json.load(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ) -> Optional[Any]: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : int = os.path.join(_UpperCamelCase , '''tmp''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : Dict = read_json(os.path.join(_UpperCamelCase , '''params.json''' ) ) snake_case_ : Tuple = NUM_SHARDS[model_size] snake_case_ : Optional[Any] = params['''n_layers'''] snake_case_ : int = params['''n_heads'''] snake_case_ : Dict = n_heads // num_shards snake_case_ : List[Any] = params['''dim'''] snake_case_ : str = dim // n_heads snake_case_ : Any = 10_000.0 snake_case_ : Any = 1.0 / (base ** (torch.arange(0 , _UpperCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case_ : Optional[Any] = params['''n_kv_heads'''] # for GQA / MQA snake_case_ : Optional[Any] = n_heads_per_shard // num_key_value_heads snake_case_ : List[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case_ : str = n_heads snake_case_ : Optional[int] = n_heads_per_shard snake_case_ : str = dim # permute for sliced rotary def permute(_UpperCamelCase , _UpperCamelCase=n_heads , _UpperCamelCase=dim , _UpperCamelCase=dim ): return w.view(_UpperCamelCase , dima // n_heads // 2 , 2 , _UpperCamelCase ).transpose(1 , 2 ).reshape(_UpperCamelCase , _UpperCamelCase ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case_ : Optional[Any] = torch.load(os.path.join(_UpperCamelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded snake_case_ : Union[str, Any] = [ torch.load(os.path.join(_UpperCamelCase , f'''consolidated.{i:02d}.pth''' ) , map_location='''cpu''' ) for i in range(_UpperCamelCase ) ] snake_case_ : Optional[Any] = 0 snake_case_ : str = {'''weight_map''': {}} for layer_i in range(_UpperCamelCase ): snake_case_ : Optional[int] = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : str = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case_ : Union[str, Any] = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case_ : int = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Optional[int] = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) snake_case_ : int = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Dict = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : Union[str, Any] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : str = inv_freq for k, v in state_dict.items(): snake_case_ : Dict = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Any = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : List[str] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: snake_case_ : Dict = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_UpperCamelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_UpperCamelCase )] , dim=0 ), } for k, v in state_dict.items(): snake_case_ : List[str] = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) # Write configs snake_case_ : int = {'''total_size''': param_count * 2} write_json(_UpperCamelCase , os.path.join(_UpperCamelCase , '''pytorch_model.bin.index.json''' ) ) snake_case_ : str = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 snake_case_ : Optional[int] = params['''multiple_of'''] if '''multiple_of''' in params else 256 snake_case_ : Optional[Any] = LlamaConfig( hidden_size=_UpperCamelCase , intermediate_size=compute_intermediate_size(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_UpperCamelCase , ) config.save_pretrained(_UpperCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) snake_case_ : Union[str, Any] = LlamaForCausalLM.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_UpperCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_UpperCamelCase , safe_serialization=_UpperCamelCase ) shutil.rmtree(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case_ : Union[str, Any] = tokenizer_class(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_UpperCamelCase , help='''Whether or not to save using `safetensors`.''' ) snake_case_ : Dict = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case_ : Dict = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _UpperCamelCase ) if __name__ == "__main__": main()
279
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1_000 ) -> str: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case_ : int = n - 1 snake_case_ : Union[str, Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case_ : List[Any] = 0 while count < prec: snake_case_ : Tuple = random.randint(2 , n - 1 ) snake_case_ : List[Any] = bin_exp_mod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if b != 1: snake_case_ : Any = True for _ in range(_UpperCamelCase ): if b == n - 1: snake_case_ : Tuple = False break snake_case_ : List[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase_ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
279
1
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = BarthezTokenizer a_ = BarthezTokenizerFast a_ = True a_ = True def A ( self : Optional[Any] ) -> List[str]: super().setUp() UpperCAmelCase_ : Tuple = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_A ) UpperCAmelCase_ : str = tokenizer def A ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ : int = '''<pad>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def A ( self : int ) -> Dict: UpperCAmelCase_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 10_11_22 ) def A ( self : int ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def A ( self : Tuple ) -> Any: UpperCAmelCase_ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase_ : int = [0, 57, 30_18, 7_03_07, 91, 2] UpperCAmelCase_ : Optional[int] = self.tokenizer( _A , max_length=len(_A ) , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCAmelCase_ : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) def A ( self : Any ) -> Tuple: if not self.test_rust_tokenizer: return UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize(_A ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def A ( self : Tuple ) -> Tuple: UpperCAmelCase_ : Optional[Any] = {'''input_ids''': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCAmelCase_ : Dict = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=_A , )
304
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __A = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __A = {"facebook/blenderbot-3B": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" __lowerCamelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __lowerCamelCase = bs[:] __lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 __lowerCamelCase = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char return pairs class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding='utf-8' ) as vocab_handle: __lowerCamelCase = json.load(lowerCamelCase__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} __lowerCamelCase = errors # how to handle errors in decoding __lowerCamelCase = bytes_to_unicode() __lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding='utf-8' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('\n' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = {} __lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase_ ( self ) -> Tuple: '''simple docstring''' return len(self.encoder ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: __lowerCamelCase = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(lowerCamelCase__ ): try: __lowerCamelCase = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = new_word if len(lowerCamelCase__ ) == 1: break else: __lowerCamelCase = get_pairs(lowerCamelCase__ ) __lowerCamelCase = ' '.join(lowerCamelCase__ ) __lowerCamelCase = word return word def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] for token in re.findall(self.pat , lowerCamelCase__ ): __lowerCamelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) ) return bpe_tokens def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ''.join(lowerCamelCase__ ) __lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + '\n' ) __lowerCamelCase = 0 with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __lowerCamelCase = token_index writer.write(' '.join(lowerCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): __lowerCamelCase = ' ' + text return (text, kwargs) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase__ ) __lowerCamelCase = ' '.join(lowerCamelCase__ ) __lowerCamelCase = self.encode(lowerCamelCase__ ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
348
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""Input value must be an 'int' type""" ) _snake_case : List[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase_ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , ) def UpperCamelCase( ): UpperCAmelCase : List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase : Tuple = math.log(len(UpperCAmelCase_ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
280
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Tuple = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = TextDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = text_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [text_path] UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : Union[str, Any] = {'text': 'string'} UpperCAmelCase : List[Any] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: UpperCAmelCase : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = TextDatasetReader({'train': text_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = TextDatasetReader({'train': text_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : int = {split: text_path} else: UpperCAmelCase : int = 'train' UpperCAmelCase : Any = {'train': text_path, 'test': text_path} UpperCAmelCase : Dict = tmp_path / 'cache' UpperCAmelCase : Any = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
280
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) class snake_case__ ( lowercase_): a_ = "upernet" def __init__( self : Optional[Any] , _A : List[str]=None , _A : str=5_12 , _A : Tuple=0.02 , _A : Any=[1, 2, 3, 6] , _A : int=True , _A : List[str]=0.4 , _A : Dict=3_84 , _A : int=2_56 , _A : List[str]=1 , _A : Tuple=False , _A : Any=2_55 , **_A : Any , ) -> Union[str, Any]: super().__init__(**a__ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCAmelCase_ : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(a__ , a__ ): UpperCAmelCase_ : Optional[Any] = backbone_config.get('''model_type''' ) UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Optional[Any] = config_class.from_dict(a__ ) UpperCAmelCase_ : Any = backbone_config UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Tuple = pool_scales UpperCAmelCase_ : int = use_auxiliary_head UpperCAmelCase_ : int = auxiliary_loss_weight UpperCAmelCase_ : Any = auxiliary_in_channels UpperCAmelCase_ : Dict = auxiliary_channels UpperCAmelCase_ : List[Any] = auxiliary_num_convs UpperCAmelCase_ : str = auxiliary_concat_input UpperCAmelCase_ : Dict = loss_ignore_index def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : List[str] = self.__class__.model_type return output
304
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE : Union[str, Any] = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } _SCREAMING_SNAKE_CASE : int = { "gpt-neox-20b": 2048, } class _snake_case ( lowercase_ ): lowerCAmelCase_ : str = VOCAB_FILES_NAMES lowerCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : str = ["input_ids", "attention_mask"] def __init__( self , a__=None , a__=None , a__=None , a__="<|endoftext|>" , a__="<|endoftext|>" , a__="<|endoftext|>" , a__=False , **a__ , ) -> Tuple: '''simple docstring''' super().__init__( a__ , a__ , tokenizer_file=a__ , unk_token=a__ , bos_token=a__ , eos_token=a__ , add_prefix_space=a__ , **a__ , ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a__ ) != add_prefix_space: snake_case_ = getattr(a__ , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**a__ ) snake_case_ = add_prefix_space def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def lowerCAmelCase__ ( self , a__ ) -> List[int]: '''simple docstring''' snake_case_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ , add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] return input_ids
85
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.getLogger(__name__) def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ): # save results if os.path.exists(UpperCAmelCase_ ): if os.path.exists(os.path.join(UpperCAmelCase_ , """config.json""" ) ) and os.path.isfile( os.path.join(UpperCAmelCase_ , """config.json""" ) ): os.remove(os.path.join(UpperCAmelCase_ , """config.json""" ) ) if os.path.exists(os.path.join(UpperCAmelCase_ , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(UpperCAmelCase_ , """pytorch_model.bin""" ) ): os.remove(os.path.join(UpperCAmelCase_ , """pytorch_model.bin""" ) ) else: os.makedirs(UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : int=False ): A__ = 2 if unlogit: A__ = torch.pow(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = p * torch.log(UpperCAmelCase_ ) A__ = 0 return -plogp.sum(dim=-1 ) def _snake_case ( UpperCAmelCase_ : int ): logger.info("""lv, h >\t""" + """\t""".join(F"""{x + 1}""" for x in range(len(UpperCAmelCase_ ) ) ) ) for row in range(len(UpperCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + """\t""".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + """\t""".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def _snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=False ): A__ , A__ = model.config.num_hidden_layers, model.config.num_attention_heads A__ = torch.zeros(UpperCAmelCase_ , UpperCAmelCase_ ).to(args.device ) A__ = torch.zeros(UpperCAmelCase_ , UpperCAmelCase_ ).to(args.device ) if head_mask is None: A__ = torch.ones(UpperCAmelCase_ , UpperCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: A__ = None A__ = 0.0 A__ = 0.0 for step, inputs in enumerate(tqdm(UpperCAmelCase_ , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): A__ = tuple(t.to(args.device ) for t in inputs ) ((A__ ) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) A__ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) A__ , A__ , A__ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCAmelCase_ ): A__ = entropy(attn.detach() , UpperCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: A__ = 2 A__ = torch.pow(torch.pow(UpperCAmelCase_ , UpperCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: A__ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(UpperCAmelCase_ ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(UpperCAmelCase_ ) logger.info("""Head ranked by importance scores""" ) A__ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) A__ = torch.arange( head_importance.numel() , device=args.device ) A__ = head_ranks.view_as(UpperCAmelCase_ ) print_ad_tensor(UpperCAmelCase_ ) return attn_entropy, head_importance, total_loss def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ): A__ , A__ , A__ = compute_heads_importance(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , compute_entropy=UpperCAmelCase_ ) A__ = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , UpperCAmelCase_ , original_score * args.masking_threshold ) A__ = torch.ones_like(UpperCAmelCase_ ) A__ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) A__ = original_score while current_score >= original_score * args.masking_threshold: A__ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads A__ = float("""Inf""" ) A__ = head_importance.view(-1 ).sort()[1] if len(UpperCAmelCase_ ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads A__ = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) A__ = new_head_mask.view(-1 ) A__ = 0.0 A__ = new_head_mask.view_as(UpperCAmelCase_ ) A__ = new_head_mask.clone().detach() print_ad_tensor(UpperCAmelCase_ ) # Compute metric and head importance again A__ , A__ , A__ = compute_heads_importance( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , compute_entropy=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) A__ = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , UpperCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(UpperCAmelCase_ ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): A__ = datetime.now() A__ , A__ , A__ = compute_heads_importance( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , compute_entropy=UpperCAmelCase_ , compute_importance=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) A__ = 1 / loss A__ = datetime.now() - before_time A__ = sum(p.numel() for p in model.parameters() ) A__ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = [ v, ] assert sum(len(UpperCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCAmelCase_ ) A__ = sum(p.numel() for p in model.parameters() ) A__ = datetime.now() A__ , A__ , A__ = compute_heads_importance( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , compute_entropy=UpperCAmelCase_ , compute_importance=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , actually_pruned=UpperCAmelCase_ , ) A__ = 1 / loss A__ = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , UpperCAmelCase_ , UpperCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(UpperCAmelCase_ , args.output_dir ) def _snake_case ( ): A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=UpperCAmelCase_ , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=UpperCAmelCase_ , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=UpperCAmelCase_ , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=UpperCAmelCase_ , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=UpperCAmelCase_ , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=UpperCAmelCase_ , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=UpperCAmelCase_ , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=UpperCAmelCase_ , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=UpperCAmelCase_ , default=42 ) parser.add_argument("""--local_rank""" , type=UpperCAmelCase_ , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=UpperCAmelCase_ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=UpperCAmelCase_ , default="""""" , help="""Can be used for distant debugging.""" ) A__ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: A__ = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) A__ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) A__ = torch.device("""cuda""" , args.local_rank ) A__ = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) A__ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: A__ = nn.parallel.DistributedDataParallel( UpperCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCAmelCase_ ) elif args.n_gpu > 1: A__ = nn.DataParallel(UpperCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCAmelCase_ ) torch.save(UpperCAmelCase_ , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , UpperCAmelCase_ ) # Prepare dataset A__ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) A__ = (torch.from_numpy(UpperCAmelCase_ ),) A__ = TensorDataset(*UpperCAmelCase_ ) A__ = RandomSampler(UpperCAmelCase_ ) A__ = DataLoader(UpperCAmelCase_ , sampler=UpperCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: A__ = mask_heads(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) prune_heads(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
363
"""simple docstring""" from typing import Any class a : """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = data A__ = None class a : """simple docstring""" def __init__( self: List[str] ): """simple docstring""" A__ = None def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.head while temp is not None: print(temp.data , end=""" """ ) A__ = temp.next print() def UpperCamelCase ( self: str , UpperCamelCase: Any ): """simple docstring""" A__ = Node(UpperCamelCase ) A__ = self.head A__ = new_node def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" if node_data_a == node_data_a: return else: A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next if node_a is None or node_a is None: return A__ , A__ = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
69
0
def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : List[Any] = 0 for i in range(1 , 1_001 ): total += i**i return str(_UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
279
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=32 , __magic_name__=True , ) -> Dict: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[Any] = image_size snake_case_ : int = min_resolution snake_case_ : Any = max_resolution snake_case_ : Tuple = do_resize snake_case_ : str = size_divisor snake_case_ : Optional[Any] = do_rescale def lowerCamelCase (self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = GLPNImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = GLPNImageProcessingTester(self ) @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size_divisor''' ) ) self.assertTrue(hasattr(__magic_name__ , '''resample''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_rescale''' ) ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
279
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _lowerCamelCase : List[str] = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (3_2, 3_2) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor([1_0] ).to(UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def A ( self : Optional[int] ): """simple docstring""" return (3, 3_2, 3_2) @property def A ( self : str ): """simple docstring""" return (3, 3_2, 3_2) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = { 'block_out_channels': (3_2, 6_4), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 3_2, } UpperCamelCase = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def A ( self : Any ): """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 4 UpperCamelCase = (3_2, 3_2) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor([1_0] ).to(UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def A ( self : Tuple ): """simple docstring""" return (4, 3_2, 3_2) @property def A ( self : Dict ): """simple docstring""" return (4, 3_2, 3_2) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = { 'sample_size': 3_2, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (3_2, 6_4), 'attention_head_dim': 3_2, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } UpperCamelCase = self.dummy_input return init_dict, inputs_dict def A ( self : List[str] ): """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCamelCase__ ) UpperCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCamelCase__ ) model.to(UpperCamelCase__ ) UpperCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCamelCase__ ) model_accelerate.to(UpperCamelCase__ ) model_accelerate.eval() UpperCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase = noise.to(UpperCamelCase__ ) UpperCamelCase = torch.tensor([1_0] * noise.shape[0] ).to(UpperCamelCase__ ) UpperCamelCase = model_accelerate(UpperCamelCase__ , UpperCamelCase__ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=UpperCamelCase__ , low_cpu_mem_usage=UpperCamelCase__ ) model_normal_load.to(UpperCamelCase__ ) model_normal_load.eval() UpperCamelCase = model_normal_load(UpperCamelCase__ , UpperCamelCase__ )['sample'] assert torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-3 ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(UpperCamelCase__ ) UpperCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase = noise.to(UpperCamelCase__ ) UpperCamelCase = torch.tensor([1_0] * noise.shape[0] ).to(UpperCamelCase__ ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ).sample UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-3 ) ) class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def A ( self : str , UpperCamelCase__ : Any=(3_2, 3_2) ): """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def A ( self : Optional[Any] ): """simple docstring""" return (3, 3_2, 3_2) @property def A ( self : Optional[int] ): """simple docstring""" return (3, 3_2, 3_2) def A ( self : int ): """simple docstring""" UpperCamelCase = { 'block_out_channels': [3_2, 6_4, 6_4, 6_4], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } UpperCamelCase = self.dummy_input return init_dict, inputs_dict @slow def A ( self : Dict ): """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCamelCase__ ) UpperCamelCase = self.dummy_input UpperCamelCase = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(UpperCamelCase__ ) UpperCamelCase = noise UpperCamelCase = model(**UpperCamelCase__ ) assert image is not None, "Make sure output is not None" @slow def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(UpperCamelCase__ ) UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (2_5_6, 2_5_6) UpperCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor(batch_size * [1E-4] ).to(UpperCamelCase__ ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ).sample UpperCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-2 ) ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(UpperCamelCase__ ) UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (3_2, 3_2) UpperCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor(batch_size * [1E-4] ).to(UpperCamelCase__ ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ).sample UpperCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-2 ) ) def A ( self : List[str] ): """simple docstring""" pass
249
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Tuple = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["ConvNextFeatureExtractor"] _lowerCamelCase : Optional[Any] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
249
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case = logging.get_logger(__name__) __snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __snake_case = {'''facebook/blenderbot-3B''': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( )-> str: '''simple docstring''' UpperCAmelCase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase : str =bs[:] UpperCAmelCase : int =0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase : Any =[chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =set() UpperCAmelCase : int =word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Dict =char return pairs class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__ , snake_case__ , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , **snake_case__ , ) -> str: '''simple docstring''' UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase : Tuple =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : int =json.load(snake_case__ ) UpperCAmelCase : Any ={v: k for k, v in self.encoder.items()} UpperCAmelCase : Optional[int] =errors # how to handle errors in decoding UpperCAmelCase : List[str] =bytes_to_unicode() UpperCAmelCase : Any ={v: k for k, v in self.byte_encoder.items()} with open(snake_case__ , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase : Dict =merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase : Dict =[tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase : List[str] =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase : Optional[int] ={} UpperCAmelCase : List[str] =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase : str =re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[Any] =tuple(snake_case__ ) UpperCAmelCase : str =get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase : str =min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Union[str, Any] =bigram UpperCAmelCase : List[Any] =[] UpperCAmelCase : Optional[int] =0 while i < len(snake_case__ ): try: UpperCAmelCase : int =word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : Dict =j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Any =tuple(snake_case__ ) UpperCAmelCase : Union[str, Any] =new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase : int =get_pairs(snake_case__ ) UpperCAmelCase : Tuple =''' '''.join(snake_case__ ) UpperCAmelCase : Tuple =word return word def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict =[] for token in re.findall(self.pat , snake_case__ ): UpperCAmelCase : str =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(''' ''' ) ) return bpe_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> List[str]: '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[int]: '''simple docstring''' return self.decoder.get(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] =''''''.join(snake_case__ ) UpperCAmelCase : int =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : str =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) UpperCAmelCase : str =0 with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase : List[Any] =token_index writer.write(''' '''.join(snake_case__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Any =[self.sep_token_id] UpperCAmelCase : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , snake_case__ , snake_case__=False , **snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): UpperCAmelCase : Dict =''' ''' + text return (text, kwargs) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> str: '''simple docstring''' return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , snake_case__ ) -> List[int]: '''simple docstring''' UpperCAmelCase : List[Any] =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(snake_case__ ) UpperCAmelCase : List[str] =''' '''.join(snake_case__ ) UpperCAmelCase : str =self.encode(snake_case__ ) if len(snake_case__ ) > self.model_max_length: UpperCAmelCase : List[Any] =input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
348
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> list[int]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) __lowerCAmelCase : Any = [True] * (num + 1) __lowerCAmelCase : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
371
def _SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] _UpperCAmelCase = generate_large_matrix() _UpperCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> None: assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[int] ) -> int: __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __lowerCAmelCase : Any = (left + right) // 2 __lowerCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __lowerCAmelCase : Dict = mid + 1 else: __lowerCAmelCase : str = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: __lowerCAmelCase : Any = 0 __lowerCAmelCase : Union[str, Any] = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : str = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> int: __lowerCAmelCase : List[str] = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def _SCREAMING_SNAKE_CASE ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) __lowerCAmelCase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __lowerCAmelCase : Optional[int] = timeit(F'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
232
0
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ : Union[str, Any] = logging.get_logger(__name__) def snake_case ( UpperCAmelCase )-> Dict: """simple docstring""" __A = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __A = MaskFormerConfig(backbone_config=_UpperCamelCase ) __A = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __A = 8_4_7 __A = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __A = 1_5_0 __A = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __A = 1_7_1 __A = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __A = 1_3_3 __A = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __A = 1_9 __A = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __A = 6_5 __A = '''mapillary-vistas-id2label.json''' __A = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) __A = {int(_UpperCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( UpperCAmelCase )-> Optional[int]: """simple docstring""" __A = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.layers.{i}.downsample.reduction.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'sem_seg_head.adapter_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', f'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', f'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', f'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', f'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.weight', f'mask_embedder.{i}.0.weight') ) rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.bias', f'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> Union[str, Any]: """simple docstring""" __A = dct.pop(_UpperCamelCase ) __A = val def snake_case ( UpperCAmelCase , UpperCAmelCase )-> Any: """simple docstring""" __A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __A = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __A = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __A = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[:dim, :] __A = in_proj_bias[: dim] __A = in_proj_weight[ dim : dim * 2, : ] __A = in_proj_bias[ dim : dim * 2 ] __A = in_proj_weight[ -dim :, : ] __A = in_proj_bias[-dim :] # fmt: on def snake_case ( UpperCAmelCase , UpperCAmelCase )-> str: """simple docstring""" __A = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __A = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __A = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[: hidden_size, :] __A = in_proj_bias[:config.hidden_size] __A = in_proj_weight[hidden_size : hidden_size * 2, :] __A = in_proj_bias[hidden_size : hidden_size * 2] __A = in_proj_weight[-hidden_size :, :] __A = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __A = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __A = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[: hidden_size, :] __A = in_proj_bias[:config.hidden_size] __A = in_proj_weight[hidden_size : hidden_size * 2, :] __A = in_proj_bias[hidden_size : hidden_size * 2] __A = in_proj_weight[-hidden_size :, :] __A = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( )-> torch.Tensor: """simple docstring""" __A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __A = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False )-> int: """simple docstring""" __A = get_maskformer_config(_UpperCamelCase ) # load original state_dict with open(_UpperCamelCase , 'rb' ) as f: __A = pickle.load(_UpperCamelCase ) __A = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __A = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_swin_q_k_v(_UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCamelCase , _UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): __A = torch.from_numpy(_UpperCamelCase ) # load 🤗 model __A = MaskFormerForInstanceSegmentation(_UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(_UpperCamelCase , param.shape ) __A = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_UpperCamelCase ) == 0, f'Unexpected keys: {unexpected_keys}' # verify results __A = prepare_img() if "vistas" in model_name: __A = 6_5 elif "cityscapes" in model_name: __A = 6_5_5_3_5 else: __A = 2_5_5 __A = True if '''ade''' in model_name else False __A = MaskFormerImageProcessor(ignore_index=_UpperCamelCase , reduce_labels=_UpperCamelCase ) __A = image_processor(_UpperCamelCase , return_tensors='pt' ) __A = model(**_UpperCamelCase ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __A = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(f'nielsr/{model_name}' ) image_processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you\'d like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a__ : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
161
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase_ = datasets.logging.get_logger(__name__) lowerCAmelCase_ = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' lowerCAmelCase_ = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' lowerCAmelCase_ = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' lowerCAmelCase_ = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def lowerCamelCase (self , __magic_name__ ) -> List[Any]: '''simple docstring''' if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) snake_case_ : Dict = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: snake_case_ : Optional[int] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: snake_case_ : Union[str, Any] = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer snake_case_ : Any = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) snake_case_ : Dict = score.BleurtScorer(os.path.join(__magic_name__ , __magic_name__ ) ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.scorer.score(references=__magic_name__ , candidates=__magic_name__ ) return {"scores": scores}
279
0
"""simple docstring""" from __future__ import annotations lowercase__ = [] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> bool: """simple docstring""" for i in range(len(__UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(__UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(__UpperCamelCase , -1 , -1 ) , range(__UpperCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__UpperCamelCase , -1 , -1 ) , range(__UpperCamelCase , len(__UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> bool: """simple docstring""" if row >= len(__UpperCamelCase ): solution.append(__UpperCamelCase ) printboard(__UpperCamelCase ) print() return True for i in range(len(__UpperCamelCase ) ): if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : Union[str, Any] = 1 solve(__UpperCamelCase , row + 1 ) lowerCAmelCase_ : List[str] = 0 return False def __lowerCamelCase ( __UpperCamelCase ) -> None: """simple docstring""" for i in range(len(__UpperCamelCase ) ): for j in range(len(__UpperCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) lowercase__ = 8 lowercase__ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
161
"""simple docstring""" import os def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" with open(os.path.dirname(__UpperCamelCase ) + "/grid.txt" ) as f: lowerCAmelCase_ : str = [] # noqa: E741 for _ in range(20 ): l.append([int(__UpperCamelCase ) for x in f.readline().split()] ) lowerCAmelCase_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase_ : Dict = temp # down for i in range(17 ): for j in range(20 ): lowerCAmelCase_ : Union[str, Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase_ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCAmelCase_ : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase_ : List[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase_ : str = temp return maximum if __name__ == "__main__": print(solution())
161
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, unittest.TestCase ): __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self ): torch.manual_seed(0 ) lowercase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase : List[str] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) lowercase : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase : List[str] = CLIPTextModel(lowerCAmelCase__ ) lowercase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __magic_name__ ( self , _a , _a=0 ): lowercase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowercase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : List[str] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ) if str(lowerCAmelCase__ ).startswith("mps" ): lowercase : int = torch.manual_seed(lowerCAmelCase__ ) else: lowercase : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def __magic_name__ ( self ): lowercase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase : Union[str, Any] = self.get_dummy_components() lowercase : Any = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) lowercase : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase : Optional[Any] = sd_pipe(**lowerCAmelCase__ ).images lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : Dict = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__ ( self ): lowercase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase : Union[str, Any] = self.get_dummy_components() lowercase : List[str] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) lowercase : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase : List[Any] = "french fries" lowercase : str = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) lowercase : Optional[Any] = output.images lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : List[Any] = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__ ( self ): lowercase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase : Tuple = self.get_dummy_components() lowercase : int = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) lowercase : Dict = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase : int = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase : Union[str, Any] = [inputs["prompt"]] * 2 lowercase : Tuple = np.array(inputs["image"] ).astype(np.floataa ) / 2_5_5.0 lowercase : Any = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) lowercase : List[str] = image / 2 + 0.5 lowercase : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) lowercase : str = image.repeat(2 , 1 , 1 , 1 ) lowercase : List[Any] = sd_pipe(**lowerCAmelCase__ ).images lowercase : Optional[int] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase : Tuple = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__ ( self ): lowercase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase : str = self.get_dummy_components() lowercase : int = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" ) lowercase : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) lowercase : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase : int = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase : int = sd_pipe(**lowerCAmelCase__ ).images lowercase : Dict = image[0, -3:, -3:, -1] lowercase : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase : Tuple = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__ ( self ): lowercase : Any = self.get_dummy_components() lowercase : Tuple = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) lowercase : Dict = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) lowercase : int = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase : str = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type="pt" ) )[0] lowercase : str = components["vae"] lowercase : Any = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase : int = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase : Dict = pipe(**lowerCAmelCase__ )[0] lowercase : Tuple = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __magic_name__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , _a=0 ): lowercase : Tuple = torch.manual_seed(lowerCAmelCase__ ) lowercase : List[str] = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) lowercase : Any = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def __magic_name__ ( self ): lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowercase : Any = self.get_inputs() lowercase : Any = pipe(**lowerCAmelCase__ ).images lowercase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : int = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__ ( self ): lowercase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowerCAmelCase__ ) lowercase : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowercase : List[Any] = self.get_inputs() lowercase : Any = pipe(**lowerCAmelCase__ ).images lowercase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : List[str] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__ ( self ): lowercase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowerCAmelCase__ ) lowercase : int = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowercase : Dict = self.get_inputs() lowercase : Dict = pipe(**lowerCAmelCase__ ).images lowercase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : Optional[int] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__ ( self ): lowercase : Union[str, Any] = 0 def callback_fn(_a , _a , _a ) -> None: lowercase : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase : Any = latents[0, -3:, -3:, -1] lowercase : int = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase : int = latents[0, -3:, -3:, -1] lowercase : Union[str, Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase : Optional[int] = False lowercase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) lowercase : List[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowercase : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) lowercase : List[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase : List[Any] = self.get_inputs() lowercase : Any = pipe(**lowerCAmelCase__ ) lowercase : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__ ( self ): lowercase : str = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase : List[Any] = inputs["image"].resize((504, 504) ) lowercase : List[Any] = "timbrooks/instruct-pix2pix" lowercase : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowercase : Optional[Any] = pipe(**lowerCAmelCase__ ) lowercase : Tuple = output.images[0] lowercase : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase : Dict = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
202
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCamelCase = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __UpperCamelCase = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = None # source code of `config_class` snake_case_ = inspect.getsource(UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): snake_case_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ = ckpt_name break return checkpoint def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ = get_checkpoint_from_config_class(UpperCAmelCase ) snake_case_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = '\n'.join(sorted(UpperCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
69
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast A : Optional[int] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase__ = 1_0_0_0_0 lowerCamelCase__ = None lowerCamelCase__ = None class lowerCamelCase (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase__ = ParquetConfig def __A ( self : List[Any] ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def __A ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__magic_name__ ): with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = datasets.Features.from_arrow_schema(pq.read_schema(__magic_name__ ) ) break splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"files": files} ) ) return splits def __A ( self : List[str] , __magic_name__ : pa.Table ) -> List[Any]: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(__magic_name__ , self.info.features.arrow_schema ) return pa_table def __A ( self : List[Any] , __magic_name__ : Any ) -> Any: SCREAMING_SNAKE_CASE_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = pq.ParquetFile(__magic_name__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): SCREAMING_SNAKE_CASE_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(__magic_name__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise
354
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
0
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) as f: __lowercase : Optional[Any] = json.load(__UpperCamelCase ) __lowercase : int = {} __lowercase : Tuple = [] __lowercase : Dict = [] for key, info in class_info.items(): __lowercase : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(__UpperCamelCase ) ) __lowercase : Any = thing_ids __lowercase : Tuple = class_names return metadata class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=10 , UpperCamelCase_=False , UpperCamelCase_=2_55 , UpperCamelCase_="shi-labs/oneformer_demo" , UpperCamelCase_="ade20k_panoptic.json" , UpperCamelCase_=10 , ) -> Optional[int]: __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Tuple = num_channels __lowercase : List[str] = min_resolution __lowercase : Tuple = max_resolution __lowercase : Optional[int] = do_resize __lowercase : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size __lowercase : List[Any] = do_normalize __lowercase : List[Any] = image_mean __lowercase : str = image_std __lowercase : Any = class_info_file __lowercase : int = prepare_metadata(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : str = num_text __lowercase : Tuple = repo_path # for the post_process_functions __lowercase : int = 2 __lowercase : Dict = 10 __lowercase : Optional[int] = 10 __lowercase : Tuple = 3 __lowercase : Union[str, Any] = 4 __lowercase : int = num_labels __lowercase : List[Any] = do_reduce_labels __lowercase : Optional[int] = ignore_index def _lowerCamelCase ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: if not batched: __lowercase : List[str] = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): __lowercase ,__lowercase : Optional[Any] = image.size else: __lowercase ,__lowercase : int = image.shape[1], image.shape[2] if w < h: __lowercase : Tuple = int(self.size['''shortest_edge'''] * h / w ) __lowercase : str = self.size['''shortest_edge'''] elif w > h: __lowercase : List[Any] = self.size['''shortest_edge'''] __lowercase : int = int(self.size['''shortest_edge'''] * w / h ) else: __lowercase : Dict = self.size['''shortest_edge'''] __lowercase : List[Any] = self.size['''shortest_edge'''] else: __lowercase : Optional[int] = [] for image in image_inputs: __lowercase ,__lowercase : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase : Any = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] __lowercase : Dict = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width def _lowerCamelCase ( self ) -> Any: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class UpperCAmelCase_ ( snake_case , unittest.TestCase ): UpperCamelCase =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCamelCase =image_processing_class def _lowerCamelCase ( self ) -> Dict: __lowercase : int = OneFormerImageProcessorTester(self ) @property def _lowerCamelCase ( self ) -> Optional[int]: return self.image_processing_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ) -> Any: __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''ignore_index''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''class_info_file''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''num_text''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''repo_path''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''metadata''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_reduce_labels''' ) ) def _lowerCamelCase ( self ) -> int: pass def _lowerCamelCase ( self ) -> Optional[Any]: # Initialize image_processor __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __lowercase : Any = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values __lowercase ,__lowercase : List[str] = self.image_processing_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase ,__lowercase : str = self.image_processing_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) __lowercase : Optional[int] = image_processor( UpperCamelCase_ , ['''semantic'''] * len(UpperCamelCase_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ) -> str: # Initialize image_processor __lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input __lowercase : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values __lowercase ,__lowercase : Any = self.image_processing_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase ,__lowercase : Dict = self.image_processing_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) __lowercase : Any = image_processor( UpperCamelCase_ , ['''semantic'''] * len(UpperCamelCase_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ) -> int: # Initialize image_processor __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input __lowercase : Optional[int] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values __lowercase ,__lowercase : Tuple = self.image_processing_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase ,__lowercase : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) __lowercase : Optional[int] = image_processor( UpperCamelCase_ , ['''semantic'''] * len(UpperCamelCase_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_="np" ) -> Dict: __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowercase : Dict = self.image_processing_tester.num_labels __lowercase : Any = None __lowercase : Union[str, Any] = None __lowercase : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase_ ) if with_segmentation_maps: __lowercase : List[Any] = num_labels if is_instance_map: __lowercase : List[str] = list(range(UpperCamelCase_ ) ) * 2 __lowercase : Union[str, Any] = dict(enumerate(UpperCamelCase_ ) ) __lowercase : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowercase : List[Any] = [Image.fromarray(UpperCamelCase_ ) for annotation in annotations] __lowercase : Dict = image_processor( UpperCamelCase_ , ['''semantic'''] * len(UpperCamelCase_ ) , UpperCamelCase_ , return_tensors='''pt''' , instance_id_to_semantic_id=UpperCamelCase_ , pad_and_return_pixel_mask=UpperCamelCase_ , ) return inputs def _lowerCamelCase ( self ) -> Any: pass def _lowerCamelCase ( self ) -> int: def common(UpperCamelCase_=False , UpperCamelCase_=None ): __lowercase : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase_ , is_instance_map=UpperCamelCase_ , segmentation_type=UpperCamelCase_ ) __lowercase : List[str] = inputs['''mask_labels'''] __lowercase : Dict = inputs['''class_labels'''] __lowercase : Optional[Any] = inputs['''pixel_values'''] __lowercase : Union[str, Any] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase_ ) common(is_instance_map=UpperCamelCase_ , segmentation_type='''pil''' ) common(is_instance_map=UpperCamelCase_ , segmentation_type='''pil''' ) def _lowerCamelCase ( self ) -> int: __lowercase : Any = np.zeros((20, 50) ) __lowercase : Tuple = 1 __lowercase : Any = 1 __lowercase : Union[str, Any] = 1 __lowercase : List[Any] = binary_mask_to_rle(UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Dict = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) __lowercase : Any = self.image_processing_tester.get_fake_oneformer_outputs() __lowercase : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowercase : Tuple = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowercase : int = fature_extractor.post_process_semantic_segmentation(UpperCamelCase_ , target_sizes=UpperCamelCase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) __lowercase : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() __lowercase : List[str] = image_processor.post_process_instance_segmentation(UpperCamelCase_ , threshold=0 ) self.assertTrue(len(UpperCamelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , UpperCamelCase_ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) __lowercase : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() __lowercase : List[Any] = image_processor.post_process_panoptic_segmentation(UpperCamelCase_ , threshold=0 ) self.assertTrue(len(UpperCamelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , UpperCamelCase_ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
249
"""simple docstring""" from __future__ import annotations a_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): __lowercase : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) ) ] # the reference grid __lowercase : Optional[int] = 1 __lowercase : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) ) ] # the action grid __lowercase : List[str] = init[0] __lowercase : Optional[Any] = init[1] __lowercase : int = 0 __lowercase : List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell __lowercase : Optional[Any] = [[f, g, x, y]] __lowercase : Union[str, Any] = False # flag that is set when search is complete __lowercase : List[Any] = False # flag set if we can't find expand while not found and not resign: if len(__UpperCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowercase : str = cell.pop() __lowercase : List[Any] = next_cell[2] __lowercase : Optional[int] = next_cell[3] __lowercase : Dict = next_cell[1] if x == goal[0] and y == goal[1]: __lowercase : List[Any] = True else: for i in range(len(__UpperCamelCase ) ): # to try out different valid actions __lowercase : Union[str, Any] = x + DIRECTIONS[i][0] __lowercase : Optional[int] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowercase : str = g + cost __lowercase : Optional[int] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowercase : Dict = 1 __lowercase : List[Any] = i __lowercase : Dict = [] __lowercase : List[Any] = goal[0] __lowercase : Tuple = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowercase : Any = x - DIRECTIONS[action[x][y]][0] __lowercase : Dict = y - DIRECTIONS[action[x][y]][1] __lowercase : List[Any] = xa __lowercase : Optional[Any] = ya invpath.append([x, y] ) __lowercase : Optional[int] = [] for i in range(len(__UpperCamelCase ) ): path.append(invpath[len(__UpperCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": a_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] a_ = [0, 0] # all coordinates are given in format [y,x] a_ = [len(grid) - 1, len(grid[0]) - 1] a_ = 1 # the cost map which pushes the path closer to the goal a_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): a_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map a_ = 9_9 a_ , a_ = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
249
1
"""simple docstring""" import re def lowercase_ ( __UpperCAmelCase ) -> str: if len(re.findall("""[ATCG]""" , __UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
212
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _A = logging.get_logger(__name__) class _lowerCamelCase ( a_ ): def __init__( self : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
212
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__( __lowercase ): """simple docstring""" a :str = ['image_processor', 'tokenizer'] a :Optional[Any] = 'ChineseCLIPImageProcessor' a :int = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , **SCREAMING_SNAKE_CASE_ : Dict ) -> Any: lowercase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) lowercase_ = kwargs.pop('''feature_extractor''' ) lowercase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = self.image_processor def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: lowercase_ = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: lowercase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : int ) -> int: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def _lowercase ( self : Union[str, Any] ) -> int: lowercase_ = self.tokenizer.model_input_names lowercase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self : Dict ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class
30
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase : Optional[Any] = TypeVar('T') class lowerCamelCase__ ( Generic[T]): '''simple docstring''' _A = 42 # Cache store of keys _A = 42 # References of the keys in cache _A = 1_0 # Maximum capacity of cache def __init__( self :Optional[Any] , a :int ) -> None: __UpperCamelCase : Union[str, Any] = deque() __UpperCamelCase : str = set() if not n: __UpperCamelCase : Union[str, Any] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: __UpperCamelCase : Any = n def _lowerCamelCase ( self :Tuple , a :T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase : int = self.dq_store.pop() self.key_reference.remove(a ) else: self.dq_store.remove(a ) self.dq_store.appendleft(a ) self.key_reference.add(a ) def _lowerCamelCase ( self :Any ) -> None: for k in self.dq_store: print(a ) def __repr__( self :Tuple ) -> str: return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
232
0
'''simple docstring''' import re import string import numpy as np import datasets lowercase__ : Optional[Any] = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowercase__ : Any = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowercase__ : Dict = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: __A : Optional[Any] = np.array([re.sub(_UpperCAmelCase , '' , _UpperCAmelCase) for x in predictions]) __A : Any = np.array([re.sub(_UpperCAmelCase , '' , _UpperCAmelCase) for x in references]) else: __A : Optional[int] = np.asarray(_UpperCAmelCase) __A : Optional[Any] = np.asarray(_UpperCAmelCase) if ignore_case: __A : List[Any] = np.char.lower(_UpperCAmelCase) __A : Tuple = np.char.lower(_UpperCAmelCase) if ignore_punctuation: __A : Any = string.punctuation.maketrans('' , '' , string.punctuation) __A : Any = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase) __A : str = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase) if ignore_numbers: __A : List[str] = string.digits.maketrans('' , '' , string.digits) __A : Tuple = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase) __A : List[Any] = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase) __A : List[str] = predictions == references return {"exact_match": np.mean(_UpperCAmelCase) * 100}
190
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 0 @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(_UpperCAmelCase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(_UpperCAmelCase) , 0) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = AutoConfig.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) # Check that tokenizer_type ≠ model_type __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_UpperCAmelCase , 'vocab.txt')) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='bert' , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_UpperCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_UpperCAmelCase , 'merges.txt')) __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='gpt2' , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_UpperCAmelCase , 'vocab.txt')) __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='bert') self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_UpperCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_UpperCAmelCase , 'merges.txt')) __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='gpt2') self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with pytest.raises(_UpperCAmelCase): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx') @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __A : List[Any] = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased') self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) if isinstance(_UpperCAmelCase , _UpperCAmelCase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _UpperCAmelCase) else: self.assertEqual(tokenizer.do_lower_case , _UpperCAmelCase) self.assertEqual(tokenizer.model_max_length , 512) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _UpperCAmelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __A : str = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = TOKENIZER_MAPPING.values() __A : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_UpperCAmelCase) , _UpperCAmelCase) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased') , _UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_UpperCAmelCase) __A : str = 'Hello, world. How are you?' __A : List[str] = tokenizer.tokenize(_UpperCAmelCase) self.assertEqual('[UNK]' , tokens[0]) __A : Dict = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_UpperCAmelCase) __A : List[Any] = tokenizer.tokenize(_UpperCAmelCase) self.assertEqual('[UNK]' , tokens[0]) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config') self.assertEqual(type(_UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(tokenizer.model_max_length , 512) self.assertEqual(tokenizer.vocab_size , 3_0000) self.assertEqual(tokenizer.unk_token , '[UNK]') self.assertEqual(tokenizer.padding_side , 'right') self.assertEqual(tokenizer.truncation_side , 'right') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('ctrl') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = get_tokenizer_config('bert-base-cased') __A : Optional[int] = config.pop('_commit_hash' , _UpperCAmelCase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_UpperCAmelCase , {'do_lower_case': False}) # This model does not have a tokenizer_config so we get back an empty dict. __A : Dict = get_tokenizer_config(_UpperCAmelCase) self.assertDictEqual(_UpperCAmelCase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Any = get_tokenizer_config(_UpperCAmelCase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: AutoConfig.register('custom' , _UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase): AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) __A : Optional[Any] = CustomTokenizer.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : int = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: AutoConfig.register('custom' , _UpperCAmelCase) # Can register in two steps AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase): AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __A : Optional[int] = BertTokenizerFast.from_pretrained(_UpperCAmelCase) bert_tokenizer.save_pretrained(_UpperCAmelCase) __A : Dict = CustomTokenizerFast.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaises(_UpperCAmelCase): __A : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase): __A : Dict = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) __A : str = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Dict = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __A : Union[str, Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = False class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('custom' , _UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) # If remote code is not set, the default is to use local __A : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __A : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. __A : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __A : Any = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertTrue(tokenizer.special_attribute_present) __A : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , 'bert-base is not a local folder and is not a valid model identifier'): __A : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , revision='aaaaaa') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __A : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
190
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case ( UpperCAmelCase )-> List[str]: """simple docstring""" __A = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def snake_case ( UpperCAmelCase , UpperCAmelCase )-> Any: """simple docstring""" __A = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def snake_case ( UpperCAmelCase )-> Tuple: """simple docstring""" __A = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', 'stage2.cls_token') ) return token def snake_case ( )-> Tuple: """simple docstring""" __A = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> Dict: """simple docstring""" __A = 'imagenet-1k-id2label.json' __A = 1_0_0_0 __A = 'huggingface/label-files' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(UpperCAmelCase , UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) __A = {int(UpperCAmelCase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(UpperCAmelCase ) __A = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) __A = image_size __A = torch.load(UpperCAmelCase , map_location=torch.device('cpu' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(UpperCAmelCase ) __A = list_of_state_dict + embeddings(UpperCAmelCase ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(UpperCAmelCase , UpperCAmelCase ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) image_processor.save_pretrained(UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) a__ : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
161
'''simple docstring''' import functools def snake_case ( UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) __A = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
161
1
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__ : '''simple docstring''' def __init__( self ) -> Tuple: lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 2_56 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = cva.imread(lowerCamelCase_ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' ) lowerCAmelCase__ = np.sum(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase_ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCAmelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
228
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _snake_case ( A , A , A , A , ) -> list[float]: lowerCAmelCase__ , lowerCAmelCase__ = coefficient_matrix.shape lowerCAmelCase__ , lowerCAmelCase__ = constant_matrix.shape if rowsa != colsa: lowerCAmelCase__ = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(A ) if colsa != 1: lowerCAmelCase__ = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(A ) if rowsa != rowsa: lowerCAmelCase__ = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(A ) if len(A ) != rowsa: lowerCAmelCase__ = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(A )} and {rowsa}""" ) raise ValueError(A ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) lowerCAmelCase__ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCAmelCase__ , lowerCAmelCase__ = table.shape strictly_diagonally_dominant(A ) # Iterates the whole matrix for given number of times for _ in range(A ): lowerCAmelCase__ = [] for row in range(A ): lowerCAmelCase__ = 0 for col in range(A ): if col == row: lowerCAmelCase__ = table[row][col] elif col == cols - 1: lowerCAmelCase__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCAmelCase__ = (temp + val) / denom new_val.append(A ) lowerCAmelCase__ = new_val return [float(A ) for i in new_val] def _snake_case ( A ) -> bool: lowerCAmelCase__ , lowerCAmelCase__ = table.shape lowerCAmelCase__ = True for i in range(0 , A ): lowerCAmelCase__ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
228
1
'''simple docstring''' def _lowerCamelCase ( lowercase : float , lowercase : float ) -> float: if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
63
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') UpperCAmelCase_ , UpperCAmelCase_ : Dict = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') UpperCAmelCase_ : Optional[Any] = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: UpperCAmelCase_ : List[str] = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCAmelCase_ : str = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
120
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : int = '''instructblip_vision_model''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=1_4_0_8 , SCREAMING_SNAKE_CASE__ : int=6_1_4_4 , SCREAMING_SNAKE_CASE__ : Dict=3_9 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_2_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_4 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=1E-6 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=1E-10 , SCREAMING_SNAKE_CASE__ : str=True , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : List[str] = hidden_size a_ : Any = intermediate_size a_ : str = num_hidden_layers a_ : Dict = num_attention_heads a_ : str = patch_size a_ : Any = image_size a_ : Dict = initializer_range a_ : List[Any] = attention_dropout a_ : Union[str, Any] = layer_norm_eps a_ : Optional[Any] = hidden_act a_ : Optional[Any] = qkv_bias @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[Any] = '''instructblip_qformer''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : str=7_6_8 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Any=1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=1E-12 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : str=1_4_0_8 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = vocab_size a_ : List[str] = hidden_size a_ : Any = num_hidden_layers a_ : Dict = num_attention_heads a_ : Optional[int] = hidden_act a_ : List[str] = intermediate_size a_ : Tuple = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : List[str] = initializer_range a_ : Any = layer_norm_eps a_ : Tuple = position_embedding_type a_ : List[str] = cross_attention_frequency a_ : Union[str, Any] = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE ( cls : str , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Union[str, Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = '''instructblip''' snake_case__ : List[str] = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : int=3_2 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE__ ) if vision_config is None: a_ : Dict = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: a_ : List[str] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: a_ : Any = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) a_ : int = InstructBlipVisionConfig(**SCREAMING_SNAKE_CASE__ ) a_ : int = InstructBlipQFormerConfig(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' a_ : List[Any] = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.text_config.tie_word_embeddings a_ : List[Any] = self.text_config.is_encoder_decoder a_ : Optional[Any] = num_query_tokens a_ : int = self.vision_config.hidden_size a_ : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a_ : Optional[int] = 1.0 a_ : Any = 0.02 @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : InstructBlipVisionConfig , SCREAMING_SNAKE_CASE__ : InstructBlipQFormerConfig , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: a_ : List[Any] = copy.deepcopy(self.__dict__ ) a_ : Optional[int] = self.vision_config.to_dict() a_ : Optional[Any] = self.qformer_config.to_dict() a_ : Union[str, Any] = self.text_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output
120
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class A__ ( __magic_name__ ): lowercase = 42 class A__ ( __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : str , a : int = 16 , a : int = 88 , a : Optional[int] = None , a : Optional[int] = None , a : int = 1 , a : float = 0.0 , a : int = 32 , a : Optional[int] = None , a : bool = False , a : Optional[int] = None , a : str = "geglu" , a : bool = True , a : bool = True , ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : str = attention_head_dim lowerCAmelCase__ : int = num_attention_heads * attention_head_dim lowerCAmelCase__ : Optional[Any] = in_channels lowerCAmelCase__ : Tuple = torch.nn.GroupNorm(num_groups=a , num_channels=a , eps=1E-6 , affine=a ) lowerCAmelCase__ : Tuple = nn.Linear(a , a ) # 3. Define transformers blocks lowerCAmelCase__ : Tuple = nn.ModuleList( [ BasicTransformerBlock( a , a , a , dropout=a , cross_attention_dim=a , activation_fn=a , attention_bias=a , double_self_attention=a , norm_elementwise_affine=a , ) for d in range(a ) ] ) lowerCAmelCase__ : Any = nn.Linear(a , a ) def _lowerCamelCase ( self : Union[str, Any] , a : str , a : int=None , a : Any=None , a : Dict=None , a : List[Any]=1 , a : List[str]=None , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = hidden_states.shape lowerCAmelCase__ : Dict = batch_frames // num_frames lowerCAmelCase__ : Union[str, Any] = hidden_states lowerCAmelCase__ : Dict = hidden_states[None, :].reshape(a , a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCAmelCase__ : Optional[Any] = self.norm(a ) lowerCAmelCase__ : Dict = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , a , a ) lowerCAmelCase__ : Union[str, Any] = self.proj_in(a ) # 2. Blocks for block in self.transformer_blocks: lowerCAmelCase__ : str = block( a , encoder_hidden_states=a , timestep=a , cross_attention_kwargs=a , class_labels=a , ) # 3. Output lowerCAmelCase__ : Dict = self.proj_out(a ) lowerCAmelCase__ : Union[str, Any] = ( hidden_states[None, None, :] .reshape(a , a , a , a , a ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCAmelCase__ : Optional[int] = hidden_states.reshape(a , a , a , a ) lowerCAmelCase__ : str = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=a )
212
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowerCamelCase ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = AlbertTokenizer(a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : List[str] , a : int ): '''simple docstring''' lowerCAmelCase__ : Any = 'this is a test' lowerCAmelCase__ : List[Any] = 'this is a test' return input_text, output_text def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = '<pad>' lowerCAmelCase__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(a ) , 30_000 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : str = self.get_rust_tokenizer() lowerCAmelCase__ : List[Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ : str = tokenizer.tokenize(a ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Tuple = tokenizer.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase__ : Dict = tokenizer.encode(a ) lowerCAmelCase__ : List[Any] = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = AlbertTokenizer(a , keep_accents=a ) lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [48, 25, 21, 1_289] ) lowerCAmelCase__ : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) lowerCAmelCase__ : Any = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = AlbertTokenizer(a ) lowerCAmelCase__ : Tuple = tokenizer.encode('sequence builders' ) lowerCAmelCase__ : Any = tokenizer.encode('multi-sequence build' ) lowerCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(a ) lowerCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
212
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def snake_case_ ( ) -> Optional[int]: lowercase__: Dict = 9, 14 # noqa: F841 lowercase__: List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowercase__: str = defaultdict(_lowerCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowercase__: Tuple = mst(_lowerCAmelCase ) lowercase__: Tuple = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowercase__: List[Any] = tuple(answer[:2] ) lowercase__: Any = tuple(edge[::-1] ) assert edge in result or reverse in result
371
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ = 101 ) -> Any: '''simple docstring''' lowercase__: Any = length def __len__( self ) -> List[Any]: '''simple docstring''' return self.length def __getitem__( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return i class __a : def __call__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return {"input_ids": torch.tensor(lowerCAmelCase__ ), "labels": torch.tensor(lowerCAmelCase__ )} class __a ( nn.Module ): def __init__( self ) -> Tuple: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase__: List[str] = nn.Linear(120 , 80 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> int: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __a ( __UpperCamelCase ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: Optional[int] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __a ( __UpperCamelCase ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[str] = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: List[str] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: __lowerCAmelCase = DummyDataset(dataset_length) def snake_case_ ( snake_case ) -> Dict: lowercase__: str = list(range(len(snake_case ) ) ) lowercase__: Tuple = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __lowerCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = 2 __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = None
288
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ , a__ ): lowerCAmelCase = '''maskformer-swin''' lowerCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=96 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[3, 6, 12, 24] , _UpperCAmelCase=7 , _UpperCAmelCase=4.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : Any = image_size __A : List[Any] = patch_size __A : Tuple = num_channels __A : Union[str, Any] = embed_dim __A : Dict = depths __A : Tuple = len(_UpperCAmelCase) __A : Optional[Any] = num_heads __A : Any = window_size __A : str = mlp_ratio __A : Dict = qkv_bias __A : Optional[int] = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : List[str] = drop_path_rate __A : Any = hidden_act __A : Optional[Any] = use_absolute_embeddings __A : Union[str, Any] = layer_norm_eps __A : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : Dict = int(embed_dim * 2 ** (len(_UpperCAmelCase) - 1)) __A : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(_UpperCAmelCase) + 1)] __A ,__A : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names)
190
'''simple docstring''' lowercase__ : Dict = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
190
1
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __snake_case ( datasets.BuilderConfig): snake_case__ : Optional[datasets.Features] = None def snake_case_ ( A_ : "pyspark.sql.DataFrame", A_ : List[int], ): '''simple docstring''' import pyspark def generate_fn(): _lowerCamelCase : int = df.select('''*''', pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: _lowerCamelCase : Any = df_with_partition_id.select('''*''' ).where(F'''part_id = {partition_id}''' ).drop('''part_id''' ) _lowerCamelCase : Optional[int] = partition_df.collect() _lowerCamelCase : List[str] = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class __snake_case ( _BaseExamplesIterable): def __init__( self : Tuple , __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : Optional[int]=None , ): """simple docstring""" _lowerCamelCase : Dict = df _lowerCamelCase : Union[str, Any] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowerCamelCase : Dict = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ): """simple docstring""" yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : np.random.Generator ): """simple docstring""" _lowerCamelCase : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[Any] = self.split_shard_indices_by_worker(__lowerCAmelCase , __lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return len(self.partition_order ) class __snake_case ( datasets.DatasetBuilder): snake_case__ : List[Any] = SparkConfig def __init__( self : Union[str, Any] , __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , **__lowerCAmelCase : int , ): """simple docstring""" import pyspark _lowerCamelCase : Optional[int] = pyspark.sql.SparkSession.builder.getOrCreate() _lowerCamelCase : int = df _lowerCamelCase : Any = working_dir super().__init__( cache_dir=__lowerCAmelCase , config_name=str(self.df.semanticHash() ) , **__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" def create_cache_and_write_probe(__lowerCAmelCase : Optional[int] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowerCAmelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowerCamelCase : Optional[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__lowerCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" import pyspark def get_arrow_batch_size(__lowerCAmelCase : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) _lowerCamelCase : Any = self.df.count() _lowerCamelCase : Union[str, Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowerCamelCase : List[Any] = ( self.df.limit(__lowerCAmelCase ) .repartition(1 ) .mapInArrow(__lowerCAmelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowerCamelCase : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowerCamelCase : List[str] = min(__lowerCAmelCase , int(approx_total_size / max_shard_size ) ) _lowerCamelCase : Optional[int] = self.df.repartition(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int , ): """simple docstring""" import pyspark _lowerCamelCase : Optional[Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter _lowerCamelCase : List[Any] = os.path.join(self._working_dir , os.path.basename(__lowerCAmelCase ) ) if self._working_dir else fpath _lowerCamelCase : Dict = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowerCamelCase : str = self.config.features _lowerCamelCase : Dict = self._writer_batch_size _lowerCamelCase : List[str] = self._fs.storage_options def write_arrow(__lowerCAmelCase : List[str] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowerCamelCase : List[str] = pyspark.TaskContext().taskAttemptId() _lowerCamelCase : Any = next(__lowerCAmelCase , __lowerCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Optional[int] = writer_class( features=__lowerCAmelCase , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=__lowerCAmelCase , storage_options=__lowerCAmelCase , embed_local_files=__lowerCAmelCase , ) _lowerCamelCase : int = pa.Table.from_batches([first_batch] ) writer.write_table(__lowerCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowerCamelCase , _lowerCamelCase : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 _lowerCamelCase : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=__lowerCAmelCase , storage_options=__lowerCAmelCase , embed_local_files=__lowerCAmelCase , ) _lowerCamelCase : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(__lowerCAmelCase ) if writer._num_bytes > 0: _lowerCamelCase , _lowerCamelCase : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowerCAmelCase ) ): _lowerCamelCase : Optional[Any] = os.path.join(os.path.dirname(__lowerCAmelCase ) , os.path.basename(__lowerCAmelCase ) ) shutil.move(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = ( self.df.mapInArrow(__lowerCAmelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : "datasets.SplitGenerator" , __lowerCAmelCase : str = "arrow" , __lowerCAmelCase : Optional[Union[str, int]] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Tuple , ): """simple docstring""" self._validate_cache_dir() _lowerCamelCase : str = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__lowerCAmelCase ) _lowerCamelCase : str = not is_remote_filesystem(self._fs ) _lowerCamelCase : Tuple = os.path.join if is_local else posixpath.join _lowerCamelCase : int = '''-TTTTT-SSSSS-of-NNNNN''' _lowerCamelCase : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' _lowerCamelCase : List[Any] = path_join(self._output_dir , __lowerCAmelCase ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : str = 0 _lowerCamelCase : int = [] _lowerCamelCase : List[str] = [] for task_id, content in self._prepare_split_single(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : str = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__lowerCAmelCase ) _lowerCamelCase : int = total_num_examples _lowerCamelCase : str = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: _lowerCamelCase : Optional[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowerCamelCase : str = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , ): rename( __lowerCAmelCase , fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace('''TTTTT-SSSSS''' , f'''{global_shard_id:05d}''' ).replace('''NNNNN''' , f'''{total_shards:05d}''' ) , ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Any = 0 for i in range(len(__lowerCAmelCase ) ): _lowerCamelCase , _lowerCamelCase : Dict = task_id_and_num_shards[i] for shard_id in range(__lowerCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowerCAmelCase , len(__lowerCAmelCase ) ).map(lambda __lowerCAmelCase : _rename_shard(*__lowerCAmelCase ) ).collect() else: # don't use any pattern _lowerCamelCase : Any = 0 _lowerCamelCase : List[str] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace(__lowerCAmelCase , '''''' ) , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
175
"""simple docstring""" def snake_case_ ( A_ : list ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = len(A_ ) for i in range(1, A_ ): _lowerCamelCase : Tuple = collection[i] _lowerCamelCase : Dict = 0 _lowerCamelCase : Any = i - 1 while low <= high: _lowerCamelCase : Optional[int] = (low + high) // 2 if val < collection[mid]: _lowerCamelCase : List[str] = mid - 1 else: _lowerCamelCase : Dict = mid + 1 for j in range(A_, A_, -1 ): _lowerCamelCase : Optional[int] = collection[j - 1] _lowerCamelCase : Tuple = val return collection if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
175
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = MobileBertTokenizer UpperCamelCase__ = MobileBertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = filter_non_english UpperCamelCase__ = '''google/mobilebert-uncased''' def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' super().setUp() a = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) a = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Optional[Any] ): '''simple docstring''' a = """UNwant\u00E9d,running""" a = """unwanted, running""" return input_text, output_text def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = self.tokenizer_class(self.vocab_file ) a = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__magic_name__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [9, 6, 7, 12, 10, 11] ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = """UNwant\u00E9d,running""" a = tokenizer.tokenize(__magic_name__ ) a = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = self.get_rust_tokenizer() a = tokenizer.encode(__magic_name__ ) a = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # With lower casing a = self.get_tokenizer(do_lower_case=__magic_name__ ) a = self.get_rust_tokenizer(do_lower_case=__magic_name__ ) a = """UNwant\u00E9d,running""" a = tokenizer.tokenize(__magic_name__ ) a = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = self.get_rust_tokenizer() a = tokenizer.encode(__magic_name__ ) a = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__magic_name__ , strip_accents=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__magic_name__ , strip_accents=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self :int ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self :int ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__magic_name__ , strip_accents=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__magic_name__ , strip_accents=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__magic_name__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCamelCase__ ( self :str ): '''simple docstring''' a = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] a = {} for i, token in enumerate(__magic_name__ ): a = i a = WordpieceTokenizer(vocab=__magic_name__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCamelCase__ ( self :int ): '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = self.get_tokenizer() a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__magic_name__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(__magic_name__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def lowerCamelCase__ ( self :int ): '''simple docstring''' a = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) a = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ ) a = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ ) a = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) a = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCamelCase__ ( self :str ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' a = tokenizer_r.encode_plus( __magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ , ) a = tokenizer_r.do_lower_case if hasattr(__magic_name__ , """do_lower_case""" ) else False a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = ["""的""", """人""", """有"""] a = """""".join(__magic_name__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a = True a = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = tokenizer_p.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = tokenizer_r.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = tokenizer_r.convert_ids_to_tokens(__magic_name__ ) a = tokenizer_p.convert_ids_to_tokens(__magic_name__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = False a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = tokenizer_r.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = tokenizer_p.encode(__magic_name__ , add_special_tokens=__magic_name__ ) a = tokenizer_r.convert_ids_to_tokens(__magic_name__ ) a = tokenizer_p.convert_ids_to_tokens(__magic_name__ ) # it is expected that only the first Chinese character is not preceded by "##". a = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(__magic_name__ ) ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ )
228
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowerCAmelCase ( pl.LightningModule ): def __init__( self :Union[str, Any] , __magic_name__ :Optional[int] ): '''simple docstring''' super().__init__() a = model a = 2 a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' pass def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: # load longformer model from model identifier a = LongformerModel.from_pretrained(__lowerCamelCase ) a = LightningModel(__lowerCamelCase ) a = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model a = LongformerForQuestionAnswering.from_pretrained(__lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowerCamelCase ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase : List[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
228
1
def lowerCAmelCase__ ( _a : int , _a : Dict ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCAmelCase__ ( _a : Dict , _a : List[str]=0 ): return sorted(_a , key=lambda _a : x[column] ) def lowerCAmelCase__ ( _a : str , _a : str , _a : str=float("inf" ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , _a ): snake_case_ : int = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ : int = current_dis return min_dis def lowerCAmelCase__ ( _a : List[Any] , _a : str , _a : Dict=float("inf" ) ): for i in range(min(6 , points_counts - 1 ) , _a ): for j in range(max(0 , i - 6 ) , _a ): snake_case_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ : int = current_dis return min_dis def lowerCAmelCase__ ( _a : Any , _a : Dict , _a : List[str] ): # base case if points_counts <= 3: return dis_between_closest_pair(_a , _a ) # recursion snake_case_ : Any = points_counts // 2 snake_case_ : Optional[Any] = closest_pair_of_points_sqr( _a , points_sorted_on_y[:mid] , _a ) snake_case_ : Optional[int] = closest_pair_of_points_sqr( _a , points_sorted_on_y[mid:] , points_counts - mid ) snake_case_ : List[Any] = min(_a , _a ) snake_case_ : Any = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_a ) snake_case_ : Any = dis_between_closest_in_strip( _a , len(_a ) , _a ) return min(_a , _a ) def lowerCAmelCase__ ( _a : Optional[int] , _a : List[str] ): snake_case_ : List[Any] = column_based_sort(_a , column=0 ) snake_case_ : Dict = column_based_sort(_a , column=1 ) return ( closest_pair_of_points_sqr( _a , _a , _a ) ) ** 0.5 if __name__ == "__main__": lowercase : Tuple = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
36
lowercase : Optional[int] = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
36
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __A : str = "" __A : int = "" __A : List[Any] = "" __A : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_, lowerCAmelCase_ : List[Any] = get_dataset(A__ , A__ ) print("""Processing...""" ) lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Optional[int] = update_image_and_anno(A__ , A__ , A__ ) for index, image in enumerate(A__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase_ : Optional[int] = random_chars(32 ) lowerCAmelCase_ : List[Any] = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowerCAmelCase_ : Optional[Any] = f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg' , A__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Success {index+1}/{len(A__ )} with {file_name}' ) lowerCAmelCase_ : List[str] = [] for anno in new_annos[index]: lowerCAmelCase_ : Dict = f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(A__ ) with open(f'/{file_root}.txt' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : int = [] lowerCAmelCase_ : Any = [] for label_file in glob.glob(os.path.join(A__ , """*.txt""" ) ): lowerCAmelCase_ : Optional[Any] = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(A__ ) as in_file: lowerCAmelCase_ : Any = in_file.readlines() lowerCAmelCase_ : Optional[int] = os.path.join(A__ , f'{label_name}.jpg' ) lowerCAmelCase_ : Dict = [] for obj_list in obj_lists: lowerCAmelCase_ : int = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(A__ ) labels.append(A__ ) return img_paths, labels def UpperCamelCase_ ( A__ : list , A__ : list , A__ : int = 1 ): '''simple docstring''' lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Optional[Any] = [] for idx in range(len(A__ ) ): lowerCAmelCase_ : Any = [] lowerCAmelCase_ : int = img_list[idx] path_list.append(A__ ) lowerCAmelCase_ : List[str] = anno_list[idx] lowerCAmelCase_ : Optional[int] = cva.imread(A__ ) if flip_type == 1: lowerCAmelCase_ : List[str] = cva.flip(A__ , A__ ) for bbox in img_annos: lowerCAmelCase_ : int = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCAmelCase_ : Any = cva.flip(A__ , A__ ) for bbox in img_annos: lowerCAmelCase_ : List[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(A__ ) new_imgs_list.append(A__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_ ( A__ : int = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase_ : Union[str, Any] = ascii_lowercase + digits return "".join(random.choice(A__ ) for _ in range(A__ ) ) if __name__ == "__main__": main() print("DONE ✅")
120
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Optional[Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'gpt_neox' def __init__( self : Optional[int] , lowerCamelCase : Tuple=5_04_32 , lowerCamelCase : Optional[int]=61_44 , lowerCamelCase : Tuple=44 , lowerCamelCase : Any=64 , lowerCamelCase : List[Any]=2_45_76 , lowerCamelCase : List[Any]="gelu" , lowerCamelCase : Optional[Any]=0.25 , lowerCamelCase : Any=1_00_00 , lowerCamelCase : Any=0.0 , lowerCamelCase : str=0.0 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=20_48 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Any=1E-5 , lowerCamelCase : Dict=True , lowerCamelCase : Optional[int]=0 , lowerCamelCase : List[str]=2 , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[int]=None , **lowerCamelCase : int , ) -> Optional[Any]: super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[Any] = rotary_pct lowerCAmelCase_ : Any = rotary_emb_base lowerCAmelCase_ : List[str] = attention_dropout lowerCAmelCase_ : Union[str, Any] = hidden_dropout lowerCAmelCase_ : Tuple = classifier_dropout lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : str = tie_word_embeddings lowerCAmelCase_ : str = use_parallel_residual lowerCAmelCase_ : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def __lowercase ( self : List[str] ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) lowerCAmelCase_ : Optional[Any] = self.rope_scaling.get("""type""" , lowerCamelCase ) lowerCAmelCase_ : int = self.rope_scaling.get("""factor""" , lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowerCamelCase , lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
120
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Tuple = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" _lowerCamelCase : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) return image def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : List[str] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Tuple = val def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) _lowerCamelCase : List[str] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _lowerCamelCase : Tuple = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCamelCase : str = qkv_bias def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = 364 if "coco" in model_name else 224 _lowerCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCamelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCamelCase : Optional[int] = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCamelCase : Optional[Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCamelCase : str = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() _lowerCamelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) _lowerCamelCase : List[str] = tokenizer("\n" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCamelCase : Optional[int] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCamelCase : List[str] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCamelCase : Dict = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } _lowerCamelCase : Optional[Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) _lowerCamelCase : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" _lowerCamelCase : int = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("Done!" ) # update state dict keys _lowerCamelCase : Tuple = original_model.state_dict() _lowerCamelCase : str = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCamelCase : Optional[Any] = state_dict.pop(_lowerCamelCase ) if key.startswith("Qformer.bert" ): _lowerCamelCase : str = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: _lowerCamelCase : Tuple = key.replace("self" , "attention" ) if "opt_proj" in key: _lowerCamelCase : Dict = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: _lowerCamelCase : List[str] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): _lowerCamelCase : int = key.replace("opt" , "language" ) if key.startswith("t5" ): _lowerCamelCase : Any = key.replace("t5" , "language" ) _lowerCamelCase : int = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : int = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCamelCase : int = load_demo_image() _lowerCamelCase : List[Any] = vis_processors["eval"](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCamelCase : Optional[int] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCamelCase : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCamelCase : Dict = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCamelCase : str = processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCamelCase : Tuple = original_model({"image": original_pixel_values, "text_input": [""]} ).logits _lowerCamelCase : List[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCamelCase : Optional[int] = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits _lowerCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _lowerCamelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCamelCase : str = torch.tensor( [[-41.5850, -4.4_4_4_0, -8.9_9_2_2], [-47.4322, -5.9_1_4_3, -1.7_3_4_0]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCamelCase : Optional[Any] = torch.tensor( [[-57.0109, -9.8_9_6_7, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCamelCase : str = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) _lowerCamelCase : List[str] = "" _lowerCamelCase : Dict = tokenizer(_lowerCamelCase , return_tensors="pt" ).input_ids.to(_lowerCamelCase ) _lowerCamelCase : Optional[int] = original_model.generate({"image": original_pixel_values} ) _lowerCamelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , _lowerCamelCase ) _lowerCamelCase : List[Any] = input_ids.shape[1] _lowerCamelCase : Tuple = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCamelCase : int = [text.strip() for text in output_text] print("HF generation:" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() _lowerCAmelCase : Dict = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowerCAmelCase : Union[str, Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : Optional[int] = 48 _lowerCAmelCase : List[Any] = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowerCAmelCase : List[str] = [6, 6, 6, 6] _lowerCAmelCase : Tuple = 60 _lowerCAmelCase : Optional[Any] = [6, 6, 6, 6] _lowerCAmelCase : Any = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowerCAmelCase : Dict = 4 _lowerCAmelCase : int = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : str = 126 _lowerCAmelCase : Optional[Any] = 7 _lowerCAmelCase : Dict = 2_55.0 _lowerCAmelCase : List[str] = "" return config def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: _lowerCAmelCase : Optional[int] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _lowerCAmelCase : int = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: _lowerCAmelCase : Optional[int] = name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: _lowerCAmelCase : Optional[Any] = name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: _lowerCAmelCase : Optional[int] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowerCAmelCase : Union[str, Any] = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowerCAmelCase : List[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCAmelCase : Optional[int] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCAmelCase : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCAmelCase : List[Any] = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _lowerCAmelCase : Optional[Any] = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _lowerCAmelCase : Tuple = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _lowerCAmelCase : int = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _lowerCAmelCase : Optional[Any] = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: _lowerCAmelCase : List[Any] = name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": _lowerCAmelCase : Union[str, Any] = "layernorm.weight" if name == "norm.bias": _lowerCAmelCase : Optional[int] = "layernorm.bias" if "conv_first" in name: _lowerCAmelCase : str = name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowerCAmelCase : Dict = name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowerCAmelCase : Tuple = name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: _lowerCAmelCase : List[str] = name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: _lowerCAmelCase : Union[str, Any] = name.replace("upsample.2" , "upsample.convolution_1" ) _lowerCAmelCase : Optional[Any] = "upsample." + name elif config.upsampler == "pixelshuffledirect": _lowerCAmelCase : Any = name.replace("upsample.0.weight" , "upsample.conv.weight" ) _lowerCAmelCase : Optional[Any] = name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: _lowerCAmelCase : Tuple = "swin2sr." + name return name def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase : List[Any] = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: _lowerCAmelCase : Tuple = key.split("." ) _lowerCAmelCase : Optional[int] = int(key_split[1] ) _lowerCAmelCase : Any = int(key_split[4] ) _lowerCAmelCase : str = config.embed_dim if "weight" in key: _lowerCAmelCase : List[Any] = val[:dim, :] _lowerCAmelCase : Optional[Any] = val[dim : dim * 2, :] _lowerCAmelCase : int = val[-dim:, :] else: _lowerCAmelCase : Optional[int] = val[:dim] _lowerCAmelCase : int = val[dim : dim * 2] _lowerCAmelCase : str = val[-dim:] pass else: _lowerCAmelCase : Optional[int] = val return orig_state_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = get_config(_lowerCamelCase ) _lowerCAmelCase : str = SwinaSRForImageSuperResolution(_lowerCamelCase ) model.eval() _lowerCAmelCase : str = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" ) _lowerCAmelCase : List[str] = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : str = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if len(_lowerCamelCase ) > 0: raise ValueError("Missing keys when converting: {}".format(_lowerCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"Unexpected key {key} in state_dict" ) # verify values _lowerCAmelCase : Union[str, Any] = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" _lowerCAmelCase : Tuple = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) _lowerCAmelCase : int = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowerCAmelCase : List[Any] = 126 if "Jpeg" in checkpoint_url else 256 _lowerCAmelCase : int = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _lowerCAmelCase : List[str] = transforms(_lowerCamelCase ).unsqueeze(0 ) if config.num_channels == 1: _lowerCAmelCase : str = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowerCAmelCase : Optional[Any] = model(_lowerCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 512, 512] ) _lowerCAmelCase : Optional[int] = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowerCAmelCase : Optional[int] = torch.Size([1, 3, 1_024, 1_024] ) _lowerCAmelCase : Optional[int] = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowerCAmelCase : List[str] = torch.Size([1, 3, 1_024, 1_024] ) _lowerCAmelCase : Tuple = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 512, 512] ) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowerCAmelCase : Tuple = torch.Size([1, 3, 1_024, 1_024] ) _lowerCAmelCase : Optional[Any] = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _lowerCamelCase , atol=1e-3 ) print("Looks ok!" ) _lowerCAmelCase : Any = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } _lowerCAmelCase : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub(F"caidas/{model_name}" ) processor.push_to_hub(F"caidas/{model_name}" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") _snake_case = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
36
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=False ) -> Optional[int]: _snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: _snake_case = '''''' else: _snake_case = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[ : config.hidden_size, : ] _snake_case = in_proj_bias[: config.hidden_size] _snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case = in_proj_weight[ -config.hidden_size :, : ] _snake_case = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Tuple: _snake_case = dct.pop(__lowerCamelCase ) _snake_case = val def _UpperCAmelCase ( ) -> Dict: _snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _snake_case = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ) -> str: _snake_case = DeiTConfig() # all deit models have fine-tuned heads _snake_case = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _snake_case = 10_00 _snake_case = '''huggingface/label-files''' _snake_case = '''imagenet-1k-id2label.json''' _snake_case = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _snake_case = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} _snake_case = int(deit_name[-6:-4] ) _snake_case = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): _snake_case = 1_92 _snake_case = 7_68 _snake_case = 12 _snake_case = 3 elif deit_name[9:].startswith('''small''' ): _snake_case = 3_84 _snake_case = 15_36 _snake_case = 12 _snake_case = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): _snake_case = 10_24 _snake_case = 40_96 _snake_case = 24 _snake_case = 16 # load original model from timm _snake_case = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _snake_case = timm_model.state_dict() _snake_case = create_rename_keys(__lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # load HuggingFace model _snake_case = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor _snake_case = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _snake_case = DeiTImageProcessor(size=__lowerCamelCase , crop_size=config.image_size ) _snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ) _snake_case = encoding['''pixel_values'''] _snake_case = model(__lowerCamelCase ) _snake_case = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
288
0
_snake_case : List[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any] ): # Return True if there is node that has not iterated. __lowerCAmelCase = [False] * len(lowerCAmelCase_ ) __lowerCAmelCase = [s] __lowerCAmelCase = True while queue: __lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase_ ) __lowerCAmelCase = True __lowerCAmelCase = u return visited[t] def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Any, lowerCAmelCase_ : str ): __lowerCAmelCase = [-1] * (len(lowerCAmelCase_ )) __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = float('Inf' ) __lowerCAmelCase = sink while s != source: # Find the minimum value in select path __lowerCAmelCase = min(lowerCAmelCase_, graph[parent[s]][s] ) __lowerCAmelCase = parent[s] max_flow += path_flow __lowerCAmelCase = sink while v != source: __lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowerCAmelCase = parent[v] for i in range(len(lowerCAmelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
352
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Any, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Tuple ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowerCAmelCase = TapasConfig.from_json_file(lowerCAmelCase_ ) # set absolute/relative position embeddings parameter __lowerCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowerCAmelCase = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WTQ": # run_task_main.py hparams __lowerCAmelCase = 4 __lowerCAmelCase = True # hparam_utils.py hparams __lowerCAmelCase = 0.66_4694 __lowerCAmelCase = 0.20_7951 __lowerCAmelCase = 0.12_1194 __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = 0.035_2513 __lowerCAmelCase = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowerCAmelCase = 4 __lowerCAmelCase = False # hparam_utils.py hparams __lowerCAmelCase = 36.4519 __lowerCAmelCase = 0.90_3421 __lowerCAmelCase = 222.088 __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = 0.76_3141 __lowerCAmelCase = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "TABFACT": __lowerCAmelCase = TapasForSequenceClassification(config=lowerCAmelCase_ ) elif task == "MLM": __lowerCAmelCase = TapasForMaskedLM(config=lowerCAmelCase_ ) elif task == "INTERMEDIATE_PRETRAINING": __lowerCAmelCase = TapasModel(config=lowerCAmelCase_ ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase_ ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowerCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt', model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase_ ) print('Used relative position embeddings:', model.config.reset_position_index_per_cell ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
207
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : int=False ): try: UpperCamelCase_ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase_ : List[str] = default else: # KEY is set, convert it to True or False. try: UpperCamelCase_ : Union[str, Any] = strtobool(lowerCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value a_ = parse_flag_from_env('RUN_SLOW', default=False) def __lowercase ( lowerCamelCase : List[Any] ): return unittest.skip('Test was skipped' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : int ): return unittest.skipUnless(_run_slow_tests , 'test is slow' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Optional[Any] ): return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Any ): return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Any ): return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : List[str] ): return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Tuple ): return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Tuple ): return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Optional[Any] ): return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : List[Any] ): return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : int ): return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Any ): return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Tuple ): return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[int]=None ): if test_case is None: return partial(lowerCamelCase , version=lowerCamelCase ) return unittest.skipUnless(is_torch_version('>=' , lowerCamelCase ) , F"test requires torch version >= {version}" )(lowerCamelCase ) def __lowercase ( lowerCamelCase : int ): return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : int ): return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Dict ): return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(lowerCamelCase ) a_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __lowercase ( lowerCamelCase : Dict ): return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(lowerCamelCase ) class _lowercase ( unittest.TestCase ): lowercase = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = tempfile.mkdtemp() @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any ) -> Union[str, Any]: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(snake_case ) class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Union[mock.Mock, List[mock.Mock]] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : str = mocks if isinstance(snake_case , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : str = AcceleratorState() UpperCamelCase_ : str = tensor[None].clone().to(state.device ) UpperCamelCase_ : List[Any] = gather(lowerCamelCase ).cpu() UpperCamelCase_ : Tuple = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase ): return False return True class _lowercase : def __init__( self : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : int = returncode UpperCamelCase_ : Optional[int] = stdout UpperCamelCase_ : Optional[int] = stderr async def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple ): while True: UpperCamelCase_ : Tuple = await stream.readline() if line: callback(lowerCamelCase ) else: break async def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Dict=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=False ): if echo: print('\nRunning: ' , ' '.join(lowerCamelCase ) ) UpperCamelCase_ : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase_ : str = [] UpperCamelCase_ : Union[str, Any] = [] def tee(lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : List[str]="" ): UpperCamelCase_ : int = line.decode('utf-8' ).rstrip() sink.append(lowerCamelCase ) if not quiet: print(lowerCamelCase , lowerCamelCase , file=lowerCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase : tee(lowerCamelCase , lowerCamelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase : tee(lowerCamelCase , lowerCamelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=lowerCamelCase , ) return _RunOutput(await p.wait() , lowerCamelCase , lowerCamelCase ) def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : int=None , lowerCamelCase : Any=180 , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]=True ): UpperCamelCase_ : str = asyncio.get_event_loop() UpperCamelCase_ : Union[str, Any] = loop.run_until_complete( _stream_subprocess(lowerCamelCase , env=lowerCamelCase , stdin=lowerCamelCase , timeout=lowerCamelCase , quiet=lowerCamelCase , echo=lowerCamelCase ) ) UpperCamelCase_ : int = ' '.join(lowerCamelCase ) if result.returncode > 0: UpperCamelCase_ : Dict = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class _lowercase ( snake_case_ ): pass def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[int]=False ): try: UpperCamelCase_ : Any = subprocess.check_output(lowerCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase , 'decode' ): UpperCamelCase_ : Any = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(lowerCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
175
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Optional[int] = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''decision_transformer''' UpperCamelCase__ = ['''past_key_values'''] UpperCamelCase__ = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , lowercase_ : Dict=17 , lowercase_ : Tuple=4 , lowercase_ : Optional[int]=128 , lowercase_ : Optional[Any]=4096 , lowercase_ : Tuple=True , lowercase_ : Dict=1 , lowercase_ : Tuple=1024 , lowercase_ : Tuple=3 , lowercase_ : Optional[int]=1 , lowercase_ : Optional[int]=None , lowercase_ : List[str]="relu" , lowercase_ : List[str]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[str]=1E-5 , lowercase_ : Any=0.02 , lowercase_ : List[Any]=True , lowercase_ : Optional[int]=True , lowercase_ : Dict=50256 , lowercase_ : str=50256 , lowercase_ : Tuple=False , lowercase_ : str=False , **lowercase_ : str , ): lowercase_ : Tuple = state_dim lowercase_ : Optional[int] = act_dim lowercase_ : str = hidden_size lowercase_ : Dict = max_ep_len lowercase_ : Any = action_tanh lowercase_ : Union[str, Any] = vocab_size lowercase_ : List[str] = n_positions lowercase_ : Optional[int] = n_layer lowercase_ : Tuple = n_head lowercase_ : Any = n_inner lowercase_ : Optional[Any] = activation_function lowercase_ : List[str] = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Dict = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Dict = initializer_range lowercase_ : Tuple = scale_attn_weights lowercase_ : Optional[Any] = use_cache lowercase_ : Optional[int] = scale_attn_by_inverse_layer_idx lowercase_ : Any = reorder_and_upcast_attn lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
21
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
import argparse from collections import defaultdict import yaml _snake_case = "docs/source/en/_toctree.yml" def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = defaultdict(_lowerCamelCase ) _lowerCAmelCase : Any = [] _lowerCAmelCase : List[str] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]} ) else: new_doc_list.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = new_doc_list _lowerCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] _lowerCAmelCase : str = [] for duplicate_key in duplicates: _lowerCAmelCase : List[str] = list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key} ) if len(_lowerCamelCase ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1] ) _lowerCAmelCase : Optional[Any] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowerCamelCase ) > 1: raise ValueError("{doc_list} has two 'overview' docs which is not allowed." ) overview_doc.extend(_lowerCamelCase ) # Sort return overview_doc def A ( _lowerCamelCase=False ): '''simple docstring''' with open(_lowerCamelCase , encoding="utf-8" ) as f: _lowerCAmelCase : int = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : List[str] = content[api_idx]["sections"] # Then to the model doc _lowerCAmelCase : Union[str, Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase : Optional[Any] = api_doc[scheduler_idx]["sections"] _lowerCAmelCase : Optional[Any] = clean_doc_toc(_lowerCamelCase ) _lowerCAmelCase : int = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase : List[Any] = True if overwrite: _lowerCAmelCase : Dict = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase : Tuple = api_doc with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) def A ( _lowerCamelCase=False ): '''simple docstring''' with open(_lowerCamelCase , encoding="utf-8" ) as f: _lowerCAmelCase : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : int = content[api_idx]["sections"] # Then to the model doc _lowerCAmelCase : List[str] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase : Dict = False _lowerCAmelCase : Optional[int] = api_doc[pipeline_idx]["sections"] _lowerCAmelCase : Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase : List[Any] = pipeline_doc["section"] _lowerCAmelCase : Union[str, Any] = clean_doc_toc(_lowerCamelCase ) if overwrite: _lowerCAmelCase : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(_lowerCamelCase ) # sort overall pipeline doc _lowerCAmelCase : Union[str, Any] = clean_doc_toc(_lowerCamelCase ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase : Dict = True if overwrite: _lowerCAmelCase : Optional[int] = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase : Optional[int] = api_doc with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _snake_case = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
36
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase = 1_6 _UpperCAmelCase = 3_2 def __magic_name__ ( lowercase , lowercase = 16 ): SCREAMING_SNAKE_CASE_: Union[str, Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Any =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Optional[int] =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Any =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: str =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: Union[str, Any] =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: int =8 else: SCREAMING_SNAKE_CASE_: str =None return tokenizer.pad( UpperCamelCase_ , padding="""longest""" , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: Any =DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase = mocked_dataloaders # noqa: F811 def __magic_name__ ( lowercase , lowercase ): if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase_ ) == "1": SCREAMING_SNAKE_CASE_: Any =2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: SCREAMING_SNAKE_CASE_: Optional[int] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE_: Optional[int] =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: str =config["""lr"""] SCREAMING_SNAKE_CASE_: Tuple =int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE_: Union[str, Any] =int(config["""seed"""] ) SCREAMING_SNAKE_CASE_: Tuple =int(config["""batch_size"""] ) set_seed(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: Dict =evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: List[str] =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: str =batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Union[str, Any] =MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: Tuple =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Dict =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[Any] =AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Union[str, Any] =get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: SCREAMING_SNAKE_CASE_: Dict =os.path.split(UpperCamelCase_ )[-1].split(""".""" )[0] accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: SCREAMING_SNAKE_CASE_: Union[str, Any] =0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: List[str] =model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: Tuple =outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() SCREAMING_SNAKE_CASE_: Optional[Any] =loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] =model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: List[Any] =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE_: List[Any] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , UpperCamelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(UpperCamelCase_ ), """epoch""": epoch, } , step=UpperCamelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Any =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=UpperCamelCase_ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) SCREAMING_SNAKE_CASE_: Optional[int] =parser.parse_args() SCREAMING_SNAKE_CASE_: Tuple ={"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
173
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase_ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def lowerCamelCase__ ( A__ : Tuple , A__ : List[Any] , A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): __lowerCamelCase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , A__ , ) is not None ): __lowerCamelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __lowerCamelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __lowerCamelCase = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] __lowerCamelCase = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed __lowerCamelCase = True if not attribute_used: __lowerCamelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __lowerCamelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: __lowerCamelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __lowerCamelCase = True elif attribute.endswith("""_token_id""" ): __lowerCamelCase = True # configuration class specific cases if not case_allowed: __lowerCamelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __lowerCamelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = dict(inspect.signature(config_class.__init__ ).parameters ) __lowerCamelCase = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] __lowerCamelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __lowerCamelCase = {} if len(config_class.attribute_map ) > 0: __lowerCamelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __lowerCamelCase = inspect.getsourcefile(A__ ) __lowerCamelCase = os.path.dirname(A__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __lowerCamelCase = [os.path.join(A__ , A__ ) for fn in os.listdir(A__ ) if fn.startswith("""modeling_""" )] # Get the source code strings __lowerCamelCase = [] for path in modeling_paths: if os.path.isfile(A__ ): with open(A__ ) as fp: modeling_sources.append(fp.read() ) __lowerCamelCase = [] for config_param, default_value in zip(A__ , A__ ): # `attributes` here is all the variant names for `config_param` __lowerCamelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(A__ , A__ , A__ , A__ ): unused_attributes.append(attributes[0] ) return sorted(A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __lowerCamelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda A__ : inspect.isclass(A__ ) and issubclass(A__ , A__ ) and inspect.getmodule(A__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __lowerCamelCase = check_config_attributes_being_used(A__ ) if len(A__ ) > 0: __lowerCamelCase = unused_attributes if len(A__ ) > 0: __lowerCamelCase = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(A__ ) if __name__ == "__main__": check_config_attributes()
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
'''simple docstring''' from collections import defaultdict def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> bool: lowerCamelCase__ : List[str] = first_str.lower().strip() lowerCamelCase__ : Dict = second_str.lower().strip() # Remove whitespace lowerCamelCase__ : int = first_str.replace(""" """ , """""" ) lowerCamelCase__ : Optional[int] = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(UpperCamelCase ) != len(UpperCamelCase ): return False # Default values for count should be 0 lowerCamelCase__ : defaultdict[str, int] = defaultdict(UpperCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _A : Optional[Any] =input('''Enter the first string ''').strip() _A : str =input('''Enter the second string ''').strip() _A : Dict =check_anagrams(input_a, input_b) print(F'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
41
import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
207
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = CycleDiffusionPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) UpperCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def A_ ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) lowerCamelCase__ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCamelCase__ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) lowerCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase__ : List[str] = CLIPTextModel(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A_ ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]=0 ) -> int: lowerCamelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCamelCase__ : Any = image / 2 + 0.5 if str(UpperCAmelCase ).startswith('mps' ): lowerCamelCase__ : Dict = torch.manual_seed(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCamelCase__ : List[str] = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def A_ ( self : Any ) -> List[Any]: lowerCamelCase__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[str] = CycleDiffusionPipeline(**UpperCAmelCase ) lowerCamelCase__ : List[Any] = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase__ : int = self.get_dummy_inputs(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = pipe(**UpperCAmelCase ) lowerCamelCase__ : int = output.images lowerCamelCase__ : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase__ : List[Any] = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCAmelCase , 'half' ): lowerCamelCase__ : str = module.half() lowerCamelCase__ : int = CycleDiffusionPipeline(**UpperCAmelCase ) lowerCamelCase__ : Any = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.get_dummy_inputs(UpperCAmelCase ) lowerCamelCase__ : int = pipe(**UpperCAmelCase ) lowerCamelCase__ : Optional[int] = output.images lowerCamelCase__ : int = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase__ : Optional[int] = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A_ ( self : List[Any] ) -> int: return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def A_ ( self : Dict ) -> Union[str, Any]: return super().test_inference_batch_single_identical() @skip_mps def A_ ( self : List[Any] ) -> Dict: return super().test_dict_tuple_outputs_equivalent() @skip_mps def A_ ( self : Any ) -> Union[str, Any]: return super().test_save_load_optional_components() @skip_mps def A_ ( self : Optional[Any] ) -> Any: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Optional[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : str ) -> Dict: lowerCamelCase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCamelCase__ : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) lowerCamelCase__ : Dict = init_image.resize((512, 512) ) lowerCamelCase__ : Optional[int] = 'CompVis/stable-diffusion-v1-4' lowerCamelCase__ : Optional[int] = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder='scheduler' ) lowerCamelCase__ : Optional[int] = CycleDiffusionPipeline.from_pretrained( UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase__ : Any = 'A black colored car' lowerCamelCase__ : List[str] = 'A blue colored car' lowerCamelCase__ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase__ : str = pipe( prompt=UpperCAmelCase , source_prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase , output_type='np' , ) lowerCamelCase__ : int = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCamelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) lowerCamelCase__ : List[Any] = init_image.resize((512, 512) ) lowerCamelCase__ : Optional[Any] = 'CompVis/stable-diffusion-v1-4' lowerCamelCase__ : Union[str, Any] = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder='scheduler' ) lowerCamelCase__ : str = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase__ : Union[str, Any] = 'A black colored car' lowerCamelCase__ : Optional[Any] = 'A blue colored car' lowerCamelCase__ : Tuple = torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = pipe( prompt=UpperCAmelCase , source_prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase , output_type='np' , ) lowerCamelCase__ : Any = output.images assert np.abs(image - expected_image ).max() < 2e-2
361
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase : List[str] = logging.getLogger() _UpperCAmelCase : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> List[Any]: os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowerCamelCase__ : Tuple = {'source': 'What is love ?', 'target': 'life'} lowerCamelCase__ : str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase__ : Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def A_ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : str = "pytorch" ) -> str: lowerCamelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'output' ) lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) lowerCamelCase__ : Dict = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCamelCase__ : Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) lowerCamelCase__ : Dict = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: lowerCamelCase__ : Dict = json.load(UpperCAmelCase ) return result @require_torch_gpu def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def A_ ( self : Any ) -> List[Any]: lowerCamelCase__ : str = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : Tuple = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
45
0
from ..utils import DummyObject, requires_backends class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Tuple = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> int: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Dict: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Tuple = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch'])
21
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
1
from typing import Union import fire import torch from tqdm import tqdm def A__ ( __lowerCamelCase, __lowerCamelCase = "cpu", __lowerCamelCase = None ): SCREAMING_SNAKE_CASE_ = torch.load(__lowerCamelCase, map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase, torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) SCREAMING_SNAKE_CASE_ = v.half() if save_path is None: # overwrite src_path SCREAMING_SNAKE_CASE_ = src_path torch.save(__lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
366
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =TransfoXLTokenizer UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Any: super().setUp() SCREAMING_SNAKE_CASE_ = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCamelCase ( self , **_A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''<unk> UNwanted , running''' SCREAMING_SNAKE_CASE_ = '''<unk> unwanted, running''' return input_text, output_text def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(_A , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [0, 4, 8, 7] ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=_A ) SCREAMING_SNAKE_CASE_ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' SCREAMING_SNAKE_CASE_ = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(_A ) , _A ) self.assertEqual(tokenizer.convert_tokens_to_string(_A ) , _A ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = len(_A ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
257
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _lowercase : int = False class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a ( self : Union[str, Any] ): return 12 @property def a ( self : str ): return 12 @property def a ( self : Optional[Any] ): return 32 @property def a ( self : List[str] ): torch.manual_seed(0 ) __UpperCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def a ( self : int ): __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a ( self : Tuple ): torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_lowercase ) @property def a ( self : List[Any] ): torch.manual_seed(0 ) __UpperCAmelCase = 12 __UpperCAmelCase = 12 __UpperCAmelCase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __UpperCAmelCase = TransformeraDModel(**_lowercase ) return model def a ( self : Tuple ): __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.dummy_vqvae __UpperCAmelCase = self.dummy_text_encoder __UpperCAmelCase = self.dummy_tokenizer __UpperCAmelCase = self.dummy_transformer __UpperCAmelCase = VQDiffusionScheduler(self.num_embed ) __UpperCAmelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) __UpperCAmelCase = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''teddy bear playing in the pool''' __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) __UpperCAmelCase = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='''np''' ) __UpperCAmelCase = output.images __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) __UpperCAmelCase = pipe( [prompt] , generator=_lowercase , output_type='''np''' , return_dict=_lowercase , num_inference_steps=2 )[0] __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __UpperCAmelCase = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self : Any ): __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.dummy_vqvae __UpperCAmelCase = self.dummy_text_encoder __UpperCAmelCase = self.dummy_tokenizer __UpperCAmelCase = self.dummy_transformer __UpperCAmelCase = VQDiffusionScheduler(self.num_embed ) __UpperCAmelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __UpperCAmelCase = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''teddy bear playing in the pool''' __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) __UpperCAmelCase = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='''np''' ) __UpperCAmelCase = output.images __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) __UpperCAmelCase = pipe( [prompt] , generator=_lowercase , output_type='''np''' , return_dict=_lowercase , num_inference_steps=2 )[0] __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __UpperCAmelCase = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __UpperCAmelCase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __UpperCAmelCase = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) __UpperCAmelCase = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
332
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __snake_case : Optional[Any] = get_tests_dir('fixtures') class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = mock.Mock() __lowerCAmelCase : Optional[int] = 500 __lowerCAmelCase : str = {} __lowerCAmelCase : str = HTTPError __lowerCAmelCase : int = {} # Download this model to make sure it's in the cache. __lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_UpperCamelCase) as mock_head: __lowerCAmelCase : Optional[Any] = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json") def _SCREAMING_SNAKE_CASE ( self: str) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCamelCase): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") __lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor") self.assertIsNotNone(_UpperCamelCase) @is_staging_test class A__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = TOKEN HfFolder.save_token(_UpperCamelCase) @classmethod def _SCREAMING_SNAKE_CASE ( cls: str) -> Tuple: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor") except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = ViTImageProcessor.from_pretrained(_UpperCamelCase) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token) __lowerCAmelCase : str = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id="test-image-processor" , push_to_hub=_UpperCamelCase , use_auth_token=self._token) __lowerCAmelCase : List[Any] = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(_UpperCamelCase) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token) __lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=_UpperCamelCase , use_auth_token=self._token) __lowerCAmelCase : List[Any] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" CustomImageProcessor.register_for_auto_class() __lowerCAmelCase : Tuple = CustomImageProcessor.from_pretrained(_UpperCamelCase) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) __lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=_UpperCamelCase) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor")
358
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: Dict) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_SCREAMING_SNAKE_CASE).to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small") __lowerCAmelCase : Tuple = tokenizer("Hello there" , return_tensors="pt").input_ids __lowerCAmelCase : List[str] = tokenizer("Hi I am" , return_tensors="pt").input_ids __lowerCAmelCase : List[str] = model(input_ids.to(_SCREAMING_SNAKE_CASE) , labels=labels.to(_SCREAMING_SNAKE_CASE)).loss __lowerCAmelCase : Optional[int] = -(labels.shape[-1] * loss.item()) __lowerCAmelCase : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
58
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[str, Any] = '''funnel''' _snake_case : int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self , _UpperCamelCase=3_0_5_2_2 , _UpperCamelCase=[4, 4, 4] , _UpperCamelCase=None , _UpperCamelCase=2 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=6_4 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu_new" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=None , _UpperCamelCase=1E-9 , _UpperCamelCase="mean" , _UpperCamelCase="relative_shift" , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , **_UpperCamelCase , ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = block_sizes UpperCAmelCase_ : Tuple = [1] * len(_UpperCamelCase ) if block_repeats is None else block_repeats assert len(_UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." UpperCAmelCase_ : List[Any] = num_decoder_layers UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : Any = n_head UpperCAmelCase_ : List[str] = d_head UpperCAmelCase_ : Dict = d_inner UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout UpperCAmelCase_ : Optional[int] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Dict = initializer_std UpperCAmelCase_ : Optional[Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." UpperCAmelCase_ : Optional[int] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." UpperCAmelCase_ : List[Any] = attention_type UpperCAmelCase_ : Optional[Any] = separate_cls UpperCAmelCase_ : int = truncate_seq UpperCAmelCase_ : str = pool_q_only super().__init__(**_UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> List[str]: return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def __UpperCAmelCase ( self ) -> Tuple: return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
29
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class lowerCamelCase (a__ ): """simple docstring""" UpperCAmelCase_ = """open-llama""" def __init__( self : Any, _UpperCAmelCase : Optional[int]=1_0_0_0_0_0, _UpperCAmelCase : Dict=4_0_9_6, _UpperCAmelCase : Any=1_1_0_0_8, _UpperCAmelCase : List[str]=3_2, _UpperCAmelCase : List[str]=3_2, _UpperCAmelCase : Optional[int]="silu", _UpperCAmelCase : Optional[int]=2_0_4_8, _UpperCAmelCase : Dict=0.02, _UpperCAmelCase : Optional[Any]=1E-6, _UpperCAmelCase : str=True, _UpperCAmelCase : List[str]=0, _UpperCAmelCase : Tuple=1, _UpperCAmelCase : List[str]=2, _UpperCAmelCase : List[Any]=False, _UpperCAmelCase : List[str]=True, _UpperCAmelCase : Optional[Any]=0.1, _UpperCAmelCase : Any=0.1, _UpperCAmelCase : int=True, _UpperCAmelCase : List[Any]=True, _UpperCAmelCase : Union[str, Any]=None, **_UpperCAmelCase : Optional[int], ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = rms_norm_eps SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs.pop( "use_memorry_efficient_attention", lowerCAmelCase__ ) SCREAMING_SNAKE_CASE__ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = attention_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = use_stable_embedding SCREAMING_SNAKE_CASE__ : str = shared_input_output_embedding SCREAMING_SNAKE_CASE__ : str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, tie_word_embeddings=lowerCAmelCase__, **lowerCAmelCase__, ) def A_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling, lowerCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) SCREAMING_SNAKE_CASE__ : Any = self.rope_scaling.get("type", lowerCAmelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] = self.rope_scaling.get("factor", lowerCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase__, lowerCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
363
_lowerCamelCase : dict[tuple[int, int, int], int] = {} def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : Union[str, Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Any = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , 0 ) SCREAMING_SNAKE_CASE__ : str = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _a ( SCREAMING_SNAKE_CASE__ : int = 30 ) -> int: '''simple docstring''' return _calculate(SCREAMING_SNAKE_CASE__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
191
0
"""simple docstring""" from collections import deque class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = process_name # process name __a = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __a = arrival_time __a = burst_time # remaining burst time __a = 0 # total time of the process wait in ready queue __a = 0 # time from arrival time to completion time class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): # total number of mlfq's queues __a = number_of_queues # time slice of queues that round robin algorithm applied __a = time_slices # unfinished process is in this ready_queue __a = queue # current time __a = current_time # finished process is in this sequence queue __a = deque() def a__ ( self ): __a = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a__ ( self , lowerCamelCase ): __a = [] for i in range(len(_a ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a__ ( self , lowerCamelCase ): __a = [] for i in range(len(_a ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a__ ( self , lowerCamelCase ): __a = [] for i in range(len(_a ) ): completion_times.append(queue[i].stop_time ) return completion_times def a__ ( self , lowerCamelCase ): return [q.burst_time for q in queue] def a__ ( self , lowerCamelCase ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a__ ( self , lowerCamelCase ): __a = deque() # sequence deque of finished process while len(_a ) != 0: __a = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_a ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __a = 0 # set the process's turnaround time because it is finished __a = self.current_time - cp.arrival_time # set the completion time __a = self.current_time # add the process to queue that has finished queue finished.append(_a ) self.finish_queue.extend(_a ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_a ) ): __a = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_a ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __a = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_a ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __a = 0 # set the finish time __a = self.current_time # update the process' turnaround time because it is finished __a = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_a ) self.finish_queue.extend(_a ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a__ ( self ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __a , __a = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest SCREAMING_SNAKE_CASE__:Optional[Any] = Process("""P1""", 0, 53) SCREAMING_SNAKE_CASE__:str = Process("""P2""", 0, 17) SCREAMING_SNAKE_CASE__:int = Process("""P3""", 0, 68) SCREAMING_SNAKE_CASE__:Optional[Any] = Process("""P4""", 0, 24) SCREAMING_SNAKE_CASE__:Tuple = 3 SCREAMING_SNAKE_CASE__:str = [17, 25] SCREAMING_SNAKE_CASE__:Optional[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) SCREAMING_SNAKE_CASE__:Union[str, Any] = Process("""P1""", 0, 53) SCREAMING_SNAKE_CASE__:str = Process("""P2""", 0, 17) SCREAMING_SNAKE_CASE__:Dict = Process("""P3""", 0, 68) SCREAMING_SNAKE_CASE__:Dict = Process("""P4""", 0, 24) SCREAMING_SNAKE_CASE__:List[str] = 3 SCREAMING_SNAKE_CASE__:Dict = [17, 25] SCREAMING_SNAKE_CASE__:List[Any] = deque([Pa, Pa, Pa, Pa]) SCREAMING_SNAKE_CASE__:Optional[int] = MLFQ(number_of_queues, time_slices, queue, 0) SCREAMING_SNAKE_CASE__:int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
261
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __a = set() # Replace all the whitespace in our sentence __a = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowerCAmelCase__ ) == 26 def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __a = [False] * 26 for char in input_str: if char.islower(): __a = True elif char.isupper(): __a = True return all(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowercase ( ) -> None: from timeit import timeit __a = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_faster()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_fastest()''' , setup=lowerCAmelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
45
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowercase : def __init__( self , A_ , A_=14 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_token_type_ids UpperCamelCase = use_input_mask UpperCamelCase = use_labels UpperCamelCase = use_mc_token_ids UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope UpperCamelCase = self.vocab_size - 1 def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None if self.use_mc_token_ids: UpperCamelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() UpperCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCamelCase ( self ) -> int: """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , *A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = CTRLModel(config=A_ ) model.to(A_ ) model.eval() model(A_ , token_type_ids=A_ , head_mask=A_ ) model(A_ , token_type_ids=A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , *A_ ) -> Tuple: """simple docstring""" UpperCamelCase = CTRLLMHeadModel(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , *A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = CTRLForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = model(A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : int = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __lowercase : Optional[Any] = (CTRLLMHeadModel,) if is_torch_available() else () __lowercase : Optional[int] = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) __lowercase : int = True __lowercase : Dict = False __lowercase : int = False def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = CTRLModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , n_embd=37 ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @slow def __UpperCamelCase ( self ) -> str: """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = CTRLModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @require_torch class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> int: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(A_ ) UpperCamelCase = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=A_ ) # Legal the president is UpperCamelCase = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCamelCase = model.generate(A_ , do_sample=A_ ) self.assertListEqual(output_ids[0].tolist() , A_ )
358
import logging import os from .state import PartialState class lowercase ( logging.LoggerAdapter ): @staticmethod def __UpperCamelCase ( A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __UpperCamelCase ( self , A_ , A_ , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) UpperCamelCase = kwargs.pop('main_process_only' , A_ ) UpperCamelCase = kwargs.pop('in_order' , A_ ) if self.isEnabledFor(A_ ): if self._should_log(A_ ): UpperCamelCase , UpperCamelCase = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) elif in_order: UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase , UpperCamelCase = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) state.wait_for_everyone() def A ( lowercase , lowercase = None ) -> Dict: '''simple docstring''' if log_level is None: UpperCamelCase = os.environ.get('ACCELERATE_LOG_LEVEL' , lowercase ) UpperCamelCase = logging.getLogger(lowercase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowercase , {} )
110
0
"""simple docstring""" def A_ ( _lowerCAmelCase : Any = 10_00 ): """simple docstring""" return sum(e for e in range(3, a__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'{solution() = }')
320
from math import factorial def __lowercase ( a__ = 1_00 ) -> int: return sum(int(a__ ) for x in str(factorial(a__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
257
0
from __future__ import annotations from dataclasses import dataclass @dataclass class _snake_case : '''simple docstring''' A__ : float A__ : TreeNode | None = None A__ : TreeNode | None = None def lowerCamelCase_ ( _a : TreeNode | None ): '''simple docstring''' def is_valid_tree(_a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(_a , _a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_a ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( _a : TreeNode | None , _a : float , _a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _a , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _a ) ) return is_binary_search_tree_recursive_check(_a , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
353
def lowerCamelCase_ ( _a : int ): '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_a , _a ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_a ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
59
0
import unittest import numpy as np def __lowerCAmelCase ( a__ , a__ , a__ , a__ = None , ) -> np.ndarray: __a = np.shape(a__ ) __a = np.shape(a__ ) __a = np.shape(a__ ) if shape_a[0] != shape_b[0]: __a = ( '''Expected the same number of rows for A and B. ''' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(a__ ) if shape_b[1] != shape_c[1]: __a = ( '''Expected the same number of columns for B and C. ''' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(a__ ) __a = pseudo_inv if a_inv is None: try: __a = np.linalg.inv(a__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> None: '''simple docstring''' __a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __a = np.array([[0, 3], [3, 0], [2, 3]] ) __a = np.array([[2, 1], [6, 3]] ) __a = schur_complement(_snake_case , _snake_case , _snake_case ) __a = np.block([[a, b], [b.T, c]] ) __a = np.linalg.det(_snake_case ) __a = np.linalg.det(_snake_case ) __a = np.linalg.det(_snake_case ) self.assertAlmostEqual(_snake_case , det_a * det_s ) def SCREAMING_SNAKE_CASE_ ( self ) -> None: '''simple docstring''' __a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __a = np.array([[0, 3], [3, 0], [2, 3]] ) __a = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_snake_case ): schur_complement(_snake_case , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> None: '''simple docstring''' __a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __a = np.array([[0, 3], [3, 0], [2, 3]] ) __a = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_snake_case ): schur_complement(_snake_case , _snake_case , _snake_case ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
6
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def snake_case_( self , A , A , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self , A ) -> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def snake_case_( self ) -> str: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 0 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def __call__( self , A ) -> List[str]: _SCREAMING_SNAKE_CASE = Tracker(self.dest )(A ).parametrized _SCREAMING_SNAKE_CASE = Tracker(self.src )(A ).parametrized _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ): raise Exception( f'Numbers of operations are different. Source module has {len(A )} operations while' f' destination module has {len(A )}.' ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : ResNetConfig , __lowerCamelCase : Path , __lowerCamelCase : bool = True ) ->int: print(F'Converting {name}...' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ResNetForImageClassification(__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) assert torch.allclose(from_model(__lowerCamelCase ) , our_model(__lowerCamelCase ).logits ), "The model logits don't match the original one." _SCREAMING_SNAKE_CASE = F'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__lowerCamelCase , ) # we can use the convnext one _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__lowerCamelCase , ) print(F'Pushed {checkpoint_name}' ) def lowerCamelCase ( __lowerCamelCase : Path , __lowerCamelCase : str = None , __lowerCamelCase : bool = True ) ->Any: _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = (1, num_labels) _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
58
0
from __future__ import annotations from typing import Any def A__ ( __lowerCamelCase ): if not postfix_notation: return 0 SCREAMING_SNAKE_CASE_ = {'''+''', '''-''', '''*''', '''/'''} SCREAMING_SNAKE_CASE_ = [] for token in postfix_notation: if token in operations: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__lowerCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
257
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **_A ) -> Union[str, Any]: super().__init__(**_A ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(_A ) def __call__( self , _A , _A = None , **_A , ) -> str: if "text_queries" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs.pop('''text_queries''' ) if isinstance(_A , (str, Image.Image) ): SCREAMING_SNAKE_CASE_ = {'''image''': image, '''candidate_labels''': candidate_labels} else: SCREAMING_SNAKE_CASE_ = image SCREAMING_SNAKE_CASE_ = super().__call__(_A , **_A ) return results def _UpperCamelCase ( self , **_A ) -> str: SCREAMING_SNAKE_CASE_ = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['''threshold'''] if "top_k" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['''top_k'''] return {}, {}, postprocess_params def _UpperCamelCase ( self , _A ) -> Any: SCREAMING_SNAKE_CASE_ = load_image(inputs['''image'''] ) SCREAMING_SNAKE_CASE_ = inputs['''candidate_labels'''] if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = candidate_labels.split(''',''' ) SCREAMING_SNAKE_CASE_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_A ): SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , return_tensors=self.framework ) SCREAMING_SNAKE_CASE_ = self.image_processor(_A , return_tensors=self.framework ) yield { "is_last": i == len(_A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _UpperCamelCase ( self , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = model_inputs.pop('''target_size''' ) SCREAMING_SNAKE_CASE_ = model_inputs.pop('''candidate_label''' ) SCREAMING_SNAKE_CASE_ = model_inputs.pop('''is_last''' ) SCREAMING_SNAKE_CASE_ = self.model(**_A ) SCREAMING_SNAKE_CASE_ = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _UpperCamelCase ( self , _A , _A=0.1 , _A=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE_ = model_output['''candidate_label'''] SCREAMING_SNAKE_CASE_ = BaseModelOutput(_A ) SCREAMING_SNAKE_CASE_ = self.image_processor.post_process_object_detection( outputs=_A , threshold=_A , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE_ = outputs['''scores'''][index].item() SCREAMING_SNAKE_CASE_ = self._get_bounding_box(outputs['''boxes'''][index][0] ) SCREAMING_SNAKE_CASE_ = {'''score''': score, '''label''': label, '''box''': box} results.append(_A ) SCREAMING_SNAKE_CASE_ = sorted(_A , key=lambda _A : x["score"] , reverse=_A ) if top_k: SCREAMING_SNAKE_CASE_ = results[:top_k] return results def _UpperCamelCase ( self , _A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = box.int().tolist() SCREAMING_SNAKE_CASE_ = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
257
1
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ : str = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp a_ : Optional[Any] = 5 a_ : str = 10 @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : int =SpeechaTextTokenizer lowercase : int =False lowercase : List[str] =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =sp.SentencePieceProcessor() spm_model.Load(lowerCAmelCase ) lowerCamelCase_ =['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCAmelCase ) )] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ =Path(self.tmpdirname ) save_json(lowerCAmelCase, save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase, save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''<pad>''' lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ), lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ), lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<s>''' ) self.assertEqual(vocab_keys[1], '''<pad>''' ) self.assertEqual(vocab_keys[-1], '''j''' ) self.assertEqual(len(lowerCAmelCase ), 1_001 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size, 1_001 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCamelCase_ =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [289, 50, 14, 174, 386], ) lowerCamelCase_ =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase, [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''], ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase, [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''], ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={'''input_ids''': [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase, model_name='''facebook/s2t-small-mustc-en-de-st''', revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''', ) @require_sentencepiece class __UpperCamelCase ( unittest.TestCase ): lowercase : Tuple ='valhalla/s2t_mustc_multilinguial_medium' lowercase : Dict ='C\'est trop cool' lowercase : str ='Esto es genial' @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''], 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''], 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''], 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''], 11 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size, 10_000 ) def lowercase__ ( self ): """simple docstring""" self.assertIn(lowerCAmelCase, self.tokenizer.all_special_ids ) lowerCamelCase_ =[ES_CODE, 4, 1_601, 47, 7_647, 2] lowerCamelCase_ =self.tokenizer.decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase, lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''fr''' lowerCamelCase_ =self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0], lowerCAmelCase ) self.assertEqual(encoded[-1], self.tokenizer.eos_token_id ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''fr''' self.assertListEqual(self.tokenizer.prefix_tokens, [FR_CODE] ) lowerCamelCase_ ='''es''' self.assertListEqual(self.tokenizer.prefix_tokens, [ES_CODE] )
75
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
0
import requests __UpperCAmelCase = "" # <-- Put your OpenWeatherMap appid here! __UpperCAmelCase = "https://api.openweathermap.org/data/2.5/" def A__ ( __lowerCamelCase = "Chicago", __lowerCamelCase = APPID ): return requests.get(URL_BASE + '''weather''', params=locals() ).json() def A__ ( __lowerCamelCase = "Kolkata, India", __lowerCamelCase = APPID ): return requests.get(URL_BASE + '''forecast''', params=locals() ).json() def A__ ( __lowerCamelCase = 55.68, __lowerCamelCase = 12.57, __lowerCamelCase = APPID ): return requests.get(URL_BASE + '''onecall''', params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __UpperCAmelCase = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
359
from graphs.minimum_spanning_tree_kruskal import kruskal def A__ ( ): SCREAMING_SNAKE_CASE_ = 9 SCREAMING_SNAKE_CASE_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE_ = kruskal(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
257
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str ): a__ = os.path.abspath(__lowerCAmelCase ) logger.info(F'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model a__ = tf.train.list_variables(__lowerCAmelCase ) a__ = [] a__ = [] a__ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") a__ = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(F'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' a__ = name[1:] # figure out how many levels deep the name is a__ = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(__lowerCAmelCase ) # read data a__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) names.append('/'.join(__lowerCAmelCase ) ) arrays.append(__lowerCAmelCase ) logger.info(F'Read a total of {len(__lowerCAmelCase ):,} layers' ) # Sanity check if len(set(__lowerCAmelCase ) ) != 1: raise ValueError(F'Found layer names with different depths (layer depth {list(set(__lowerCAmelCase ) )})' ) a__ = list(set(__lowerCAmelCase ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(__lowerCAmelCase , __lowerCAmelCase ): a__ = full_name.split('/' ) a__ = model a__ = [] for i, m_name in enumerate(__lowerCAmelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): a__ = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) a__ = getattr(__lowerCAmelCase , 'embeddings' ) a__ = getattr(__lowerCAmelCase , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) a__ = getattr(__lowerCAmelCase , 'encoder' ) a__ = getattr(__lowerCAmelCase , 'layer' ) a__ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) a__ = getattr(__lowerCAmelCase , 'pooler' ) a__ = getattr(__lowerCAmelCase , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) a__ = getattr(__lowerCAmelCase , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) a__ = getattr(__lowerCAmelCase , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) a__ = getattr(__lowerCAmelCase , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) a__ = getattr(__lowerCAmelCase , 'token_type_embeddings' ) else: raise ValueError(F'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) a__ = getattr(__lowerCAmelCase , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) a__ = getattr(__lowerCAmelCase , 'attention' ) a__ = getattr(__lowerCAmelCase , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) a__ = getattr(__lowerCAmelCase , 'attention' ) a__ = getattr(__lowerCAmelCase , 'output' ) a__ = getattr(__lowerCAmelCase , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) a__ = getattr(__lowerCAmelCase , 'attention' ) a__ = getattr(__lowerCAmelCase , 'output' ) a__ = getattr(__lowerCAmelCase , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) a__ = getattr(__lowerCAmelCase , 'output' ) a__ = getattr(__lowerCAmelCase , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) a__ = getattr(__lowerCAmelCase , 'output' ) a__ = getattr(__lowerCAmelCase , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) a__ = getattr(__lowerCAmelCase , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) a__ = getattr(__lowerCAmelCase , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) a__ = getattr(__lowerCAmelCase , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) a__ = getattr(__lowerCAmelCase , 'intermediate' ) a__ = getattr(__lowerCAmelCase , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) a__ = getattr(__lowerCAmelCase , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) a__ = getattr(__lowerCAmelCase , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) a__ = getattr(__lowerCAmelCase , 'weight' ) else: logger.warning(F'Ignored {m_name}' ) # for certain layers reshape is necessary a__ = '.'.join(__lowerCAmelCase ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , __lowerCAmelCase ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , __lowerCAmelCase ): a__ = array.reshape(pointer.data.shape ) if "kernel" in full_name: a__ = array.transpose() if pointer.shape == array.shape: a__ = torch.from_numpy(__lowerCAmelCase ) else: raise ValueError( F'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' F' {array.shape}' ) logger.info(F'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ): logger.info(F'Loading model based on config from {config_path}...' ) a__ = BertConfig.from_json_file(__lowerCAmelCase ) a__ = BertModel(__lowerCAmelCase ) # Load weights from checkpoint logger.info(F'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model logger.info(F'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": snake_case : Dict = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) snake_case : Union[str, Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
240
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Any=13 , UpperCamelCase_: Optional[Any]=7 , UpperCamelCase_: Optional[Any]=6 , UpperCamelCase_: Any=17 , UpperCamelCase_: str=23 , UpperCamelCase_: List[Any]=11 , UpperCamelCase_: Optional[int]=True , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = act_dim lowercase__ = state_dim lowercase__ = hidden_size lowercase__ = max_length lowercase__ = is_training def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) lowercase__ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: int , ) -> Dict: """simple docstring""" lowercase__ = DecisionTransformerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : str = (DecisionTransformerModel,) if is_torch_available() else () _lowercase : List[str] = () _lowercase : List[Any] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _lowercase : Any = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _lowercase : Tuple = False _lowercase : str = False _lowercase : Tuple = False _lowercase : Optional[Any] = False _lowercase : Tuple = False _lowercase : Dict = False _lowercase : Tuple = False _lowercase : Optional[Any] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = DecisionTransformerModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: Any ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = DecisionTransformerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(UpperCamelCase_ )] , UpperCamelCase_ ) @require_torch class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = 2 # number of steps of autoregressive prediction we will perform lowercase__ = 10 # defined by the RL environment, may be normalized lowercase__ = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) lowercase__ = model.to(UpperCamelCase_ ) lowercase__ = model.config torch.manual_seed(0 ) lowercase__ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCamelCase_ , dtype=torch.floataa ) # env.reset() lowercase__ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCamelCase_ ) lowercase__ = torch.tensor(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase__ = state lowercase__ = torch.zeros(1 , 0 , config.act_dim , device=UpperCamelCase_ , dtype=torch.floataa ) lowercase__ = torch.zeros(1 , 0 , device=UpperCamelCase_ , dtype=torch.floataa ) lowercase__ = torch.tensor(0 , device=UpperCamelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCamelCase_ ): lowercase__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCamelCase_ )] , dim=1 ) lowercase__ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCamelCase_ )] , dim=1 ) lowercase__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ = model( states=UpperCamelCase_ , actions=UpperCamelCase_ , rewards=UpperCamelCase_ , returns_to_go=UpperCamelCase_ , timesteps=UpperCamelCase_ , attention_mask=UpperCamelCase_ , return_dict=UpperCamelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCamelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) lowercase__ = action_pred[0, -1] lowercase__ = torch.cat([states, state] , dim=1 ) lowercase__ = returns_to_go[0, -1] - reward lowercase__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase__ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCamelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
110
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device SCREAMING_SNAKE_CASE_ = False class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger """ SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase__ ,generator=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase__ ,generator=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" ,torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger """ SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase__ ,generator=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type="""numpy""" ).images SCREAMING_SNAKE_CASE = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
193
from itertools import permutations def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE = [7, 11, 13, 17] for i, test in enumerate(_SCREAMING_SNAKE_CASE ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowercase ( _SCREAMING_SNAKE_CASE = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) for num in permutations(range(_SCREAMING_SNAKE_CASE ) ) if is_substring_divisible(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(F'''{solution() = }''')
193
1
import math def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__lowerCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
43
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = """pytorch_model.bin""" @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} ,) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "The name of the task to train on."} ,) A__ : Optional[List[str]] = dataclasses.field( default=A_ ,metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" ,metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" ,metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } ,) A__ : Optional[int] = dataclasses.field( default=10 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} ,) A__ : Optional[int] = dataclasses.field( default=1_00 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[int] = dataclasses.field( default=A_ ,metadata={"help": "Random seed for initialization."} ,) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): snake_case : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case : Optional[int] = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case : int = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) snake_case : List[str] = dataset.sort("probability" , reverse=__lowerCamelCase ) snake_case : Tuple = dataset.select(range(__lowerCamelCase ) ) snake_case : List[Any] = dataset.remove_columns(["label", "probability"] ) snake_case : Any = dataset.rename_column("prediction" , "label" ) snake_case : str = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) snake_case : List[str] = dataset.shuffle(seed=args.seed ) snake_case : int = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase , index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ): snake_case : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case : Dict = STModelArguments(model_name_or_path=__lowerCamelCase ) snake_case : Tuple = STDataArguments(train_file=__lowerCamelCase , infer_file=__lowerCamelCase ) snake_case : str = STTrainingArguments(output_dir=__lowerCamelCase ) snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase ): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Sanity checks snake_case : List[str] = {} snake_case : Optional[int] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case : str = args.train_file snake_case : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case : Tuple = args.eval_file for key in data_files: snake_case : List[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: snake_case : Union[str, Any] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case : List[Any] = f"""{args.output_dir}/self-train_iter-{{}}""".format snake_case : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() snake_case : Dict = None snake_case : Union[str, Any] = None snake_case : Tuple = 0 snake_case : List[Any] = False # Show the progress bar snake_case : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case : str = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case : Dict = os.path.join(__lowerCamelCase , "stage-1" ) snake_case : Optional[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase , __lowerCamelCase ): arguments_dict.update({key: value} ) snake_case : int = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case : str = os.path.join(__lowerCamelCase , "best-checkpoint" ) snake_case : Dict = os.path.join(__lowerCamelCase , "stage-2" ) # Update arguments_dict snake_case : List[str] = model_path snake_case : Optional[Any] = data_files["train"] snake_case : Optional[Any] = current_output_dir snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __lowerCamelCase ) snake_case : int = iteration snake_case : Tuple = data_dir_format(iteration + 1 ) snake_case : Tuple = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase , "best-checkpoint" ) ) snake_case : Optional[int] = config.idalabel snake_case : List[Any] = os.path.join(__lowerCamelCase , "eval_results_best-checkpoint.json" ) snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase , "r" ) as f: snake_case : Dict = float(json.load(__lowerCamelCase )[args.eval_metric] ) snake_case : Optional[int] = os.path.join(__lowerCamelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. snake_case : Optional[Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case : Dict = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.wait_for_everyone() snake_case : str = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case : List[Any] = eval_result if best_iteration is None: snake_case : List[Any] = new_iteration snake_case : int = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case : int = new_iteration snake_case : Union[str, Any] = new_eval_result snake_case : str = 0 else: if new_eval_result == best_eval_result: snake_case : Any = new_iteration snake_case : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __lowerCamelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , )
59
0
"""simple docstring""" from __future__ import annotations class __A : '''simple docstring''' def __init__( self : List[Any] ,_snake_case : int ) -> Optional[int]: """simple docstring""" lowercase__ : str = data lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCAmelCase ( ) -> Dict: # Main function for testing. lowercase__ : Any = Node(1 ) lowercase__ : Any = Node(2 ) lowercase__ : List[Any] = Node(3 ) lowercase__ : Any = Node(4 ) lowercase__ : Optional[Any] = Node(5 ) lowercase__ : List[str] = Node(6 ) lowercase__ : Any = Node(7 ) lowercase__ : Union[str, Any] = Node(8 ) lowercase__ : Union[str, Any] = Node(9 ) print(is_full_binary_tree(UpperCamelCase__ ) ) print(depth_of_tree(UpperCamelCase__ ) ) print('''Tree is: ''' ) display(UpperCamelCase__ ) if __name__ == "__main__": main()
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0