code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest from transformers import DonutProcessor UpperCAmelCase_ : str = 'naver-clova-ix/donut-base' class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = DonutProcessor.from_pretrained(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } SCREAMING_SNAKE_CASE_ : Optional[int] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) SCREAMING_SNAKE_CASE_ : Any = self.processor.tokenajson(lowercase_) self.assertDictEqual(lowercase_ , lowercase_)
91
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : bool , UpperCamelCase__ : list[int] , UpperCamelCase__ : float ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(UpperCamelCase__ ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) def lowerCamelCase_ (): _UpperCAmelCase : Any = [90, 23, 6, 33, 21, 65, 123, 3_4423] _UpperCAmelCase : Any = math.log(len(UpperCamelCase__ ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
263
0
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def a_ ( _lowercase , _lowercase , _lowercase ): # Initialise PyTorch model _UpperCamelCase : List[Any] = MobileBertConfig.from_json_file(_lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase : List[str] = MobileBertForPreTraining(_lowercase ) # Load weights from tf checkpoint _UpperCamelCase : Union[str, Any] = load_tf_weights_in_mobilebert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": UpperCamelCase_ =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase_ =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
128
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _a ( unittest.TestCase ): def snake_case ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase : int = tempfile.mkdtemp() _UpperCamelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCamelCase : Dict = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], '''do_convert_rgb''': True, } _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname, lowerCAmelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : str, **lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : Union[str, Any], **lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : Any, **lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case ( self : str ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] _UpperCamelCase : List[Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor, lowerCAmelCase__ ) def snake_case ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase : Dict = self.get_tokenizer(cls_token='''(CLS)''', sep_token='''(SEP)''' ) _UpperCamelCase : List[str] = self.get_image_processor(do_normalize=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token='''(CLS)''', sep_token='''(SEP)''', do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCAmelCase__ ) def snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[str] = self.get_image_processor() _UpperCamelCase : str = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = self.prepare_image_inputs() _UpperCamelCase : Any = image_processor(lowerCAmelCase__, return_tensors='''np''' ) _UpperCamelCase : Any = processor(images=lowerCAmelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Tuple = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : List[str] = processor(text=lowerCAmelCase__ ) _UpperCamelCase : Any = tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase : Tuple = self.get_image_processor() _UpperCamelCase : Optional[Any] = self.get_tokenizer() _UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() _UpperCamelCase : str = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def snake_case ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : int = self.get_image_processor() _UpperCamelCase : int = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase : List[Any] = processor.batch_decode(lowerCAmelCase__ ) _UpperCamelCase : Dict = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ ) def snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = self.get_image_processor() _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__ ) _UpperCamelCase : Any = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase : int = self.prepare_image_inputs() _UpperCamelCase : Dict = processor(text=lowerCAmelCase__, images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
128
1
from sklearn.metrics import matthews_corrcoef import datasets _UpperCamelCase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' _UpperCamelCase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' _UpperCamelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(UpperCAmelCase , UpperCAmelCase , sample_weight=UpperCAmelCase ) ), }
326
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
1
import functools from typing import Any def _a ( UpperCAmelCase , UpperCAmelCase ) -> bool: """simple docstring""" # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or len(UpperCAmelCase ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all( isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie lowerCamelCase__ : dict[str, Any] = {} lowerCamelCase__ : Union[str, Any] = '''WORD_KEEPER''' for word in words: lowerCamelCase__ : List[str] = trie for c in word: if c not in trie_node: lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : str = trie_node[c] lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Tuple = len(UpperCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(UpperCAmelCase ) -> bool: if index == len_string: return True lowerCamelCase__ : Union[str, Any] = trie for i in range(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = trie_node.get(string[i] , UpperCAmelCase ) if trie_node is None: return False if trie_node.get(UpperCAmelCase , UpperCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
363
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _A : List[Any] = 'base_with_context' def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) lowerCamelCase__ : List[str] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Any = weights[f"layers_{lyr_num}"] lowerCamelCase__ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : int = ly_weight['''attention'''] lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Tuple = weights[f"layers_{lyr_num}"] lowerCamelCase__ : str = ly_weight['''attention'''] lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) lowerCamelCase__ : Tuple = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase__ : List[Any] = weights[f"layers_{lyr_num}"] lowerCamelCase__ : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = ly_weight['''self_attention'''] lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : Dict = ly_weight['''MultiHeadDotProductAttention_0'''] lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase__ : Optional[int] = jnp.tree_util.tree_map(onp.array , UpperCAmelCase ) lowerCamelCase__ : List[str] = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] lowerCamelCase__ : List[Any] = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) lowerCamelCase__ : Optional[Any] = inference.parse_training_gin_file(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase ) lowerCamelCase__ : int = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) lowerCamelCase__ : str = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCamelCase__ : int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCamelCase__ : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCamelCase__ : Optional[int] = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , UpperCAmelCase ) lowerCamelCase__ : int = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , UpperCAmelCase ) lowerCamelCase__ : List[str] = load_decoder(ta_checkpoint['''target''']['''decoder'''] , UpperCAmelCase ) lowerCamelCase__ : List[str] = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) lowerCamelCase__ : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=UpperCAmelCase , continuous_encoder=UpperCAmelCase , decoder=UpperCAmelCase , scheduler=UpperCAmelCase , melgan=UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _A : int = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) _A : Tuple = parser.parse_args() main(args)
265
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( nn.Module ): def __init__( self , lowercase=3 , lowercase=3 , lowercase=("DownEncoderBlock2D",) , lowercase=(64,) , lowercase=2 , lowercase=32 , lowercase="silu" , lowercase=True , ) -> List[str]: super().__init__() lowerCAmelCase = layers_per_block lowerCAmelCase = torch.nn.Convad( lowercase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase = None lowerCAmelCase = nn.ModuleList([] ) # down lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(lowercase ): lowerCAmelCase = output_channel lowerCAmelCase = block_out_channels[i] lowerCAmelCase = i == len(lowercase ) - 1 lowerCAmelCase = get_down_block( lowercase , num_layers=self.layers_per_block , in_channels=lowercase , out_channels=lowercase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowercase , resnet_groups=lowercase , attention_head_dim=lowercase , temb_channels=lowercase , ) self.down_blocks.append(lowercase ) # mid lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowercase , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase , temb_channels=lowercase , ) # out lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase , eps=1e-6 ) lowerCAmelCase = nn.SiLU() lowerCAmelCase = 2 * out_channels if double_z else out_channels lowerCAmelCase = nn.Convad(block_out_channels[-1] , lowercase , 3 , padding=1 ) lowerCAmelCase = False def _snake_case ( self , lowercase ) -> int: lowerCAmelCase = x lowerCAmelCase = self.conv_in(lowercase ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase ): def custom_forward(*lowercase ): return module(*lowercase ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase ) , lowercase , use_reentrant=lowercase ) # middle lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase , use_reentrant=lowercase ) else: for down_block in self.down_blocks: lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase ) , lowercase ) # middle lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase ) else: # down for down_block in self.down_blocks: lowerCAmelCase = down_block(lowercase ) # middle lowerCAmelCase = self.mid_block(lowercase ) # post-process lowerCAmelCase = self.conv_norm_out(lowercase ) lowerCAmelCase = self.conv_act(lowercase ) lowerCAmelCase = self.conv_out(lowercase ) return sample class lowercase ( nn.Module ): def __init__( self , lowercase=3 , lowercase=3 , lowercase=("UpDecoderBlock2D",) , lowercase=(64,) , lowercase=2 , lowercase=32 , lowercase="silu" , lowercase="group" , ) -> Dict: super().__init__() lowerCAmelCase = layers_per_block lowerCAmelCase = nn.Convad( lowercase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase = None lowerCAmelCase = nn.ModuleList([] ) lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowercase , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase , temb_channels=lowercase , ) # up lowerCAmelCase = list(reversed(lowercase ) ) lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowercase ): lowerCAmelCase = output_channel lowerCAmelCase = reversed_block_out_channels[i] lowerCAmelCase = i == len(lowercase ) - 1 lowerCAmelCase = get_up_block( lowercase , num_layers=self.layers_per_block + 1 , in_channels=lowercase , out_channels=lowercase , prev_output_channel=lowercase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowercase , resnet_groups=lowercase , attention_head_dim=lowercase , temb_channels=lowercase , resnet_time_scale_shift=lowercase , ) self.up_blocks.append(lowercase ) lowerCAmelCase = output_channel # out if norm_type == "spatial": lowerCAmelCase = SpatialNorm(block_out_channels[0] , lowercase ) else: lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase , eps=1e-6 ) lowerCAmelCase = nn.SiLU() lowerCAmelCase = nn.Convad(block_out_channels[0] , lowercase , 3 , padding=1 ) lowerCAmelCase = False def _snake_case ( self , lowercase , lowercase=None ) -> str: lowerCAmelCase = z lowerCAmelCase = self.conv_in(lowercase ) lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase ): def custom_forward(*lowercase ): return module(*lowercase ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase , lowercase , use_reentrant=lowercase ) lowerCAmelCase = sample.to(lowercase ) # up for up_block in self.up_blocks: lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase ) , lowercase , lowercase , use_reentrant=lowercase ) else: # middle lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase , lowercase ) lowerCAmelCase = sample.to(lowercase ) # up for up_block in self.up_blocks: lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase ) , lowercase , lowercase ) else: # middle lowerCAmelCase = self.mid_block(lowercase , lowercase ) lowerCAmelCase = sample.to(lowercase ) # up for up_block in self.up_blocks: lowerCAmelCase = up_block(lowercase , lowercase ) # post-process if latent_embeds is None: lowerCAmelCase = self.conv_norm_out(lowercase ) else: lowerCAmelCase = self.conv_norm_out(lowercase , lowercase ) lowerCAmelCase = self.conv_act(lowercase ) lowerCAmelCase = self.conv_out(lowercase ) return sample class lowercase ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase=None , lowercase="random" , lowercase=False , lowercase=True ) -> Dict: super().__init__() lowerCAmelCase = n_e lowerCAmelCase = vq_embed_dim lowerCAmelCase = beta lowerCAmelCase = legacy lowerCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) lowerCAmelCase = self.used.shape[0] lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCAmelCase = self.re_embed lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: lowerCAmelCase = n_e lowerCAmelCase = sane_index_shape def _snake_case ( self , lowercase ) -> Union[str, Any]: lowerCAmelCase = inds.shape assert len(lowercase ) > 1 lowerCAmelCase = inds.reshape(ishape[0] , -1 ) lowerCAmelCase = self.used.to(lowercase ) lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() lowerCAmelCase = match.argmax(-1 ) lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCAmelCase = self.unknown_index return new.reshape(lowercase ) def _snake_case ( self , lowercase ) -> Union[str, Any]: lowerCAmelCase = inds.shape assert len(lowercase ) > 1 lowerCAmelCase = inds.reshape(ishape[0] , -1 ) lowerCAmelCase = self.used.to(lowercase ) if self.re_embed > self.used.shape[0]: # extra token lowerCAmelCase = 0 # simply set to zero lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase ) return back.reshape(lowercase ) def _snake_case ( self , lowercase ) -> Any: # reshape z -> (batch, height, width, channel) and flatten lowerCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCAmelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCAmelCase = torch.argmin(torch.cdist(lowercase , self.embedding.weight ) , dim=1 ) lowerCAmelCase = self.embedding(lowercase ).view(z.shape ) lowerCAmelCase = None lowerCAmelCase = None # compute loss for embedding if not self.legacy: lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape lowerCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCAmelCase = self.remap_to_used(lowercase ) lowerCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _snake_case ( self , lowercase , lowercase ) -> Optional[int]: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis lowerCAmelCase = self.unmap_to_all(lowercase ) lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCAmelCase = self.embedding(lowercase ) if shape is not None: lowerCAmelCase = z_q.view(lowercase ) # reshape back to match original input shape lowerCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=False ) -> Optional[int]: lowerCAmelCase = parameters lowerCAmelCase , lowerCAmelCase = torch.chunk(lowercase , 2 , dim=1 ) lowerCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) lowerCAmelCase = deterministic lowerCAmelCase = torch.exp(0.5 * self.logvar ) lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: lowerCAmelCase = lowerCAmelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _snake_case ( self , lowercase = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCAmelCase = randn_tensor( self.mean.shape , generator=lowercase , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCAmelCase = self.mean + self.std * sample return x def _snake_case ( self , lowercase=None ) -> Tuple: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _snake_case ( self , lowercase , lowercase=[1, 2, 3] ) -> Any: if self.deterministic: return torch.Tensor([0.0] ) lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase ) def _snake_case ( self ) -> Optional[int]: return self.mean
46
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _SCREAMING_SNAKE_CASE = Features({'text': Value('string' )} ) _SCREAMING_SNAKE_CASE = Features({} ) _SCREAMING_SNAKE_CASE = "text" @property def _snake_case ( self ) -> Dict[str, str]: return {self.text_column: "text"}
46
1
"""simple docstring""" import re import string import numpy as np import datasets a_ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" a_ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" a_ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class snake_case ( datasets.Metric): def a_ ( self : int ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def a_ ( self : List[str] , a__ : Optional[Any] , a__ : int , a__ : Dict=None , a__ : int=False , a__ : str=False , a__ : Union[str, Any]=False , ) -> Dict: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: _A = np.array([re.sub(a__ , "" , a__ ) for x in predictions] ) _A = np.array([re.sub(a__ , "" , a__ ) for x in references] ) else: _A = np.asarray(a__ ) _A = np.asarray(a__ ) if ignore_case: _A = np.char.lower(a__ ) _A = np.char.lower(a__ ) if ignore_punctuation: _A = string.punctuation.maketrans("" , "" , string.punctuation ) _A = np.char.translate(a__ , table=a__ ) _A = np.char.translate(a__ , table=a__ ) if ignore_numbers: _A = string.digits.maketrans("" , "" , string.digits ) _A = np.char.translate(a__ , table=a__ ) _A = np.char.translate(a__ , table=a__ ) _A = predictions == references return {"exact_match": np.mean(a__ ) * 1_00}
163
"""simple docstring""" def a__ ( __lowercase=2_8123 ) -> List[Any]: _A = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _A = set() _A = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__lowercase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
163
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = (UniPCMultistepScheduler,) UpperCamelCase = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self :Dict , **__UpperCamelCase :Dict ): A = { "num_train_timesteps": 10_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__UpperCamelCase ) return config def lowerCamelCase ( self :Any , __UpperCamelCase :Optional[Any]=0 , **__UpperCamelCase :int ): A = dict(self.forward_default_kwargs ) A = kwargs.pop("num_inference_steps" , __UpperCamelCase ) A = self.dummy_sample A = 0.1 * sample A = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config(**__UpperCamelCase ) A = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals A = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) A = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals A = dummy_past_residuals[: new_scheduler.config.solver_order] A, A = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample A = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self :List[Any] , __UpperCamelCase :List[str]=0 , **__UpperCamelCase :Any ): A = dict(self.forward_default_kwargs ) A = kwargs.pop("num_inference_steps" , __UpperCamelCase ) A = self.dummy_sample A = 0.1 * sample A = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) A = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) A = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) A = dummy_past_residuals[: new_scheduler.config.solver_order] A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample A = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Tuple=None , **__UpperCamelCase :Dict ): if scheduler is None: A = self.scheduler_classes[0] A = self.get_scheduler_config(**__UpperCamelCase ) A = scheduler_class(**__UpperCamelCase ) A = self.scheduler_classes[0] A = self.get_scheduler_config(**__UpperCamelCase ) A = scheduler_class(**__UpperCamelCase ) A = 10 A = self.dummy_model() A = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): A = model(__UpperCamelCase , __UpperCamelCase ) A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def lowerCamelCase ( self :Any ): A = dict(self.forward_default_kwargs ) A = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) A = self.dummy_sample A = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A = [residual + 0.2, residual + 0.15, residual + 0.10] A = dummy_past_residuals[: scheduler.config.solver_order] A = scheduler.timesteps[5] A = scheduler.timesteps[6] A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase ( self :str ): # make sure that iterating over schedulers with same config names gives same results # for defaults A = UniPCMultistepScheduler(**self.get_scheduler_config() ) A = self.full_loop(scheduler=__UpperCamelCase ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A = DEISMultistepScheduler.from_config(scheduler.config ) A = DPMSolverMultistepScheduler.from_config(scheduler.config ) A = UniPCMultistepScheduler.from_config(scheduler.config ) A = self.full_loop(scheduler=__UpperCamelCase ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def lowerCamelCase ( self :List[Any] ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def lowerCamelCase ( self :Dict ): self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def lowerCamelCase ( self :Dict ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def lowerCamelCase ( self :List[str] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) A = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def lowerCamelCase ( self :Union[str, Any] ): self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def lowerCamelCase ( self :Optional[int] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def lowerCamelCase ( self :Optional[int] ): A = self.full_loop() A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def lowerCamelCase ( self :Tuple ): A = self.full_loop(prediction_type="v_prediction" ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def lowerCamelCase ( self :str ): A = self.scheduler_classes[0] A = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) A = scheduler_class(**__UpperCamelCase ) A = 10 A = self.dummy_model() A = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): A = model(__UpperCamelCase , __UpperCamelCase ) A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def lowerCamelCase ( self :str , **__UpperCamelCase :Optional[int] ): for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config(**__UpperCamelCase ) A = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
292
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : def __init__( self :List[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :List[str]=13 , __UpperCamelCase :Any=30 , __UpperCamelCase :int=2 , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :Union[str, Any]=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :List[str]=32 , __UpperCamelCase :List[Any]=5 , __UpperCamelCase :Dict=4 , __UpperCamelCase :List[str]=37 , __UpperCamelCase :str="gelu" , __UpperCamelCase :Union[str, Any]=0.1 , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Tuple=10 , __UpperCamelCase :Tuple=0.02 , __UpperCamelCase :int=None , ): A = parent A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A = (image_size // patch_size) ** 2 A = num_patches + 1 def lowerCamelCase ( self :Any ): A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self :Union[str, Any] ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase ( self :Dict , __UpperCamelCase :Dict , __UpperCamelCase :Any , __UpperCamelCase :Any ): A = ViTMSNModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] ): A = self.type_sequence_label_size A = ViTMSNForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , labels=__UpperCamelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A = 1 A = ViTMSNForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase ( self :Optional[Any] ): A = self.prepare_config_and_inputs() A, A, A = config_and_inputs A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowerCamelCase ( self :Optional[int] ): A = ViTMSNModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCamelCase ( self :Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def lowerCamelCase ( self :Union[str, Any] ): pass def lowerCamelCase ( self :int ): A, A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCamelCase ( self :Tuple ): A, A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowerCamelCase ( self :List[Any] ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = ViTMSNModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def A__ ( ): A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self :Union[str, Any] ): return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def lowerCamelCase ( self :Any ): torch.manual_seed(2 ) A = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) # verify the logits A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
292
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=1_00 , SCREAMING_SNAKE_CASE_ : str=13 , SCREAMING_SNAKE_CASE_ : List[str]=30 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : str=32 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : str=37 , SCREAMING_SNAKE_CASE_ : List[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=10 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : List[Any]=3 , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : List[str]=[0, 1, 2, 3] , ) -> Union[str, Any]: '''simple docstring''' A: Tuple = parent A: Union[str, Any] = 1_00 A: Union[str, Any] = batch_size A: Optional[int] = image_size A: Union[str, Any] = patch_size A: List[str] = num_channels A: str = is_training A: Union[str, Any] = use_labels A: List[Any] = hidden_size A: int = num_hidden_layers A: Union[str, Any] = num_attention_heads A: Any = intermediate_size A: str = hidden_act A: int = hidden_dropout_prob A: List[str] = attention_probs_dropout_prob A: str = type_sequence_label_size A: Union[str, Any] = initializer_range A: List[str] = scope A: Union[str, Any] = out_indices A: int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A: int = (image_size // patch_size) ** 2 A: List[Any] = num_patches + 1 def _snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A: str = None A: Tuple = None if self.use_labels: A: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A: Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A: Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : Dict ) -> Any: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: '''simple docstring''' A: List[Any] = BeitModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict: '''simple docstring''' A: Optional[int] = BeitForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str ) -> Any: '''simple docstring''' A: List[str] = self.type_sequence_label_size A: Optional[int] = BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A: Optional[Any] = 1 A: Any = BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A: List[str] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Any: '''simple docstring''' A: Tuple = self.num_labels A: Union[str, Any] = BeitForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) A: List[Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _snake_case ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' A: Tuple = self.prepare_config_and_inputs() A , A , A , A: Tuple = config_and_inputs A: List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : str = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase_ : List[str] = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[Any] = False def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' A: List[Any] = BeitModelTester(self ) A: List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def _snake_case ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _snake_case ( self : Union[str, Any] ) -> str: '''simple docstring''' pass def _snake_case ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A , A: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A , A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A: Any = model_class(SCREAMING_SNAKE_CASE_ ) A: str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A: str = [*signature.parameters.keys()] A: Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[Any] ) -> Any: '''simple docstring''' A: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str ) -> List[str]: '''simple docstring''' A: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return A , A: Any = self.model_tester.prepare_config_and_inputs_for_common() A: List[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(SCREAMING_SNAKE_CASE_ ), BeitForMaskedImageModeling]: continue A: Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() A: int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) A: int = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A , A: int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A: List[Any] = False A: int = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(SCREAMING_SNAKE_CASE_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue A: Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE_ ) model.train() A: Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) A: Tuple = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' A , A: Any = self.model_tester.prepare_config_and_inputs_for_common() A: Dict = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: A: List[Any] = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _snake_case ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A: str = BeitModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( ) -> Any: A: Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Any ) -> List[str]: '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Union[str, Any] = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(SCREAMING_SNAKE_CASE_ ) A: int = self.default_image_processor A: Union[str, Any] = prepare_img() A: int = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values.to(SCREAMING_SNAKE_CASE_ ) # prepare bool_masked_pos A: Optional[Any] = torch.ones((1, 1_96) , dtype=torch.bool ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): A: Optional[Any] = model(pixel_values=SCREAMING_SNAKE_CASE_ , bool_masked_pos=SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = outputs.logits # verify the logits A: List[str] = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) A: List[str] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) ) @slow def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' A: List[Any] = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(SCREAMING_SNAKE_CASE_ ) A: str = self.default_image_processor A: int = prepare_img() A: Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): A: List[Any] = model(**SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = outputs.logits # verify the logits A: int = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) A: int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) A: int = 2_81 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Union[str, Any] = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( SCREAMING_SNAKE_CASE_ ) A: int = self.default_image_processor A: int = prepare_img() A: Any = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): A: str = model(**SCREAMING_SNAKE_CASE_ ) A: List[Any] = outputs.logits # verify the logits A: List[str] = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) A: List[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) A: List[str] = 23_96 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A: Dict = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) A: Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) A: List[str] = BeitImageProcessor(do_resize=SCREAMING_SNAKE_CASE_ , size=6_40 , do_center_crop=SCREAMING_SNAKE_CASE_ ) A: int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) A: Union[str, Any] = Image.open(ds[0]['''file'''] ) A: Tuple = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): A: List[str] = model(**SCREAMING_SNAKE_CASE_ ) A: Tuple = outputs.logits # verify the logits A: Union[str, Any] = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) A: int = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: A: int = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=SCREAMING_SNAKE_CASE_ , ) else: A: Any = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=SCREAMING_SNAKE_CASE_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def _snake_case ( self : Tuple ) -> str: '''simple docstring''' A: Union[str, Any] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) A: Tuple = model.to(SCREAMING_SNAKE_CASE_ ) A: Tuple = BeitImageProcessor(do_resize=SCREAMING_SNAKE_CASE_ , size=6_40 , do_center_crop=SCREAMING_SNAKE_CASE_ ) A: int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) A: Optional[Any] = Image.open(ds[0]['''file'''] ) A: Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): A: int = model(**SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = outputs.logits.detach().cpu() A: Any = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(5_00, 3_00)] ) A: List[Any] = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ ) A: List[Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) A: List[str] = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ )
334
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
1
class _lowercase : '''simple docstring''' def __init__( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = set_counts UpperCamelCase_ = max(snake_case__ ) UpperCamelCase_ = len(snake_case__ ) UpperCamelCase_ = [1] * num_sets UpperCamelCase_ = list(range(snake_case__ ) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = self.get_parent(snake_case__ ) UpperCamelCase_ = self.get_parent(snake_case__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCamelCase_ = 0 UpperCamelCase_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCamelCase_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCamelCase_ = 0 UpperCamelCase_ = src_parent UpperCamelCase_ = self.set_counts[src_parent] UpperCamelCase_ = max(self.max_set , snake_case__ ) return True def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set UpperCamelCase_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
128
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowercase : '''simple docstring''' def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=50 , snake_case__=0.02 , snake_case__=True , snake_case__=None , ): '''simple docstring''' UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = initializer_range UpperCamelCase_ = use_labels UpperCamelCase_ = scope def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self ): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self ): '''simple docstring''' ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = self.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ ) UpperCamelCase_ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = True UpperCamelCase_ = BertGenerationEncoder(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = BertGenerationDecoder(config=snake_case__ ).to(snake_case__ ).eval() # first forward pass UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ , ): '''simple docstring''' UpperCamelCase_ = BertGenerationDecoder(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase (a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase__ = (BertGenerationDecoder,) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoderTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = "bert" self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_ = None self.model_tester.create_and_check_model_as_decoder( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*snake_case__ ) @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(snake_case__ ) @require_torch class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) UpperCamelCase_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): UpperCamelCase_ = model(snake_case__ )[0] UpperCamelCase_ = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @require_torch class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) UpperCamelCase_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): UpperCamelCase_ = model(snake_case__ )[0] UpperCamelCase_ = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
128
1
'''simple docstring''' import cva import numpy as np class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if k in (0.04, 0.06): A : Tuple = k A : Tuple = window_size else: raise ValueError('''invalid k value''' ) def __str__( self ) -> str: """simple docstring""" return str(self.k ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" A : Optional[Any] = cva.imread(SCREAMING_SNAKE_CASE , 0 ) A, A : Optional[Any] = img.shape A : Dict = [] A : List[str] = img.copy() A : Optional[int] = cva.cvtColor(SCREAMING_SNAKE_CASE , cva.COLOR_GRAY2RGB ) A, A : Optional[Any] = np.gradient(SCREAMING_SNAKE_CASE ) A : Optional[Any] = dx**2 A : Any = dy**2 A : Optional[Any] = dx * dy A : Optional[Any] = 0.04 A : Union[str, Any] = self.window_size // 2 for y in range(SCREAMING_SNAKE_CASE , h - offset ): for x in range(SCREAMING_SNAKE_CASE , w - offset ): A : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A : Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A : Union[str, Any] = (wxx * wyy) - (wxy**2) A : int = wxx + wyy A : int = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowercase : List[Any] = HarrisCorner(0.04, 3) lowercase , lowercase : List[Any] = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
353
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Tuple = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class A ( __snake_case ): __magic_name__ = '''pix2struct_text_model''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" A : str = vocab_size A : List[str] = hidden_size A : List[Any] = d_kv A : Optional[Any] = d_ff A : Dict = num_layers A : Dict = num_heads A : Optional[int] = relative_attention_num_buckets A : Optional[Any] = relative_attention_max_distance A : Dict = dropout_rate A : Dict = layer_norm_epsilon A : Tuple = initializer_factor A : Union[str, Any] = use_cache A : int = eos_token_id A : List[str] = decoder_start_token_id # for backwards compatibility A : int = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A : Union[str, Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = '''pix2struct_vision_model''' def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : List[str] = hidden_size A : Optional[Any] = patch_embed_hidden_size A : Union[str, Any] = d_ff A : Dict = dropout_rate A : str = num_hidden_layers A : Dict = num_attention_heads A : Tuple = initializer_range A : List[str] = initializer_factor A : Union[str, Any] = attention_dropout A : Tuple = layer_norm_eps A : int = dense_act_fn A : Optional[int] = seq_len A : Tuple = relative_attention_num_buckets A : str = relative_attention_max_distance A : Optional[Any] = d_kv @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = '''pix2struct''' __magic_name__ = True def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text_config is None: A : Dict = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: A : str = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE ) A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE ) A : Any = self.text_config.decoder_start_token_id A : Any = self.text_config.pad_token_id A : Dict = self.text_config.eos_token_id A : Union[str, Any] = initializer_factor A : Tuple = initializer_range A : Optional[Any] = self.initializer_range A : int = self.initializer_range A : Tuple = is_vqa @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Tuple = copy.deepcopy(self.__dict__ ) A : Dict = self.text_config.to_dict() A : int = self.vision_config.to_dict() A : Any = self.__class__.model_type return output
311
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _UpperCAmelCase : List[Any] =logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Optional[Any]: super().__init__() self.register_modules( vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , unet=__lowercase , scheduler=__lowercase , safety_checker=__lowercase , feature_extractor=__lowercase , ) def lowercase_ ( self , __lowercase = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCAmelCase_ : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowercase ) def lowercase_ ( self ) -> Dict: self.enable_attention_slicing(__lowercase ) @torch.no_grad() def __call__( self , __lowercase , __lowercase = 5_1_2 , __lowercase = 5_1_2 , __lowercase = 5_0 , __lowercase = 7.5 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , __lowercase = "pil" , __lowercase = True , __lowercase = None , __lowercase = 1 , __lowercase = None , **__lowercase , ) -> List[Any]: if isinstance(__lowercase , __lowercase ): lowerCAmelCase_ : List[str] = 1 elif isinstance(__lowercase , __lowercase ): lowerCAmelCase_ : Dict = len(__lowercase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__lowercase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowercase , __lowercase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowercase )}.""" ) # get prompt text embeddings lowerCAmelCase_ : List[str] = self.tokenizer( __lowercase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) lowerCAmelCase_ : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase_ : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCAmelCase_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCAmelCase_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase_ : Union[str, Any] = text_embeddings.shape lowerCAmelCase_ : List[str] = text_embeddings.repeat(1 , __lowercase , 1 ) lowerCAmelCase_ : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase_ : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase_ : List[str] if negative_prompt is None: lowerCAmelCase_ : Any = [""""""] elif type(__lowercase ) is not type(__lowercase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__lowercase )} !=""" f""" {type(__lowercase )}.""" ) elif isinstance(__lowercase , __lowercase ): lowerCAmelCase_ : Optional[int] = [negative_prompt] elif batch_size != len(__lowercase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__lowercase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowerCAmelCase_ : Any = negative_prompt lowerCAmelCase_ : Dict = text_input_ids.shape[-1] lowerCAmelCase_ : List[Any] = self.tokenizer( __lowercase , padding='''max_length''' , max_length=__lowercase , truncation=__lowercase , return_tensors='''pt''' , ) lowerCAmelCase_ : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase_ : int = uncond_embeddings.shape[1] lowerCAmelCase_ : List[Any] = uncond_embeddings.repeat(__lowercase , __lowercase , 1 ) lowerCAmelCase_ : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , __lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase_ : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase_ : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase_ : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4) lowerCAmelCase_ : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase_ : Dict = torch.randn( __lowercase , generator=__lowercase , device='''cpu''' , dtype=__lowercase ).to(self.device ) lowerCAmelCase_ : int = torch.randn(__lowercase , generator=__lowercase , device='''cpu''' , dtype=__lowercase ).to( self.device ) else: lowerCAmelCase_ : int = torch.randn( __lowercase , generator=__lowercase , device=self.device , dtype=__lowercase ) lowerCAmelCase_ : int = torch.randn(__lowercase , generator=__lowercase , device=self.device , dtype=__lowercase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowerCAmelCase_ : Optional[Any] = latents_reference.to(self.device ) lowerCAmelCase_ : Tuple = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCAmelCase_ : int = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCAmelCase_ : List[str] = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCAmelCase_ : Union[str, Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCAmelCase_ : Union[str, Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCAmelCase_ : Optional[int] = 0 if dx < 0 else dx lowerCAmelCase_ : List[str] = 0 if dy < 0 else dy lowerCAmelCase_ : Union[str, Any] = max(-dx , 0 ) lowerCAmelCase_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCAmelCase_ : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase_ : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase_ : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase_ : Optional[Any] = {} if accepts_eta: lowerCAmelCase_ : List[str] = eta for i, t in enumerate(self.progress_bar(__lowercase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ : str = self.scheduler.scale_model_input(__lowercase , __lowercase ) # predict the noise residual lowerCAmelCase_ : Any = self.unet(__lowercase , __lowercase , encoder_hidden_states=__lowercase ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase_ : Any = noise_pred.chunk(2 ) lowerCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : Dict = self.scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowercase , __lowercase , __lowercase ) lowerCAmelCase_ : Union[str, Any] = 1 / 0.1_82_15 * latents lowerCAmelCase_ : Tuple = self.vae.decode(__lowercase ).sample lowerCAmelCase_ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCAmelCase_ : int = self.feature_extractor(self.numpy_to_pil(__lowercase ) , return_tensors='''pt''' ).to( self.device ) lowerCAmelCase_ : int = self.safety_checker( images=__lowercase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCAmelCase_ : Any = None if output_type == "pil": lowerCAmelCase_ : int = self.numpy_to_pil(__lowercase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__lowercase , nsfw_content_detected=__lowercase )
262
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[int] = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
265
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCAmelCase :int = logging.get_logger(__name__) _lowerCAmelCase :Optional[Any] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' a__ ='marian' a__ =['past_key_values'] a__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=5_8_1_0_1 , A=None , A=1_0_2_4 , A=1_2 , A=4_0_9_6 , A=1_6 , A=1_2 , A=4_0_9_6 , A=1_6 , A=0.0 , A=0.0 , A=True , A=True , A="gelu" , A=1_0_2_4 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=5_8_1_0_0 , A=False , A=5_8_1_0_0 , A=0 , A=0 , A=True , **A , ) -> str: _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : List[str] = decoder_vocab_size or vocab_size _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : Any = encoder_ffn_dim _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : List[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_ffn_dim _UpperCAmelCase : Dict = decoder_layers _UpperCAmelCase : Optional[int] = decoder_attention_heads _UpperCAmelCase : Optional[int] = dropout _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : int = activation_dropout _UpperCAmelCase : Optional[int] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[Any] = encoder_layerdrop _UpperCAmelCase : List[str] = decoder_layerdrop _UpperCAmelCase : Dict = use_cache _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Optional[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) class _UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __lowerCAmelCase ( self ) -> str: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _UpperCAmelCase : List[Any] = {0: 'batch'} _UpperCAmelCase : List[str] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _UpperCAmelCase : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} _UpperCAmelCase : Tuple = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCAmelCase : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _UpperCAmelCase : Tuple = self.num_layers for i in range(_UpperCAmelCase ): _UpperCAmelCase : int = {0: 'batch', 2: 'past_sequence + sequence'} _UpperCAmelCase : int = {0: 'batch', 2: 'past_sequence + sequence'} else: _UpperCAmelCase : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __lowerCAmelCase ( self ) -> str: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : int = super().outputs else: _UpperCAmelCase : int = super(_UpperCAmelCase , self ).outputs if self.use_past: _UpperCAmelCase : int = self.num_layers for i in range(_UpperCAmelCase ): _UpperCAmelCase : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} _UpperCAmelCase : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Union[str, Any]: _UpperCAmelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Generate decoder inputs _UpperCAmelCase : List[str] = seq_length if not self.use_past else 1 _UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Dict = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _UpperCAmelCase : int = dict(**_UpperCAmelCase , **_UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _UpperCAmelCase : str = common_inputs['input_ids'].shape _UpperCAmelCase : Tuple = common_inputs['decoder_input_ids'].shape[1] _UpperCAmelCase : Optional[int] = self.num_attention_heads _UpperCAmelCase : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase : Optional[Any] = decoder_seq_length + 3 _UpperCAmelCase : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCAmelCase : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase )] , dim=1 ) _UpperCAmelCase : Dict = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCAmelCase : Optional[Any] = self.num_layers _UpperCAmelCase : List[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Optional[int] = max(_UpperCAmelCase , _UpperCAmelCase ) - min_num_layers _UpperCAmelCase : int = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), ) ) # TODO: test this. _UpperCAmelCase : Optional[int] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_UpperCAmelCase , _UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) ) return common_inputs def __lowerCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Any: _UpperCAmelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _UpperCAmelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCAmelCase : Optional[int] = seqlen + 2 _UpperCAmelCase : List[str] = self.num_layers _UpperCAmelCase : Tuple = self.num_attention_heads _UpperCAmelCase : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase : List[str] = common_inputs['attention_mask'].dtype _UpperCAmelCase : Tuple = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) _UpperCAmelCase : int = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(_UpperCAmelCase ) ] return common_inputs def __lowerCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> str: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase : List[str] = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase : List[Any] = tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase : Tuple = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCAmelCase : Any = dict(tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) return common_inputs def __lowerCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> str: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : Any = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) else: _UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_causal_lm( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) return common_inputs def __lowerCAmelCase ( self , A , A , A , A ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : List[str] = super()._flatten_past_key_values_(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: _UpperCAmelCase : Tuple = super(_UpperCAmelCase , self )._flatten_past_key_values_( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @property def __lowerCAmelCase ( self ) -> int: return 1E-4
368
"""simple docstring""" from itertools import count def lowerCamelCase_ (UpperCamelCase__ : int = 50 ): _UpperCAmelCase : Tuple = [1] * min_block_length for n in count(UpperCamelCase__ ): fill_count_functions.append(1 ) for block_length in range(UpperCamelCase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(f"{solution() = }")
68
0
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _UpperCamelCase ( UpperCamelCase__ ): if isinstance(UpperCamelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class _snake_case : def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): pass def snake_case__ ( self): pass def snake_case__ ( self): pass def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : str = np.abs((a - b)).max() self.assertLessEqual(_lowerCamelCase , _lowerCamelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''') def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase): UpperCAmelCase__ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Dict = FlaxVisionTextDualEncoderModel(_lowerCamelCase) UpperCAmelCase__ : Tuple = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase): UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : int = {"""vision_model""": vision_model, """text_model""": text_model} UpperCAmelCase__ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase) UpperCAmelCase__ : List[str] = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : str = {"""vision_model""": vision_model, """text_model""": text_model} UpperCAmelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase) UpperCAmelCase__ : str = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase) UpperCAmelCase__ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase) UpperCAmelCase__ : int = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase) UpperCAmelCase__ : List[str] = after_output[0] UpperCAmelCase__ : Optional[int] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_lowerCamelCase , 1e-3) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase): UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} UpperCAmelCase__ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase) UpperCAmelCase__ : Optional[int] = model( input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase , output_attentions=_lowerCamelCase) UpperCAmelCase__ : Tuple = output.vision_model_output.attentions self.assertEqual(len(_lowerCamelCase) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : str = to_atuple(vision_model.config.image_size) UpperCAmelCase__ : List[str] = to_atuple(vision_model.config.patch_size) UpperCAmelCase__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase__ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) UpperCAmelCase__ : int = output.text_model_output.attentions self.assertEqual(len(_lowerCamelCase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): pt_model.to(_lowerCamelCase) pt_model.eval() # prepare inputs UpperCAmelCase__ : List[str] = inputs_dict UpperCAmelCase__ : Dict = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = pt_model(**_lowerCamelCase).to_tuple() UpperCAmelCase__ : List[str] = fx_model(**_lowerCamelCase).to_tuple() self.assertEqual(len(_lowerCamelCase) , len(_lowerCamelCase) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4]): self.assert_almost_equals(_lowerCamelCase , pt_output.numpy() , 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCamelCase) UpperCAmelCase__ : int = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase , from_pt=_lowerCamelCase) UpperCAmelCase__ : Tuple = fx_model_loaded(**_lowerCamelCase).to_tuple() self.assertEqual(len(_lowerCamelCase) , len(_lowerCamelCase) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4]): self.assert_almost_equals(_lowerCamelCase , pt_output.numpy() , 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(_lowerCamelCase , from_flax=_lowerCamelCase) pt_model_loaded.to(_lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): UpperCAmelCase__ : Dict = pt_model_loaded(**_lowerCamelCase).to_tuple() self.assertEqual(len(_lowerCamelCase) , len(_lowerCamelCase) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4]): self.assert_almost_equals(_lowerCamelCase , pt_output_loaded.numpy() , 4e-2) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Optional[int] = VisionTextDualEncoderModel(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = FlaxVisionTextDualEncoderModel(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = fx_state self.check_pt_flax_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[str] = VisionTextDualEncoderModel(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = FlaxVisionTextDualEncoderModel(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = load_flax_weights_in_pytorch_model(_lowerCamelCase , fx_model.params) self.check_pt_flax_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : int = self.prepare_config_and_inputs() self.check_save_load(**_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCamelCase) @is_pt_flax_cross_test def snake_case__ ( self): UpperCAmelCase__ : str = self.prepare_config_and_inputs() UpperCAmelCase__ : Optional[int] = config_inputs_dict.pop("""vision_config""") UpperCAmelCase__ : List[Any] = config_inputs_dict.pop("""text_config""") UpperCAmelCase__ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) self.check_equivalence_flax_to_pt(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) @slow def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.get_pretrained_model_and_inputs() UpperCAmelCase__ : str = model_a(**_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase) UpperCAmelCase__ : List[str] = model_a(**_lowerCamelCase) UpperCAmelCase__ : List[Any] = after_outputs[0] UpperCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_lowerCamelCase , 1e-5) @require_flax class _snake_case ( a__ , unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=_lowerCamelCase , text_from_pt=_lowerCamelCase , ) UpperCAmelCase__ : str = 13 UpperCAmelCase__ : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) UpperCAmelCase__ : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) UpperCAmelCase__ : Any = random_attention_mask([batch_size, 4]) UpperCAmelCase__ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = FlaxViTModel(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = FlaxBertModel(_lowerCamelCase) return vision_model, text_model def snake_case__ ( self): UpperCAmelCase__ : Tuple = FlaxViTModelTester(self) UpperCAmelCase__ : Tuple = FlaxBertModelTester(self) UpperCAmelCase__ : int = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ : Any = vision_config_and_inputs UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _snake_case ( a__ , unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=_lowerCamelCase , text_from_pt=_lowerCamelCase , ) UpperCAmelCase__ : Union[str, Any] = 13 UpperCAmelCase__ : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) UpperCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) UpperCAmelCase__ : int = random_attention_mask([batch_size, 4]) UpperCAmelCase__ : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : int = FlaxCLIPVisionModel(_lowerCamelCase) UpperCAmelCase__ : List[Any] = FlaxBertModel(_lowerCamelCase) return vision_model, text_model def snake_case__ ( self): UpperCAmelCase__ : List[Any] = FlaxCLIPVisionModelTester(self) UpperCAmelCase__ : Any = FlaxBertModelTester(self) UpperCAmelCase__ : List[Any] = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = vision_config_and_inputs UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0) UpperCAmelCase__ : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""") UpperCAmelCase__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") UpperCAmelCase__ : Optional[Any] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCamelCase , padding=_lowerCamelCase , return_tensors="""np""") UpperCAmelCase__ : Any = model(**_lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase__ : Optional[Any] = np.array([[1.2284727, 0.3104122]]) self.assertTrue(np.allclose(outputs.logits_per_image , _lowerCamelCase , atol=1e-3))
163
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( a__ ): lowerCAmelCase :Dict = ['''image_processor''', '''tokenizer'''] lowerCAmelCase :Union[str, Any] = '''BlipImageProcessor''' lowerCAmelCase :Any = '''AutoTokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): super().__init__(_lowerCamelCase , _lowerCamelCase) # add QFormer tokenizer UpperCAmelCase__ : List[str] = qformer_tokenizer def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""") UpperCAmelCase__ : List[str] = BatchFeature() if text is not None: UpperCAmelCase__ : Any = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) encoding.update(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = self.qformer_tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase__ : Dict = qformer_text_encoding.pop("""input_ids""") UpperCAmelCase__ : Tuple = qformer_text_encoding.pop("""attention_mask""") if images is not None: UpperCAmelCase__ : List[str] = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase) encoding.update(_lowerCamelCase) return encoding def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.tokenizer.model_input_names UpperCAmelCase__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def snake_case__ ( self , _lowerCamelCase , **_lowerCamelCase): if os.path.isfile(_lowerCamelCase): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''') os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) UpperCAmelCase__ : Dict = os.path.join(_lowerCamelCase , """qformer_tokenizer""") self.qformer_tokenizer.save_pretrained(_lowerCamelCase) return super().save_pretrained(_lowerCamelCase , **_lowerCamelCase) @classmethod def snake_case__ ( cls , _lowerCamelCase , **_lowerCamelCase): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_lowerCamelCase , subfolder="""qformer_tokenizer""") UpperCAmelCase__ : List[Any] = cls._get_arguments_from_pretrained(_lowerCamelCase , **_lowerCamelCase) args.append(_lowerCamelCase) return cls(*_lowerCamelCase)
163
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : str ={'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple =['YolosFeatureExtractor'] __snake_case : str =['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any =[ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __snake_case : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : Optional[int] ={ 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int =['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple =['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure)
94
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : Union[str, Any] =StableDiffusionSAGPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Dict =TEXT_TO_IMAGE_BATCH_PARAMS a : Any =TEXT_TO_IMAGE_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_IMAGE_PARAMS a : Optional[int] =False def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""),up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""),cross_attention_dim=32,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) __lowerCAmelCase = sag_pipe.to(__SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """.""" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sag_pipe( [prompt],generator=__SCREAMING_SNAKE_CASE,guidance_scale=7.5,sag_scale=1.0,num_inference_steps=20,output_type="""np""" ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __lowerCAmelCase = sag_pipe.to(__SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """.""" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sag_pipe( [prompt],generator=__SCREAMING_SNAKE_CASE,guidance_scale=7.5,sag_scale=1.0,num_inference_steps=20,output_type="""np""" ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __lowerCAmelCase = sag_pipe.to(__SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """.""" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sag_pipe( [prompt],width=7_68,height=5_12,generator=__SCREAMING_SNAKE_CASE,guidance_scale=7.5,sag_scale=1.0,num_inference_steps=20,output_type="""np""",) __lowerCAmelCase = output.images assert image.shape == (1, 5_12, 7_68, 3)
46
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertListEqual(dset.column_names,["""col_1""", """col_2"""] ) for i, r in enumerate(__SCREAMING_SNAKE_CASE ): self.assertDictEqual(__SCREAMING_SNAKE_CASE,example_records[i] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info,dset_from_dict.info ) def lowerCamelCase__ ( self ): # checks what happens with missing columns '''simple docstring''' __lowerCAmelCase = [{"""col_1""": 1}, {"""col_2""": """x"""}] __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset[0],{"""col_1""": 1} ) self.assertDictEqual(dset[1],{"""col_1""": None} ) # NB: first record is used for columns def lowerCamelCase__ ( self ): # checks if the type can be inferred from the second record '''simple docstring''' __lowerCAmelCase = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertEqual(dset.info.features["""col_1"""],Sequence(Value("""int64""" ) ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = Dataset.from_list([] ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),0 ) self.assertListEqual(dset.column_names,[] )
46
1
from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["keras_nlp"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['keras_nlp'] )
39
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Tuple = 192 UpperCAmelCase : str = 768 UpperCAmelCase : List[Any] = 12 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : List[Any] = [800, 1333] UpperCAmelCase : List[str] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Union[str, Any] = 330 UpperCAmelCase : Union[str, Any] = 14 UpperCAmelCase : Any = 6 UpperCAmelCase : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] = 384 UpperCAmelCase : Dict = 1536 UpperCAmelCase : str = 12 UpperCAmelCase : List[str] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase : int = [800, 1344] UpperCAmelCase : Optional[int] = 91 UpperCAmelCase : int = "huggingface/label-files" UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( __magic_name__ ): '''simple docstring''' if "backbone" in name: UpperCAmelCase : int = name.replace("backbone" , "vit" ) if "cls_token" in name: UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: UpperCAmelCase : str = key.split("." ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Any = val[-dim:, :] else: UpperCAmelCase : Tuple = val[:dim] UpperCAmelCase : List[str] = val[dim : dim * 2] UpperCAmelCase : Any = val[-dim:] else: UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ ) # load original state_dict UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"] # load 🤗 model UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ ) model.eval() UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512 UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ ) UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase : List[str] = model(**__magic_name__ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None if yolos_name == "yolos_ti": UpperCAmelCase : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) UpperCAmelCase : Tuple = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) UpperCAmelCase : List[str] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) UpperCAmelCase : Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) UpperCAmelCase : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: UpperCAmelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) UpperCAmelCase : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__magic_name__ , organization="hustvl" ) model.push_to_hub(__magic_name__ , organization="hustvl" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
311
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = int(number**0.5 ) return number == sq * sq def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> tuple[int, int]: '''simple docstring''' lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase = x_den * y_den * z_den lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def UpperCAmelCase__ ( lowerCAmelCase__ :int = 3_5 ) -> int: '''simple docstring''' lowercase = set() lowercase = 42 lowercase = Fraction(0 ) lowercase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase = x_num * y_den + x_den * y_num lowercase = x_den * y_den lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) unique_s.add(UpperCAmelCase__ ) # n=2 lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase = x_den * x_den * y_den * y_den if is_sq(UpperCAmelCase__ ) and is_sq(UpperCAmelCase__ ): lowercase = int(sqrt(UpperCAmelCase__ ) ) lowercase = int(sqrt(UpperCAmelCase__ ) ) lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) unique_s.add(UpperCAmelCase__ ) # n=-1 lowercase = x_num * y_num lowercase = x_den * y_num + x_num * y_den lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) unique_s.add(UpperCAmelCase__ ) # n=2 lowercase = x_num * x_num * y_num * y_num lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(UpperCAmelCase__ ) and is_sq(UpperCAmelCase__ ): lowercase = int(sqrt(UpperCAmelCase__ ) ) lowercase = int(sqrt(UpperCAmelCase__ ) ) lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) unique_s.add(UpperCAmelCase__ ) for num, den in unique_s: total += Fraction(UpperCAmelCase__ , UpperCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: pass @is_pipeline_test @require_vision class __UpperCamelCase ( unittest.TestCase ): @require_torch def __a ( self ) -> Dict: a : List[Any] = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) a : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : List[str] = image_classifier(lowerCAmelCase__ , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCAmelCase__ ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) a : Optional[int] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], ] , ) @require_tf def __a ( self ) -> int: a : Tuple = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) a : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : int = image_classifier(lowerCAmelCase__ , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) a : List[str] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], ] , ) @slow @require_torch def __a ( self ) -> Union[str, Any]: a : Optional[int] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes a : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : str = image_classifier(lowerCAmelCase__ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) a : List[str] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __a ( self ) -> Optional[Any]: a : List[str] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes a : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : Optional[Any] = image_classifier(lowerCAmelCase__ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) a : Optional[int] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
105
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class a__ : """simple docstring""" __lowerCamelCase = BlenderbotSmallConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def UpperCamelCase ( self , lowercase , lowercase ) -> str: '''simple docstring''' A__ = TFBlenderbotSmallModel(config=lowercase ).get_decoder() A__ = inputs_dict["input_ids"] A__ = input_ids[:1, :] A__ = inputs_dict["attention_mask"][:1, :] A__ = inputs_dict["head_mask"] A__ = 1 # first forward pass A__ = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(lowercase , attention_mask=lowercase )[0] A__ = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1e-3 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Optional[Any]=None , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Dict=None , SCREAMING_SNAKE_CASE_: List[str]=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: A__ = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class a__ ( unittest.TestCase ): """simple docstring""" __lowerCamelCase = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __lowerCamelCase = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.tokenizer(self.src_text , return_tensors="tf" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
68
0
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'char' lowercase__ = 'bpe' lowercase__ = 'wp' _a = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'char_tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = 'MgpstrTokenizer' def __init__( self , __a=None , __a=None , **__a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') _UpperCamelCase = tokenizer _UpperCamelCase = AutoTokenizer.from_pretrained('''gpt2''') _UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-uncased''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , **__a) -> int: '''simple docstring''' if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''') if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if text is not None: _UpperCamelCase = self.char_tokenizer(__a , return_tensors=__a , **__a) if text is None: return inputs elif images is None: return encodings else: _UpperCamelCase = encodings['''input_ids'''] return inputs def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = sequences _UpperCamelCase = char_preds.size(0) _UpperCamelCase , _UpperCamelCase = self._decode_helper(__a , '''char''') _UpperCamelCase , _UpperCamelCase = self._decode_helper(__a , '''bpe''') _UpperCamelCase , _UpperCamelCase = self._decode_helper(__a , '''wp''') _UpperCamelCase = [] _UpperCamelCase = [] for i in range(__a): _UpperCamelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] _UpperCamelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] _UpperCamelCase = scores.index(max(__a)) final_strs.append(strs[max_score_index]) final_scores.append(scores[max_score_index]) _UpperCamelCase = {} _UpperCamelCase = final_strs _UpperCamelCase = final_scores _UpperCamelCase = char_strs _UpperCamelCase = bpe_strs _UpperCamelCase = wp_strs return out def UpperCAmelCase ( self , __a , __a) -> Union[str, Any]: '''simple docstring''' if format == DecodeType.CHARACTER: _UpperCamelCase = self.char_decode _UpperCamelCase = 1 _UpperCamelCase = '''[s]''' elif format == DecodeType.BPE: _UpperCamelCase = self.bpe_decode _UpperCamelCase = 2 _UpperCamelCase = '''#''' elif format == DecodeType.WORDPIECE: _UpperCamelCase = self.wp_decode _UpperCamelCase = 1_02 _UpperCamelCase = '''[SEP]''' else: raise ValueError(F'''Format {format} is not supported.''') _UpperCamelCase , _UpperCamelCase = [], [] _UpperCamelCase = pred_logits.size(0) _UpperCamelCase = pred_logits.size(1) _UpperCamelCase , _UpperCamelCase = pred_logits.topk(1 , dim=-1 , largest=__a , sorted=__a) _UpperCamelCase = preds_index.view(-1 , __a)[:, 1:] _UpperCamelCase = decoder(__a) _UpperCamelCase , _UpperCamelCase = torch.nn.functional.softmax(__a , dim=2).max(dim=2) _UpperCamelCase = preds_max_prob[:, 1:] for index in range(__a): _UpperCamelCase = preds_str[index].find(__a) _UpperCamelCase = preds_str[index][:pred_eos] _UpperCamelCase = preds_index[index].cpu().tolist() _UpperCamelCase = pred_index.index(__a) if eos_token in pred_index else -1 _UpperCamelCase = preds_max_prob[index][: pred_eos_index + 1] _UpperCamelCase = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__a) conf_scores.append(__a) return dec_strs, conf_scores def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = [seq.replace(''' ''' , '''''') for seq in self.char_tokenizer.batch_decode(__a)] return decode_strs def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__a) def UpperCAmelCase ( self , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [seq.replace(''' ''' , '''''') for seq in self.wp_tokenizer.batch_decode(__a)] return decode_strs
100
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _a = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = _TestCommandArgs(dataset=__snake_case, all_configs=__snake_case, save_infos=__snake_case ) _UpperCamelCase = TestCommand(*__snake_case ) test_command.run() _UpperCamelCase = os.path.join(__snake_case, '''README.md''' ) assert os.path.exists(__snake_case ) _UpperCamelCase = DatasetInfosDict.from_directory(__snake_case ) _UpperCamelCase = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ), splits=[ { '''name''': '''train''', '''num_bytes''': 2_35_15_63, '''num_examples''': 1_00_00, }, { '''name''': '''validation''', '''num_bytes''': 23_84_18, '''num_examples''': 10_00, }, ], download_size=3_94_06_80, dataset_size=2_58_99_81, ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: _UpperCamelCase , _UpperCamelCase = getattr(dataset_infos['''default'''], __snake_case ), getattr(expected_dataset_infos['''default'''], __snake_case ) if key == "num_bytes": assert is_apercent_close(__snake_case, __snake_case ) elif key == "splits": assert list(__snake_case ) == list(__snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes, expected[split].num_bytes ) else: result == expected
100
1
import qiskit def __lowerCamelCase ( UpperCAmelCase_ : int = 2 ): """simple docstring""" a :Tuple = qubits # Using Aer's simulator a :Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register a :str = qiskit.QuantumCircuit(UpperCAmelCase_ , UpperCAmelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCAmelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCAmelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCAmelCase_ ) ) , list(range(UpperCAmelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator a :Union[str, Any] = qiskit.execute(UpperCAmelCase_ , UpperCAmelCase_ , shots=1000 ) return job.result().get_counts(UpperCAmelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
94
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : dict , UpperCAmelCase_ : str ): """simple docstring""" a , a :Optional[Any] = set(UpperCAmelCase_ ), [start] while stack: a :Optional[int] = stack.pop() explored.add(UpperCAmelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase_ ) return explored snake_case : Optional[int] = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
94
1
from __future__ import annotations def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = list(range(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = [v / w for v, w in zip(lowerCamelCase__ , lowerCamelCase__ )] index.sort(key=lambda lowerCamelCase__ : ratio[i] , reverse=lowerCamelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = [0] * len(lowerCamelCase__ ) for i in index: if weight[i] <= capacity: lowerCamelCase_ = 1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase_ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
364
from collections import defaultdict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = first_str.lower().strip() lowerCamelCase_ = second_str.lower().strip() # Remove whitespace lowerCamelCase_ = first_str.replace(" " , "" ) lowerCamelCase_ = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False # Default values for count should be 0 lowerCamelCase_ = defaultdict(lowerCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A =input('''Enter the first string ''').strip() __A =input('''Enter the second string ''').strip() __A =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
47
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ) -> Tuple: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def _snake_case ( self ) -> int: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> Dict: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: lowerCAmelCase = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase ) lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: lowerCAmelCase = BioGptForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Optional[Any]: lowerCAmelCase = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() # create attention mask lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) lowerCAmelCase = self.seq_length // 2 lowerCAmelCase = 0 # first forward pass lowerCAmelCase , lowerCAmelCase = model(lowercase , attention_mask=lowercase ).to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids lowerCAmelCase = ids_tensor((1,) , lowercase ).item() + 1 lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) lowerCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase )] , dim=1 , ) # get two different outputs lowerCAmelCase = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""] lowerCAmelCase = model(lowercase , past_key_values=lowercase , attention_mask=lowercase )["""last_hidden_state"""] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Optional[Any]: lowerCAmelCase = BioGptModel(config=lowercase ).to(lowercase ).eval() lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) # first forward pass lowerCAmelCase = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) lowerCAmelCase , lowerCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""] lowerCAmelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[ """last_hidden_state""" ] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , lowercase=False ) -> Optional[Any]: lowerCAmelCase = BioGptForCausalLM(lowercase ) model.to(lowercase ) if gradient_checkpointing: model.gradient_checkpointing_enable() lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _snake_case ( self , lowercase , *lowercase ) -> List[str]: lowerCAmelCase = BioGptModel(lowercase ) lowerCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = BioGptForTokenClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ) -> Dict: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = (BioGptForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> List[Any]: lowerCAmelCase = BioGptModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def _snake_case ( self ) -> Any: self.config_tester.run_common_tests() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _snake_case ( self ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase , gradient_checkpointing=lowercase ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase ) @slow def _snake_case ( self ) -> List[str]: lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowercase ) lowerCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase = """left""" # Define PAD Token = EOS Token = 50256 lowerCAmelCase = tokenizer.eos_token lowerCAmelCase = model.config.eos_token_id # use different length sentences to test batching lowerCAmelCase = [ """Hello, my dog is a little""", """Today, I""", ] lowerCAmelCase = tokenizer(lowercase , return_tensors="""pt""" , padding=lowercase ) lowerCAmelCase = inputs["""input_ids"""].to(lowercase ) lowerCAmelCase = model.generate( input_ids=lowercase , attention_mask=inputs["""attention_mask"""].to(lowercase ) , ) lowerCAmelCase = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(lowercase ) lowerCAmelCase = model.generate(input_ids=lowercase ) lowerCAmelCase = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() lowerCAmelCase = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(lowercase ) lowerCAmelCase = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) lowerCAmelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) lowerCAmelCase = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) @slow def _snake_case ( self ) -> Optional[int]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = BioGptModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict["""input_ids"""] lowerCAmelCase = input_ids.ne(1 ).to(lowercase ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = """multi_label_classification""" lowerCAmelCase = input_dict["""input_ids"""] lowerCAmelCase = input_ids.ne(1 ).to(lowercase ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase = torch.tensor([[2, 4_805, 9, 656, 21]] ) lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = 42_384 lowerCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) ) @slow def _snake_case ( self ) -> List[Any]: lowerCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowercase ) torch.manual_seed(0 ) lowerCAmelCase = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(lowercase ) lowerCAmelCase = model.generate( **lowercase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=lowercase , ) lowerCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase ) lowerCAmelCase = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(lowercase , lowercase )
46
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self , lowercase = 3 , lowercase = 3 , lowercase = ("DownEncoderBlock2D",) , lowercase = ("UpDecoderBlock2D",) , lowercase = (64,) , lowercase = 1 , lowercase = "silu" , lowercase = 3 , lowercase = 32 , lowercase = 256 , lowercase = 32 , lowercase = None , lowercase = 0.18_215 , lowercase = "group" , ) -> Union[str, Any]: super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=lowercase , out_channels=lowercase , down_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , double_z=lowercase , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) lowerCAmelCase = VectorQuantizer(lowercase , lowercase , beta=0.25 , remap=lowercase , sane_index_shape=lowercase ) lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=lowercase , out_channels=lowercase , up_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , norm_type=lowercase , ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = True ) -> VQEncoderOutput: lowerCAmelCase = self.encoder(lowercase ) lowerCAmelCase = self.quant_conv(lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = False , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.quantize(lowercase ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(lowercase ) lowerCAmelCase = self.decoder(lowercase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase ) def _snake_case ( self , lowercase , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase = sample lowerCAmelCase = self.encode(lowercase ).latents lowerCAmelCase = self.decode(lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase )
46
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : str = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=16 ,snake_case=36 ,snake_case=6 ,snake_case=6 ,snake_case=6 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : Union[str, Any] = parent lowercase : Dict = batch_size lowercase : Optional[int] = seq_length lowercase : Union[str, Any] = is_training lowercase : Dict = use_input_mask lowercase : Dict = use_token_type_ids lowercase : str = use_labels lowercase : Union[str, Any] = vocab_size lowercase : int = embedding_size lowercase : List[str] = hidden_size lowercase : Dict = num_hidden_layers lowercase : Optional[Any] = num_hidden_groups lowercase : List[Any] = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Any = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : List[str] = type_vocab_size lowercase : int = type_sequence_label_size lowercase : Optional[Any] = initializer_range lowercase : int = num_labels lowercase : Optional[Any] = num_choices lowercase : Union[str, Any] = scope def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Union[str, Any] = None if self.use_input_mask: lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[int] = None if self.use_token_type_ids: lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase : Tuple = None lowercase : Any = None lowercase : Any = None if self.use_labels: lowercase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = AlbertModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[str] = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ) lowercase : str = model(snake_case ,token_type_ids=snake_case ) lowercase : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = AlbertForPreTraining(config=snake_case ) model.to(snake_case ) model.eval() lowercase : Union[str, Any] = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,sentence_order_label=snake_case ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = AlbertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() lowercase : int = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = AlbertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[str] = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,start_positions=snake_case ,end_positions=snake_case ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = self.num_labels lowercase : Tuple = AlbertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase : Tuple = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = self.num_labels lowercase : Optional[int] = AlbertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() lowercase : int = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Any = AlbertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Tuple = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Dict = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : str = config_and_inputs lowercase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Tuple= ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _a : List[str]= ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) _a : Dict= True def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case=False ): '''simple docstring''' lowercase : List[str] = super()._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): lowercase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=snake_case ) lowercase : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=snake_case ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = AlbertModelTester(self ) lowercase : Optional[int] = ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase : Optional[Any] = type self.model_tester.create_and_check_model(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[Any] = AlbertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = AlbertModel.from_pretrained("""albert-base-v2""" ) lowercase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : List[str] = model(snake_case ,attention_mask=snake_case )[0] lowercase : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,snake_case ) lowercase : int = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,snake_case ,atol=1e-4 ) )
20
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : Optional[Any] = TextToVideoSDPipeline snake_case__ : Optional[int] = TEXT_TO_IMAGE_PARAMS snake_case__ : str = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. snake_case__ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) a_ : int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) a_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) a_ : Dict = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a_ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> List[str]: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): a_ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: a_ : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a_ : Dict = self.get_dummy_components() a_ : str = TextToVideoSDPipeline(**SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) a_ : Dict = 'np' a_ : Dict = sd_pipe(**SCREAMING_SNAKE_CASE__ ).frames a_ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) a_ : Union[str, Any] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) a_ : Any = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) a_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) a_ : Optional[Any] = pipe.to('cuda' ) a_ : Any = 'Spiderman is surfing' a_ : List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : Optional[Any] = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2_5 , output_type='pt' ).frames a_ : str = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) a_ : Tuple = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) a_ : Tuple = pipe.to('cuda' ) a_ : Any = 'Spiderman is surfing' a_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : List[Any] = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='pt' ).frames a_ : List[str] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
32
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( UpperCamelCase__ : List[Any], UpperCamelCase__ : int="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(UpperCamelCase__, UpperCamelCase__, repo_type='''dataset''' ), '''r''' ) as f: UpperCamelCase__ = json.load(UpperCamelCase__ ) UpperCamelCase__ = {} UpperCamelCase__ = [] UpperCamelCase__ = [] for key, info in class_info.items(): UpperCamelCase__ = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(UpperCamelCase__ ) ) UpperCamelCase__ = thing_ids UpperCamelCase__ = class_names return metadata class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , _a : Any , _a : List[Any]=7 , _a : Optional[int]=3 , _a : List[Any]=30 , _a : Union[str, Any]=400 , _a : Optional[int]=None , _a : List[Any]=True , _a : int=True , _a : Tuple=[0.5, 0.5, 0.5] , _a : Any=[0.5, 0.5, 0.5] , _a : List[str]=10 , _a : List[str]=False , _a : Optional[Any]=255 , _a : Any="shi-labs/oneformer_demo" , _a : Optional[Any]="ade20k_panoptic.json" , _a : List[Any]=10 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = {'''shortest_edge''': 32, '''longest_edge''': 1_333} if size is None else size UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean UpperCamelCase__ = image_std UpperCamelCase__ = class_info_file UpperCamelCase__ = prepare_metadata(_a , _a ) UpperCamelCase__ = num_text UpperCamelCase__ = repo_path # for the post_process_functions UpperCamelCase__ = 2 UpperCamelCase__ = 10 UpperCamelCase__ = 10 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = num_labels UpperCamelCase__ = do_reduce_labels UpperCamelCase__ = ignore_index def A_ ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A_ ( self : Any , _a : Tuple , _a : Union[str, Any]=False ): if not batched: UpperCamelCase__ = image_inputs[0] if isinstance(_a , Image.Image ): UpperCamelCase__ , UpperCamelCase__ = image.size else: UpperCamelCase__ , UpperCamelCase__ = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ = int(self.size['''shortest_edge'''] * h / w ) UpperCamelCase__ = self.size['''shortest_edge'''] elif w > h: UpperCamelCase__ = self.size['''shortest_edge'''] UpperCamelCase__ = int(self.size['''shortest_edge'''] * w / h ) else: UpperCamelCase__ = self.size['''shortest_edge'''] UpperCamelCase__ = self.size['''shortest_edge'''] else: UpperCamelCase__ = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ = max(_a , key=lambda _a : item[0] )[0] UpperCamelCase__ = max(_a , key=lambda _a : item[1] )[1] return expected_height, expected_width def A_ ( self : List[str] ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __lowercase ( A, unittest.TestCase ): '''simple docstring''' _A : int = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _A : Optional[int] = image_processing_class def A_ ( self : str ): UpperCamelCase__ = OneFormerImageProcessorTester(self ) @property def A_ ( self : Dict ): return self.image_processing_tester.prepare_image_processor_dict() def A_ ( self : Any ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''ignore_index''' ) ) self.assertTrue(hasattr(_a , '''class_info_file''' ) ) self.assertTrue(hasattr(_a , '''num_text''' ) ) self.assertTrue(hasattr(_a , '''repo_path''' ) ) self.assertTrue(hasattr(_a , '''metadata''' ) ) self.assertTrue(hasattr(_a , '''do_reduce_labels''' ) ) def A_ ( self : Optional[Any] ): pass def A_ ( self : Tuple ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input UpperCamelCase__ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ = self.image_processing_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ = self.image_processing_tester.get_expected_values(_a , batched=_a ) UpperCamelCase__ = image_processor( _a , ['''semantic'''] * len(_a ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : str ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input UpperCamelCase__ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ = self.image_processing_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ = self.image_processing_tester.get_expected_values(_a , batched=_a ) UpperCamelCase__ = image_processor( _a , ['''semantic'''] * len(_a ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[Any] ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ = self.image_processing_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ = self.image_processing_tester.get_expected_values(_a , batched=_a ) UpperCamelCase__ = image_processor( _a , ['''semantic'''] * len(_a ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[int] , _a : int=False , _a : List[str]=False , _a : Tuple="np" ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase__ = self.image_processing_tester.num_labels UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=_a ) if with_segmentation_maps: UpperCamelCase__ = num_labels if is_instance_map: UpperCamelCase__ = list(range(_a ) ) * 2 UpperCamelCase__ = dict(enumerate(_a ) ) UpperCamelCase__ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase__ = [Image.fromarray(_a ) for annotation in annotations] UpperCamelCase__ = image_processor( _a , ['''semantic'''] * len(_a ) , _a , return_tensors='''pt''' , instance_id_to_semantic_id=_a , pad_and_return_pixel_mask=_a , ) return inputs def A_ ( self : int ): pass def A_ ( self : Optional[Any] ): def common(_a : int=False , _a : Optional[int]=None ): UpperCamelCase__ = self.comm_get_image_processor_inputs( with_segmentation_maps=_a , is_instance_map=_a , segmentation_type=_a ) UpperCamelCase__ = inputs['''mask_labels'''] UpperCamelCase__ = inputs['''class_labels'''] UpperCamelCase__ = inputs['''pixel_values'''] UpperCamelCase__ = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_a , _a , _a ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_a ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_a ) common(is_instance_map=_a , segmentation_type='''pil''' ) common(is_instance_map=_a , segmentation_type='''pil''' ) def A_ ( self : Any ): UpperCamelCase__ = np.zeros((20, 50) ) UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = binary_mask_to_rle(_a ) self.assertEqual(len(_a ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A_ ( self : int ): UpperCamelCase__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCamelCase__ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ = fature_extractor.post_process_semantic_segmentation(_a ) self.assertEqual(len(_a ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase__ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase__ = fature_extractor.post_process_semantic_segmentation(_a , target_sizes=_a ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A_ ( self : List[str] ): UpperCamelCase__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCamelCase__ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ = image_processor.post_process_instance_segmentation(_a , threshold=0 ) self.assertTrue(len(_a ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _a ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A_ ( self : Dict ): UpperCamelCase__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCamelCase__ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ = image_processor.post_process_panoptic_segmentation(_a , threshold=0 ) self.assertTrue(len(_a ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _a ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
363
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowercase = get_logger(__name__) class __lowercase : '''simple docstring''' def __init__( self : Dict , _a : Optional[str] = None ): UpperCamelCase__ = ( os.path.join(_a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase__ = Extractor def A_ ( self : str , _a : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase__ = os.path.abspath(_a ) return os.path.join(self.extract_dir , hash_url_to_filename(_a ) ) def A_ ( self : Optional[Any] , _a : str , _a : bool ): return force_extract or ( not os.path.isfile(_a ) and not (os.path.isdir(_a ) and os.listdir(_a )) ) def A_ ( self : int , _a : str , _a : bool = False ): UpperCamelCase__ = self.extractor.infer_extractor_format(_a ) if not extractor_format: return input_path UpperCamelCase__ = self._get_output_path(_a ) if self._do_extract(_a , _a ): self.extractor.extract(_a , _a , _a ) return output_path class __lowercase ( A ): '''simple docstring''' @classmethod @abstractmethod def A_ ( cls : List[Any] , _a : Union[Path, str] , **_a : List[str] ): ... @staticmethod @abstractmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): ... class __lowercase ( A, A ): '''simple docstring''' _A : List[bytes] = [] @staticmethod def A_ ( _a : Union[Path, str] , _a : int ): with open(_a , '''rb''' ) as f: return f.read(_a ) @classmethod def A_ ( cls : str , _a : Union[Path, str] , _a : bytes = b"" ): if not magic_number: UpperCamelCase__ = max(len(_a ) for cls_magic_number in cls.magic_numbers ) try: UpperCamelCase__ = cls.read_magic_number(_a , _a ) except OSError: return False return any(magic_number.startswith(_a ) for cls_magic_number in cls.magic_numbers ) class __lowercase ( A ): '''simple docstring''' @classmethod def A_ ( cls : Union[str, Any] , _a : Union[Path, str] , **_a : Any ): return tarfile.is_tarfile(_a ) @staticmethod def A_ ( _a : int , _a : List[str] ): def resolved(_a : str ) -> str: return os.path.realpath(os.path.abspath(_a ) ) def badpath(_a : str , _a : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_a , _a ) ).startswith(_a ) def badlink(_a : Tuple , _a : str ) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase__ = resolved(os.path.join(_a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_a ) UpperCamelCase__ = resolved(_a ) for finfo in members: if badpath(finfo.name , _a ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(_a , _a ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(_a , _a ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): os.makedirs(_a , exist_ok=_a ) UpperCamelCase__ = tarfile.open(_a ) tar_file.extractall(_a , members=TarExtractor.safemembers(_a , _a ) ) tar_file.close() class __lowercase ( A ): '''simple docstring''' _A : int = [b'''\x1F\x8B'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with gzip.open(_a , '''rb''' ) as gzip_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : int = [ b'''PK\x03\x04''', b'''PK\x05\x06''', # empty archive b'''PK\x07\x08''', # spanned archive ] @classmethod def A_ ( cls : Dict , _a : Union[Path, str] , _a : bytes = b"" ): if super().is_extractable(_a , magic_number=_a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_a , '''rb''' ) as fp: UpperCamelCase__ = _EndRecData(_a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase__ = fp.read(_a ) # CD is where we expect it to be if len(_a ) == sizeCentralDir: UpperCamelCase__ = struct.unpack(_a , _a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): os.makedirs(_a , exist_ok=_a ) with zipfile.ZipFile(_a , '''r''' ) as zip_file: zip_file.extractall(_a ) zip_file.close() class __lowercase ( A ): '''simple docstring''' _A : Tuple = [b'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with lzma.open(_a ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Union[str, Any] = [b'''Rar!\x1a\x07\x00''', b'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_a , exist_ok=_a ) UpperCamelCase__ = rarfile.RarFile(_a ) rf.extractall(_a ) rf.close() class __lowercase ( A ): '''simple docstring''' _A : Optional[Any] = [b'''\x28\xb5\x2F\xFD'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd UpperCamelCase__ = zstd.ZstdDecompressor() with open(_a , '''rb''' ) as ifh, open(_a , '''wb''' ) as ofh: dctx.copy_stream(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Any = [b'''\x42\x5A\x68'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with bza.open(_a , '''rb''' ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Optional[int] = [b'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_a , exist_ok=_a ) with pyazr.SevenZipFile(_a , '''r''' ) as archive: archive.extractall(_a ) class __lowercase ( A ): '''simple docstring''' _A : Union[str, Any] = [b'''\x04\x22\x4D\x18'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_a , '''rb''' ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase : '''simple docstring''' _A : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def A_ ( cls : Dict ): return max( len(_a ) for extractor in cls.extractors.values() if issubclass(_a , _a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def A_ ( _a : Union[Path, str] , _a : int ): try: return MagicNumberBaseExtractor.read_magic_number(_a , magic_number_length=_a ) except OSError: return b"" @classmethod def A_ ( cls : Optional[Any] , _a : Union[Path, str] , _a : bool = False ): warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_a , ) UpperCamelCase__ = cls.infer_extractor_format(_a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def A_ ( cls : str , _a : Union[Path, str] ): # <Added version="2.4.0"/> UpperCamelCase__ = cls._get_magic_number_max_length() UpperCamelCase__ = cls._read_magic_number(_a , _a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_a , magic_number=_a ): return extractor_format @classmethod def A_ ( cls : List[Any] , _a : Union[Path, str] , _a : Union[Path, str] , _a : Optional[str] = None , _a : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(_a ) , exist_ok=_a ) # Prevent parallel extractions UpperCamelCase__ = str(Path(_a ).with_suffix('''.lock''' ) ) with FileLock(_a ): shutil.rmtree(_a , ignore_errors=_a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_a , _a ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_a , ) UpperCamelCase__ = extractor if extractor != '''deprecated''' else extractor_format else: UpperCamelCase__ = cls.extractors[extractor_format] return extractor.extract(_a , _a ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_a ): return extractor.extract(_a , _a )
35
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''blip_2_vision_model''' def __init__( self , lowerCAmelCase__=1_4_0_8 , lowerCAmelCase__=6_1_4_4 , lowerCAmelCase__=3_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0_00_01 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-10 , lowerCAmelCase__=True , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = qkv_bias @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): cls._set_token_in_kwargs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""") == "blip-2": __SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = '''blip_2_qformer''' def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=2 , lowerCAmelCase__=1_4_0_8 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = cross_attention_frequency __SCREAMING_SNAKE_CASE = encoder_hidden_size @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): cls._set_token_in_kwargs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""") == "blip-2": __SCREAMING_SNAKE_CASE = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''blip-2''' __lowercase : Any = True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=3_2 , **lowerCAmelCase__): super().__init__(**lowerCAmelCase__) if vision_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""") if qformer_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""") if text_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""") __SCREAMING_SNAKE_CASE = BlipaVisionConfig(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = BlipaQFormerConfig(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.text_config.tie_word_embeddings __SCREAMING_SNAKE_CASE = self.text_config.is_encoder_decoder __SCREAMING_SNAKE_CASE = num_query_tokens __SCREAMING_SNAKE_CASE = self.vision_config.hidden_size __SCREAMING_SNAKE_CASE = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __SCREAMING_SNAKE_CASE = 1.0 __SCREAMING_SNAKE_CASE = 0.02 @classmethod def snake_case_ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) __SCREAMING_SNAKE_CASE = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE = self.qformer_config.to_dict() __SCREAMING_SNAKE_CASE = self.text_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
100
"""simple docstring""" from __future__ import annotations from fractions import Fraction def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 11 __SCREAMING_SNAKE_CASE = int("""1""" + """0""" * digit_len ) for num in range(UpperCamelCase_ , UpperCamelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(UpperCamelCase_ , UpperCamelCase_ ): solutions.append(f"{num}/{den}" ) den += 1 num += 1 __SCREAMING_SNAKE_CASE = 10 return solutions def _lowerCAmelCase ( UpperCamelCase_ = 2 ): __SCREAMING_SNAKE_CASE = 1.0 for fraction in fraction_list(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = Fraction(UpperCamelCase_ ) result *= frac.denominator / frac.numerator return int(UpperCamelCase_ ) if __name__ == "__main__": print(solution())
100
1
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _A : Optional[Any] = logging.get_logger(__name__) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = UNetaDModel _UpperCAmelCase : List[Any] = "sample" @property def __lowerCamelCase ( self : List[str] ) ->Any: lowerCamelCase__ : List[Any] = 4 lowerCamelCase__ : List[str] = 3 lowerCamelCase__ : Dict = (3_2, 3_2) lowerCamelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase__ : List[Any] = torch.tensor([1_0] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __lowerCamelCase ( self : Optional[int] ) ->Optional[int]: return (3, 3_2, 3_2) @property def __lowerCamelCase ( self : int ) ->Dict: return (3, 3_2, 3_2) def __lowerCamelCase ( self : Optional[Any] ) ->Optional[Any]: lowerCamelCase__ : Optional[int] = { '''block_out_channels''': (3_2, 6_4), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 3_2, } lowerCamelCase__ : Dict = self.dummy_input return init_dict, inputs_dict class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = UNetaDModel _UpperCAmelCase : Dict = "sample" @property def __lowerCamelCase ( self : List[str] ) ->int: lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Dict = 4 lowerCamelCase__ : Dict = (3_2, 3_2) lowerCamelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase__ : Optional[int] = torch.tensor([1_0] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __lowerCamelCase ( self : Optional[int] ) ->int: return (4, 3_2, 3_2) @property def __lowerCamelCase ( self : Dict ) ->Union[str, Any]: return (4, 3_2, 3_2) def __lowerCamelCase ( self : List[Any] ) ->Any: lowerCamelCase__ : Tuple = { '''sample_size''': 3_2, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (3_2, 6_4), '''attention_head_dim''': 3_2, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCamelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : List[str] ) ->Any: lowerCamelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(A ) lowerCamelCase__ : Optional[int] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def __lowerCamelCase ( self : str ) ->str: lowerCamelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=A ) model.to(A ) lowerCamelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def __lowerCamelCase ( self : Optional[int] ) ->Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` lowerCamelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=A ) model_accelerate.to(A ) model_accelerate.eval() lowerCamelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase__ : Any = noise.to(A ) lowerCamelCase__ : List[Any] = torch.tensor([1_0] * noise.shape[0] ).to(A ) lowerCamelCase__ : Optional[Any] = model_accelerate(A , A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase__ : str = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=A , low_cpu_mem_usage=A ) model_normal_load.to(A ) model_normal_load.eval() lowerCamelCase__ : Union[str, Any] = model_normal_load(A , A )['''sample'''] assert torch_all_close(A , A , rtol=1e-3 ) def __lowerCamelCase ( self : str ) ->Dict: lowerCamelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(A ) lowerCamelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase__ : List[Any] = noise.to(A ) lowerCamelCase__ : Optional[Any] = torch.tensor([1_0] * noise.shape[0] ).to(A ) with torch.no_grad(): lowerCamelCase__ : List[str] = model(A , A ).sample lowerCamelCase__ : str = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase__ : List[str] = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-3 ) ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase : str = UNetaDModel _UpperCAmelCase : List[str] = "sample" @property def __lowerCamelCase ( self : Tuple , A : Union[str, Any]=(3_2, 3_2) ) ->Any: lowerCamelCase__ : List[str] = 4 lowerCamelCase__ : Dict = 3 lowerCamelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase__ : List[Any] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=A ) return {"sample": noise, "timestep": time_step} @property def __lowerCamelCase ( self : int ) ->Any: return (3, 3_2, 3_2) @property def __lowerCamelCase ( self : Dict ) ->Tuple: return (3, 3_2, 3_2) def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : Union[str, Any] = { '''block_out_channels''': [3_2, 6_4, 6_4, 6_4], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCamelCase__ : Any = self.dummy_input return init_dict, inputs_dict @slow def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: lowerCamelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(A ) lowerCamelCase__ : Optional[Any] = self.dummy_input lowerCamelCase__ : Union[str, Any] = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(A ) lowerCamelCase__ : str = noise lowerCamelCase__ : int = model(**A ) assert image is not None, "Make sure output is not None" @slow def __lowerCamelCase ( self : Tuple ) ->List[str]: lowerCamelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(A ) lowerCamelCase__ : Dict = 4 lowerCamelCase__ : Tuple = 3 lowerCamelCase__ : Dict = (2_5_6, 2_5_6) lowerCamelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase__ : Tuple = model(A , A ).sample lowerCamelCase__ : str = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__ : Optional[int] = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __lowerCamelCase ( self : List[str] ) ->Optional[int]: lowerCamelCase__ : Tuple = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(A ) lowerCamelCase__ : List[Any] = 4 lowerCamelCase__ : int = 3 lowerCamelCase__ : Union[str, Any] = (3_2, 3_2) lowerCamelCase__ : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase__ : Dict = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(A , A ).sample lowerCamelCase__ : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__ : str = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __lowerCamelCase ( self : Optional[Any] ) ->Any: # not required for this model pass
364
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A : Any = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" def run_func(UpperCAmelCase ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> ["tf.Tensor"]: """simple docstring""" lowerCamelCase__ : List[Any] = random.Random() lowerCamelCase__ : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : TensorFlowBenchmarkArguments _UpperCAmelCase : PretrainedConfig _UpperCAmelCase : str = "TensorFlow" @property def __lowerCamelCase ( self : int ) ->Optional[int]: return tf.__version__ def __lowerCamelCase ( self : Optional[int] , A : str , A : int , A : int ) ->float: # initialize GPU on separate process lowerCamelCase__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : int = self._prepare_inference_func(A , A , A ) return self._measure_speed(_inference ) def __lowerCamelCase ( self : str , A : str , A : int , A : int ) ->float: lowerCamelCase__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : List[Any] = self._prepare_train_func(A , A , A ) return self._measure_speed(_train ) def __lowerCamelCase ( self : int , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : int = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_inference_func(A , A , A ) return self._measure_memory(_inference ) def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_train_func(A , A , A ) return self._measure_memory(_train ) def __lowerCamelCase ( self : Dict , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Tuple = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : int = getattr(A , A ) lowerCamelCase__ : int = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Tuple = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Optional[Any] = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A , decoder_input_ids=A , training=A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A , training=A ) lowerCamelCase__ : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Optional[int] = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[str] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : Optional[int] = getattr(A , A ) lowerCamelCase__ : Optional[Any] = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Optional[int] = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Dict = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCamelCase__ : int = model(A , decoder_input_ids=A , labels=A , training=A )[0] lowerCamelCase__ : List[Any] = tf.gradients(A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCamelCase__ : Optional[int] = model(A , labels=A , training=A )[0] lowerCamelCase__ : List[str] = tf.gradients(A , model.trainable_variables ) return gradients lowerCamelCase__ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowerCamelCase ( self : Tuple , A : Any ) ->float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCamelCase__ : Optional[Any] = timeit.repeat( A , repeat=self.args.repeat , number=1_0 , ) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def __lowerCamelCase ( self : List[Any] , A : Callable[[], None] ) ->[Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) lowerCamelCase__ : Union[str, Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) lowerCamelCase__ : Union[str, Any] = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() lowerCamelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCamelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(A ) lowerCamelCase__ : List[Any] = meminfo.used lowerCamelCase__ : Union[str, Any] = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Dict = measure_peak_memory_cpu(A ) lowerCamelCase__ : Optional[Any] = Memory(A ) if isinstance(A , A ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCamelCase__ : Union[str, Any] = stop_memory_tracing(A ) if memory is None: lowerCamelCase__ : Dict = summary.total else: lowerCamelCase__ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
265
0
from statistics import mean, stdev def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ = 3 ): '''simple docstring''' _UpperCAmelCase = min(_UpperCamelCase ) _UpperCAmelCase = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _UpperCamelCase ) for x in data] def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ = 3 ): '''simple docstring''' _UpperCAmelCase = mean(_UpperCamelCase ) _UpperCAmelCase = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma) , _UpperCamelCase ) for x in data]
133
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class A__ ( A__ , A__ ): @register_to_config def __init__( self : Dict , _a : int = 768 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(1 , _a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(torch.ones(1 , _a ) ) def A ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =nn.Parameter(self.mean.to(_a ).to(_a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def A ( self : Tuple , _a : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds - self.mean) * 1.0 / self.std return embeds def A ( self : List[str] , _a : Optional[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds * self.std) + self.mean return embeds
47
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a : Dict = logging.get_logger(__name__) @add_end_docstrings( __magic_name__ , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> np.ndarray: if self.framework == "tf": UpperCAmelCase : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _lowercase( self , A ) -> np.ndarray: UpperCAmelCase : List[str] = self.get_masked_index(A ) UpperCAmelCase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def _lowercase( self , A ) -> Dict: if isinstance(A , A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def _lowercase( self , A , A=None , **A ) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCAmelCase : List[Any] = self.framework UpperCAmelCase : List[Any] = self.tokenizer(A , return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def _lowercase( self , A ) -> int: UpperCAmelCase : str = self.model(**A ) UpperCAmelCase : Optional[int] = model_inputs["""input_ids"""] return model_outputs def _lowercase( self , A , A=5 , A=None ) -> List[str]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase : List[Any] = target_ids.shape[0] UpperCAmelCase : Optional[int] = model_outputs["""input_ids"""][0] UpperCAmelCase : Any = model_outputs["""logits"""] if self.framework == "tf": UpperCAmelCase : Optional[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase : str = outputs.numpy() UpperCAmelCase : Tuple = outputs[0, masked_index, :] UpperCAmelCase : Dict = stable_softmax(A , axis=-1 ) if target_ids is not None: UpperCAmelCase : List[Any] = tf.gather_nd(tf.squeeze(A , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase : List[str] = tf.expand_dims(A , 0 ) UpperCAmelCase : int = tf.math.top_k(A , k=A ) UpperCAmelCase , UpperCAmelCase : Optional[int] = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase : Tuple = outputs[0, masked_index, :] UpperCAmelCase : List[str] = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase : Any = probs[..., target_ids] UpperCAmelCase , UpperCAmelCase : Optional[int] = probs.topk(A ) UpperCAmelCase : int = [] UpperCAmelCase : List[str] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase : List[Any] = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase : Optional[int] = target_ids[p].tolist() UpperCAmelCase : str = p # Filter padding out: UpperCAmelCase : Union[str, Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase : Optional[int] = self.tokenizer.decode(A , skip_special_tokens=A ) UpperCAmelCase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def _lowercase( self , A , A=None ) -> Any: if isinstance(A , A ): UpperCAmelCase : int = [targets] try: UpperCAmelCase : Optional[int] = self.tokenizer.get_vocab() except Exception: UpperCAmelCase : int = {} UpperCAmelCase : Any = [] for target in targets: UpperCAmelCase : Optional[int] = vocab.get(A , A ) if id_ is None: UpperCAmelCase : Optional[Any] = self.tokenizer( A , add_special_tokens=A , return_attention_mask=A , return_token_type_ids=A , max_length=1 , truncation=A , )["""input_ids"""] if len(A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' """We cannot replace it with anything meaningful, ignoring it""" ) continue UpperCAmelCase : List[Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) UpperCAmelCase : List[str] = list(set(A ) ) if len(A ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) UpperCAmelCase : str = np.array(A ) return target_ids def _lowercase( self , A=None , A=None ) -> List[Any]: UpperCAmelCase : Dict = {} if targets is not None: UpperCAmelCase : List[Any] = self.get_target_ids(A , A ) UpperCAmelCase : Union[str, Any] = target_ids if top_k is not None: UpperCAmelCase : str = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , A , *A , **A ) -> Dict: UpperCAmelCase : List[Any] = super().__call__(A , **A ) if isinstance(A , A ) and len(A ) == 1: return outputs[0] return outputs
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=64 , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Optional[int] = np.random.default_rng(UpperCamelCase_ ) UpperCamelCase__ :Tuple = length UpperCamelCase__ :Optional[int] = rng.normal(size=(length,) ).astype(np.floataa ) UpperCamelCase__ :str = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ): '''simple docstring''' return self.length def __getitem__( self , UpperCamelCase_ ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=False ): '''simple docstring''' super().__init__() UpperCamelCase__ :Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCamelCase__ :List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCamelCase__ :Tuple = True def lowerCAmelCase__ ( self , UpperCamelCase_=None ): '''simple docstring''' if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCamelCase__ :Tuple = False return x * self.a[0] + self.b[0] class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=False ): '''simple docstring''' super().__init__() UpperCamelCase__ :List[str] = torch.nn.Parameter(torch.tensor(UpperCamelCase_ ).float() ) UpperCamelCase__ :List[Any] = torch.nn.Parameter(torch.tensor(UpperCamelCase_ ).float() ) UpperCamelCase__ :str = True def lowerCAmelCase__ ( self , UpperCamelCase_=None ): '''simple docstring''' if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCamelCase__ :Optional[int] = False return x * self.a + self.b def a ( __a , __a = 16 ) -> Union[str, Any]: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer UpperCamelCase__ :Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ :Tuple = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCamelCase__ :Dict = load_dataset('''csv''' , data_files=__a ) UpperCamelCase__ :int = datasets['''train'''].unique('''label''' ) UpperCamelCase__ :List[str] = {v: i for i, v in enumerate(__a )} def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Any = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a , padding='''max_length''' ) if "label" in examples: UpperCamelCase__ :str = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :str = datasets.map( __a , batched=__a , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :int = DataLoader(tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=2 ) UpperCamelCase__ :Dict = DataLoader(tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=1 ) return train_dataloader, eval_dataloader
97
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A : Union[str, Any] = imread(R"digital_image_processing/image_data/lena_small.jpg") A : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = cn.convert_to_negative(_UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): '''simple docstring''' with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCamelCase , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(_UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): '''simple docstring''' assert gg.gaussian_filter(_UpperCamelCase , 5 , sigma=0.9 ).all() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(_UpperCamelCase , _UpperCamelCase ).astype(_UpperCamelCase ) assert res.any() def _lowerCamelCase ( ): '''simple docstring''' assert med.median_filter(_UpperCamelCase , 3 ).any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(_UpperCamelCase ) assert grad.any() and theta.any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = sp.make_sepia(_UpperCamelCase , 20 ) assert sepia.all() def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' __lowerCAmelCase = bs.Burkes(imread(_UpperCamelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' __lowerCAmelCase = rs.NearestNeighbour(imread(_UpperCamelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(_UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert lbp_image.any()
57
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCAmelCase_ : int = update_area_of_max_square(lowerCAmelCase__ , col + 1 ) lowerCAmelCase_ : str = update_area_of_max_square(row + 1 , col + 1 ) lowerCAmelCase_ : Optional[Any] = update_area_of_max_square(row + 1 , lowerCAmelCase__ ) if mat[row][col]: lowerCAmelCase_ : str = 1 + min([right, diagonal, down] ) lowerCAmelCase_ : Any = max(largest_square_area[0] , lowerCAmelCase__ ) return sub_problem_sol else: return 0 lowerCAmelCase_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCAmelCase_ : str = update_area_of_max_square_using_dp_array(lowerCAmelCase__ , col + 1 , lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) if mat[row][col]: lowerCAmelCase_ : List[str] = 1 + min([right, diagonal, down] ) lowerCAmelCase_ : Dict = max(largest_square_area[0] , lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = sub_problem_sol return sub_problem_sol else: return 0 lowerCAmelCase_ : Optional[Any] = [0] lowerCAmelCase_ : Tuple = [[-1] * cols for _ in range(lowerCAmelCase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCAmelCase__ ) return largest_square_area[0] def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[int]] ) -> int: """simple docstring""" lowerCAmelCase_ : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] lowerCAmelCase_ : Union[str, Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase_ : Tuple = dp_array[row][col + 1] lowerCAmelCase_ : Tuple = dp_array[row + 1][col + 1] lowerCAmelCase_ : Optional[Any] = dp_array[row + 1][col] if mat[row][col] == 1: lowerCAmelCase_ : List[str] = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : Any = max(dp_array[row][col] , lowerCAmelCase__ ) else: lowerCAmelCase_ : Any = 0 return largest_square_area def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[int]] ) -> int: """simple docstring""" lowerCAmelCase_ : List[str] = [0] * (cols + 1) lowerCAmelCase_ : int = [0] * (cols + 1) lowerCAmelCase_ : List[str] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase_ : str = current_row[col + 1] lowerCAmelCase_ : Dict = next_row[col + 1] lowerCAmelCase_ : List[Any] = next_row[col] if mat[row][col] == 1: lowerCAmelCase_ : Tuple = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = max(current_row[col] , lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
289
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : """simple docstring""" pass
289
1
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : int = ["model.decoder.embed_positions.weights"] def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' if "emb" in name: lowercase__ : int = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: lowercase__ : int = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: lowercase__ : Optional[int] = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: lowercase__ : Union[str, Any] = name.replace('linear1' , 'fc1' ) if "linear2" in name: lowercase__ : List[Any] = name.replace('linear2' , 'fc2' ) if "norm1" in name: lowercase__ : int = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: lowercase__ : Any = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: lowercase__ : int = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: lowercase__ : str = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: lowercase__ : Tuple = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: lowercase__ : int = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Any = list(state_dict.keys() ) lowercase__ : Tuple = {} for key in keys: lowercase__ : Tuple = state_dict.pop(_lowerCAmelCase ) lowercase__ : List[Any] = rename_keys(_lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj lowercase__ : List[Any] = val[:hidden_size, :] lowercase__ : List[Any] = val[hidden_size : 2 * hidden_size, :] lowercase__ : Dict = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowercase__ : Union[str, Any] = val else: lowercase__ : int = val return state_dict, enc_dec_proj_state_dict def a_ ( _lowerCAmelCase : Dict ): '''simple docstring''' if checkpoint == "small": # default config values lowercase__ : Dict = 1024 lowercase__ : Tuple = 24 lowercase__ : int = 16 elif checkpoint == "medium": lowercase__ : List[str] = 1536 lowercase__ : List[Any] = 48 lowercase__ : int = 24 elif checkpoint == "large": lowercase__ : Optional[Any] = 2048 lowercase__ : Optional[int] = 48 lowercase__ : List[Any] = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) lowercase__ : List[Any] = MusicgenDecoderConfig( hidden_size=_lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_lowerCAmelCase , num_attention_heads=_lowerCAmelCase , ) return config @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int="cpu" ): '''simple docstring''' lowercase__ : List[str] = MusicGen.get_pretrained(_lowerCAmelCase , device=_lowerCAmelCase ) lowercase__ : Any = decoder_config_from_checkpoint(_lowerCAmelCase ) lowercase__ : int = fairseq_model.lm.state_dict() lowercase__ : List[Any] = rename_state_dict( _lowerCAmelCase , hidden_size=decoder_config.hidden_size ) lowercase__ : int = TaEncoderModel.from_pretrained('t5-base' ) lowercase__ : Dict = EncodecModel.from_pretrained('facebook/encodec_32khz' ) lowercase__ : str = MusicgenForCausalLM(_lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowercase__ : Tuple = decoder.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model lowercase__ : Tuple = MusicgenForConditionalGeneration(text_encoder=_lowerCAmelCase , audio_encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCAmelCase ) # check we can do a forward pass lowercase__ : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowercase__ : List[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowercase__ : Optional[int] = model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('t5-base' ) lowercase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) lowercase__ : Tuple = MusicgenProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) # set the appropriate bos/pad token ids lowercase__ : Dict = 2048 lowercase__ : Optional[int] = 2048 # set other default generation config params lowercase__ : Tuple = int(30 * audio_encoder.config.frame_rate ) lowercase__ : Tuple = True lowercase__ : Tuple = 3.0 if pytorch_dump_folder is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_lowerCAmelCase ) processor.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _UpperCamelCase : Any = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
77
'''simple docstring''' import numpy as np from transformers import Pipeline def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) snake_case__ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] , **snake_case_ : int ): snake_case__ : Optional[int] = {} if "second_text" in kwargs: snake_case__ : Union[str, Any] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any]=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCamelCase ( self : List[Any] , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = model_outputs.logits[0].numpy() snake_case__ : List[str] = softmax(snake_case_ ) snake_case__ : List[str] = np.argmax(snake_case_ ) snake_case__ : List[str] = self.model.config.idalabel[best_class] snake_case__ : Optional[int] = probabilities[best_class].item() snake_case__ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
35
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class __magic_name__ ( _UpperCamelCase ): def __init__( self : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : int=None ,_UpperCAmelCase : List[Any]=1 ): _a : Optional[Any] = tokenizer _a : Any = dataset _a : List[str] = len(_lowercase ) if n_tasks is None else n_tasks _a : int = n_copies def __iter__( self : int ): _a : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) _a : int = self.tokenizer(_lowercase ,padding=_lowercase ,return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __magic_name__ ( _UpperCamelCase ): def __init__( self : Optional[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Tuple ): _a : List[str] = start_length _a : Optional[Any] = eof_strings _a : Optional[Any] = tokenizer def __call__( self : Dict ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ,**_UpperCAmelCase : List[Any] ): _a : List[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _a : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_lowercase ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Any: _a : Union[str, Any] = re.split('(%s)' % '|'.join(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # last string should be "" return "".join(string_list[:-2] ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=20 , **lowerCAmelCase_ ) -> Optional[int]: _a : List[str] = defaultdict(SCREAMING_SNAKE_CASE_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(SCREAMING_SNAKE_CASE_ ) ): with torch.no_grad(): _a : int = batch['ids'].shape[-1] _a : str = accelerator.unwrap_model(SCREAMING_SNAKE_CASE_ ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # each task is generated batch_size times _a : Optional[Any] = batch['task_id'].repeat(SCREAMING_SNAKE_CASE_ ) _a : int = accelerator.pad_across_processes( SCREAMING_SNAKE_CASE_ , dim=1 , pad_index=tokenizer.pad_token_id ) _a , _a : Any = accelerator.gather((generated_tokens, generated_tasks) ) _a : str = generated_tokens.cpu().numpy() _a : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): gen_token_dict[task].append(SCREAMING_SNAKE_CASE_ ) _a : Any = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _a : Dict = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) code_gens[task].append(remove_last_block(SCREAMING_SNAKE_CASE_ ) ) return code_gens def __lowerCamelCase ( ) -> Union[str, Any]: _a : Dict = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) _a : List[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _a : Tuple = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _a : List[Any] = 'false' if args.num_workers is None: _a : str = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _a : int = Accelerator() set_seed(args.seed , device_specific=SCREAMING_SNAKE_CASE_ ) # Load model and tokenizer _a : Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) _a : str = tokenizer.eos_token _a : int = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _a : Optional[int] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ), } # Load evaluation dataset and metric _a : List[str] = load_dataset('openai_humaneval' ) _a : Any = load_metric('code_eval' ) _a : Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) _a : Optional[int] = args.n_samples // args.batch_size _a : Optional[Any] = TokenizedDataset(SCREAMING_SNAKE_CASE_ , human_eval['test'] , n_copies=SCREAMING_SNAKE_CASE_ , n_tasks=SCREAMING_SNAKE_CASE_ ) # do not confuse args.batch_size, which is actually the num_return_sequences _a : str = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _a : int = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`' ' flag to enable code evaluation.' ) raise exception _a , _a : List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _a : Tuple = complete_code( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , n_tasks=SCREAMING_SNAKE_CASE_ , batch_size=args.batch_size , **SCREAMING_SNAKE_CASE_ , ) if accelerator.is_main_process: _a : Any = [] for task in tqdm(range(SCREAMING_SNAKE_CASE_ ) ): _a : Dict = human_eval['test'][task]['test'] _a : Any = f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric _a , _a : Tuple = code_eval_metric.compute( references=SCREAMING_SNAKE_CASE_ , predictions=SCREAMING_SNAKE_CASE_ , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
366
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( lowerCAmelCase_ ) -> str: return "".join(sorted(lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCAmelCase_ ) -> list[str]: return word_by_signature[signature(lowerCAmelCase_ )] __lowerCAmelCase = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') __lowerCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) __lowerCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __lowerCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
107
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=snake_case__ ).to(snake_case__ ) _UpperCAmelCase = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase = tokenizer("Hello there" , return_tensors="pt" ).input_ids _UpperCAmelCase = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _UpperCAmelCase = model(input_ids.to(snake_case__ ) , labels=labels.to(snake_case__ ) ).loss _UpperCAmelCase = -(labels.shape[-1] * loss.item()) _UpperCAmelCase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
133
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = LongformerTokenizer lowercase = True lowercase = LongformerTokenizerFast lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : int = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self , **A ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , **A ) -> int: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = """lower newer""" UpperCAmelCase : Optional[int] = """lower newer""" return input_text, output_text def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Dict = """lower newer""" UpperCAmelCase : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase : Tuple = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokens + [tokenizer.unk_token] UpperCAmelCase : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=A ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=A ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) UpperCAmelCase : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) UpperCAmelCase : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) UpperCAmelCase : List[str] = tokenizer.encode( """sequence builders""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : List[str] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowercase( self ) -> List[Any]: UpperCAmelCase : str = self.get_tokenizer() UpperCAmelCase : List[Any] = """Encode this sequence.""" UpperCAmelCase : List[str] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A , A ) UpperCAmelCase : Tuple = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A , A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCAmelCase : int = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A , A ) # Testing spaces after special tokens UpperCAmelCase : Union[str, Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) UpperCAmelCase : Union[str, Any] = """Encode <mask> sequence""" UpperCAmelCase : Union[str, Any] = """Encode <mask>sequence""" UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Union[str, Any] = encoded.index(A ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A , A ) UpperCAmelCase : Tuple = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = encoded.index(A ) UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A , A ) def _lowercase( self ) -> Optional[int]: pass def _lowercase( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Dict = """A, <mask> AllenNLP sentence.""" UpperCAmelCase : Dict = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) UpperCAmelCase : Tuple = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _lowercase( self ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""trim_offsets"""] , A ) def _lowercase( self ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase : int = f'''{text_of_1_token} {text_of_1_token}''' UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Dict = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : List[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Union[str, Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[int] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
265
0
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = set() # edges = list of graph's edges lowercase__ = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowercase__ , lowercase__ = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
352
lowerCAmelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase = [None] * 1000_0000 lowerCAmelCase = True lowerCAmelCase = False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase__ = chain(next_number(SCREAMING_SNAKE_CASE ) ) lowercase__ = number_chain while number < 10_00_00_00: lowercase__ = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE = 10_00_00_00 ): """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
93
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase__ : Dict = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase_ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class lowercase_ ( UpperCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray: if self.framework == "tf": lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ) else: raise ValueError('''Unsupported framework''' ) return masked_index def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray: lowerCAmelCase = self.get_masked_index(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Dict[str, GenericTensor]: if return_tensors is None: lowerCAmelCase = self.framework lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = self.model(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model_inputs['''input_ids'''] return model_outputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=None ) ->str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowerCAmelCase = target_ids.shape[0] lowerCAmelCase = model_outputs['''input_ids'''][0] lowerCAmelCase = model_outputs['''logits'''] if self.framework == "tf": lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowerCAmelCase = outputs.numpy() lowerCAmelCase = outputs[0, masked_index, :] lowerCAmelCase = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) if target_ids is not None: lowerCAmelCase = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) ) lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) lowerCAmelCase = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowerCAmelCase = outputs[0, masked_index, :] lowerCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: lowerCAmelCase = probs[..., target_ids] lowerCAmelCase , lowerCAmelCase = probs.topk(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [] lowerCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowerCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowerCAmelCase = input_ids.numpy().copy() if target_ids is not None: lowerCAmelCase = target_ids[p].tolist() lowerCAmelCase = p # Filter padding out: lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__SCREAMING_SNAKE_CASE ) result.append(__SCREAMING_SNAKE_CASE ) if single_mask: return result[0] return result def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = [targets] try: lowerCAmelCase = self.tokenizer.get_vocab() except Exception: lowerCAmelCase = {} lowerCAmelCase = [] for target in targets: lowerCAmelCase = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if id_ is None: lowerCAmelCase = self.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )['''input_ids'''] if len(__SCREAMING_SNAKE_CASE ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowerCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowerCAmelCase = list(set(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) return target_ids def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict: lowerCAmelCase = {} if targets is not None: lowerCAmelCase = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = target_ids if top_k is not None: lowerCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: lowerCAmelCase = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs
338
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowercase__ : Dict = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowercase__ : Optional[int] = [0, 2_5, 5_0] lowercase__ : Union[str, Any] = [2_5, 5_0, 7_5] lowercase__ : int = fuzz.membership.trimf(X, abca) lowercase__ : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowercase__ : List[str] = np.ones(7_5) lowercase__ : Any = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) lowercase__ : Union[str, Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowercase__ : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowercase__ : Union[str, Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowercase__ : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowercase__ : Any = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowercase__ : str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowercase__ : Tuple = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowercase__ : Tuple = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
338
1
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase): """simple docstring""" snake_case__ : Optional[Any] = BartphoTokenizer snake_case__ : Optional[int] = False snake_case__ : Optional[Any] = True def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: super().setUp() __SCREAMING_SNAKE_CASE = ['▁This', '▁is', '▁a', '▁t', 'est'] __SCREAMING_SNAKE_CASE = dict(zip(__a , range(len(__a ) ) ) ) __SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) __SCREAMING_SNAKE_CASE = BartphoTokenizer(__a , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : Tuple , **UpperCAmelCase__ : Dict ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = 'This is a là test' __SCREAMING_SNAKE_CASE = 'This is a<unk><unk> test' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> Optional[int]: __SCREAMING_SNAKE_CASE = BartphoTokenizer(__a , self.monolingual_vocab_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = 'This is a là test' __SCREAMING_SNAKE_CASE = '▁This ▁is ▁a ▁l à ▁t est'.split() __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
350
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple=1_3 , UpperCAmelCase__ : Optional[int]=3_0 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[str]=3_7 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Any=1_0 , UpperCAmelCase__ : str=0.02 , ) -> Tuple: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: __SCREAMING_SNAKE_CASE = FlaxViTModel(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : List[str] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase_ ( self : int ) -> None: __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Any: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Any ): return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __SCREAMING_SNAKE_CASE = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("google/vit-base-patch16-224" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ )
195
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
289
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase__ = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class a : _snake_case : Tuple = PegasusConfig _snake_case : int = {} _snake_case : str = 'gelu' def __init__( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : int=99 , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Dict=37 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Union[str, Any]=20 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : Any=0 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_pegasus_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ): _UpperCAmelCase = 20 _UpperCAmelCase = model_class_name(__lowerCAmelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase , _UpperCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase = model.decode(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ): _UpperCAmelCase = 20 _UpperCAmelCase = model_class_name(__lowerCAmelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase , _UpperCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase ) _UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase=None ,lowercase=None ,): """simple docstring""" if attention_mask is None: _UpperCAmelCase = np.not_equal(lowercase ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCAmelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Dict = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _snake_case : Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _snake_case : Optional[Any] = True _snake_case : List[str] = False _snake_case : Dict = False _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = FlaxPegasusModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model_class(__lowerCAmelCase ) @jax.jit def encode_jitted(__lowerCAmelCase : str , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : Dict ): return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = encode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = encode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = model_class(__lowerCAmelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _UpperCAmelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ): return model.decode( decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = decode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = decode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : Optional[int] ): for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__lowerCAmelCase ) _UpperCAmelCase = np.ones((1, 1) ) _UpperCAmelCase = model(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _UpperCAmelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] _UpperCAmelCase = tokenizer(__lowerCAmelCase , return_tensors="""np""" , truncation=__lowerCAmelCase , max_length=512 , padding=__lowerCAmelCase ) _UpperCAmelCase = model.generate(**__lowerCAmelCase , num_beams=2 ).sequences _UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) assert tgt_text == decoded
289
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Tuple = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
from math import isqrt def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = False return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]] def lowerCamelCase__ (_UpperCAmelCase = 10**8): SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
327
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return base * power(_UpperCamelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") A : List[Any] = int(input("Enter the base: ").strip()) A : str = int(input("Enter the exponent: ").strip()) A : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
57
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class snake_case__ (TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Any ) -> Optional[Any]: super().__init__(features=__lowerCamelCase ) a = torch_tensor_kwargs import torch # noqa import torch at initialization def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Dict ) -> Dict: import torch if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__lowerCamelCase ) return column def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> str: import torch if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): a = {"dtype": torch.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): a = np.asarray(__lowerCamelCase ) return torch.tensor(__lowerCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Tuple ) -> List[str]: import torch # support for torch, tf, jax etc. if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , torch.Tensor ): a = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : dict ) -> str: return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : pa.Table ) -> Mapping: a = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) a = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : pa.Table ) -> "torch.Tensor": a = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) a = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) a = self.recursive_tensorize(__lowerCamelCase ) a = self._consolidate(__lowerCamelCase ) return column def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : pa.Table ) -> Mapping: a = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) a = self.python_features_decoder.decode_batch(__lowerCamelCase ) a = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: a = self._consolidate(batch[column_name] ) return batch
107
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class lowercase_ ( A ): """simple docstring""" def __init__( self : Any , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[str] ): """simple docstring""" warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
111
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCamelCase_ = '<<<<<<< This should probably be modified because it mentions: ' lowerCamelCase_ = '=======\n>>>>>>>\n' lowerCamelCase_ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCamelCase_ = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def SCREAMING_SNAKE_CASE_ ( __A : Namespace ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase_ ( A ): """simple docstring""" @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : ArgumentParser ): """simple docstring""" _SCREAMING_SNAKE_CASE = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowerCamelCase ) def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str , *__lowerCamelCase : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = get_logger("datasets-cli/converting" ) _SCREAMING_SNAKE_CASE = tfds_path _SCREAMING_SNAKE_CASE = datasets_directory def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) _SCREAMING_SNAKE_CASE = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {} if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.listdir(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) if not os.path.isfile(__lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowerCamelCase , encoding="utf-8" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = [] for line in lines: _SCREAMING_SNAKE_CASE = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _SCREAMING_SNAKE_CASE = "import datasets\n" elif "import tensorflow" in out_line: # order is important here _SCREAMING_SNAKE_CASE = "" continue elif "from absl import logging" in out_line: _SCREAMING_SNAKE_CASE = "from datasets import logging\n" elif "getLogger" in out_line: _SCREAMING_SNAKE_CASE = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = list(filter(lambda __lowerCamelCase : e in out_line , __lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCamelCase ) + "\n" ) out_lines.append(__lowerCamelCase ) out_lines.append(__lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: _SCREAMING_SNAKE_CASE = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _SCREAMING_SNAKE_CASE = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , __lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) _SCREAMING_SNAKE_CASE = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _SCREAMING_SNAKE_CASE = True out_lines.append(__lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _SCREAMING_SNAKE_CASE = f_name.replace(".py" , "" ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCamelCase ) if needs_manual_update: with_manual_update.append(__lowerCamelCase ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.writelines(__lowerCamelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: _SCREAMING_SNAKE_CASE = os.path.basename(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__lowerCamelCase , __lowerCamelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
111
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase ( lowerCamelCase_ ): _a = ["vqvae"] def __init__( self , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , vqvae=__SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: return 50 if isinstance(self.scheduler , __SCREAMING_SNAKE_CASE ) else 1000 @torch.no_grad() def __call__( self , _a = 1 , _a = None , _a = None , _a = 0 , _a = 0 , _a = None , _a = None , _a = 0 , _a = 0 , _a = None , _a = 0 , _a = None , _a = None , _a=True , ) -> str: _A : str = steps or self.get_default_steps() self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) _A : List[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _A : str = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _A : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__SCREAMING_SNAKE_CASE , device=self.device , ) _A : str = noise _A : Any = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _A : int = self.mel.audio_slice_to_image(__SCREAMING_SNAKE_CASE ) _A : int = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) _A : Dict = (input_image / 255) * 2 - 1 _A : Optional[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _A : Optional[int] = self.vqvae.encode(torch.unsqueeze(__SCREAMING_SNAKE_CASE , 0 ) ).latent_dist.sample( generator=__SCREAMING_SNAKE_CASE )[0] _A : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: _A : str = self.scheduler.add_noise(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.scheduler.timesteps[start_step - 1] ) _A : str = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _A : Union[str, Any] = int(mask_start_secs * pixels_per_second ) _A : Union[str, Any] = int(mask_end_secs * pixels_per_second ) _A : List[Any] = self.scheduler.add_noise(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __SCREAMING_SNAKE_CASE ): _A : Any = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )['''sample'''] else: _A : int = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )['''sample'''] if isinstance(self.scheduler , __SCREAMING_SNAKE_CASE ): _A : str = self.scheduler.step( model_output=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , sample=__SCREAMING_SNAKE_CASE , eta=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , )['''prev_sample'''] else: _A : Tuple = self.scheduler.step( model_output=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , sample=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , )['''prev_sample'''] if mask is not None: if mask_start > 0: _A : Dict = mask[:, step, :, :mask_start] if mask_end > 0: _A : Tuple = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _A : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _A : Union[str, Any] = self.vqvae.decode(__SCREAMING_SNAKE_CASE )['''sample'''] _A : str = (images / 2 + 0.5).clamp(0 , 1 ) _A : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _A : Any = (images * 255).round().astype("""uint8""" ) _A : Union[str, Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__SCREAMING_SNAKE_CASE , mode="""RGB""" ).convert("""L""" ) for _ in images) ) _A : Any = [self.mel.image_to_audio(__SCREAMING_SNAKE_CASE ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__SCREAMING_SNAKE_CASE )[:, np.newaxis, :] ) , **ImagePipelineOutput(__SCREAMING_SNAKE_CASE ) ) @torch.no_grad() def a__ ( self , _a , _a = 50 ) -> int: assert isinstance(self.scheduler , __SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) _A : List[str] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) _A : Tuple = (sample / 255) * 2 - 1 _A : List[Any] = torch.Tensor(__SCREAMING_SNAKE_CASE ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _A : List[str] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _A : Union[str, Any] = self.scheduler.alphas_cumprod[t] _A : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _A : Optional[int] = 1 - alpha_prod_t _A : List[Any] = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )['''sample'''] _A : int = (1 - alpha_prod_t_prev) ** 0.5 * model_output _A : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _A : List[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _a , _a , _a ) -> List[str]: _A : Union[str, Any] = acos(torch.dot(torch.flatten(__SCREAMING_SNAKE_CASE ) , torch.flatten(__SCREAMING_SNAKE_CASE ) ) / torch.norm(__SCREAMING_SNAKE_CASE ) / torch.norm(__SCREAMING_SNAKE_CASE ) ) return sin((1 - alpha) * theta ) * xa / sin(__SCREAMING_SNAKE_CASE ) + sin(alpha * theta ) * xa / sin(__SCREAMING_SNAKE_CASE )
26
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase : int = logging.get_logger(__name__) _lowercase : List[Any] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ = '''nat''' lowerCAmelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=[3, 4, 6, 5] , __SCREAMING_SNAKE_CASE=[2, 4, 8, 16] , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = patch_size lowercase_ : List[Any] = num_channels lowercase_ : str = embed_dim lowercase_ : List[str] = depths lowercase_ : str = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = num_heads lowercase_ : int = kernel_size lowercase_ : Union[str, Any] = mlp_ratio lowercase_ : Optional[int] = qkv_bias lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : List[Any] = drop_path_rate lowercase_ : List[Any] = hidden_act lowercase_ : int = layer_norm_eps lowercase_ : int = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ : Dict = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) lowercase_ : Tuple = layer_scale_init_value lowercase_ : Union[str, Any] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] lowercase_ , lowercase_ : int = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
93
0
'''simple docstring''' class _snake_case ( lowercase_ ): pass class _snake_case ( lowercase_ ): pass class _snake_case : def __init__( self ) -> Tuple: '''simple docstring''' snake_case_ = [ [], [], [], ] def lowerCAmelCase__ ( self , a__ , a__ ) -> None: '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self ) -> str: '''simple docstring''' return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class _snake_case : def __init__( self ) -> Tuple: '''simple docstring''' snake_case_ = [] def lowerCAmelCase__ ( self , a__ ) -> None: '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(a__ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty" ) else: snake_case_ = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ) -> str: '''simple docstring''' return str(self.queue ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(snake_case ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(snake_case ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(snake_case ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(snake_case ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
92
'''simple docstring''' def UpperCamelCase_( snake_case : int = 1_0_0_0_0_0_0 ): '''simple docstring''' snake_case_ = set(range(3 , snake_case , 2 ) ) primes.add(2 ) for p in range(3 , snake_case , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case , snake_case ) ) ) snake_case_ = [float(snake_case ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case , limit + 1 , snake_case ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
92
1
from __future__ import annotations def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(__SCREAMING_SNAKE_CASE ): print(F'''{i}\t\t{d}''' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): lowercase , lowercase , lowercase = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [float('inf' )] * vertex_count lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(__SCREAMING_SNAKE_CASE ): lowercase , lowercase , lowercase = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: lowercase = distance[u] + w lowercase = check_negative_cycle(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = int(input('''Enter number of vertices: ''').strip()) UpperCAmelCase = int(input('''Enter number of edges: ''').strip()) UpperCAmelCase = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) UpperCAmelCase = {'''src''': src, '''dst''': dest, '''weight''': weight} UpperCAmelCase = int(input('''\nEnter shortest path source:''').strip()) UpperCAmelCase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
195
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = to_pil_image(__SCREAMING_SNAKE_CASE ) lowercase , lowercase = pil_image.size lowercase = pytesseract.image_to_data(__SCREAMING_SNAKE_CASE , lang=__SCREAMING_SNAKE_CASE , output_type='dict' , config=__SCREAMING_SNAKE_CASE ) lowercase , lowercase , lowercase , lowercase , lowercase = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowercase = [idx for idx, word in enumerate(__SCREAMING_SNAKE_CASE ) if not word.strip()] lowercase = [word for idx, word in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase = [] for x, y, w, h in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [x, y, x + w, y + h] actual_boxes.append(__SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes lowercase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict = ["""pixel_values"""] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BILINEAR , snake_case = True , snake_case = 1 / 255 , snake_case = True , snake_case = None , snake_case = None , snake_case = True , snake_case = None , snake_case = "" , **snake_case , ): super().__init__(**snake_case ) lowercase = size if size is not None else {'height': 224, 'width': 224} lowercase = get_size_dict(snake_case ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_rescale lowercase = rescale_value lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase = apply_ocr lowercase = ocr_lang lowercase = tesseract_config def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = PILImageResampling.BILINEAR , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase = (size['height'], size['width']) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ): return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None , snake_case=None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(snake_case ) lowercase = resample if resample is not None else self.resample lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(snake_case ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowercase = [] lowercase = [] for image in images: lowercase , lowercase = apply_tesseract(snake_case , snake_case , snake_case ) words_batch.append(snake_case ) boxes_batch.append(snake_case ) if do_resize: lowercase = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_rescale: lowercase = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: lowercase = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] lowercase = [to_channel_dimension_format(snake_case , snake_case ) for image in images] lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=snake_case ) if apply_ocr: lowercase = words_batch lowercase = boxes_batch return data
195
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def A_ ( *_lowerCAmelCase ) -> List[Any]: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : Any = list(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): UpperCamelCase : int = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def A_ ( _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Dict = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def A_ ( _lowerCAmelCase = None , _lowerCAmelCase = 128 ) -> List[Any]: if function is None: return functools.partial(_lowerCAmelCase , starting_batch_size=_lowerCAmelCase ) UpperCamelCase : Dict = starting_batch_size def decorator(*_lowerCAmelCase , **_lowerCAmelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCamelCase : Any = list(inspect.signature(_lowerCAmelCase ).parameters.keys() ) # Guard against user error if len(_lowerCAmelCase ) < (len(_lowerCAmelCase ) + 1): UpperCamelCase : Optional[int] = ''', '''.join([F"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) except Exception as e: if should_reduce_batch_size(_lowerCAmelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
371
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> list[float]: UpperCamelCase , UpperCamelCase : List[Any] = coefficient_matrix.shape UpperCamelCase , UpperCamelCase : Optional[int] = constant_matrix.shape if rowsa != colsa: UpperCamelCase : List[Any] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if colsa != 1: UpperCamelCase : Any = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if rowsa != rowsa: UpperCamelCase : Tuple = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != rowsa: UpperCamelCase : Any = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(_lowerCAmelCase )} and {rowsa}""" ) raise ValueError(_lowerCAmelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) UpperCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCamelCase , UpperCamelCase : str = table.shape strictly_diagonally_dominant(_lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = [] for row in range(_lowerCAmelCase ): UpperCamelCase : Optional[int] = 0 for col in range(_lowerCAmelCase ): if col == row: UpperCamelCase : Union[str, Any] = table[row][col] elif col == cols - 1: UpperCamelCase : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase : Dict = (temp + val) / denom new_val.append(_lowerCAmelCase ) UpperCamelCase : List[str] = new_val return [float(_lowerCAmelCase ) for i in new_val] def A_ ( _lowerCAmelCase ) -> bool: UpperCamelCase , UpperCamelCase : Dict = table.shape UpperCamelCase : List[Any] = True for i in range(0 , _lowerCAmelCase ): UpperCamelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
140
0
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __UpperCAmelCase ( _lowerCamelCase ): # to overwrite at feature extractactor specific tests __lowercase = None __lowercase = None @property def lowerCamelCase ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'feature_size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'sampling_rate' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'padding_value' ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , processed_features[input_name] ) ) ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def lowerCamelCase ( self , lowerCAmelCase_=False ): """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase_ ): _snake_case = len(input[0] ) for input_slice in input[1:]: if len(lowerCAmelCase_ ) != length: return False return True def _inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1E-3 ): return False return True _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = self.feat_extract_tester.seq_length_diff _snake_case = self.feat_extract_tester.max_seq_length + pad_diff _snake_case = self.feat_extract_tester.min_seq_length _snake_case = self.feat_extract_tester.batch_size _snake_case = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _snake_case = feat_extract.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[-1] ) ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' ) _snake_case = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='max_length' )[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , return_tensors='np' ) _snake_case = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _snake_case = feat_extract.pad(lowerCAmelCase_ , pad_to_multiple_of=10 ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , pad_to_multiple_of=10 ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ , return_tensors='np' , ) _snake_case = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _snake_case = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def lowerCamelCase ( self , lowerCAmelCase_=False ): """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase_ ): _snake_case = len(input[0] ) for input_slice in input[1:]: if len(lowerCAmelCase_ ) != length: return False return True def _inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1E-3 ): return False return True _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) ) _snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) # truncate to smallest with np _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=lowerCAmelCase_ , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) _snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) # truncate to middle _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ , return_tensors='np' , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) _snake_case = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , truncation=lowerCAmelCase_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='longest' , truncation=lowerCAmelCase_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='longest' , truncation=lowerCAmelCase_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='max_length' , truncation=lowerCAmelCase_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _snake_case = 12 _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , ) _snake_case = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _snake_case = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _snake_case = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) def lowerCamelCase ( self ): """simple docstring""" self._check_padding(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_padding(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_truncation(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_truncation(numpify=lowerCAmelCase_ ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = min(lowerCAmelCase_ ) _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='np' ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
42
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
0
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase="shi-labs/oneformer_demo" ) -> str: '''simple docstring''' with open(hf_hub_download(__UpperCAmelCase, __UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) as f: snake_case_ = json.load(__UpperCAmelCase ) snake_case_ = {} snake_case_ = [] snake_case_ = [] for key, info in class_info.items(): snake_case_ = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(__UpperCAmelCase ) ) snake_case_ = thing_ids snake_case_ = class_names return metadata class a ( unittest.TestCase ): def __init__( self : int , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=7 , lowercase_ : List[str]=3 , lowercase_ : Tuple=30 , lowercase_ : str=400 , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=[0.5, 0.5, 0.5] , lowercase_ : Optional[int]=[0.5, 0.5, 0.5] , lowercase_ : List[Any]=10 , lowercase_ : Tuple=False , lowercase_ : Tuple=255 , lowercase_ : List[Any]="shi-labs/oneformer_demo" , lowercase_ : Any="ade20k_panoptic.json" , lowercase_ : List[str]=10 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = {'''shortest_edge''': 32, '''longest_edge''': 1333} if size is None else size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = class_info_file snake_case_ = prepare_metadata(lowercase_ , lowercase_ ) snake_case_ = num_text snake_case_ = repo_path # for the post_process_functions snake_case_ = 2 snake_case_ = 10 snake_case_ = 10 snake_case_ = 3 snake_case_ = 4 snake_case_ = num_labels snake_case_ = do_reduce_labels snake_case_ = ignore_index def A_ ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A_ ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[Any]=False ): if not batched: snake_case_ = image_inputs[0] if isinstance(lowercase_ , Image.Image ): snake_case_ ,snake_case_ = image.size else: snake_case_ ,snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size['''shortest_edge'''] * h / w ) snake_case_ = self.size['''shortest_edge'''] elif w > h: snake_case_ = self.size['''shortest_edge'''] snake_case_ = int(self.size['''shortest_edge'''] * w / h ) else: snake_case_ = self.size['''shortest_edge'''] snake_case_ = self.size['''shortest_edge'''] else: snake_case_ = [] for image in image_inputs: snake_case_ ,snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] snake_case_ = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width def A_ ( self : Optional[Any] ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string snake_case_ = image_processing_class def A_ ( self : int ): snake_case_ = OneFormerImageProcessorTester(self ) @property def A_ ( self : Optional[int] ): return self.image_processing_tester.prepare_image_processor_dict() def A_ ( self : List[Any] ): snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ , '''image_std''' ) ) self.assertTrue(hasattr(lowercase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase_ , '''size''' ) ) self.assertTrue(hasattr(lowercase_ , '''ignore_index''' ) ) self.assertTrue(hasattr(lowercase_ , '''class_info_file''' ) ) self.assertTrue(hasattr(lowercase_ , '''num_text''' ) ) self.assertTrue(hasattr(lowercase_ , '''repo_path''' ) ) self.assertTrue(hasattr(lowercase_ , '''metadata''' ) ) self.assertTrue(hasattr(lowercase_ , '''do_reduce_labels''' ) ) def A_ ( self : Dict ): pass def A_ ( self : str ): # Initialize image_processor snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input snake_case_ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values snake_case_ ,snake_case_ = self.image_processing_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ ,snake_case_ = self.image_processing_tester.get_expected_values(lowercase_ , batched=lowercase_ ) snake_case_ = image_processor( lowercase_ , ['''semantic'''] * len(lowercase_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : List[str] ): # Initialize image_processor snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input snake_case_ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values snake_case_ ,snake_case_ = self.image_processing_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ ,snake_case_ = self.image_processing_tester.get_expected_values(lowercase_ , batched=lowercase_ ) snake_case_ = image_processor( lowercase_ , ['''semantic'''] * len(lowercase_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : List[str] ): # Initialize image_processor snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input snake_case_ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values snake_case_ ,snake_case_ = self.image_processing_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ ,snake_case_ = self.image_processing_tester.get_expected_values(lowercase_ , batched=lowercase_ ) snake_case_ = image_processor( lowercase_ , ['''semantic'''] * len(lowercase_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : str , lowercase_ : Optional[Any]=False , lowercase_ : Dict=False , lowercase_ : int="np" ): snake_case_ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target snake_case_ = self.image_processing_tester.num_labels snake_case_ = None snake_case_ = None snake_case_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowercase_ ) if with_segmentation_maps: snake_case_ = num_labels if is_instance_map: snake_case_ = list(range(lowercase_ ) ) * 2 snake_case_ = dict(enumerate(lowercase_ ) ) snake_case_ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": snake_case_ = [Image.fromarray(lowercase_ ) for annotation in annotations] snake_case_ = image_processor( lowercase_ , ['''semantic'''] * len(lowercase_ ) , lowercase_ , return_tensors='''pt''' , instance_id_to_semantic_id=lowercase_ , pad_and_return_pixel_mask=lowercase_ , ) return inputs def A_ ( self : Optional[int] ): pass def A_ ( self : Dict ): def common(lowercase_ : int=False , lowercase_ : Tuple=None ): snake_case_ = self.comm_get_image_processor_inputs( with_segmentation_maps=lowercase_ , is_instance_map=lowercase_ , segmentation_type=lowercase_ ) snake_case_ = inputs['''mask_labels'''] snake_case_ = inputs['''class_labels'''] snake_case_ = inputs['''pixel_values'''] snake_case_ = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(lowercase_ , lowercase_ , lowercase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowercase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowercase_ ) common(is_instance_map=lowercase_ , segmentation_type='''pil''' ) common(is_instance_map=lowercase_ , segmentation_type='''pil''' ) def A_ ( self : Any ): snake_case_ = np.zeros((20, 50) ) snake_case_ = 1 snake_case_ = 1 snake_case_ = 1 snake_case_ = binary_mask_to_rle(lowercase_ ) self.assertEqual(len(lowercase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A_ ( self : Union[str, Any] ): snake_case_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) snake_case_ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case_ = fature_extractor.post_process_semantic_segmentation(lowercase_ ) self.assertEqual(len(lowercase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) snake_case_ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] snake_case_ = fature_extractor.post_process_semantic_segmentation(lowercase_ , target_sizes=lowercase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A_ ( self : Union[str, Any] ): snake_case_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) snake_case_ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case_ = image_processor.post_process_instance_segmentation(lowercase_ , threshold=0 ) self.assertTrue(len(lowercase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , lowercase_ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A_ ( self : Dict ): snake_case_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) snake_case_ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case_ = image_processor.post_process_panoptic_segmentation(lowercase_ , threshold=0 ) self.assertTrue(len(lowercase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , lowercase_ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
72
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class a ( _lowerCamelCase ): snake_case_ = 42 snake_case_ = None def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=0.9_9_9, __UpperCAmelCase="cosine", ) -> Dict: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) snake_case_ = [] for i in range(__UpperCAmelCase ): snake_case_ = i / num_diffusion_timesteps snake_case_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ), __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase, dtype=torch.floataa ) class a ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self : List[str] , lowercase_ : int = 1000 , lowercase_ : str = "fixed_small_log" , lowercase_ : bool = True , lowercase_ : Optional[float] = 1.0 , lowercase_ : str = "epsilon" , lowercase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) snake_case_ = betas_for_alpha_bar(lowercase_ ) snake_case_ = 1.0 - self.betas snake_case_ = torch.cumprod(self.alphas , dim=0 ) snake_case_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution snake_case_ = 1.0 # setable values snake_case_ = None snake_case_ = torch.from_numpy(np.arange(0 , lowercase_ )[::-1].copy() ) snake_case_ = variance_type def A_ ( self : Optional[Any] , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None ): return sample def A_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Union[str, torch.device] = None ): snake_case_ = num_inference_steps snake_case_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) snake_case_ = (np.arange(0 , lowercase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) snake_case_ = torch.from_numpy(lowercase_ ).to(lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int]=None , lowercase_ : Tuple=None , lowercase_ : Tuple=None ): if prev_timestep is None: snake_case_ = t - 1 snake_case_ = self.alphas_cumprod[t] snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ = 1 - alpha_prod_t snake_case_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ = self.betas[t] else: snake_case_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: snake_case_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": snake_case_ = torch.log(torch.clamp(lowercase_ , min=1e-20 ) ) snake_case_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler snake_case_ = variance.log() snake_case_ = beta.log() snake_case_ = (predicted_variance + 1) / 2 snake_case_ = frac * max_log + (1 - frac) * min_log return variance def A_ ( self : List[Any] , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None , lowercase_ : int=None , lowercase_ : bool = True , ): snake_case_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": snake_case_ ,snake_case_ = torch.split(lowercase_ , sample.shape[1] , dim=1 ) else: snake_case_ = None # 1. compute alphas, betas if prev_timestep is None: snake_case_ = t - 1 snake_case_ = self.alphas_cumprod[t] snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ = 1 - alpha_prod_t snake_case_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ = self.betas[t] snake_case_ = self.alphas[t] else: snake_case_ = 1 - alpha_prod_t / alpha_prod_t_prev snake_case_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case_ = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case_ = torch.clamp( lowercase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t snake_case_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case_ = 0 if t > 0: snake_case_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowercase_ , device=model_output.device ) snake_case_ = self._get_variance( lowercase_ , predicted_variance=lowercase_ , prev_timestep=lowercase_ , ) if self.variance_type == "fixed_small_log": snake_case_ = variance elif self.variance_type == "learned_range": snake_case_ = (0.5 * variance).exp() else: raise ValueError( F"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ''' for the UnCLIPScheduler.''' ) snake_case_ = variance * variance_noise snake_case_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowercase_ , pred_original_sample=lowercase_ ) def A_ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : torch.FloatTensor , lowercase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples snake_case_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) snake_case_ = timesteps.to(original_samples.device ) snake_case_ = alphas_cumprod[timesteps] ** 0.5 snake_case_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ = sqrt_alpha_prod.unsqueeze(-1 ) snake_case_ = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) snake_case_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
72
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE__) -> int: if not nums: return 0 __snake_case: List[str] = nums[0] __snake_case: int = 0 for num in nums[1:]: __snake_case , __snake_case: str = ( max_excluding + num, max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__), ) return max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if __name__ == "__main__": import doctest doctest.testmod()
111
import math def A__ ( SCREAMING_SNAKE_CASE__) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE__ = 1_0001) -> int: try: __snake_case: List[str] = int(SCREAMING_SNAKE_CASE__) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""") from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""") __snake_case: list[int] = [] __snake_case: List[str] = 2 while len(SCREAMING_SNAKE_CASE__) < nth: if is_prime(SCREAMING_SNAKE_CASE__): primes.append(SCREAMING_SNAKE_CASE__) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__) - 1] if __name__ == "__main__": print(f'{solution() = }')
111
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Dict = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''realm''' def __init__( self : Dict , __magic_name__ : str=30_522 , __magic_name__ : List[str]=768 , __magic_name__ : str=128 , __magic_name__ : List[Any]=12 , __magic_name__ : List[str]=12 , __magic_name__ : List[str]=8 , __magic_name__ : Any=3_072 , __magic_name__ : str="gelu_new" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=512 , __magic_name__ : Tuple=2 , __magic_name__ : int=0.02 , __magic_name__ : Union[str, Any]=1e-12 , __magic_name__ : Union[str, Any]=256 , __magic_name__ : Optional[Any]=10 , __magic_name__ : Optional[int]=1e-3 , __magic_name__ : Dict=5 , __magic_name__ : Dict=320 , __magic_name__ : List[Any]=13_353_718 , __magic_name__ : Optional[Any]=5_000 , __magic_name__ : List[Any]=1 , __magic_name__ : Optional[int]=0 , __magic_name__ : Optional[Any]=2 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) # Common config SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = retriever_proj_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_candidates SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ = span_hidden_size SCREAMING_SNAKE_CASE_ = max_span_width SCREAMING_SNAKE_CASE_ = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ = reader_beam_size SCREAMING_SNAKE_CASE_ = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ = num_block_records SCREAMING_SNAKE_CASE_ = searcher_beam_size
350
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class a__ ( snake_case__ ): _a : List[str] = """marian""" _a : Optional[int] = ["""past_key_values"""] _a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _A=5_8_1_0_1 , _A=None , _A=1_0_2_4 , _A=1_2 , _A=4_0_9_6 , _A=1_6 , _A=1_2 , _A=4_0_9_6 , _A=1_6 , _A=0.0 , _A=0.0 , _A=True , _A=True , _A="gelu" , _A=1_0_2_4 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.02 , _A=5_8_1_0_0 , _A=False , _A=5_8_1_0_0 , _A=0 , _A=0 , _A=True , **_A , ): """simple docstring""" __lowerCAmelCase = vocab_size __lowerCAmelCase = decoder_vocab_size or vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) class a__ ( snake_case__ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __lowerCAmelCase = {0: "batch"} __lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} __lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_A , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __lowerCAmelCase , __lowerCAmelCase = self.num_layers for i in range(_A ): __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = super().outputs else: __lowerCAmelCase = super(_A , self ).outputs if self.use_past: __lowerCAmelCase , __lowerCAmelCase = self.num_layers for i in range(_A ): __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __SCREAMING_SNAKE_CASE( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): """simple docstring""" __lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) # Generate decoder inputs __lowerCAmelCase = seq_length if not self.use_past else 1 __lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) __lowerCAmelCase = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowerCAmelCase = dict(**_A , **_A ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["input_ids"].shape __lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] __lowerCAmelCase , __lowerCAmelCase = self.num_attention_heads __lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCAmelCase = decoder_seq_length + 3 __lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_A , _A )] , dim=1 ) __lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowerCAmelCase , __lowerCAmelCase = self.num_layers __lowerCAmelCase = min(_A , _A ) __lowerCAmelCase = max(_A , _A ) - min_num_layers __lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. __lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_A , _A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def __SCREAMING_SNAKE_CASE( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): """simple docstring""" __lowerCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _A , _A , _A , _A , _A ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase , __lowerCAmelCase = self.num_layers __lowerCAmelCase , __lowerCAmelCase = self.num_attention_heads __lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCAmelCase = common_inputs["attention_mask"].dtype __lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_A , _A , dtype=_A )] , dim=1 ) __lowerCAmelCase = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def __SCREAMING_SNAKE_CASE( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): """simple docstring""" __lowerCAmelCase = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCAmelCase = tokenizer.num_special_tokens_to_add(_A ) __lowerCAmelCase = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence __lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __lowerCAmelCase = dict(tokenizer(_A , return_tensors=_A ) ) return common_inputs def __SCREAMING_SNAKE_CASE( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) else: __lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) return common_inputs def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = super()._flatten_past_key_values_(_A , _A , _A , _A ) else: __lowerCAmelCase = super(_A , self )._flatten_past_key_values_( _A , _A , _A , _A ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1E-4
92
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class a__ : def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = {"vision_model": vision_model, "text_model": text_model} __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) __lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_A ) __lowerCAmelCase = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) __lowerCAmelCase = after_output[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __lowerCAmelCase = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_A , _A , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_pretrained_model_and_inputs() __lowerCAmelCase = model_a(**_A ) __lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_A ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_A ) __lowerCAmelCase = model_a(**_A ) __lowerCAmelCase = after_outputs[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) @require_tf class a__ ( snake_case__ , unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = TFViTModel(_A , name="vision_model" ) __lowerCAmelCase = TFBertModel(_A , name="text_model" ) return vision_model, text_model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFViTModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class a__ ( snake_case__ , unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(_A , _A ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __lowerCAmelCase = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTModel(_A , name="vision_model" ) __lowerCAmelCase = TFRobertaModel(_A , name="text_model" ) return vision_model, text_model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = TFRobertaModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class a__ ( snake_case__ , unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = TFCLIPVisionModel(_A , name="vision_model" ) __lowerCAmelCase = TFBertModel(_A , name="text_model" ) return vision_model, text_model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFCLIPVisionModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class a__ ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_A ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __lowerCAmelCase = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_A , padding=_A , return_tensors="np" ) __lowerCAmelCase = model(**_A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowerCAmelCase = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _A , atol=1E-3 ) )
92
1
import os def _a ( ) -> Optional[Any]: '''simple docstring''' __A = os.path.join(os.path.dirname(lowerCamelCase ) , '''num.txt''' ) with open(lowerCamelCase ) as file_hand: return str(sum(int(lowerCamelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
250
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow def _lowerCAmelCase (self :Dict )-> Dict: __A = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_UpperCamelCase ).to(_UpperCamelCase ) __A = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __A = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __A = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __A = model(input_ids.to(_UpperCamelCase ) , labels=labels.to(_UpperCamelCase ) ).loss __A = -(labels.shape[-1] * loss.item()) __A = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
250
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
62
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
140
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''xlm-roberta-xl''' def __init__( self , __UpperCAmelCase=25_08_80 , __UpperCAmelCase=25_60 , __UpperCAmelCase=36 , __UpperCAmelCase=32 , __UpperCAmelCase=1_02_40 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_14 , __UpperCAmelCase=1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-05 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
356
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: if len(__UpperCamelCase ) <= 1: return arr, 0 _lowerCAmelCase =len(__UpperCamelCase ) // 2 _lowerCAmelCase =arr[0:mid] _lowerCAmelCase =arr[mid:] _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: _lowerCAmelCase =[] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCamelCase() -> str: _lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) # an empty list should also have zero inversions _lowerCAmelCase =[] _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) if __name__ == "__main__": main()
341
0
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( _lowercase , _lowercase): @register_to_config def __init__( self : int , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None ): """simple docstring""" super().__init__() _lowerCamelCase : Tuple = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCamelCase : Dict = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ) else: _lowerCamelCase : Dict = None _lowerCamelCase : List[Any] = torch.nn.Parameter(__lowerCAmelCase ) class __snake_case ( _lowercase): snake_case__ : VQModel snake_case__ : CLIPTextModel snake_case__ : CLIPTokenizer snake_case__ : TransformeraDModel snake_case__ : LearnedClassifierFreeSamplingEmbeddings snake_case__ : VQDiffusionScheduler def __init__( self : List[str] , __lowerCAmelCase : VQModel , __lowerCAmelCase : CLIPTextModel , __lowerCAmelCase : CLIPTokenizer , __lowerCAmelCase : TransformeraDModel , __lowerCAmelCase : VQDiffusionScheduler , __lowerCAmelCase : LearnedClassifierFreeSamplingEmbeddings , ): """simple docstring""" super().__init__() self.register_modules( vqvae=__lowerCAmelCase , transformer=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , scheduler=__lowerCAmelCase , learned_classifier_free_sampling_embeddings=__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Any = len(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else 1 # get prompt text embeddings _lowerCamelCase : Optional[int] = self.tokenizer( __lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _lowerCamelCase : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCamelCase : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _lowerCamelCase : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCamelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCamelCase : Tuple = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__lowerCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCamelCase : Any = prompt_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCamelCase : str = self.learned_classifier_free_sampling_embeddings.embeddings _lowerCamelCase : Any = negative_prompt_embeds.unsqueeze(0 ).repeat(__lowerCAmelCase , 1 , 1 ) else: _lowerCamelCase : str = [''''''] * batch_size _lowerCamelCase : Dict = text_input_ids.shape[-1] _lowerCamelCase : Tuple = self.tokenizer( __lowerCAmelCase , padding='''max_length''' , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' , ) _lowerCamelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCamelCase : str = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__lowerCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCamelCase : Any = negative_prompt_embeds.shape[1] _lowerCamelCase : Optional[int] = negative_prompt_embeds.repeat(1 , __lowerCAmelCase , 1 ) _lowerCamelCase : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , __lowerCAmelCase : Union[str, List[str]] , __lowerCAmelCase : int = 1_0_0 , __lowerCAmelCase : float = 5.0 , __lowerCAmelCase : float = 1.0 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : str = 1 elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : str = len(__lowerCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}''' ) _lowerCamelCase : List[str] = batch_size * num_images_per_prompt _lowerCamelCase : Optional[Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_prompt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__lowerCAmelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _lowerCamelCase : int = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCamelCase : int = self.transformer.num_vector_embeds - 1 _lowerCamelCase : Optional[int] = torch.full(__lowerCAmelCase , __lowerCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _lowerCamelCase : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase , device=self.device ) _lowerCamelCase : List[str] = self.scheduler.timesteps.to(self.device ) _lowerCamelCase : int = latents for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the sample if we are doing classifier free guidance _lowerCamelCase : str = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCamelCase : Optional[int] = self.transformer(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase ).sample if do_classifier_free_guidance: _lowerCamelCase , _lowerCamelCase : Any = model_output.chunk(2 ) _lowerCamelCase : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__lowerCAmelCase , dim=1 , keepdim=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.truncate(__lowerCAmelCase , __lowerCAmelCase ) # remove `log(0)`'s (`-inf`s) _lowerCamelCase : int = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step(__lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = self.vqvae.config.vq_embed_dim _lowerCamelCase : List[str] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCamelCase : List[Any] = self.vqvae.quantize.get_codebook_entry(__lowerCAmelCase , shape=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.vqvae.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase ).sample _lowerCamelCase : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase : List[str] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : float ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = torch.sort(__lowerCAmelCase , 1 , descending=__lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.exp(__lowerCAmelCase ) _lowerCamelCase : Tuple = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCamelCase : Any = torch.full_like(keep_mask[:, 0:1, :] , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = torch.cat((all_true, keep_mask) , dim=1 ) _lowerCamelCase : Tuple = keep_mask[:, :-1, :] _lowerCamelCase : List[str] = keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCamelCase : Union[str, Any] = log_p_x_0.clone() _lowerCamelCase : Optional[Any] = -torch.inf # -inf = log(0) return rv
72
"""simple docstring""" from __future__ import annotations def snake_case_ ( A_ : str ): '''simple docstring''' return [ord(A_ ) - 96 for elem in plain] def snake_case_ ( A_ : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Dict = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''', A_ ) print('''Decoded:''', decode(A_ ) ) if __name__ == "__main__": main()
72
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class _snake_case ( __lowercase ): @require_torch def snake_case__ ( self): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase__ : int = """\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n """ UpperCAmelCase__ : Tuple = """\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n """ UpperCAmelCase__ : Tuple = """\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n """ # Force fetching the files so that we can use the cache UpperCAmelCase__ : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(_a) BertModel.from_pretrained(_a) BertTokenizer.from_pretrained(_a) pipeline(task="""fill-mask""" , model=_a) # baseline - just load from_pretrained with normal network UpperCAmelCase__ : List[str] = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed UpperCAmelCase__ : str = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase__ : str = """1""" UpperCAmelCase__ : List[str] = subprocess.run(_a , env=_a , check=_a , capture_output=_a) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def snake_case__ ( self): # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase__ : Any = """\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n """ UpperCAmelCase__ : str = """\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n """ UpperCAmelCase__ : List[Any] = """\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n """ # Force fetching the files so that we can use the cache UpperCAmelCase__ : List[str] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(_a) BertModel.from_pretrained(_a) BertTokenizer.from_pretrained(_a) pipeline(task="""fill-mask""" , model=_a) # baseline - just load from_pretrained with normal network UpperCAmelCase__ : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed UpperCAmelCase__ : int = self.get_env() UpperCAmelCase__ : Dict = subprocess.run(_a , env=_a , check=_a , capture_output=_a) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def snake_case__ ( self): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase__ : Any = """\nfrom transformers import BertConfig, BertModel, BertTokenizer\n """ UpperCAmelCase__ : str = """\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n """ UpperCAmelCase__ : Optional[int] = """\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n """ # baseline - just load from_pretrained with normal network UpperCAmelCase__ : Tuple = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed UpperCAmelCase__ : List[Any] = self.get_env() UpperCAmelCase__ : str = subprocess.run(_a , env=_a , check=_a , capture_output=_a) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network UpperCAmelCase__ : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase__ : Union[str, Any] = """1""" UpperCAmelCase__ : Dict = subprocess.run(_a , env=_a , check=_a , capture_output=_a) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def snake_case__ ( self): UpperCAmelCase__ : int = """\nfrom transformers import pipeline\n """ UpperCAmelCase__ : List[str] = """\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n """ UpperCAmelCase__ : Union[str, Any] = """\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n """ UpperCAmelCase__ : Optional[Any] = self.get_env() UpperCAmelCase__ : Optional[Any] = """1""" UpperCAmelCase__ : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] UpperCAmelCase__ : Dict = subprocess.run(_a , env=_a , check=_a , capture_output=_a) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def snake_case__ ( self): UpperCAmelCase__ : int = """\nfrom transformers import AutoModel\n """ UpperCAmelCase__ : Union[str, Any] = """\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n """ # baseline - just load from_pretrained with normal network UpperCAmelCase__ : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed UpperCAmelCase__ : Dict = self.get_env() UpperCAmelCase__ : Optional[Any] = subprocess.run(_a , env=_a , check=_a , capture_output=_a) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase__ : Optional[Any] = """1""" UpperCAmelCase__ : Optional[int] = subprocess.run(_a , env=_a , check=_a , capture_output=_a) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
350
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = '''''' lowerCAmelCase :str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCAmelCase :str = None # compression type in fsspec. ex: "gzip" lowerCAmelCase :str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase): super().__init__(self , **_lowerCamelCase) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ : Optional[Any] = fsspec.open( _lowerCamelCase , mode="""rb""" , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase__ : List[Any] = os.path.basename(self.file.path.split("""::""")[0]) UpperCAmelCase__ : Dict = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) UpperCAmelCase__ : Tuple = None @classmethod def snake_case__ ( cls , _lowerCamelCase): # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase).lstrip("""/""") def snake_case__ ( self): if self.dir_cache is None: UpperCAmelCase__ : Optional[Any] = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} UpperCAmelCase__ : Union[str, Any] = {f["""name"""]: f} def snake_case__ ( self , _lowerCamelCase): return self.file.open().read() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCAmelCase__ : List[str] = self._strip_protocol(_lowerCamelCase) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _snake_case ( a__ ): lowerCAmelCase :Dict = '''bz2''' lowerCAmelCase :List[str] = '''bz2''' lowerCAmelCase :Dict = '''.bz2''' class _snake_case ( a__ ): lowerCAmelCase :int = '''gzip''' lowerCAmelCase :Tuple = '''gzip''' lowerCAmelCase :str = '''.gz''' class _snake_case ( a__ ): lowerCAmelCase :List[str] = '''lz4''' lowerCAmelCase :Any = '''lz4''' lowerCAmelCase :int = '''.lz4''' class _snake_case ( a__ ): lowerCAmelCase :Union[str, Any] = '''xz''' lowerCAmelCase :int = '''xz''' lowerCAmelCase :List[Any] = '''.xz''' class _snake_case ( a__ ): lowerCAmelCase :Tuple = '''zstd''' lowerCAmelCase :List[str] = '''zstd''' lowerCAmelCase :Union[str, Any] = '''.zst''' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , ): super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ : Dict = self.file.__enter__ class _snake_case : def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = file_ def __enter__( self): self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase): self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase) def __iter__( self): return iter(self._file) def snake_case__ ( self): return next(self._file) def __getattr__( self , _lowerCamelCase): return getattr(self._file , _lowerCamelCase) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase)) UpperCAmelCase__ : List[Any] = fixed_enter
283
0
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __magic_name__ ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
270
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
0
from string import ascii_uppercase lowerCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase_ = dict(enumerate(ascii_uppercase)) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Tuple = len(_UpperCamelCase ) snake_case_ : Optional[int] = 0 while True: if x == i: snake_case_ : Tuple = 0 if len(_UpperCamelCase ) == len(_UpperCamelCase ): break key += key[i] i += 1 return key def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = '''''' snake_case_ : List[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: snake_case_ : Tuple = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : List[Any] = '''''' snake_case_ : Union[str, Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: snake_case_ : Tuple = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : List[Any] = '''THE GERMAN ATTACK''' snake_case_ : Optional[Any] = '''SECRET''' snake_case_ : Optional[int] = generate_key(_UpperCamelCase , _UpperCamelCase ) snake_case_ : int = cipher_text(_UpperCamelCase , _UpperCamelCase ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(_UpperCamelCase , _UpperCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
367
from math import isclose, sqrt def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, float, float]: """simple docstring""" snake_case_ : Dict = point_y / 4 / point_x snake_case_ : List[str] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case_ : Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case_ : Tuple = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case_ : Union[str, Any] = outgoing_gradient**2 + 4 snake_case_ : Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case_ : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case_ : Dict = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case_ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case_ : Any = x_minus if isclose(_UpperCamelCase , _UpperCamelCase ) else x_plus snake_case_ : int = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCamelCase_ ( _UpperCamelCase = 1.4 , _UpperCamelCase = -9.6 ) -> int: """simple docstring""" snake_case_ : int = 0 snake_case_ : float = first_x_coord snake_case_ : float = first_y_coord snake_case_ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case_ , snake_case_ , snake_case_ : str = next_point(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
279
0
'''simple docstring''' def _A ( snake_case , snake_case , snake_case , snake_case ) -> int: # Return True if there is node that has not iterated. _lowercase : int = [False] * len(snake_case ) _lowercase : Union[str, Any] = [] queue.append(snake_case ) _lowercase : Tuple = True while queue: _lowercase : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) _lowercase : List[Any] = True _lowercase : List[Any] = u return visited[t] def _A ( snake_case , snake_case , snake_case ) -> Union[str, Any]: # This array is filled by BFS and to store path _lowercase : List[str] = [-1] * (len(snake_case )) _lowercase : Dict = 0 while bfs(snake_case , snake_case , snake_case , snake_case ): _lowercase : Tuple = float("Inf" ) _lowercase : str = sink while s != source: # Find the minimum value in select path _lowercase : List[str] = min(snake_case , graph[parent[s]][s] ) _lowercase : List[Any] = parent[s] max_flow += path_flow _lowercase : int = sink while v != source: _lowercase : str = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowercase : Optional[Any] = parent[v] return max_flow _snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _snake_case , _snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
250
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ReformerTokenizer _SCREAMING_SNAKE_CASE : List[Any] = ReformerTokenizerFast _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowercase : Union[str, Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "<s>" _lowercase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCamelCase ) , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase : List[str] = self.get_tokenizer() _lowercase : int = self.get_rust_tokenizer() _lowercase : Optional[Any] = "I was born in 92000, and this is falsé." _lowercase : Union[str, Any] = tokenizer.tokenize(_UpperCamelCase ) _lowercase : int = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Tuple = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : List[str] = self.get_rust_tokenizer() _lowercase : Optional[int] = tokenizer.encode(_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # Simple input _lowercase : Union[str, Any] = "This is a simple input" _lowercase : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] _lowercase : Any = ("This is a simple input", "This is a pair") _lowercase : List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _lowercase : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _lowercase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowercase : str = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = "Hello World!" _lowercase : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _lowercase : Dict = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowercase : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowercase : Tuple = " ".join(_UpperCamelCase ) _lowercase : str = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" ) _lowercase : List[Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _lowercase : Optional[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowercase : str = encoded_sequence["input_ids"].shape _lowercase : Dict = ReformerModel(_UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowercase : Optional[int] = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_UpperCamelCase , sequences=_UpperCamelCase , )
250
1
def snake_case (UpperCAmelCase__ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) UpperCamelCase_: Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase_: List[str] = 1 if upper_limit > 0: UpperCamelCase_: Dict = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCAmelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: A_ : Dict = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
350
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def snake_case (UpperCAmelCase__ ) -> tuple: return (data["data"], data["target"]) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> np.ndarray: UpperCamelCase_: Dict = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(UpperCAmelCase__ , UpperCAmelCase__ ) # Predict target for test data UpperCamelCase_: int = xgb.predict(UpperCAmelCase__ ) UpperCamelCase_: Any = predictions.reshape(len(UpperCAmelCase__ ) , 1 ) return predictions def snake_case () -> None: UpperCamelCase_: Union[str, Any] = fetch_california_housing() UpperCamelCase_ ,UpperCamelCase_: Tuple = data_handling(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = train_test_split( UpperCAmelCase__ , UpperCAmelCase__ , test_size=0.25 , random_state=1 ) UpperCamelCase_: Union[str, Any] = xgboost(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
292
0
import argparse import struct import unittest class _lowerCamelCase: def __init__( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : List[str] = data # Initialize hash values _lowercase : Tuple = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants _lowercase : int = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] _lowercase : Optional[int] = self.preprocessing(self.data) self.final_hash() @staticmethod def UpperCamelCase ( lowerCamelCase) -> bytes: """simple docstring""" _lowercase : int = B'\x80' + (B'\x00' * (63 - (len(lowerCamelCase) + 8) % 64)) _lowercase : int = struct.pack('>Q', (len(lowerCamelCase) * 8)) return data + padding + big_endian_integer def UpperCamelCase ( self) -> None: """simple docstring""" _lowercase : List[str] = [ self.preprocessed_data[x : x + 64] for x in range(0, len(self.preprocessed_data), 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowercase : Tuple = list(struct.unpack('>16L', lowerCamelCase)) # add 48 0-ed integers words += [0] * 48 _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = self.hashes for index in range(0, 64): if index > 15: # modify the zero-ed indexes at the end of the array _lowercase : List[Any] = ( self.ror(words[index - 15], 7) ^ self.ror(words[index - 15], 18) ^ (words[index - 15] >> 3) ) _lowercase : Optional[int] = ( self.ror(words[index - 2], 17) ^ self.ror(words[index - 2], 19) ^ (words[index - 2] >> 10) ) _lowercase : List[Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression _lowercase : int = self.ror(lowerCamelCase, 6) ^ self.ror(lowerCamelCase, 11) ^ self.ror(lowerCamelCase, 25) _lowercase : Optional[int] = (e & f) ^ ((~e & 0xFFFFFFFF) & g) _lowercase : Any = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 _lowercase : Any = self.ror(lowerCamelCase, 2) ^ self.ror(lowerCamelCase, 13) ^ self.ror(lowerCamelCase, 22) _lowercase : Optional[int] = (a & b) ^ (a & c) ^ (b & c) _lowercase : Optional[int] = (sa + maj) % 0x100000000 _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Any = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) _lowercase : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values _lowercase : Tuple = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes) ] _lowercase : Dict = ''.join([hex(lowerCamelCase)[2:].zfill(8) for value in self.hashes]) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> None: """simple docstring""" import hashlib _lowercase : List[Any] = bytes('Test String', 'utf-8') self.assertEqual(SHAaaa(lowerCamelCase).hash, hashlib.shaaaa(lowerCamelCase).hexdigest()) def UpperCamelCase_( ) -> Tuple: import doctest doctest.testmod() _lowercase : int = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowercase : Dict = parser.parse_args() _lowercase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowercase : Dict = f.read() else: _lowercase : int = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(_SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
21
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" ) _snake_case = bits * 2 - 1 return bits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 ) _snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu""" _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) _snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple: super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , ) _snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample _snake_case = bits_to_decimal(UpperCAmelCase ) if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
341
0
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 60_08_51_47_51_43 ): """simple docstring""" try: _a = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) _a = 1 _a = 2 while i * i <= n: while n % i == 0: _a = i n //= i i += 1 if n > 1: _a = n return int(_lowerCAmelCase ) if __name__ == "__main__": print(f'{solution() = }')
356
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[Any]: super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) _a = field _a = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} _a = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> str: # Build iterable dataset if self.streaming: _a = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _a = None _a = None _a = None _a = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) _a = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Tuple: if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) _a = dataset _a = path_or_buf _a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a = num_proc _a = '''utf-8''' _a = to_json_kwargs def _UpperCAmelCase ( self ) -> int: _a = self.to_json_kwargs.pop('''path_or_buf''' , __UpperCAmelCase ) _a = self.to_json_kwargs.pop('''orient''' , '''records''' ) _a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) _a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) _a = self.to_json_kwargs.pop('''compression''' , __UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__UpperCAmelCase ) as buffer: _a = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ''' was passed. Please provide a local path instead.''' ) _a = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) return written def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _a , _a , _a , _a , _a = args _a = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _a = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) -> int: _a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): _a = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__UpperCAmelCase ) else: _a , _a = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__UpperCAmelCase ) return written
153
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE :str = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys SCREAMING_SNAKE_CASE :str = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = tempfile.mkdtemp() # fmt: off lowerCamelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase : List[Any] = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"} lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) lowerCamelCase : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase : str = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__A , __A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Tuple = self.get_image_processor() lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __A ) self.assertIsInstance(processor_fast.tokenizer , __A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __A ) self.assertIsInstance(processor_fast.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = self.prepare_image_inputs() lowerCamelCase : int = image_processor(__A , return_tensors="np" ) lowerCamelCase : Union[str, Any] = processor(images=__A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = "lower newer" lowerCamelCase : Union[str, Any] = processor(text=__A , return_tensors="np" ) lowerCamelCase : List[Any] = tokenizer(__A , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : int = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[Any] = "lower newer" lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Any = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = "google/owlvit-base-patch32" lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Tuple = ["cat", "nasa badge"] lowerCamelCase : str = processor(text=__A ) lowerCamelCase : Union[str, Any] = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = "google/owlvit-base-patch32" lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Dict = [["cat", "nasa badge"], ["person"]] lowerCamelCase : int = processor(text=__A ) lowerCamelCase : Tuple = 16 lowerCamelCase : Any = len(__A ) lowerCamelCase : Optional[Any] = max([len(__A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = "google/owlvit-base-patch32" lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : List[Any] = ["cat", "nasa badge"] lowerCamelCase : Optional[Any] = processor(text=__A ) lowerCamelCase : int = 16 lowerCamelCase : List[str] = inputs["input_ids"] lowerCamelCase : int = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : str = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase : Any = processor(images=__A , query_images=__A ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase : List[Any] = processor.batch_decode(__A ) lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A )
283
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A: Optional[Any] = logging.get_logger(__name__) def _snake_case ( UpperCamelCase : Any ): if isinstance(UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[Any] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = size if size is not None else {"""shortest_edge""": 256} UpperCAmelCase : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) UpperCAmelCase : Optional[Any] = do_resize UpperCAmelCase : Optional[int] = size UpperCAmelCase : Optional[Any] = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : Union[str, Any] = resample UpperCAmelCase : List[str] = do_rescale UpperCAmelCase : str = rescale_factor UpperCAmelCase : Dict = offset UpperCAmelCase : List[str] = do_normalize UpperCAmelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" in size: UpperCAmelCase : List[str] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size["""shortest_edge"""] , default_to_square=_SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: UpperCAmelCase : Tuple = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: UpperCAmelCase : Any = image - (scale / 2) return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: '''simple docstring''' return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : int = to_numpy_array(_SCREAMING_SNAKE_CASE ) if do_resize: UpperCAmelCase : Optional[Any] = self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) if do_center_crop: UpperCAmelCase : Optional[int] = self.center_crop(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) if do_rescale: UpperCAmelCase : int = self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE ) if do_normalize: UpperCAmelCase : List[str] = self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return image def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Union[str, Any] = resample if resample is not None else self.resample UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Optional[Any] = offset if offset is not None else self.offset UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : str = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : str = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) UpperCAmelCase : Any = make_batched(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = [ [ self._preprocess_image( image=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , do_center_crop=_SCREAMING_SNAKE_CASE , crop_size=_SCREAMING_SNAKE_CASE , do_rescale=_SCREAMING_SNAKE_CASE , rescale_factor=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , ) for img in video ] for video in videos ] UpperCAmelCase : Any = {"""pixel_values""": videos} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
350
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @slow @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) UpperCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase : Tuple = bertabert.config.encoder.vocab_size UpperCAmelCase : int = tokenizer.sep_token_id UpperCAmelCase : Dict = tokenizer.cls_token_id UpperCAmelCase : int = 128 UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) UpperCAmelCase : Optional[int] = train_dataset.select(range(32 ) ) UpperCAmelCase : int = val_dataset.select(range(16 ) ) UpperCAmelCase : List[str] = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase : str = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) UpperCAmelCase : str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=128 ) UpperCAmelCase : Optional[Any] = inputs.input_ids UpperCAmelCase : Union[str, Any] = inputs.attention_mask UpperCAmelCase : Union[str, Any] = outputs.input_ids UpperCAmelCase : Any = outputs.input_ids.copy() UpperCAmelCase : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] UpperCAmelCase : List[Any] = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = pred.label_ids UpperCAmelCase : Tuple = pred.predictions # all unnecessary tokens are removed UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase : List[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) UpperCAmelCase : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase : Dict = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy="""steps""" , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase : List[str] = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
76
0
'''simple docstring''' def snake_case ( UpperCAmelCase , UpperCAmelCase )-> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
161
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase_ = random.Random() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: """simple docstring""" if rng is None: snake_case_ : str = global_rng snake_case_ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=400 , __magic_name__=2000 , __magic_name__=10 , __magic_name__=160 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=4000 , __magic_name__=False , __magic_name__=True , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : str = batch_size snake_case_ : Union[str, Any] = min_seq_length snake_case_ : Tuple = max_seq_length snake_case_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : Optional[int] = padding_value snake_case_ : Union[str, Any] = sampling_rate snake_case_ : Optional[int] = return_attention_mask snake_case_ : str = do_normalize snake_case_ : str = feature_size snake_case_ : Optional[Any] = chunk_length snake_case_ : Union[str, Any] = hop_length def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase (self , __magic_name__=False , __magic_name__=False ) -> Optional[Any]: '''simple docstring''' def _flatten(__magic_name__ ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: snake_case_ : int = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : str = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = WhisperFeatureExtractionTester(self ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Union[str, Any] = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) snake_case_ : List[Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) snake_case_ : Optional[int] = feat_extract_first.to_dict() snake_case_ : Dict = feat_extract_second.to_dict() snake_case_ : List[str] = feat_extract_first.mel_filters snake_case_ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(__magic_name__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(__magic_name__ ) snake_case_ : Optional[int] = self.feature_extraction_class.from_json_file(__magic_name__ ) snake_case_ : int = feat_extract_first.to_dict() snake_case_ : Optional[int] = feat_extract_second.to_dict() snake_case_ : Union[str, Any] = feat_extract_first.mel_filters snake_case_ : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : str = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test feature size snake_case_ : str = feature_extractor(__magic_name__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features snake_case_ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test batched snake_case_ : int = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case_ : List[str] = np.asarray(__magic_name__ ) snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Dict = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test truncation required snake_case_ : Any = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] snake_case_ : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] snake_case_ : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ : Optional[Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated] snake_case_ : Any = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def lowerCamelCase (self ) -> int: '''simple docstring''' import torch snake_case_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa ) snake_case_ : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case_ : Optional[Any] = ds.sort('''id''' ).select(range(__magic_name__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : str = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on snake_case_ : List[Any] = self._load_datasamples(1 ) snake_case_ : Union[str, Any] = WhisperFeatureExtractor() snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1e-4 ) ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Optional[int] = self._load_datasamples(1 )[0] snake_case_ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue snake_case_ : Optional[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0] self.assertTrue(np.all(np.mean(__magic_name__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1e-3 ) )
279
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" _lowerCAmelCase : int = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) _lowerCAmelCase : int = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) _lowerCAmelCase : int = transform(UpperCamelCase_ ).unsqueeze(0 ).to(UpperCamelCase_ ) return image def _UpperCAmelCase (UpperCamelCase_ : List[str] ): '''simple docstring''' if "visual_encoder" in key: _lowerCAmelCase : Optional[int] = re.sub("""visual_encoder*""" , """vision_model.encoder""" , UpperCamelCase_ ) if "blocks" in key: _lowerCAmelCase : Union[str, Any] = re.sub(R"""blocks""" , """layers""" , UpperCamelCase_ ) if "attn" in key: _lowerCAmelCase : Any = re.sub(R"""attn""" , """self_attn""" , UpperCamelCase_ ) if "norm1" in key: _lowerCAmelCase : Dict = re.sub(R"""norm1""" , """layer_norm1""" , UpperCamelCase_ ) if "norm2" in key: _lowerCAmelCase : List[str] = re.sub(R"""norm2""" , """layer_norm2""" , UpperCamelCase_ ) if "encoder.norm" in key: _lowerCAmelCase : Optional[int] = re.sub(R"""encoder.norm""" , """post_layernorm""" , UpperCamelCase_ ) if "encoder.patch_embed.proj" in key: _lowerCAmelCase : Optional[int] = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , UpperCamelCase_ ) if "encoder.pos_embed" in key: _lowerCAmelCase : Optional[Any] = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , UpperCamelCase_ ) if "encoder.cls_token" in key: _lowerCAmelCase : Optional[int] = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , UpperCamelCase_ ) if "self_attn" in key: _lowerCAmelCase : List[Any] = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , UpperCamelCase_ ) return key @torch.no_grad() def _UpperCAmelCase (UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]=None ): '''simple docstring''' if config_path is not None: _lowerCAmelCase : Any = BlipConfig.from_pretrained(UpperCamelCase_ ) else: _lowerCAmelCase : Optional[int] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) _lowerCAmelCase : Optional[Any] = BlipForConditionalGeneration(UpperCamelCase_ ).eval() _lowerCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" _lowerCAmelCase : Optional[Any] = blip_decoder(pretrained=UpperCamelCase_ , image_size=384 , vit="""base""" ) _lowerCAmelCase : Optional[Any] = pt_model.eval() _lowerCAmelCase : List[Any] = pt_model.state_dict() for key in modified_state_dict.copy(): _lowerCAmelCase : Optional[Any] = modified_state_dict.pop(UpperCamelCase_ ) _lowerCAmelCase : int = rename_key(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = value hf_model.load_state_dict(UpperCamelCase_ ) _lowerCAmelCase : List[Any] = 384 _lowerCAmelCase : Tuple = load_demo_image(image_size=UpperCamelCase_ , device="""cpu""" ) _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _lowerCAmelCase : Tuple = tokenizer(["""a picture of"""] ).input_ids _lowerCAmelCase : Union[str, Any] = hf_model.generate(UpperCamelCase_ , UpperCamelCase_ ) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] _lowerCAmelCase : Optional[Any] = hf_model.generate(UpperCamelCase_ ) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(UpperCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _lowerCAmelCase : Optional[Any] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) _lowerCAmelCase : Any = blip_vqa(pretrained=UpperCamelCase_ , image_size=UpperCamelCase_ , vit="""base""" ) vqa_model.eval() _lowerCAmelCase : Dict = vqa_model.state_dict() for key in modified_state_dict.copy(): _lowerCAmelCase : Optional[Any] = modified_state_dict.pop(UpperCamelCase_ ) _lowerCAmelCase : List[str] = rename_key(UpperCamelCase_ ) _lowerCAmelCase : List[str] = value _lowerCAmelCase : str = BlipForQuestionAnswering(UpperCamelCase_ ) hf_vqa_model.load_state_dict(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = ["""How many dogs are in this image?"""] _lowerCAmelCase : Optional[Any] = tokenizer(UpperCamelCase_ , return_tensors="""pt""" ).input_ids _lowerCAmelCase : int = hf_vqa_model.generate(UpperCamelCase_ , UpperCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) _lowerCAmelCase : Tuple = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" _lowerCAmelCase : List[str] = blip_itm(pretrained=UpperCamelCase_ , image_size=UpperCamelCase_ , vit="""base""" ) itm_model.eval() _lowerCAmelCase : str = itm_model.state_dict() for key in modified_state_dict.copy(): _lowerCAmelCase : List[Any] = modified_state_dict.pop(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = rename_key(UpperCamelCase_ ) _lowerCAmelCase : Tuple = value _lowerCAmelCase : List[str] = BlipForImageTextRetrieval(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = ["""A picture of a woman with a dog sitting in a beach"""] _lowerCAmelCase : Tuple = tokenizer( UpperCamelCase_ , return_tensors="""pt""" , padding="""max_length""" , truncation=UpperCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(UpperCamelCase_ ) hf_itm_model.eval() _lowerCAmelCase : Optional[Any] = hf_itm_model(UpperCamelCase_ , UpperCamelCase_ , use_itm_head=UpperCamelCase_ ) _lowerCAmelCase : Dict = hf_itm_model(UpperCamelCase_ , UpperCamelCase_ , use_itm_head=UpperCamelCase_ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") _lowerCamelCase : Any = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
159
def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : str = len(UpperCamelCase_ ) + 1 _lowerCAmelCase : List[Any] = len(UpperCamelCase_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _lowerCAmelCase : List[Any] = [[0 for i in range(UpperCamelCase_ )] for j in range(UpperCamelCase_ )] # since string of zero length match pattern of zero length _lowerCAmelCase : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , UpperCamelCase_ ): _lowerCAmelCase : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , UpperCamelCase_ ): _lowerCAmelCase : Tuple = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , UpperCamelCase_ ): for j in range(1 , UpperCamelCase_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _lowerCAmelCase : Dict = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _lowerCAmelCase : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _lowerCAmelCase : int = dp[i - 1][j] else: _lowerCAmelCase : List[str] = 0 else: _lowerCAmelCase : List[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _lowerCamelCase : Any = "aab" _lowerCamelCase : List[str] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
159
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = args.log_outputs __a = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric __a = load_metric('''wer''' ) __a = load_metric('''cer''' ) # compute metrics __a = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) __a = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results __a = f'WER: {wer_result}\nCER: {cer_result}' print(_UpperCAmelCase ) with open(f'{dataset_id}_eval_results.txt' , '''w''' ) as f: f.write(_UpperCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __a = f'log_{dataset_id}_predictions.txt' __a = f'log_{dataset_id}_targets.txt' with open(_UpperCAmelCase , '''w''' ) as p, open(_UpperCAmelCase , '''w''' ) as t: # mapping function to write output def write_to_file(_UpperCAmelCase , _UpperCAmelCase ): p.write(f'{i}' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f'{i}' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_UpperCAmelCase , with_indices=_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = '''[,?.!\-\;\:\"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __a = re.sub(_UpperCAmelCase , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __a = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: __a = ''' '''.join(text.split(_UpperCAmelCase ) ) return text def __snake_case ( _UpperCAmelCase ): # load dataset __a = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_UpperCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __a = AutoFeatureExtractor.from_pretrained(args.model_id ) __a = feature_extractor.sampling_rate # resample audio __a = dataset.cast_column('''audio''' , Audio(sampling_rate=_UpperCAmelCase ) ) # load eval pipeline if args.device is None: __a = 0 if torch.cuda.is_available() else -1 __a = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_UpperCAmelCase ): __a = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __a = prediction['''text'''] __a = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples __a = dataset.map(_UpperCAmelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": __snake_case :Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __snake_case :Tuple = parser.parse_args() main(args)
49
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( lowercase_ ): def __init__( self :int , __UpperCamelCase :Distribution , __UpperCamelCase :Dict=None , __UpperCamelCase :Optional[int]=None , __UpperCamelCase :List[str]=0 ): A = 1.0 if scale is None else scale A = 0.0 if loc is None else loc super().__init__(__UpperCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__UpperCamelCase )] ) @property def lowerCamelCase ( self :Any ): return self.base_dist.mean * self.scale + self.loc @property def lowerCamelCase ( self :Optional[int] ): return self.base_dist.variance * self.scale**2 @property def lowerCamelCase ( self :Dict ): return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): def __init__( self :Dict , __UpperCamelCase :int , __UpperCamelCase :Dict[str, int] , __UpperCamelCase :Callable[..., Tuple[torch.Tensor]] , **__UpperCamelCase :str ): super().__init__(**__UpperCamelCase ) A = args_dim A = nn.ModuleList([nn.Linear(__UpperCamelCase , __UpperCamelCase ) for dim in args_dim.values()] ) A = domain_map def lowerCamelCase ( self :int , __UpperCamelCase :torch.Tensor ): A = [proj(__UpperCamelCase ) for proj in self.proj] return self.domain_map(*__UpperCamelCase ) class _UpperCAmelCase ( nn.Module ): def __init__( self :Dict , __UpperCamelCase :int ): super().__init__() A = function def lowerCamelCase ( self :List[str] , __UpperCamelCase :Any , *__UpperCamelCase :Any ): return self.function(__UpperCamelCase , *__UpperCamelCase ) class _UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :Any , __UpperCamelCase :int = 1 ): A = dim A = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Dict ): if self.dim == 1: return self.distribution_class(*__UpperCamelCase ) else: return Independent(self.distribution_class(*__UpperCamelCase ) , 1 ) def lowerCamelCase ( self :int , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[torch.Tensor] = None , __UpperCamelCase :Optional[torch.Tensor] = None , ): A = self._base_distribution(__UpperCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(__UpperCamelCase , loc=__UpperCamelCase , scale=__UpperCamelCase , event_dim=self.event_dim ) @property def lowerCamelCase ( self :List[Any] ): return () if self.dim == 1 else (self.dim,) @property def lowerCamelCase ( self :Tuple ): return len(self.event_shape ) @property def lowerCamelCase ( self :int ): return 0.0 def lowerCamelCase ( self :str , __UpperCamelCase :int ): return ParameterProjection( in_features=__UpperCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowerCamelCase ( self :List[Any] , *__UpperCamelCase :torch.Tensor ): raise NotImplementedError() @staticmethod def lowerCamelCase ( __UpperCamelCase :torch.Tensor ): return (x + torch.sqrt(torch.square(__UpperCamelCase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"df": 1, "loc": 1, "scale": 1} UpperCamelCase = StudentT @classmethod def lowerCamelCase ( cls :List[str] , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) A = 2.0 + cls.squareplus(__UpperCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"loc": 1, "scale": 1} UpperCamelCase = Normal @classmethod def lowerCamelCase ( cls :List[Any] , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"total_count": 1, "logits": 1} UpperCamelCase = NegativeBinomial @classmethod def lowerCamelCase ( cls :str , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCamelCase ( self :Tuple , __UpperCamelCase :List[str] ): A, A = distr_args if self.dim == 1: return self.distribution_class(total_count=__UpperCamelCase , logits=__UpperCamelCase ) else: return Independent(self.distribution_class(total_count=__UpperCamelCase , logits=__UpperCamelCase ) , 1 ) def lowerCamelCase ( self :List[str] , __UpperCamelCase :str , __UpperCamelCase :Optional[torch.Tensor] = None , __UpperCamelCase :Optional[torch.Tensor] = None ): A, A = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
292
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) + 1 __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __SCREAMING_SNAKE_CASE = [[0 for i in range(UpperCamelCase_ )] for j in range(UpperCamelCase_ )] # since string of zero length match pattern of zero length __SCREAMING_SNAKE_CASE = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , UpperCamelCase_ ): for j in range(1 , UpperCamelCase_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __SCREAMING_SNAKE_CASE = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __SCREAMING_SNAKE_CASE = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __SCREAMING_SNAKE_CASE = dp[i - 1][j] else: __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __magic_name__ = "aab" __magic_name__ = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
255
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow __magic_name__ = False class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__=3_2): set_seed(0) __SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=lowerCAmelCase__ , in_channels=3 , out_channels=3) __SCREAMING_SNAKE_CASE = torch.optim.SGD(model.parameters() , lr=0.00_01) return model, optimizer @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=lowerCAmelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) __SCREAMING_SNAKE_CASE = [torch.randn((4, 3, 3_2, 3_2)).clip(-1 , 1).to(lowerCAmelCase__) for _ in range(4)] __SCREAMING_SNAKE_CASE = [torch.randn((4, 3, 3_2, 3_2)).to(lowerCAmelCase__) for _ in range(4)] __SCREAMING_SNAKE_CASE = [torch.randint(0 , 1_0_0_0 , (4,)).long().to(lowerCAmelCase__) for _ in range(4)] # train with a DDPM scheduler __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.get_model_optimizer(resolution=3_2) model.train().to(lowerCAmelCase__) for i in range(4): optimizer.zero_grad() __SCREAMING_SNAKE_CASE = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , timesteps[i]).sample __SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.get_model_optimizer(resolution=3_2) model.train().to(lowerCAmelCase__) for i in range(4): optimizer.zero_grad() __SCREAMING_SNAKE_CASE = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , timesteps[i]).sample __SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5)) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5))
255
1
'''simple docstring''' from __future__ import annotations from statistics import mean def _lowerCAmelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[0] * no_of_processes _SCREAMING_SNAKE_CASE =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =burst_time[i] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =-1 for i in range(_UpperCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _SCREAMING_SNAKE_CASE =i total_time += burst_time[target_process] completed += 1 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _lowerCAmelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int , _UpperCamelCase : list[int] ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[0] * no_of_processes for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") lowerCamelCase : Optional[Any] = 4 lowerCamelCase : List[str] = [2, 5, 3, 7] lowerCamelCase : int = [0, 0, 0, 0] lowerCamelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase : int = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
47
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _lowerCamelCase ( _lowercase ): def __init__(self , __a = None , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> Optional[Any]: UpperCamelCase = path_or_paths UpperCamelCase = split if split or isinstance(__a , __a ) else "train" UpperCamelCase = features UpperCamelCase = cache_dir UpperCamelCase = keep_in_memory UpperCamelCase = streaming UpperCamelCase = num_proc UpperCamelCase = kwargs @abstractmethod def snake_case_ (self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class _lowerCamelCase ( _lowercase ): def __init__(self , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> Any: UpperCamelCase = features UpperCamelCase = cache_dir UpperCamelCase = keep_in_memory UpperCamelCase = streaming UpperCamelCase = num_proc UpperCamelCase = kwargs @abstractmethod def snake_case_ (self ) -> Union[Dataset, IterableDataset]: pass
153
0
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Union[str, Any] = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) UpperCamelCase__ : int = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( ) -> List[Any]: """simple docstring""" A_ : Union[str, Any] = """https://pypi.org/pypi/diffusers/json""" A_ : Optional[int] = json.loads(request.urlopen(a_ ).read() )["""releases"""].keys() return sorted(a_ , key=lambda a_ : version.Version(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(a_ ) os.makedirs(a_ , exist_ok=a_ ) A_ : Dict = Path(a_ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" init_hf_modules() A_ : Tuple = Path(a_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a_ , exist_ok=a_ ) A_ : Optional[int] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" ) as f: A_ : int = f.read() # Imports of the form `import .xxx` A_ : Optional[int] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , a_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , a_ , flags=re.MULTILINE ) # Unique-ify return list(set(a_ ) ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" A_ : Optional[int] = False A_ : List[Any] = [module_file] A_ : int = [] # Let's recurse through all relative imports while not no_change: A_ : Optional[int] = [] for f in files_to_check: new_imports.extend(get_relative_imports(a_ ) ) A_ : str = Path(a_ ).parent A_ : Optional[int] = [str(module_path / m ) for m in new_imports] A_ : int = [f for f in new_import_files if f not in all_relative_imports] A_ : Optional[int] = [F"{f}.py" for f in new_import_files] A_ : Optional[Any] = len(a_ ) == 0 all_relative_imports.extend(a_ ) return all_relative_imports def UpperCAmelCase ( a_ ) -> int: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" ) as f: A_ : str = f.read() # Imports of the form `import xxx` A_ : Dict = re.findall("""^\s*import\s+(\S+)\s*$""" , a_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , a_ , flags=re.MULTILINE ) # Only keep the top-level module A_ : Optional[Any] = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all A_ : Dict = list(set(a_ ) ) A_ : Optional[Any] = [] for imp in imports: try: importlib.import_module(a_ ) except ImportError: missing_packages.append(a_ ) if len(a_ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(a_ )}. Run `pip install {' '.join(a_ )}`" ) return get_relative_imports(a_ ) def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : Tuple = module_path.replace(os.path.sep , """.""" ) A_ : Tuple = importlib.import_module(a_ ) if class_name is None: return find_pipeline_class(a_ ) return getattr(a_ , a_ ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" from ..pipelines import DiffusionPipeline A_ : List[str] = dict(inspect.getmembers(a_ , inspect.isclass ) ) A_ : Union[str, Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a_ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) A_ : Optional[Any] = cls return pipeline_class def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , ) -> List[Any]: """simple docstring""" A_ : List[str] = str(a_ ) A_ : Tuple = os.path.join(a_ , a_ ) if os.path.isfile(a_ ): A_ : int = module_file_or_url A_ : List[str] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: A_ : Optional[Any] = get_diffusers_versions() # cut ".dev0" A_ : Optional[Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: A_ : Dict = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: A_ : List[Any] = F"v{revision}" elif revision == "main": A_ : Union[str, Any] = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub A_ : int = COMMUNITY_PIPELINES_URL.format(revision=a_ , pipeline=a_ ) try: A_ : List[Any] = cached_download( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) A_ : List[str] = """git""" A_ : List[str] = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached A_ : Optional[Any] = hf_hub_download( a_ , a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) A_ : List[Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment A_ : Dict = check_imports(a_ ) # Now we move the module inside our cached dynamic modules. A_ : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a_ ) A_ : Optional[int] = Path(a_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a_ , submodule_path / module_file ) for module_needed in modules_needed: A_ : str = F"{module_needed}.py" shutil.copy(os.path.join(a_ , a_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a_ , a_ ): A_ : Any = use_auth_token elif use_auth_token is True: A_ : Dict = HfFolder.get_token() else: A_ : Tuple = None A_ : Any = model_info(a_ , revision=a_ , token=a_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A_ : List[str] = submodule_path / commit_hash A_ : Optional[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(a_ ) if not (submodule_path / module_file).exists(): shutil.copy(a_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a_ , F"{module_needed}.py" , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return os.path.join(a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , **a_ , ) -> Union[str, Any]: """simple docstring""" A_ : List[Any] = get_cached_module_file( a_ , a_ , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return get_class_in_module(a_ , final_module.replace(""".py""" , """""" ) )
164
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = ['''input_values''', '''attention_mask'''] def __init__( self , _lowerCamelCase = 1 , _lowerCamelCase = 1_6000 , _lowerCamelCase = 0.0 , _lowerCamelCase = False , _lowerCamelCase = 80 , _lowerCamelCase = 16 , _lowerCamelCase = 64 , _lowerCamelCase = "hann_window" , _lowerCamelCase = 1.0 , _lowerCamelCase = 80 , _lowerCamelCase = 7600 , _lowerCamelCase = 1e-10 , _lowerCamelCase = 2 , _lowerCamelCase = True , **_lowerCamelCase , ) -> List[Any]: super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase ) A_ : List[Any] = do_normalize A_ : Union[str, Any] = return_attention_mask A_ : Tuple = num_mel_bins A_ : List[str] = hop_length A_ : int = win_length A_ : Optional[int] = win_function A_ : List[Any] = frame_signal_scale A_ : str = fmin A_ : Optional[Any] = fmax A_ : Any = mel_floor A_ : Any = reduction_factor A_ : Tuple = win_length * sampling_rate // 1000 A_ : Dict = hop_length * sampling_rate // 1000 A_ : Dict = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 A_ : int = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCamelCase ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , _lowerCamelCase , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , _lowerCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: A_ : Dict = np.array(_lowerCamelCase , np.intaa ) A_ : Dict = [] for vector, length in zip(_lowerCamelCase , attention_mask.sum(-1 ) ): A_ : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: A_ : Any = padding_value normed_input_values.append(_lowerCamelCase ) else: A_ : List[str] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCAmelCase_ ( self , _lowerCamelCase , ) -> np.ndarray: A_ : int = spectrogram( _lowerCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: A_ : Dict = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) else: A_ : Optional[int] = None if audio_target is not None: A_ : Union[str, Any] = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) if inputs is None: return inputs_target else: A_ : Optional[int] = inputs_target["""input_values"""] A_ : Tuple = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: A_ : int = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> BatchFeature: A_ : Optional[int] = isinstance(_lowerCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) A_ : List[str] = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : Union[str, Any] = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): A_ : List[str] = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A_ : Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: A_ : int = [speech] # needed to make pad() work on spectrogram inputs A_ : List[Any] = self.feature_size # convert into correct format for padding if is_target: A_ : Tuple = [self._extract_mel_features(_lowerCamelCase ) for waveform in speech] A_ : Tuple = BatchFeature({"""input_values""": features} ) A_ : Dict = self.num_mel_bins else: A_ : Union[str, Any] = BatchFeature({"""input_values""": speech} ) A_ : Tuple = self.pad( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) A_ : Union[str, Any] = feature_size_hack # convert input values to correct format A_ : str = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): A_ : str = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_lowerCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A_ : Tuple = [array.astype(np.floataa ) for array in input_values] elif isinstance(_lowerCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A_ : List[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format A_ : Any = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: A_ : str = [np.asarray(_lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A_ : Any = ( attention_mask if self._get_padding_strategies(_lowerCamelCase , max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) A_ : Any = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=_lowerCamelCase , padding_value=self.padding_value ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs def UpperCAmelCase_ ( self ) -> Dict[str, Any]: A_ : List[Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. A_ : Optional[int] = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
164
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(_a ): print(F"""{i}\t\t{d}""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' for j in range(_a ): UpperCAmelCase = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase = [float('''inf''' )] * vertex_count UpperCAmelCase = 0.0 for _ in range(vertex_count - 1 ): for j in range(_a ): UpperCAmelCase = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCAmelCase = distance[u] + w UpperCAmelCase = check_negative_cycle(_a , _a , _a ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = int(input("Enter number of vertices: ").strip()) __A : Any = int(input("Enter number of edges: ").strip()) __A : str = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __A , __A , __A : Any = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __A : Any = {"src": src, "dst": dest, "weight": weight} __A : List[str] = int(input("\nEnter shortest path source:").strip()) __A : Tuple = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
273
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , a : int , a : Optional[int]=13 , a : Optional[int]=3 , a : int=224 , a : Optional[int]=30 , a : int=400 , a : Union[str, Any]=True , a : int=None , a : Tuple=True , a : Tuple=[0.5, 0.5, 0.5] , a : Optional[int]=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = size if size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : str = max_resolution SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : int = do_normalize SCREAMING_SNAKE_CASE : Tuple = image_mean SCREAMING_SNAKE_CASE : Tuple = image_std def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ViTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = EfficientFormerImageProcessorTester(self ) @property def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" pass def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : str = image_processor(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processor(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
76
0
from math import factorial UpperCAmelCase_ = {str(d): factorial(d) for d in range(10)} def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(lowerCamelCase_ ) ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowerCamelCase_ ) if sum_of_digit_factorial(lowerCamelCase_ ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
367
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=1_4 , _lowerCAmelCase : Any=7 , _lowerCAmelCase : int=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple=9_9 , _lowerCAmelCase : Optional[int]=3_2 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : Union[str, Any]=3_7 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : List[Any]=5_1_2 , _lowerCAmelCase : List[Any]=0.02 , ) -> Any: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = rotary_dim snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = None snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 def lowerCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" snake_case_ = 2_0 snake_case_ = model_class_name(_lowerCAmelCase ) snake_case_ = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) snake_case_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) snake_case_ = model( input_ids[:, -1:] , attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_lowerCAmelCase , ) snake_case_ = model(_lowerCAmelCase ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" snake_case_ = 2_0 snake_case_ = model_class_name(_lowerCAmelCase ) snake_case_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) snake_case_ = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) snake_case_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) snake_case_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) @require_flax class __lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _SCREAMING_SNAKE_CASE = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case_ = FlaxGPTJModelTester(self ) def lowerCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @tooslow def lowerCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" snake_case_ = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) snake_case_ = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) snake_case_ = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) snake_case_ = False snake_case_ = model.config.eos_token_id snake_case_ = jax.jit(model.generate ) snake_case_ = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences snake_case_ = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) snake_case_ = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @is_pt_flax_cross_test def lowerCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ , snake_case_ = pt_inputs["input_ids"].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 snake_case_ = pt_model_class(_lowerCAmelCase ).eval() snake_case_ = model_class(_lowerCAmelCase , dtype=jnp.floataa ) snake_case_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase ) snake_case_ = fx_state with torch.no_grad(): snake_case_ = pt_model(**_lowerCAmelCase ).to_tuple() snake_case_ = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) snake_case_ = model_class.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase ) snake_case_ = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = pt_model_class(_lowerCAmelCase ).eval() snake_case_ = model_class(_lowerCAmelCase , dtype=jnp.floataa ) snake_case_ = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params ) snake_case_ , snake_case_ = pt_inputs["input_ids"].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): snake_case_ = pt_model(**_lowerCAmelCase ).to_tuple() snake_case_ = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) snake_case_ = pt_model_class.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase ) with torch.no_grad(): snake_case_ = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
159
import os def _lowerCAmelCase ( )->Union[str, Any]: '''simple docstring''' snake_case_ = os.path.dirname(os.path.realpath(lowerCAmelCase_ ) ) snake_case_ = os.path.join(lowerCAmelCase_ , "triangle.txt" ) with open(lowerCAmelCase_ ) as f: snake_case_ = f.readlines() snake_case_ = [] for line in triangle: snake_case_ = [] for number in line.strip().split(" " ): numbers_from_line.append(int(lowerCAmelCase_ ) ) a.append(lowerCAmelCase_ ) for i in range(1 , len(lowerCAmelCase_ ) ): for j in range(len(a[i] ) ): snake_case_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 snake_case_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCAmelCase_ , lowerCAmelCase_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
159
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : Optional[int] = '▁' _snake_case : int = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} _snake_case : Optional[Any] = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } _snake_case : List[str] = {'vinai/bartpho-syllable': 1024} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : int="</s>" , lowerCAmelCase_ : Union[str, Any]="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : int="<mask>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : int , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = monolingual_vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility __lowerCAmelCase = {} __lowerCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase_ ) not in self.fairseq_tokens_to_ids: __lowerCAmelCase = cnt cnt += 1 with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): __lowerCAmelCase = line.strip().split()[0] __lowerCAmelCase = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase_ ) not in self.fairseq_tokens_to_ids: __lowerCAmelCase = len(self.fairseq_tokens_to_ids ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ) -> Union[str, Any]: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , lowerCAmelCase_ : str ) -> List[str]: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return len(self.fairseq_ids_to_tokens ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self : int , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowercase ( self : Any , lowerCAmelCase_ : List[Any] ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> Tuple: return self.fairseq_ids_to_tokens[index] def lowercase ( self : List[str] , lowerCAmelCase_ : Any ) -> Union[str, Any]: __lowerCAmelCase = ''.join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , ' ' ).strip() return out_string def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(lowerCAmelCase_ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
355
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self : Union[str, Any] ) -> Any: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def lowercase ( self : Optional[Any] ) -> List[Any]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=1_0 , ) return model @property def lowercase ( self : Dict ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) __lowerCAmelCase = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __lowerCAmelCase = DDPMScheduler() __lowerCAmelCase = AudioDiffusionPipeline(vqvae=lowerCAmelCase_ , unet=self.dummy_unet , mel=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(4_2 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , steps=4 ) __lowerCAmelCase = output.audios[0] __lowerCAmelCase = output.images[0] __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(4_2 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , steps=4 , return_dict=lowerCAmelCase_ ) __lowerCAmelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __lowerCAmelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __lowerCAmelCase = DDIMScheduler() __lowerCAmelCase = self.dummy_vqvae_and_unet __lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) np.random.seed(0 ) __lowerCAmelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(4_2 ) __lowerCAmelCase = pipe(raw_audio=lowerCAmelCase_ , generator=lowerCAmelCase_ , start_step=5 , steps=1_0 ) __lowerCAmelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __lowerCAmelCase = self.dummy_unet_condition __lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowerCAmelCase_ , mel=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) np.random.seed(0 ) __lowerCAmelCase = torch.rand((1, 1, 1_0) ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , encoding=lowerCAmelCase_ ) __lowerCAmelCase = output.images[0] __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = torch_device __lowerCAmelCase = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(4_2 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ ) __lowerCAmelCase = output.audios[0] __lowerCAmelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
207
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase: Optional[Any] = logging.get_logger(__name__) _UpperCamelCase: int = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'switch_transformers' _lowerCamelCase = ['past_key_values'] _lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : List[Any], lowerCAmelCase : List[Any]=32128, lowerCAmelCase : Optional[Any]=768, lowerCAmelCase : Dict=64, lowerCAmelCase : Optional[Any]=2048, lowerCAmelCase : str=64, lowerCAmelCase : int=12, lowerCAmelCase : str=3, lowerCAmelCase : List[Any]=12, lowerCAmelCase : Union[str, Any]=3, lowerCAmelCase : Optional[int]=12, lowerCAmelCase : Optional[int]=8, lowerCAmelCase : Union[str, Any]=False, lowerCAmelCase : List[Any]=0.01, lowerCAmelCase : Tuple="float32", lowerCAmelCase : Optional[int]=False, lowerCAmelCase : Union[str, Any]=32, lowerCAmelCase : Optional[Any]=128, lowerCAmelCase : List[Any]=0.1, lowerCAmelCase : Optional[Any]=1e-6, lowerCAmelCase : str=0.001, lowerCAmelCase : str=0.001, lowerCAmelCase : List[str]=1.0, lowerCAmelCase : int="relu", lowerCAmelCase : Tuple=True, lowerCAmelCase : Any=False, lowerCAmelCase : Dict=True, lowerCAmelCase : List[Any]=0, lowerCAmelCase : List[Any]=1, **lowerCAmelCase : Any, ) -> List[str]: lowercase : List[str] = vocab_size lowercase : Tuple = d_model lowercase : Dict = d_kv lowercase : Union[str, Any] = d_ff lowercase : str = num_sparse_encoder_layers lowercase : Optional[int] = num_layers lowercase : Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase : int = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase : Any = self.num_layers // self.num_sparse_encoder_layers else: lowercase : Any = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase : List[str] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase : Dict = num_heads lowercase : Any = num_experts lowercase : List[str] = expert_capacity lowercase : Union[str, Any] = router_bias lowercase : Union[str, Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowercase : List[Any] = router_dtype lowercase : Optional[Any] = router_ignore_padding_tokens lowercase : str = relative_attention_num_buckets lowercase : Tuple = relative_attention_max_distance lowercase : str = dropout_rate lowercase : str = layer_norm_epsilon lowercase : Optional[int] = initializer_factor lowercase : Dict = feed_forward_proj lowercase : Tuple = use_cache lowercase : Optional[int] = add_router_probs lowercase : List[Any] = router_z_loss_coef lowercase : Optional[Any] = router_aux_loss_coef lowercase : List[str] = self.feed_forward_proj.split('-' ) lowercase : Dict = act_info[-1] lowercase : str = act_info[0] == 'gated' if len(lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase : Tuple = 'gelu_new' super().__init__( pad_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, is_encoder_decoder=lowerCAmelCase, **lowerCAmelCase, )
255
"""simple docstring""" from __future__ import annotations def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = None ) -> list[list[str]]: '''simple docstring''' lowercase : str = word_bank or [] # create a table lowercase : int = len(_UpperCAmelCase ) + 1 lowercase : list[list[list[str]]] = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowercase : int = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
255
1
'''simple docstring''' import argparse import os import re _lowercase : List[str] = "src/diffusers" # Pattern that looks at the indentation in a line. _lowercase : Union[str, Any] = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. _lowercase : str = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowercase : str = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. _lowercase : Optional[Any] = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowercase : str = re.compile(r"\[([^\]]+)\]") def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : Dict = _re_indent.search(__SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]="" , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=None ): """simple docstring""" lowercase_ : List[str] = 0 lowercase_ : List[str] = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(__SCREAMING_SNAKE_CASE ): index += 1 lowercase_ : int = ['''\n'''.join(lines[:index] )] else: lowercase_ : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase_ : Optional[int] = [lines[index]] index += 1 while index < len(__SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(__SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) if index < len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : Union[str, Any] = [lines[index + 1]] index += 1 else: lowercase_ : List[str] = [] else: blocks.append('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[int] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__SCREAMING_SNAKE_CASE ) > 0: blocks.append('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__SCREAMING_SNAKE_CASE ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" def _inner(__SCREAMING_SNAKE_CASE : Union[str, Any] ): return key(__SCREAMING_SNAKE_CASE ).lower().replace('''_''' , '''''' ) return _inner def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" def noop(__SCREAMING_SNAKE_CASE : Optional[int] ): return x if key is None: lowercase_ : Dict = noop # Constants are all uppercase, they go first. lowercase_ : List[Any] = [obj for obj in objects if key(__SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase_ : Tuple = [obj for obj in objects if key(__SCREAMING_SNAKE_CASE )[0].isupper() and not key(__SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowercase_ : Any = [obj for obj in objects if not key(__SCREAMING_SNAKE_CASE )[0].isupper()] lowercase_ : List[str] = ignore_underscore(__SCREAMING_SNAKE_CASE ) return sorted(__SCREAMING_SNAKE_CASE , key=__SCREAMING_SNAKE_CASE ) + sorted(__SCREAMING_SNAKE_CASE , key=__SCREAMING_SNAKE_CASE ) + sorted(__SCREAMING_SNAKE_CASE , key=__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" def _replace(__SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Any = match.groups()[0] if "," not in imports: return F'''[{imports}]''' lowercase_ : Union[str, Any] = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ : int = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(__SCREAMING_SNAKE_CASE )] ) + "]" lowercase_ : List[Any] = import_statement.split('''\n''' ) if len(__SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase_ : Tuple = 2 if lines[1].strip() == '''[''' else 1 lowercase_ : int = [(i, _re_strip_line.search(__SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase_ : Union[str, Any] = sort_objects(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x[1] ) lowercase_ : List[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase_ : List[str] = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase_ : List[str] = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ : int = keys[:-1] lowercase_ : Optional[Any] = get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(__SCREAMING_SNAKE_CASE )] ) return "\n".join(__SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowercase_ : int = _re_bracket_content.sub(_replace , __SCREAMING_SNAKE_CASE ) return import_statement def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=True ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase_ : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase_ : Any = split_code_in_indented_blocks( __SCREAMING_SNAKE_CASE , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase_ : Optional[Any] = main_blocks[block_idx] lowercase_ : str = block.split('''\n''' ) # Get to the start of the imports. lowercase_ : Any = 0 while line_idx < len(__SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase_ : int = len(__SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(__SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowercase_ : Any = '''\n'''.join(block_lines[line_idx:-1] ) lowercase_ : List[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase_ : Optional[Any] = split_code_in_indented_blocks(__SCREAMING_SNAKE_CASE , indent_level=__SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase_ : Optional[Any] = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase_ : str = [(pattern.search(__SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(__SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase_ : List[str] = [(i, key) for i, key in enumerate(__SCREAMING_SNAKE_CASE ) if key is not None] lowercase_ : List[str] = [x[0] for x in sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase_ : Dict = 0 lowercase_ : Optional[Any] = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowercase_ : int = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowercase_ : Tuple = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__SCREAMING_SNAKE_CASE ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int]=True ): """simple docstring""" lowercase_ : Union[str, Any] = [] for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowercase_ : Union[str, Any] = sort_imports(os.path.join(__SCREAMING_SNAKE_CASE , '''__init__.py''' ) , check_only=__SCREAMING_SNAKE_CASE ) if result: lowercase_ : List[Any] = [os.path.join(__SCREAMING_SNAKE_CASE , '''__init__.py''' )] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F'''Would overwrite {len(__SCREAMING_SNAKE_CASE )} files, run `make style`.''' ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _lowercase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
264
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = num_of_nodes lowercase_ : list[list[int]] = [] lowercase_ : dict[int, int] = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase_ : Optional[int] = self.find_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase_ : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(__SCREAMING_SNAKE_CASE ) elif component_size[u_node] >= component_size[v_node]: lowercase_ : int = self.find_component(__SCREAMING_SNAKE_CASE ) component_size[u_node] += component_size[v_node] self.set_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = [] lowercase_ : Optional[Any] = 0 lowercase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase_ : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase_ , lowercase_ , lowercase_ : List[Any] = edge lowercase_ : Dict = self.m_component[u] lowercase_ : Any = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase_ : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ , lowercase_ : str = edge lowercase_ : Tuple = self.m_component[u] lowercase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 lowercase_ : str = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
264
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __A = logging.getLogger() def _A ( ): lowercase__ = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowercase__ = parser.parse_args() return args.f class A ( __UpperCAmelCase ): def A__ ( self ) -> None: '''simple docstring''' lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase__ , 0.6_66 ) @slow @require_torch_non_multi_gpu def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(lowerCamelCase__ ) lowercase__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCamelCase__ ) lowercase__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCamelCase__ )
164
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __A = "sshleifer/mar_enro_6_3_student" class A ( __UpperCAmelCase ): def A__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() lowercase__ = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowerCamelCase__ , ) lowercase__ = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def A__ ( self ) -> str: '''simple docstring''' MarianMTModel.from_pretrained(lowerCamelCase__ ) @slow @require_torch_gpu def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script lowercase__ = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() lowercase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(lowerCamelCase__ , str(lowerCamelCase__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase__ = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase__ = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(lowerCamelCase__ ) lowercase__ = SummarizationModule.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ = parser.parse_args() lowercase__ = main(lowerCamelCase__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics["""val"""][0] lowercase__ = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , lowerCamelCase__ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(lowerCamelCase__ ) lowercase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] lowercase__ = os.path.join(args.output_dir , lowerCamelCase__ ) lowercase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowercase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class A ( __UpperCAmelCase ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' lowercase__ = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script lowercase__ = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) lowercase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) lowercase__ = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(lowerCamelCase__ , str(lowerCamelCase__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = bash_script.replace("""--fp16""" , """""" ) lowercase__ = 6 lowercase__ = ( ["""distillation.py"""] + bash_script.split() + [ F'''--output_dir={output_dir}''', """--gpus=1""", """--learning_rate=1e-3""", F'''--num_train_epochs={epochs}''', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(lowerCamelCase__ ) lowercase__ = SummarizationDistiller.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase__ = distill_main(lowerCamelCase__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics["""val"""][0] lowercase__ = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , lowerCamelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(lowerCamelCase__ ) lowercase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] lowercase__ = os.path.join(args.output_dir , lowerCamelCase__ ) lowercase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowercase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
164
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase : int ): _A : Optional[int] = [True] * limit _A : Any = False _A : Optional[int] = False _A : Tuple = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): _A : Dict = i * 2 while index < limit: _A : List[Any] = False _A : Optional[int] = index + i _A : Optional[int] = [2] for i in range(3 ,lowerCamelCase ,2 ): if is_prime[i]: primes.append(lowerCamelCase ) return primes def lowerCAmelCase__ ( lowerCamelCase : int = 1000000 ): _A : List[str] = prime_sieve(lowerCamelCase ) _A : Any = 0 _A : str = 0 for i in range(len(lowerCamelCase ) ): for j in range(i + length ,len(lowerCamelCase ) ): _A : List[str] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _A : Tuple = j - i _A : Any = sol return largest if __name__ == "__main__": print(f"""{solution() = }""")
227
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCamelCase ( a_ ): """simple docstring""" a = 42 a = None def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : Tuple=0.999 ,lowerCamelCase : int="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _A : Tuple = [] for i in range(lowerCamelCase ): _A : Optional[Any] = i / num_diffusion_timesteps _A : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) ,lowerCamelCase ) ) return torch.tensor(lowerCamelCase ,dtype=torch.floataa ) class __lowerCamelCase ( a_ , a_ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Tuple , SCREAMING_SNAKE_CASE : int = 1000 , SCREAMING_SNAKE_CASE : float = 0.0001 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : float = 1.0 , **SCREAMING_SNAKE_CASE : List[str] , ): if kwargs.get('set_alpha_to_one' , SCREAMING_SNAKE_CASE) is not None: _A : Tuple = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE) _A : Tuple = kwargs['set_alpha_to_one'] if trained_betas is not None: _A : Any = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "linear": _A : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : List[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}') _A : Optional[int] = 1.0 - self.betas _A : Union[str, Any] = torch.cumprod(self.alphas , dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _A : Optional[int] = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _A : Union[str, Any] = 1.0 # setable values _A : List[str] = None _A : Dict = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE).copy().astype(np.intaa)) def A ( self : str , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Optional[int] = None): return sample def A ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.') _A : Optional[Any] = num_inference_steps _A : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : List[str] = (np.arange(0 , SCREAMING_SNAKE_CASE) * step_ratio).round().copy().astype(np.intaa) _A : int = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) self.timesteps += self.config.steps_offset def A ( self : List[Any] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : bool = True , ): # 1. get previous step value (=t+1) _A : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _A : List[str] = self.alphas_cumprod[timestep] _A : List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _A : List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _A : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _A : List[Any] = model_output elif self.config.prediction_type == "sample": _A : List[Any] = model_output _A : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _A : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _A : Optional[int] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ' `v_prediction`') # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _A : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , pred_original_sample=SCREAMING_SNAKE_CASE) def __len__( self : List[Any]): return self.config.num_train_timesteps
227
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowercase__ : def __init__( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : str = {} def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : List[Any] = {} def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : float ): '''simple docstring''' if nodea not in self.connections: self.add_node(lowerCamelCase__ ) if nodea not in self.connections: self.add_node(lowerCamelCase__ ) _UpperCamelCase : str = probability def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return list(self.connections ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = Counter(graph.get_nodes() ) _UpperCamelCase : Dict = start for _ in range(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = graph.transition(UpperCAmelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
83
from __future__ import annotations def lowercase__ ( __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position UpperCAmelCase_ : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : Optional[Any] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase__ ( __snake_case : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase__ ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = position if board[y][x] == 0: UpperCAmelCase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True UpperCAmelCase_ : List[Any] = 0 return False def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): UpperCAmelCase_ : Optional[Any] = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[str] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
83
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class snake_case__ : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : MutableSequence[float] ) -> None: """simple docstring""" if len(UpperCamelCase__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) snake_case : list[float] = list(UpperCamelCase__ ) snake_case : int = degree def __add__( self : int , UpperCamelCase__ : Polynomial ) -> Polynomial: """simple docstring""" if self.degree > polynomial_a.degree: snake_case : Tuple = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , UpperCamelCase__ ) else: snake_case : List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , UpperCamelCase__ ) def __sub__( self : Tuple , UpperCamelCase__ : Polynomial ) -> Polynomial: """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : int ) -> Polynomial: """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Union[str, Any] , UpperCamelCase__ : Polynomial ) -> Polynomial: """simple docstring""" snake_case : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : int | float ) -> int | float: """simple docstring""" snake_case : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Dict ) -> str: """simple docstring""" snake_case : List[Any] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCamelCase__ ) return polynomial def __repr__( self : List[str] ) -> str: """simple docstring""" return self.__str__() def lowerCAmelCase ( self : Any ) -> Polynomial: """simple docstring""" snake_case : list[float] = [0] * self.degree for i in range(self.degree ): snake_case : Dict = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , UpperCamelCase__ ) def lowerCAmelCase ( self : int , UpperCamelCase__ : int | float = 0 ) -> Polynomial: """simple docstring""" snake_case : list[float] = [0] * (self.degree + 2) snake_case : Union[str, Any] = constant for i in range(self.degree + 1 ): snake_case : Optional[int] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , UpperCamelCase__ ) def __eq__( self : Any , UpperCamelCase__ : object ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Union[str, Any] , UpperCamelCase__ : object ) -> bool: """simple docstring""" return not self.__eq__(UpperCamelCase__ )
83
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class a ( A__ ): UpperCAmelCase_ : List[str] ="cvt" def __init__( self , _lowerCamelCase=3 , _lowerCamelCase=[7, 3, 3] , _lowerCamelCase=[4, 2, 2] , _lowerCamelCase=[2, 1, 1] , _lowerCamelCase=[6_4, 1_9_2, 3_8_4] , _lowerCamelCase=[1, 3, 6] , _lowerCamelCase=[1, 2, 1_0] , _lowerCamelCase=[4.0, 4.0, 4.0] , _lowerCamelCase=[0.0, 0.0, 0.0] , _lowerCamelCase=[0.0, 0.0, 0.0] , _lowerCamelCase=[0.0, 0.0, 0.1] , _lowerCamelCase=[True, True, True] , _lowerCamelCase=[False, False, True] , _lowerCamelCase=["dw_bn", "dw_bn", "dw_bn"] , _lowerCamelCase=[3, 3, 3] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) lowercase = num_channels lowercase = patch_sizes lowercase = patch_stride lowercase = patch_padding lowercase = embed_dim lowercase = num_heads lowercase = depth lowercase = mlp_ratio lowercase = attention_drop_rate lowercase = drop_rate lowercase = drop_path_rate lowercase = qkv_bias lowercase = cls_token lowercase = qkv_projection_method lowercase = kernel_qkv lowercase = padding_kv lowercase = stride_kv lowercase = padding_q lowercase = stride_q lowercase = initializer_range lowercase = layer_norm_eps
220
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = """pixel_values""" lowercase__ = False lowercase__ = TimmBackboneConfig def __init__( self : Tuple, lowerCamelCase : List[str], **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(self, '''timm''' ) super().__init__(lowerCamelCase ) lowercase__ = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase, '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowercase__ = getattr(lowerCamelCase, '''use_pretrained_backbone''', lowerCamelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowercase__ = config.out_indices if getattr(lowerCamelCase, '''out_indices''', lowerCamelCase ) is not None else (-1,) lowercase__ = timm.create_model( config.backbone, pretrained=lowerCamelCase, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCamelCase, **lowerCamelCase, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase__ = self._backbone.return_layers lowercase__ = {layer['''module''']: str(lowerCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase ) @classmethod def lowercase__ ( cls : List[str], lowerCamelCase : List[str], *lowerCamelCase : Optional[int], **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowercase__ = kwargs.pop('''config''', TimmBackboneConfig() ) lowercase__ = kwargs.pop('''use_timm_backbone''', lowerCamelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowercase__ = kwargs.pop('''num_channels''', config.num_channels ) lowercase__ = kwargs.pop('''features_only''', config.features_only ) lowercase__ = kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone ) lowercase__ = kwargs.pop('''out_indices''', config.out_indices ) lowercase__ = TimmBackboneConfig( backbone=lowerCamelCase, num_channels=lowerCamelCase, features_only=lowerCamelCase, use_pretrained_backbone=lowerCamelCase, out_indices=lowerCamelCase, ) return super()._from_config(lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : Optional[int]=None, lowerCamelCase : List[Any]=None, lowerCamelCase : int=None, **lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase__ = self._all_layers lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = self._return_layers lowercase__ = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = None lowercase__ = tuple(lowerCamelCase ) lowercase__ = tuple(lowerCamelCase ) if hidden_states is not None else None if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: lowercase__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase, hidden_states=lowerCamelCase, attentions=lowerCamelCase )
207
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _lowercase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Optional[Any] , _lowercase : Union[str, Any] ): if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def a ( self : Optional[int] , _lowercase : Dict ): __UpperCAmelCase = self.get_masked_index(__a ) __UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def a ( self : List[str] , _lowercase : Optional[int] ): if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def a ( self : int , _lowercase : Optional[Any] , _lowercase : Optional[Any]=None , **_lowercase : Any ): if return_tensors is None: __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def a ( self : Optional[int] , _lowercase : Optional[Any] ): __UpperCAmelCase = self.model(**__a ) __UpperCAmelCase = model_inputs['''input_ids'''] return model_outputs def a ( self : List[str] , _lowercase : str , _lowercase : str=5 , _lowercase : List[Any]=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __UpperCAmelCase = target_ids.shape[0] __UpperCAmelCase = model_outputs['''input_ids'''][0] __UpperCAmelCase = model_outputs['''logits'''] if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __UpperCAmelCase = outputs.numpy() __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = stable_softmax(__a , axis=-1 ) if target_ids is not None: __UpperCAmelCase = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) __UpperCAmelCase = tf.expand_dims(__a , 0 ) __UpperCAmelCase = tf.math.top_k(__a , k=__a ) __UpperCAmelCase , __UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __UpperCAmelCase = probs[..., target_ids] __UpperCAmelCase , __UpperCAmelCase = probs.topk(__a ) __UpperCAmelCase = [] __UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __UpperCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: __UpperCAmelCase = target_ids[p].tolist() __UpperCAmelCase = p # Filter padding out: __UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __UpperCAmelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) __UpperCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def a ( self : Any , _lowercase : Dict , _lowercase : List[Any]=None ): if isinstance(__a , __a ): __UpperCAmelCase = [targets] try: __UpperCAmelCase = self.tokenizer.get_vocab() except Exception: __UpperCAmelCase = {} __UpperCAmelCase = [] for target in targets: __UpperCAmelCase = vocab.get(__a , __a ) if id_ is None: __UpperCAmelCase = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )['''input_ids'''] if len(__a ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue __UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __UpperCAmelCase = list(set(__a ) ) if len(__a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __UpperCAmelCase = np.array(__a ) return target_ids def a ( self : List[str] , _lowercase : str=None , _lowercase : List[str]=None ): __UpperCAmelCase = {} if targets is not None: __UpperCAmelCase = self.get_target_ids(__a , __a ) __UpperCAmelCase = target_ids if top_k is not None: __UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Dict , _lowercase : List[Any] , *_lowercase : int , **_lowercase : List[str] ): __UpperCAmelCase = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
361
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowercase : List[Any] = TypeVar('T') class _UpperCAmelCase ( Generic[T] ): a__ : deque[T] # Cache store of keys a__ : set[T] # References of the keys in cache a__ : int = 10 # Maximum capacity of cache def __init__( self : Optional[Any] , _lowercase : int ): __UpperCAmelCase = deque() __UpperCAmelCase = set() if not n: __UpperCAmelCase = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __UpperCAmelCase = n def a ( self : Optional[Any] , _lowercase : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCAmelCase = self.dq_store.pop() self.key_reference.remove(_lowercase ) else: self.dq_store.remove(_lowercase ) self.dq_store.appendleft(_lowercase ) self.key_reference.add(_lowercase ) def a ( self : str ): for k in self.dq_store: print(_lowercase ) def __repr__( self : Dict ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
86
0
"""simple docstring""" def __lowercase ( _a , _a ): snake_case_ : str = word.split() def justify(_a , _a , _a ) -> str: snake_case_ : List[str] = max_width - width snake_case_ : str = len(_a ) if len(_a ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case_ : Dict = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case_ : Any = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case_ : List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_a ): num_spaces_between_words_list[i] += 1 snake_case_ : int = [] for i in range(_a ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_a ) snake_case_ : Any = [] snake_case_ : list[str] = [] snake_case_ : List[Any] = 0 for word in words: if width + len(_a ) + len(_a ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_a ) width += len(_a ) else: # justify the line and add it to result answer.append(justify(_a , _a , _a ) ) # reset new line and new width snake_case_, snake_case_ : List[Any] = [word], len(_a ) snake_case_ : int = max_width - width - len(_a ) answer.append(''' '''.join(_a ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
264
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int=13 , lowercase_ : Optional[int]=7 , lowercase_ : Any=True , lowercase_ : Dict=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : str=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Any=37 , lowercase_ : Tuple="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[Any]=16 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[Any]=None , ): snake_case_ : Any = parent snake_case_ : List[str] = batch_size snake_case_ : List[Any] = seq_length snake_case_ : Optional[int] = is_training snake_case_ : Union[str, Any] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Union[str, Any] = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : int = type_vocab_size snake_case_ : Tuple = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : Tuple = num_labels snake_case_ : str = num_choices snake_case_ : Any = scope snake_case_ : Dict = self.vocab_size - 1 def _snake_case ( self : int ): snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = None if self.use_token_type_ids: snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : str = None snake_case_ : Dict = None snake_case_ : str = None if self.use_labels: snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : int = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case_ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , *lowercase_ : Dict ): snake_case_ : List[Any] = OpenAIGPTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Any = model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ ) snake_case_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ ) snake_case_ : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , *lowercase_ : Optional[Any] ): snake_case_ : Union[str, Any] = OpenAIGPTLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Union[str, Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict , *lowercase_ : Union[str, Any] ): snake_case_ : Tuple = OpenAIGPTDoubleHeadsModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Dict = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Any , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , *lowercase_ : Any ): snake_case_ : int = self.num_labels snake_case_ : Any = OpenAIGPTForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): snake_case_ : Dict = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) : str = config_and_inputs snake_case_ : str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _lowerCAmelCase : int = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _lowerCAmelCase : Union[str, Any] = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str]=False ): snake_case_ : Dict = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ , ) snake_case_ : int = inputs_dict['''labels'''] snake_case_ : Optional[Any] = inputs_dict['''labels'''] snake_case_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase_ , ) snake_case_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def _snake_case ( self : Any ): snake_case_ : List[str] = OpenAIGPTModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def _snake_case ( self : List[str] ): self.config_tester.run_common_tests() def _snake_case ( self : Optional[Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) def _snake_case ( self : int ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ ) @slow def _snake_case ( self : Dict ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = OpenAIGPTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : Optional[int] ): snake_case_ : Optional[Any] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowercase_ ) snake_case_ : List[str] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase_ ) # the president is snake_case_ : List[Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case_ : Optional[Any] = model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() , lowercase_ )
264
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
357
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) _lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowercase = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _lowercase = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A (__lowerCamelCase :str ): _lowerCAmelCase = None # source code of `config_class` _lowerCAmelCase = inspect.getsource(__lowerCamelCase ) _lowerCAmelCase = _re_checkpoint.findall(__lowerCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): _lowerCAmelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _lowerCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _lowerCAmelCase = ckpt_name break return checkpoint def A (): _lowerCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _lowerCAmelCase = get_checkpoint_from_config_class(__lowerCamelCase ) _lowerCAmelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: _lowerCAmelCase = """\n""".join(sorted(__lowerCamelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
229
0
from math import pow, sqrt def a( *A : float ) -> bool: """simple docstring""" a = len(A ) > 0 and all(value > 0.0 for value in values ) return result def a( A : float , A : float ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A , A ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def a( A : float , A : float , A : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A , A , A ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def a( A : float , A : float , A : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A , A , A ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def a( A : float , A : float , A : float ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(A , A , A ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def a( A : float , A : float , A : float ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(A , A , A ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
227
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _lowercase: Optional[int] = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _lowercase: Dict = 10 _lowercase: Optional[Any] = 256 def a( A : List[str] ) -> Optional[MinHash]: """simple docstring""" if len(A ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=A ) for token in set(A ): min_hash.update(token.encode() ) return min_hash def a( A : str ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(A ) if len(t.strip() ) > 0} class _lowercase : """simple docstring""" def __init__(self , *, lowerCamelCase_ = 0.85 , ): """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self._index.query(lowerCamelCase_ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCamelCase_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(lowerCamelCase_ ) # reformat the cluster to be a list of dict a = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(lowerCamelCase_ ) return duplicate_clusters def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.get_duplicate_clusters() with open(lowerCamelCase_ , "w" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def a( A : Any ) -> List[Any]: """simple docstring""" a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def a( A : Type[Dataset] ) -> List[Any]: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(A , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def a( A : Type[Dataset] , A : float ) -> Dict: """simple docstring""" a = DuplicationIndex(duplication_jaccard_threshold=A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(A ) ) , max_queue_size=100 ) ): di.add(A , A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def a( A : str , A : str ) -> float: """simple docstring""" a = get_tokens(A ) a = get_tokens(A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _lowercase: int = None def a( A : str , A : Tuple ) -> int: """simple docstring""" a = [] for elementa in cluster: a = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: a = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(A , A ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(A ) return extremes def a( A : str , A : List[str] , A : int ) -> Tuple: """simple docstring""" global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( A , A , ) , total=len(A ) , ): extremes_list.append(A ) return extremes_list def a( A : Type[Dataset] , A : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" a = make_duplicate_clusters(A , A ) a = {x["base_index"] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(A , A , A ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda A , A : idx not in remove_indices , with_indices=A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element["base_index"] in extreme_dict if element["is_extreme"]: a = extreme_dict[element["base_index"]]["copies"] print(f'''Original dataset size: {len(A )}''' ) print(f'''Number of duplicate clusters: {len(A )}''' ) print(f'''Files in duplicate cluster: {len(A )}''' ) print(f'''Unique files in duplicate cluster: {len(A )}''' ) print(f'''Filtered dataset size: {len(A )}''' ) return ds_filter, duplicate_clusters
227
1
import os from collections import deque import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_="", SCREAMING_SNAKE_CASE_="train" ) -> Tuple: assert os.path.isdir(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = [] UpperCamelCase : str = os.listdir(SCREAMING_SNAKE_CASE_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCamelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if not os.path.isfile(SCREAMING_SNAKE_CASE_ ): continue self.documents.append(SCREAMING_SNAKE_CASE_ ) def __len__( self ) -> List[Any]: return len(self.documents ) def __getitem__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = self.documents[idx] UpperCamelCase : Tuple = document_path.split('/' )[-1] with open(SCREAMING_SNAKE_CASE_, encoding='utf-8' ) as source: UpperCamelCase : List[str] = source.read() UpperCamelCase : str = process_story(SCREAMING_SNAKE_CASE_ ) return document_name, story_lines, summary_lines def UpperCamelCase ( snake_case__ : int ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = list(filter(lambda snake_case__ : len(snake_case__ ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it UpperCamelCase : Any = [_add_missing_period(snake_case__ ) for line in nonempty_lines] # gather article lines UpperCamelCase : List[str] = [] UpperCamelCase : Union[str, Any] = deque(snake_case__ ) while True: try: UpperCamelCase : Tuple = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(snake_case__ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCamelCase : List[str] = list(filter(lambda snake_case__ : not t.startswith('@highlight' ) , snake_case__ ) ) return story_lines, summary_lines def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Optional[Any]: UpperCamelCase : Dict = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def UpperCamelCase ( snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : List[Any] ) -> Dict: if len(snake_case__ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(snake_case__ )) ) return sequence def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Tuple ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = torch.ones_like(snake_case__ ) UpperCamelCase : List[Any] = sequence == pad_token_id UpperCamelCase : List[str] = 0 return mask def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : Dict = [tokenizer.encode(snake_case__ ) for line in story_lines] UpperCamelCase : Any = [token for sentence in story_lines_token_ids for token in sentence] UpperCamelCase : Optional[int] = [tokenizer.encode(snake_case__ ) for line in summary_lines] UpperCamelCase : Any = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def UpperCamelCase ( snake_case__ : Any , snake_case__ : Dict ) -> str: UpperCamelCase : Tuple = [] for sequence in batch: UpperCamelCase : Optional[int] = -1 UpperCamelCase : Optional[int] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(snake_case__ ) return torch.tensor(snake_case__ )
363
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCAmelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase__ : List[str] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCAmelCase__ : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCAmelCase__ : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='pt' ) UpperCamelCase : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) UpperCamelCase : Dict = text_classifier('This is great !', top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}] ) UpperCamelCase : List[Any] = text_classifier(['This is great !', 'This is bad'], top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ], ) UpperCamelCase : List[Any] = text_classifier('This is great !', top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) # Legacy behavior UpperCamelCase : str = text_classifier('This is great !', return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) UpperCamelCase : Tuple = text_classifier('This is great !', return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]] ) UpperCamelCase : List[Any] = text_classifier(['This is great !', 'Something else'], return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ], ) UpperCamelCase : Optional[int] = text_classifier(['This is great !', 'Something else'], return_all_scores=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [ {'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_0', 'score': 0.5_04}, ], ) @require_torch def snake_case_ ( self ) -> Optional[Any]: import torch UpperCamelCase : str = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='pt', device=torch.device('cpu' ), ) UpperCamelCase : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) @require_tf def snake_case_ ( self ) -> Dict: UpperCamelCase : List[Any] = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='tf' ) UpperCamelCase : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'LABEL_0', 'score': 0.5_04}] ) @slow @require_torch def snake_case_ ( self ) -> int: UpperCamelCase : str = pipeline('text-classification' ) UpperCamelCase : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'POSITIVE', 'score': 1.0}] ) UpperCamelCase : List[str] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'NEGATIVE', 'score': 1.0}] ) UpperCamelCase : int = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'POSITIVE', 'score': 0.9_88}] ) @slow @require_tf def snake_case_ ( self ) -> Tuple: UpperCamelCase : int = pipeline('text-classification', framework='tf' ) UpperCamelCase : Tuple = text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'POSITIVE', 'score': 1.0}] ) UpperCamelCase : Union[str, Any] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'NEGATIVE', 'score': 1.0}] ) UpperCamelCase : int = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': 'POSITIVE', 'score': 0.9_88}] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : str = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : List[str] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCamelCase : List[str] = 'HuggingFace is in' UpperCamelCase : Tuple = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) UpperCamelCase : List[Any] = ['HuggingFace is in ', 'Paris is in France'] UpperCamelCase : List[str] = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}, {'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}], ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCamelCase : Optional[int] = text_classifier(SCREAMING_SNAKE_CASE_, top_k=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [[{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}] * N, [{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}] * N], ) UpperCamelCase : str = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} UpperCamelCase : Union[str, Any] = text_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), {'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}, ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCamelCase : List[str] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(SCREAMING_SNAKE_CASE_ ): text_classifier(SCREAMING_SNAKE_CASE_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCamelCase : List[str] = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), [{'label': ANY(SCREAMING_SNAKE_CASE_ ), 'score': ANY(SCREAMING_SNAKE_CASE_ )}], ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
103
0
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowercase__ : def __init__( self : Optional[int] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) _UpperCamelCase : Optional[Any] = img _UpperCamelCase : List[str] = img.shape[1] _UpperCamelCase : Optional[Any] = img.shape[0] _UpperCamelCase : str = dst_width _UpperCamelCase : Any = dst_height _UpperCamelCase : Any = self.src_w / self.dst_w _UpperCamelCase : Union[str, Any] = self.src_h / self.dst_h _UpperCamelCase : List[str] = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): _UpperCamelCase : Optional[Any] = self.img[self.get_y(lowerCamelCase__ )][self.get_x(lowerCamelCase__ )] def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : int ): '''simple docstring''' return int(self.ratio_x * x ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": snake_case_ , snake_case_ : List[str] = 800, 600 snake_case_ : Optional[Any] = imread('image_data/lena.jpg', 1) snake_case_ : Dict = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
83
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase__ ( lowercase ): lowercase__ = """openai/whisper-base""" lowercase__ = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) lowercase__ = """transcriber""" lowercase__ = WhisperProcessor lowercase__ = WhisperForConditionalGeneration lowercase__ = ["""audio"""] lowercase__ = ["""text"""] def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase__ ,return_tensors='pt' ).input_features def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Tuple ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ )[0]
83
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
59
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase_ = '''true''' def lowerCamelCase_ ( _a : List[Any] , _a : List[str]=82 , _a : Tuple=16 ): '''simple docstring''' set_seed(42 ) UpperCAmelCase_ : int = RegressionModel() UpperCAmelCase_ : List[Any] = deepcopy(_a ) UpperCAmelCase_ : Tuple = RegressionDataset(length=_a ) UpperCAmelCase_ : int = DataLoader(_a , batch_size=_a ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(_a , _a ) return model, ddp_model, dataloader def lowerCamelCase_ ( _a : Accelerator , _a : Optional[int]=False ): '''simple docstring''' UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) UpperCAmelCase_ : int = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(_a : str ): UpperCAmelCase_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_a , max_length=_a ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( _a , batched=_a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) UpperCAmelCase_ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_a : List[str] ): if use_longest: return tokenizer.pad(_a , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(_a , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(_a , shuffle=_a , collate_fn=_a , batch_size=16 ) def lowerCamelCase_ ( _a : Any , _a : int ): '''simple docstring''' UpperCAmelCase_ : int = Accelerator(dispatch_batches=_a , split_batches=_a ) UpperCAmelCase_ : Dict = get_dataloader(_a , not dispatch_batches ) UpperCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_a ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare(_a , _a ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase_ ( _a : Optional[int] , _a : Optional[Any] , _a : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = batch.values() with torch.no_grad(): UpperCAmelCase_ : str = model(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(_a ) targs.append(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = torch.cat(_a ), torch.cat(_a ) return logits, targs def lowerCamelCase_ ( _a : Accelerator , _a : str=82 , _a : str=False , _a : Dict=False , _a : Dict=16 ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_basic_setup(_a , _a , _a ) UpperCAmelCase_ , UpperCAmelCase_ : Any = generate_predictions(_a , _a , _a ) assert ( len(_a ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_a )}''' def lowerCamelCase_ ( _a : bool = False , _a : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = evaluate.load("""glue""" , """mrpc""" ) UpperCAmelCase_ , UpperCAmelCase_ : str = get_mrpc_setup(_a , _a ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = setup["""no"""] model.to(_a ) model.eval() for batch in dataloader: batch.to(_a ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**_a ) UpperCAmelCase_ : Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_a , references=batch["""labels"""] ) UpperCAmelCase_ : str = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : List[str] = model(**_a ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Union[str, Any] = batch["""labels"""] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_a , references=_a ) UpperCAmelCase_ : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Any = Accelerator(split_batches=_a , dispatch_batches=_a ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_a , _a ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[int] = Accelerator(split_batches=_a , dispatch_batches=_a ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_a , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) UpperCAmelCase_ : str = Accelerator() test_torch_metrics(_a , 512 ) accelerator.state._reset_state() def lowerCamelCase_ ( _a : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
59
1
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = to_pil_image(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = pil_image.size UpperCAmelCase__ = pytesseract.image_to_data(lowerCamelCase , lang=lowerCamelCase , output_type='dict' , config=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates UpperCAmelCase__ = [idx for idx, word in enumerate(lowerCamelCase ) if not word.strip()] UpperCAmelCase__ = [word for idx, word in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase__ = [] for x, y, w, h in zip(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase ) # finally, normalize the bounding boxes UpperCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) assert len(lowerCamelCase ) == len(lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["pixel_values"] def __init__( self : int ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : float = 1 / 255 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = "" ,**lowerCamelCase__ : Any ,): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__ = size if size is not None else {'height': 224, 'width': 224} UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_value UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCAmelCase__ = apply_ocr UpperCAmelCase__ = ocr_lang UpperCAmelCase__ = tesseract_config def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : str ,): UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCAmelCase__ = (size['height'], size['width']) return resize(lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[int, float] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Dict ,): return rescale(lowerCamelCase__ ,scale=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[float, Iterable[float]] ,lowerCamelCase__ : Union[float, Iterable[float]] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Optional[int] ,): return normalize(lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : float = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST ,**lowerCamelCase__ : str ,): UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase__ = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(lowerCamelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,'pytesseract' ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for image in images: UpperCAmelCase__ , UpperCAmelCase__ = apply_tesseract(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: UpperCAmelCase__ = [self.resize(image=lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=lowerCamelCase__ ,scale=lowerCamelCase__ ) for image in images] if do_normalize: UpperCAmelCase__ = [self.normalize(image=lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] UpperCAmelCase__ = BatchFeature(data={'pixel_values': images} ,tensor_type=lowerCamelCase__ ) if apply_ocr: UpperCAmelCase__ = words_batch UpperCAmelCase__ = boxes_batch return data
98
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum): A_ : List[Any] = 0 A_ : Dict = 1 A_ : Union[str, Any] = 2 @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): A_ : str = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCAmelCase : Any = None if self.model.config.prefix is not None: __lowerCAmelCase : str = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCAmelCase : Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._sanitize_parameters(prefix=_SCREAMING_SNAKE_CASE , **self._forward_params ) __lowerCAmelCase : List[str] = {**self._preprocess_params, **preprocess_params} __lowerCAmelCase : List[str] = {**self._forward_params, **forward_params} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Optional[int] = {} if prefix is not None: __lowerCAmelCase : Union[str, Any] = prefix if prefix: __lowerCAmelCase : Dict = self.tokenizer( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCAmelCase : List[Any] = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ' [None, \'hole\']' ) __lowerCAmelCase : int = handle_long_generation preprocess_params.update(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = generate_kwargs __lowerCAmelCase : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) __lowerCAmelCase : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) __lowerCAmelCase : List[Any] = ReturnType.TENSORS if return_type is not None: __lowerCAmelCase : Optional[Any] = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase : Union[str, Any] = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __lowerCAmelCase : Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = self.tokenizer( prefix + prompt_text , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCAmelCase : Optional[Any] = prompt_text if handle_long_generation == "hole": __lowerCAmelCase : str = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCAmelCase : Union[str, Any] = generate_kwargs['max_new_tokens'] else: __lowerCAmelCase : Any = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCAmelCase : Any = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) __lowerCAmelCase : int = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __lowerCAmelCase : List[Any] = inputs['attention_mask'][:, -keep_length:] return inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = model_inputs['input_ids'] __lowerCAmelCase : List[Any] = model_inputs.get('attention_mask' , _SCREAMING_SNAKE_CASE ) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCAmelCase : Dict = None __lowerCAmelCase : str = None __lowerCAmelCase : Tuple = 1 else: __lowerCAmelCase : Any = input_ids.shape[0] __lowerCAmelCase : Union[str, Any] = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCAmelCase : Optional[int] = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: __lowerCAmelCase : Any = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCAmelCase : List[str] = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCAmelCase : Dict = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCAmelCase : Optional[int] = self.model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = generated_sequence.shape[0] if self.framework == "pt": __lowerCAmelCase : Dict = generated_sequence.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowerCAmelCase : Any = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=ReturnType.FULL_TEXT , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : Any = model_outputs['generated_sequence'][0] __lowerCAmelCase : Tuple = model_outputs['input_ids'] __lowerCAmelCase : Any = model_outputs['prompt_text'] __lowerCAmelCase : int = generated_sequence.numpy().tolist() __lowerCAmelCase : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCAmelCase : int = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCAmelCase : Any = self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCAmelCase : Optional[Any] = 0 else: __lowerCAmelCase : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) ) if return_type == ReturnType.FULL_TEXT: __lowerCAmelCase : Union[str, Any] = prompt_text + text[prompt_length:] else: __lowerCAmelCase : int = text[prompt_length:] __lowerCAmelCase : Dict = {'generated_text': all_text} records.append(_SCREAMING_SNAKE_CASE ) return records
86
0
from __future__ import annotations import math class snake_case_ : def __init__( self : List[Any] , lowercase_ : int ) -> None: lowercase__ : Tuple = size # approximate the overall size of segment tree with given value lowercase__ : Union[str, Any] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowercase__ : List[Any] = [0 for i in range(0 , 4 * size )] lowercase__ : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Dict , lowercase_ : int ) -> int: return idx * 2 def __UpperCamelCase ( self : Any , lowercase_ : int ) -> int: return idx * 2 + 1 def __UpperCamelCase ( self : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : list[int] ) -> None: if left_element == right_element: lowercase__ : Optional[int] = a[left_element - 1] else: lowercase__ : Union[str, Any] = (left_element + right_element) // 2 self.build(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ ) self.build(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ ) lowercase__ : List[str] = max( self.segment_tree[self.left(lowercase_ )] , self.segment_tree[self.right(lowercase_ )] ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> bool: if self.flag[idx] is True: lowercase__ : Dict = self.lazy[idx] lowercase__ : List[Any] = False if left_element != right_element: lowercase__ : List[str] = self.lazy[idx] lowercase__ : Optional[int] = self.lazy[idx] lowercase__ : Optional[int] = True lowercase__ : Optional[int] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowercase__ : Any = val if left_element != right_element: lowercase__ : int = val lowercase__ : List[str] = val lowercase__ : Optional[int] = True lowercase__ : List[str] = True return True lowercase__ : Tuple = (left_element + right_element) // 2 self.update(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.update(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = max( self.segment_tree[self.left(lowercase_ )] , self.segment_tree[self.right(lowercase_ )] ) return True def __UpperCamelCase ( self : List[str] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> int | float: if self.flag[idx] is True: lowercase__ : str = self.lazy[idx] lowercase__ : Any = False if left_element != right_element: lowercase__ : Dict = self.lazy[idx] lowercase__ : Optional[int] = self.lazy[idx] lowercase__ : Union[str, Any] = True lowercase__ : Optional[int] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowercase__ : Dict = (left_element + right_element) // 2 lowercase__ : List[str] = self.query(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = self.query(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ , lowercase_ ) return max(lowercase_ , lowercase_ ) def __str__( self : List[Any] ) -> str: return str([self.query(1 , 1 , self.size , lowercase_ , lowercase_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] UpperCamelCase = 15 UpperCamelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" UpperCamelCase__ : Any = len(snake_case_ ) // 2 # choose the middle 3 elements UpperCamelCase__ : int = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
146
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _lowercase : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : int=None ) -> Optional[int]: __lowerCAmelCase = np.random.default_rng(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = length __lowerCAmelCase = rng.normal(size=(length,) ).astype(np.floataa ) __lowerCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Union[str, Any] ) -> Optional[Any]: return self.length def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: return {"x": self.x[i], "y": self.y[i]} class _lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Any: super().__init__() __lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowerCAmelCase = True def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> str: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __lowerCAmelCase = False return x * self.a[0] + self.b[0] class _lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Optional[Any]: super().__init__() __lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) __lowerCAmelCase = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) __lowerCAmelCase = True def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=None ) -> int: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __lowerCAmelCase = False return x * self.a + self.b def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : int = 16 ) -> int: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __lowerCAmelCase = load_dataset("""csv""" , data_files=snake_case_ ) __lowerCAmelCase = datasets["""train"""].unique("""label""" ) __lowerCAmelCase = {v: i for i, v in enumerate(snake_case_ )} def tokenize_function(snake_case_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ , padding="""max_length""" ) if "label" in examples: __lowerCAmelCase = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader(tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=2 ) __lowerCAmelCase = DataLoader(tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=1 ) return train_dataloader, eval_dataloader
229
0
def _lowerCamelCase( lowercase__ ) -> list: '''simple docstring''' if len(lowercase__ ) <= 1: return lst __lowercase= 1 while i < len(lowercase__ ): if lst[i - 1] <= lst[i]: i += 1 else: __lowercase, __lowercase= lst[i], lst[i - 1] i -= 1 if i == 0: __lowercase= 1 return lst if __name__ == "__main__": lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
304
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
1
"""simple docstring""" import argparse import os import re import packaging.version A_ : Dict = '''examples/''' A_ : Any = { '''examples''': (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), '''release = "VERSION"\n'''), } A_ : Any = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } A_ : Any = '''README.md''' def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() SCREAMING_SNAKE_CASE__ = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE__ = replace.replace("""VERSION""" , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = re_pattern.sub(__UpperCamelCase , __UpperCamelCase ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__UpperCamelCase ) def A ( snake_case__ ): '''simple docstring''' for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , pattern="""examples""" ) def A ( snake_case__ , snake_case__=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE__ = '''1. Want to contribute a new model?''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): SCREAMING_SNAKE_CASE__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCamelCase ) def A ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() SCREAMING_SNAKE_CASE__ = REPLACE_PATTERNS['''init'''][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def A ( snake_case__=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can\'t create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE__ = default_version.base_version elif patch: SCREAMING_SNAKE_CASE__ = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: SCREAMING_SNAKE_CASE__ = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE__ = input(f"""Which version are you releasing? [{default_version}]""" ) if len(__UpperCamelCase ) == 0: SCREAMING_SNAKE_CASE__ = default_version print(f"""Updating version to {version}.""" ) global_version_update(__UpperCamelCase , patch=__UpperCamelCase ) if not patch: print("""Cleaning main README, don\'t forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_version() SCREAMING_SNAKE_CASE__ = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" SCREAMING_SNAKE_CASE__ = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE__ = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(__UpperCamelCase ) == 0: SCREAMING_SNAKE_CASE__ = dev_version print(f"""Updating version to {version}.""" ) global_version_update(__UpperCamelCase ) print("""Cleaning main README, don\'t forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A_ : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
165
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : int = logging.get_logger(__name__) A__ : Optional[int] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __snake_case ( UpperCamelCase_ ): _a = '''data2vec-vision''' def __init__( self : Tuple , A_ : List[Any]=7_6_8 , A_ : Union[str, Any]=1_2 , A_ : Dict=1_2 , A_ : List[Any]=3_0_7_2 , A_ : Dict="gelu" , A_ : Tuple=0.0 , A_ : Dict=0.0 , A_ : List[str]=0.02 , A_ : List[str]=1e-12 , A_ : Tuple=2_2_4 , A_ : Dict=1_6 , A_ : Optional[int]=3 , A_ : Optional[int]=False , A_ : Any=False , A_ : Tuple=False , A_ : Optional[int]=False , A_ : int=0.1 , A_ : Union[str, Any]=0.1 , A_ : List[Any]=True , A_ : List[Any]=[3, 5, 7, 1_1] , A_ : Union[str, Any]=[1, 2, 3, 6] , A_ : Optional[int]=True , A_ : Any=0.4 , A_ : str=2_5_6 , A_ : Optional[int]=1 , A_ : str=False , A_ : Optional[int]=2_5_5 , **A_ : Optional[int] , ): super().__init__(**A_) lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : List[str] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : Tuple = layer_norm_eps lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : Any = use_mask_token lowerCAmelCase_ : Optional[int] = use_absolute_position_embeddings lowerCAmelCase_ : str = use_relative_position_bias lowerCAmelCase_ : Optional[Any] = use_shared_relative_position_bias lowerCAmelCase_ : Dict = layer_scale_init_value lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ : Any = out_indices lowerCAmelCase_ : int = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ : Dict = use_auxiliary_head lowerCAmelCase_ : str = auxiliary_loss_weight lowerCAmelCase_ : Optional[Any] = auxiliary_channels lowerCAmelCase_ : str = auxiliary_num_convs lowerCAmelCase_ : str = auxiliary_concat_input lowerCAmelCase_ : str = semantic_loss_ignore_index class __snake_case ( UpperCamelCase_ ): _a = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : Tuple): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCAmelCase__ ( self : Dict): return 1e-4
103
0
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int]=13 , __lowerCAmelCase : List[str]=30 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Tuple=5 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=10 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : Union[str, Any]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Optional[int] ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = ViTMSNModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = ViTMSNForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = ViTMSNForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[int] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _snake_case : int = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) _snake_case : Optional[Any] = False _snake_case : int = False _snake_case : List[str] = False _snake_case : int = False def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = ViTMSNModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = ViTMSNModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : str ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : str ): torch.manual_seed(2 ) _UpperCAmelCase = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(__lowerCAmelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__lowerCAmelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) )
30
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) snake_case : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) snake_case : Tuple = "xvjiarui/stable-diffusion-2-inpainting" snake_case , snake_case : Dict = FlaxStableDiffusionInpaintPipeline.from_pretrained(snake_case__ , safety_checker=snake_case__ ) snake_case : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench" snake_case : Optional[Any] = jax.random.PRNGKey(0 ) snake_case : List[str] = 50 snake_case : Tuple = jax.device_count() snake_case : Optional[Any] = num_samples * [prompt] snake_case : List[str] = num_samples * [init_image] snake_case : str = num_samples * [mask_image] snake_case , snake_case , snake_case : int = pipeline.prepare_inputs(snake_case__ , snake_case__ , snake_case__ ) # shard inputs and rng snake_case : Tuple = replicate(snake_case__ ) snake_case : Optional[Any] = jax.random.split(snake_case__ , jax.device_count() ) snake_case : Union[str, Any] = shard(snake_case__ ) snake_case : Union[str, Any] = shard(snake_case__ ) snake_case : List[str] = shard(snake_case__ ) snake_case : int = pipeline( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ ) snake_case : List[str] = output.images.reshape(snake_case__ , 5_12 , 5_12 , 3 ) snake_case : List[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] snake_case : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case : Any = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
59
from __future__ import annotations __lowerCamelCase = list[list[int]] # assigning initial values to the grid __lowerCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowerCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCamelCase ( __lowerCamelCase : Matrix , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCamelCase ( __lowerCamelCase : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCamelCase ( __lowerCamelCase : Matrix ): if location := find_empty_location(__lowerCamelCase ): snake_case , snake_case : Union[str, Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): snake_case : List[Any] = digit if sudoku(__lowerCamelCase ) is not None: return grid snake_case : Union[str, Any] = 0 return None def UpperCamelCase ( __lowerCamelCase : Matrix ): for row in grid: for cell in row: print(__lowerCamelCase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") __lowerCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
59
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> tuple[complex, complex]: if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) snake_case = b * b - 4 * a * c snake_case = (-b + sqrt(__lowerCAmelCase )) / (2 * a) snake_case = (-b - sqrt(__lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __lowerCamelCase ( ) -> str: snake_case , snake_case = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
from __future__ import annotations import math class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> None: __UpperCAmelCase = size # approximate the overall size of segment tree with given value __UpperCAmelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update __UpperCAmelCase = [0 for i in range(0 , 4 * size )] __UpperCAmelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowerCAmelCase_ (self , lowercase__ ) -> int: return idx * 2 def lowerCAmelCase_ (self , lowercase__ ) -> int: return idx * 2 + 1 def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> None: if left_element == right_element: __UpperCAmelCase = a[left_element - 1] else: __UpperCAmelCase = (left_element + right_element) // 2 self.build(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ ) self.build(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ ) __UpperCAmelCase = max( self.segment_tree[self.left(lowercase__ )] , self.segment_tree[self.right(lowercase__ )] ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> bool: if self.flag[idx] is True: __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = False if left_element != right_element: __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = True __UpperCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __UpperCAmelCase = val if left_element != right_element: __UpperCAmelCase = val __UpperCAmelCase = val __UpperCAmelCase = True __UpperCAmelCase = True return True __UpperCAmelCase = (left_element + right_element) // 2 self.update(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.update(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = max( self.segment_tree[self.left(lowercase__ )] , self.segment_tree[self.right(lowercase__ )] ) return True def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int | float: if self.flag[idx] is True: __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = False if left_element != right_element: __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = self.lazy[idx] __UpperCAmelCase = True __UpperCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __UpperCAmelCase = (left_element + right_element) // 2 __UpperCAmelCase = self.query(self.left(lowercase__ ) , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase = self.query(self.right(lowercase__ ) , mid + 1 , lowercase__ , lowercase__ , lowercase__ ) return max(lowercase__ , lowercase__ ) def __str__(self ) -> str: return str([self.query(1 , 1 , self.size , lowercase__ , lowercase__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": A_ : List[Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] A_ : Optional[Any] = 15 A_ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int]=13 , SCREAMING_SNAKE_CASE : List[Any]=30 , SCREAMING_SNAKE_CASE : List[str]=2 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[Any]=32 , SCREAMING_SNAKE_CASE : Tuple=5 , SCREAMING_SNAKE_CASE : List[str]=4 , SCREAMING_SNAKE_CASE : Optional[int]=37 , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : List[Any]=10 , SCREAMING_SNAKE_CASE : Any=0.02 , ): _A : Any = parent _A : Optional[int] = batch_size _A : List[str] = image_size _A : Dict = patch_size _A : List[Any] = num_channels _A : Any = is_training _A : str = use_labels _A : int = hidden_size _A : int = num_hidden_layers _A : Any = num_attention_heads _A : Optional[int] = intermediate_size _A : Tuple = hidden_act _A : Tuple = hidden_dropout_prob _A : Union[str, Any] = attention_probs_dropout_prob _A : Optional[Any] = type_sequence_label_size _A : Union[str, Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : Union[str, Any] = (image_size // patch_size) ** 2 _A : Dict = num_patches + 1 def A ( self : List[Any]): _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Any = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any): _A : List[str] = FlaxViTModel(config=SCREAMING_SNAKE_CASE) _A : Any = model(SCREAMING_SNAKE_CASE) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _A : Optional[int] = (self.image_size, self.image_size) _A : str = (self.patch_size, self.patch_size) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size)) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str]): _A : Tuple = self.type_sequence_label_size _A : Optional[int] = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE) _A : List[str] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _A : Dict = 1 _A : List[str] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE) _A : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : Tuple = model(SCREAMING_SNAKE_CASE) def A ( self : Tuple): _A : str = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ) : Dict = config_and_inputs _A : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def A ( self : List[str]): _A : List[Any] = FlaxViTModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : str): self.config_tester.run_common_tests() def A ( self : List[Any]): _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : Optional[int]): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(SCREAMING_SNAKE_CASE) _A : Any = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def A ( self : List[str]): _A , _A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _A : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Tuple = model_class(SCREAMING_SNAKE_CASE) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : str): return model(pixel_values=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) with self.subTest('JIT Enabled'): _A : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _A : Dict = model_jitted(**SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE) , len(SCREAMING_SNAKE_CASE)) for jitted_output, output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): self.assertEqual(jitted_output.shape , output.shape) @slow def A ( self : Optional[int]): for model_class_name in self.all_model_classes: _A : Dict = model_class_name.from_pretrained('google/vit-base-patch16-224') _A : Optional[Any] = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(SCREAMING_SNAKE_CASE)
227
'''simple docstring''' import string import numpy def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ): return b if a == 0 else greatest_common_divisor(b % a ,lowerCamelCase ) class __lowerCamelCase : """simple docstring""" a = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a = numpy.vectorize(lambda a_ : x % 36 ) a = numpy.vectorize(a_ ) def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : numpy.ndarray): _A : Union[str, Any] = self.modulus(SCREAMING_SNAKE_CASE) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _A : Optional[int] = encrypt_key.shape[0] def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): return self.key_string.index(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): return self.key_string[round(SCREAMING_SNAKE_CASE)] def A ( self : List[Any]): _A : Optional[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : int = det % len(self.key_string) _A : str = len(self.key_string) if greatest_common_divisor(SCREAMING_SNAKE_CASE , len(self.key_string)) != 1: _A : Optional[int] = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(SCREAMING_SNAKE_CASE) def A ( self : int , SCREAMING_SNAKE_CASE : str): _A : List[Any] = [char for char in text.upper() if char in self.key_string] _A : List[str] = chars[-1] while len(SCREAMING_SNAKE_CASE) % self.break_key != 0: chars.append(SCREAMING_SNAKE_CASE) return "".join(SCREAMING_SNAKE_CASE) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str): _A : Optional[int] = self.process_text(text.upper()) _A : List[str] = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[Any] = text[i : i + self.break_key] _A : Optional[int] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : List[str] = self.modulus(self.encrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[ 0 ] _A : str = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def A ( self : Union[str, Any]): _A : List[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _A : Optional[int] = det % len(self.key_string) _A : List[str] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: _A : Union[str, Any] = i break _A : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(SCREAMING_SNAKE_CASE)) def A ( self : Any , SCREAMING_SNAKE_CASE : str): _A : List[str] = self.make_decrypt_key() _A : Dict = self.process_text(text.upper()) _A : str = '' for i in range(0 , len(SCREAMING_SNAKE_CASE) - self.break_key + 1 , self.break_key): _A : Optional[int] = text[i : i + self.break_key] _A : Union[str, Any] = [self.replace_letters(SCREAMING_SNAKE_CASE) for char in batch] _A : Tuple = numpy.array([vec]).T _A : Optional[int] = self.modulus(decrypt_key.dot(SCREAMING_SNAKE_CASE)).T.tolist()[0] _A : Tuple = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): _A : List[Any] = int(input('Enter the order of the encryption key: ' ) ) _A : List[str] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowerCamelCase ): _A : str = [int(lowerCamelCase ) for x in input().split()] hill_matrix.append(lowerCamelCase ) _A : Dict = HillCipher(numpy.array(lowerCamelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _A : List[str] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _A : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowerCamelCase ) ) elif option == "2": _A : int = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
227
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _UpperCamelCase : Optional[int] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __UpperCAmelCase ( ) -> List[str]: UpperCAmelCase_ : Optional[int] = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase_ : Union[str, Any] = get_sagemaker_input() else: UpperCAmelCase_ : Optional[int] = get_cluster_input() return config def __UpperCAmelCase ( A : Optional[int]=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase_ : Tuple = subparsers.add_parser('''config''' , description=A ) else: UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser('''Accelerate config command''' , description=A ) parser.add_argument( '''--config_file''' , default=A , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=A ) return parser def __UpperCAmelCase ( A : Tuple ) -> List[Any]: UpperCAmelCase_ : int = get_user_input() if args.config_file is not None: UpperCAmelCase_ : Optional[int] = args.config_file else: if not os.path.isdir(A ): os.makedirs(A ) UpperCAmelCase_ : Optional[int] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(A ) else: config.to_yaml_file(A ) print(F"accelerate configuration saved at {config_file}" ) def __UpperCAmelCase ( ) -> Dict: UpperCAmelCase_ : List[Any] = config_command_parser() UpperCAmelCase_ : List[str] = parser.parse_args() config_command(A ) if __name__ == "__main__": main()
304
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _UpperCamelCase : Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class snake_case__ ( unittest.TestCase): @classmethod def A ( cls : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(_A ) @classmethod def A ( cls : int ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_A ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A , repo_id='''test-model-flax''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def A ( self : str ) -> Tuple: UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(_A ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_A , use_auth_token=self._token ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A , 1e-3 , msg=F"{key} not identical" ) def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : int = False return models_are_equal @require_flax class snake_case__ ( unittest.TestCase): def A ( self : Any ) -> Any: UpperCAmelCase_ : Any = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(_A ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) ) with self.assertRaises(_A ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Tuple = FlaxBertModel(_A ) UpperCAmelCase_ : str = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A , _A ) , max_shard_size='''10KB''' ) with self.assertRaises(_A ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertTrue(check_models_equal(_A , _A ) ) def A ( self : int ) -> Optional[int]: UpperCAmelCase_ : int = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A ) def A ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_A ): UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(_A , subfolder=_A ) self.assertIsNotNone(_A )
304
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase : Tuple = getLogger(__name__) lowerCAmelCase : Optional[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 8 , _UpperCAmelCase = DEFAULT_DEVICE , _UpperCAmelCase=False , _UpperCAmelCase="summarization" , _UpperCAmelCase=None , **_UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[Any] = Path(_UpperCAmelCase ).open("w" , encoding="utf-8" ) SCREAMING_SNAKE_CASE_: List[str] = str(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) if fpaa: SCREAMING_SNAKE_CASE_: Optional[int] = model.half() SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. SCREAMING_SNAKE_CASE_: List[Any] = time.time() # update config with task specific params use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) if prefix is None: SCREAMING_SNAKE_CASE_: List[str] = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(_UpperCAmelCase , _UpperCAmelCase ) ) ): SCREAMING_SNAKE_CASE_: Optional[int] = [prefix + text for text in examples_chunk] SCREAMING_SNAKE_CASE_: Dict = tokenizer(_UpperCAmelCase , return_tensors="pt" , truncation=_UpperCAmelCase , padding="longest" ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() SCREAMING_SNAKE_CASE_: str = int(time.time() - start_time ) # seconds SCREAMING_SNAKE_CASE_: str = len(_UpperCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def A_ ( _UpperCAmelCase=True ): SCREAMING_SNAKE_CASE_: int = argparse.ArgumentParser() parser.add_argument("model_name" , type=_UpperCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=_UpperCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=_UpperCAmelCase , help="where to save summaries" ) parser.add_argument("--reference_path" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=_UpperCAmelCase , required=_UpperCAmelCase , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=_UpperCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help="batch size" ) parser.add_argument( "--n_obs" , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=_UpperCAmelCase , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = parser.parse_known_args() SCREAMING_SNAKE_CASE_: Any = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) SCREAMING_SNAKE_CASE_: Tuple = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: SCREAMING_SNAKE_CASE_: List[Any] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) SCREAMING_SNAKE_CASE_: List[Any] = generate_summaries_or_translations( _UpperCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_UpperCAmelCase , ) if args.reference_path is None: return {} # Compute scores SCREAMING_SNAKE_CASE_: Dict = calculate_bleu if "translation" in args.task else calculate_rouge SCREAMING_SNAKE_CASE_: int = [x.rstrip() for x in open(args.save_path ).readlines()] SCREAMING_SNAKE_CASE_: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCAmelCase )] SCREAMING_SNAKE_CASE_: dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) scores.update(_UpperCAmelCase ) if args.dump_args: scores.update(_UpperCAmelCase ) if args.info: SCREAMING_SNAKE_CASE_: Optional[Any] = args.info if verbose: print(_UpperCAmelCase ) if args.score_path is not None: json.dump(_UpperCAmelCase , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
127
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : float , lowerCAmelCase__ : Callable , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : str = None , ): super().__init__() SCREAMING_SNAKE_CASE_: str = initial_learning_rate SCREAMING_SNAKE_CASE_: Dict = warmup_steps SCREAMING_SNAKE_CASE_: Any = power SCREAMING_SNAKE_CASE_: int = decay_schedule_fn SCREAMING_SNAKE_CASE_: Union[str, Any] = name def __call__( self : Optional[Any] , lowerCAmelCase__ : Any): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE_: Any = tf.cast(lowerCAmelCase__ , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[Any] = tf.cast(self.warmup_steps , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[int] = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE_: Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 0.9 , _UpperCAmelCase = 0.9_9_9 , _UpperCAmelCase = 1e-8 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_UpperCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE_: Tuple = WarmUp( initial_learning_rate=_UpperCAmelCase , decay_schedule_fn=_UpperCAmelCase , warmup_steps=_UpperCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE_: List[str] = AdamWeightDecay( learning_rate=_UpperCAmelCase , weight_decay_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=_UpperCAmelCase , ) else: SCREAMING_SNAKE_CASE_: int = tf.keras.optimizers.Adam( learning_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , lowerCAmelCase__ : float = 0.9 , lowerCAmelCase__ : float = 0.999 , lowerCAmelCase__ : float = 1E-7 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "AdamWeightDecay" , **lowerCAmelCase__ : int , ): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = weight_decay_rate SCREAMING_SNAKE_CASE_: List[Any] = include_in_weight_decay SCREAMING_SNAKE_CASE_: List[Any] = exclude_from_weight_decay @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: List[str] = {"WarmUp": WarmUp} return super(lowerCAmelCase__ , cls).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]): super(lowerCAmelCase__ , self)._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: str = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = list(zip(*lowerCAmelCase__)) return super(lowerCAmelCase__ , self).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__) , name=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple): if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE_: Dict = apply_state or {} SCREAMING_SNAKE_CASE_: List[str] = apply_state.get((var_device, var_dtype)) if coefficients is None: SCREAMING_SNAKE_CASE_: Optional[int] = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return False return True class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: Any = None @property def _SCREAMING_SNAKE_CASE ( self : int): if self._accum_steps is None: SCREAMING_SNAKE_CASE_: Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _SCREAMING_SNAKE_CASE ( self : Tuple): if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , lowerCAmelCase__ : Tuple): if not self._gradients: SCREAMING_SNAKE_CASE_: Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(lowerCAmelCase__) != len(self._gradients): raise ValueError(F"Expected {len(self._gradients)} gradients, but got {len(lowerCAmelCase__)}") for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__) self._accum_steps.assign_add(1) def _SCREAMING_SNAKE_CASE ( self : int): if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__))
127
1