code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack _UpperCAmelCase = set() return any( node not in visited and depth_first_search(__lowercase , __lowercase , __lowercase , __lowercase ) for node in graph ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : str , __lowercase : Tuple , __lowercase : Dict ) -> bool: '''simple docstring''' visited.add(__lowercase ) rec_stk.add(__lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__lowercase , __lowercase , __lowercase , __lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
22
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ReformerTokenizer _SCREAMING_SNAKE_CASE : List[Any] = ReformerTokenizerFast _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowercase : Union[str, Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "<s>" _lowercase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCamelCase ) , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase : List[str] = self.get_tokenizer() _lowercase : int = self.get_rust_tokenizer() _lowercase : Optional[Any] = "I was born in 92000, and this is falsé." _lowercase : Union[str, Any] = tokenizer.tokenize(_UpperCamelCase ) _lowercase : int = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Tuple = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : List[str] = self.get_rust_tokenizer() _lowercase : Optional[int] = tokenizer.encode(_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # Simple input _lowercase : Union[str, Any] = "This is a simple input" _lowercase : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] _lowercase : Any = ("This is a simple input", "This is a pair") _lowercase : List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _lowercase : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _lowercase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowercase : str = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = "Hello World!" _lowercase : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _lowercase : Dict = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowercase : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowercase : Tuple = " ".join(_UpperCamelCase ) _lowercase : str = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" ) _lowercase : List[Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _lowercase : Optional[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowercase : str = encoded_sequence["input_ids"].shape _lowercase : Dict = ReformerModel(_UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowercase : Optional[int] = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_UpperCamelCase , sequences=_UpperCamelCase , )
250
0
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase: Optional[Any] = logging.get_logger() def lowerCamelCase__ ( _A , _A , _A , _A , _A = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a : Optional[int] = timm.create_model('levit_128s' , pretrained=_A ) else: a : Optional[Any] = timm.create_model('levit_128' , pretrained=_A ) if hidden_sizes == 192: a : Optional[Any] = timm.create_model('levit_192' , pretrained=_A ) if hidden_sizes == 256: a : Dict = timm.create_model('levit_256' , pretrained=_A ) if hidden_sizes == 384: a : List[Any] = timm.create_model('levit_384' , pretrained=_A ) from_model.eval() a : Union[str, Any] = LevitForImageClassificationWithTeacher(_A ).eval() a : Union[str, Any] = OrderedDict() a : Optional[Any] = from_model.state_dict() a : List[Any] = list(from_model.state_dict().keys() ) a : List[Any] = list(our_model.state_dict().keys() ) print(len(_A ) , len(_A ) ) for i in range(len(_A ) ): a : Any = weights[og_keys[i]] our_model.load_state_dict(_A ) a : Union[str, Any] = torch.randn((2, 3, 224, 224) ) a : Optional[Any] = from_model(_A ) a : List[str] = our_model(_A ).logits assert torch.allclose(_A , _A ), "The model logits don't match the original one." a : List[str] = name print(_A ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a : Optional[Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def lowerCamelCase__ ( _A , _A = None , _A = True ): a : Dict = 'imagenet-1k-id2label.json' a : Any = 1000 a : Union[str, Any] = (1, num_labels) a : Dict = 'huggingface/label-files' a : str = num_labels a : str = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) a : Union[str, Any] = {int(_A ): v for k, v in idalabel.items()} a : Tuple = idalabel a : Optional[Any] = {v: k for k, v in idalabel.items()} a : Any = partial(_A , num_labels=_A , idalabel=_A , labelaid=_A ) a : Optional[Any] = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a : Dict = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _A , names_to_config[model_name] , _A , _A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _A , _A , _A , _A ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase: int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase: Optional[Any] = parser.parse_args() lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__: def __init__( self : Optional[int] ): a : int = '' a : List[str] = '' a : int = [] a : Optional[Any] = 0 a : Optional[Any] = 2_56 a : int = 0 a : Optional[int] = 0 a : str = 0 a : int = 0 def lowercase_ ( self : List[str] , __snake_case : int ): a : Optional[Any] = cva.imread(__snake_case , 0 ) a : int = copy.deepcopy(self.img ) a , a , a : Optional[int] = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) a : str = np.sum(__snake_case ) for i in range(len(__snake_case ) ): a : List[str] = x[i] / self.k self.sk += prk a : List[Any] = (self.L - 1) * self.sk if self.rem != 0: a : Union[str, Any] = int(last % last ) a : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__snake_case ) a : int = int(np.ma.count(self.img ) / self.img[1].size ) a : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): a : Tuple = self.img[j][i] if num != self.last_list[num]: a : Union[str, Any] = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowercase_ ( self : Union[str, Any] ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def lowercase_ ( self : Any ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase: Dict = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase: Optional[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
96
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCAmelCase ( _snake_case , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = VideoToVideoSDPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {"""image""", """width""", """height"""} __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {"""image"""} __SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} __SCREAMING_SNAKE_CASE : Any = False # No `output_type`. __SCREAMING_SNAKE_CASE : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def _a (self ): torch.manual_seed(0 ) A_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) A_ : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) A_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) A_ : Dict = CLIPTextModel(__snake_case ) A_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def _a (self , lowercase , lowercase=0 ): # 3 frames A_ : List[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): A_ : Dict = torch.manual_seed(__snake_case ) else: A_ : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) A_ : str = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def _a (self ): A_ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[int] = self.get_dummy_components() A_ : int = VideoToVideoSDPipeline(**__snake_case ) A_ : Union[str, Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) A_ : Tuple = self.get_dummy_inputs(__snake_case ) A_ : List[str] = """np""" A_ : int = sd_pipe(**__snake_case ).frames A_ : str = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) A_ : List[str] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a (self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__snake_case , expected_max_diff=5E-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _a (self ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _a (self ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def _a (self ): pass def _a (self ): return super().test_progress_bar() @slow @skip_mps class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Tuple = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A_ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) A_ : Optional[Any] = torch.randn((1, 10, 3, 1024, 576) , generator=__snake_case ) A_ : Tuple = video.to("""cuda""" ) A_ : str = """Spiderman is surfing""" A_ : int = pipe(__snake_case , video=__snake_case , generator=__snake_case , num_inference_steps=3 , output_type="""pt""" ).frames A_ : Optional[int] = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
206
'''simple docstring''' from typing import Any class lowercase__ : '''simple docstring''' def __init__( self , __snake_case ): _SCREAMING_SNAKE_CASE : Dict = data _SCREAMING_SNAKE_CASE : Optional[int] = None def __repr__( self ): return f"""Node({self.data})""" class lowercase__ : '''simple docstring''' def __init__( self ): _SCREAMING_SNAKE_CASE : Any = None def __iter__( self ): _SCREAMING_SNAKE_CASE : Any = self.head while node: yield node.data _SCREAMING_SNAKE_CASE : List[Any] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(__snake_case ) for item in self] ) def __getitem__( self , __snake_case ): if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , __snake_case , __snake_case ): if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) _SCREAMING_SNAKE_CASE : Any = self.head for _ in range(__snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = current.next _SCREAMING_SNAKE_CASE : Dict = data def UpperCAmelCase_ ( self , __snake_case ): self.insert_nth(len(self ) , __snake_case ) def UpperCAmelCase_ ( self , __snake_case ): self.insert_nth(0 , __snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) _SCREAMING_SNAKE_CASE : Optional[int] = Node(__snake_case ) if self.head is None: _SCREAMING_SNAKE_CASE : str = new_node elif index == 0: _SCREAMING_SNAKE_CASE : Tuple = self.head # link new_node to head _SCREAMING_SNAKE_CASE : str = new_node else: _SCREAMING_SNAKE_CASE : Tuple = self.head for _ in range(index - 1 ): _SCREAMING_SNAKE_CASE : List[str] = temp.next _SCREAMING_SNAKE_CASE : Tuple = temp.next _SCREAMING_SNAKE_CASE : Dict = new_node def UpperCAmelCase_ ( self ): # print every node data print(self ) def UpperCAmelCase_ ( self ): return self.delete_nth(0 ) def UpperCAmelCase_ ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self , __snake_case = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) _SCREAMING_SNAKE_CASE : Tuple = self.head # default first node if index == 0: _SCREAMING_SNAKE_CASE : List[Any] = self.head.next else: _SCREAMING_SNAKE_CASE : Tuple = self.head for _ in range(index - 1 ): _SCREAMING_SNAKE_CASE : Any = temp.next _SCREAMING_SNAKE_CASE : Any = temp.next _SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next.next return delete_node.data def UpperCAmelCase_ ( self ): return self.head is None def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = None _SCREAMING_SNAKE_CASE : int = self.head while current: # Store the current node's next node. _SCREAMING_SNAKE_CASE : List[Any] = current.next # Make the current node's next point backwards _SCREAMING_SNAKE_CASE : Tuple = prev # Make the previous node be the current node _SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) _SCREAMING_SNAKE_CASE : Any = next_node # Return prev in order to put the head at the end _SCREAMING_SNAKE_CASE : Union[str, Any] = prev def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(SCREAMING_SNAKE_CASE__ ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(SCREAMING_SNAKE_CASE__ ) == 9 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _SCREAMING_SNAKE_CASE : List[str] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(-8 , 1 ) ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = [ -9, 100, Node(7734_5112 ), """dlrow olleH""", 7, 5555, 0, -1_9_2.5_5_5_5_5, """Hello, world!""", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] _SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _SCREAMING_SNAKE_CASE : Any = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _SCREAMING_SNAKE_CASE : List[Any] = linked_list.delete_tail() assert result == 1_2.2 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _SCREAMING_SNAKE_CASE : Optional[int] = linked_list.delete_nth(10 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def snake_case_ ( ): """simple docstring""" from doctest import testmod testmod() _SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(SCREAMING_SNAKE_CASE__ ) print("""\nReading/changing Node data using indexing:""" ) print(f"""Element at Position 1: {linked_list[1]}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(SCREAMING_SNAKE_CASE__ ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE__ )}""" ) if __name__ == "__main__": main()
200
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase_ = False, False, False @dataclass class __A : '''simple docstring''' lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = None # Automatically constructed lowerCAmelCase : Union[str, Any] = "dict" lowerCAmelCase : Optional[int] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCAmelCase : Optional[Any] = field(default="Audio" ,init=lowerCamelCase__ ,repr=lowerCamelCase__ ) def __call__( self : str ) -> Optional[Any]: """simple docstring""" return self.pa_type def UpperCAmelCase ( self : Any ,_snake_case : Union[str, bytes, dict] ) -> List[str]: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(_snake_case ,_snake_case ): return {"bytes": None, "path": value} elif isinstance(_snake_case ,_snake_case ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase__ : List[Any] = BytesIO() sf.write(_snake_case ,value['''array'''] ,value['''sampling_rate'''] ,format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase__ : int = np.frombuffer(value['''bytes'''] ,dtype=np.intaa ).astype(np.floataa ) / 32_767 else: lowercase__ : Tuple = np.memmap(value['''path'''] ,dtype='''h''' ,mode='''r''' ).astype(np.floataa ) / 32_767 lowercase__ : Dict = BytesIO(bytes() ) sf.write(_snake_case ,_snake_case ,value['''sampling_rate'''] ,format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : dict ,_snake_case : Optional[Dict[str, Union[str, bool, None]]] = None ) -> Union[str, Any]: """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) lowercase__ : Any = (value["path"], BytesIO(value['''bytes'''] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err lowercase__ : Dict = xsplitext(_snake_case )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ''' ) if file is None: lowercase__ : Optional[int] = token_per_repo_id or {} lowercase__ : Optional[Any] = path.split('''::''' )[-1] try: lowercase__ : int = string_to_dict(_snake_case ,config.HUB_DATASETS_URL )["repo_id"] lowercase__ : List[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase__ : Dict = None with xopen(_snake_case ,'''rb''' ,use_auth_token=_snake_case ) as f: lowercase__ : Optional[int] = sf.read(_snake_case ) else: lowercase__ : Union[str, Any] = sf.read(_snake_case ) lowercase__ : Any = array.T if self.mono: lowercase__ : Optional[int] = librosa.to_mono(_snake_case ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase__ : Union[str, Any] = librosa.resample(_snake_case ,orig_sr=_snake_case ,target_sr=self.sampling_rate ) lowercase__ : Union[str, Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[pa.StringArray, pa.StructArray] ) -> Tuple: """simple docstring""" if pa.types.is_string(storage.type ): lowercase__ : Union[str, Any] = pa.array([None] * len(_snake_case ) ,type=pa.binary() ) lowercase__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ : Any = pa.array([None] * len(_snake_case ) ,type=pa.string() ) lowercase__ : Dict = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): lowercase__ : Union[str, Any] = pa.array([Audio().encode_example(_snake_case ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: lowercase__ : Optional[Any] = storage.field('''bytes''' ) else: lowercase__ : Any = pa.array([None] * len(_snake_case ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: lowercase__ : Dict = storage.field('''path''' ) else: lowercase__ : Any = pa.array([None] * len(_snake_case ) ,type=pa.string() ) lowercase__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) return array_cast(_snake_case ,self.pa_type ) def UpperCAmelCase ( self : str ,_snake_case : pa.StructArray ) -> Dict: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_snake_case : List[Any] ): with xopen(_snake_case ,'''rb''' ) as f: lowercase__ : str = f.read() return bytes_ lowercase__ : str = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) lowercase__ : List[str] = pa.array( [os.path.basename(_snake_case ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) lowercase__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_snake_case ,self.pa_type )
354
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
0
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a: List[Any] = logging.get_logger(__name__) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = RobertaPreLayerNormConfig.from_pretrained( UpperCAmelCase , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict lowercase__ : Tuple = torch.load(hf_hub_download(repo_id=UpperCAmelCase , filename='''pytorch_model.bin''' ) ) lowercase__ : List[str] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): lowercase__ : Tuple = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue lowercase__ : List[Any] = tensor_value lowercase__ : Tuple = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=UpperCAmelCase , config=UpperCAmelCase , state_dict=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) # convert tokenizer lowercase__ : List[str] = AutoTokenizer.from_pretrained(UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __a: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __a: Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
198
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = CTRLTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ : str = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : List[str] = '''adapt react readapt apt''' lowercase__ : Union[str, Any] = '''adapt react readapt apt''' return input_text, output_text def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Optional[Any] = '''adapt react readapt apt''' lowercase__ : Dict = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokens + [tokenizer.unk_token] lowercase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
198
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCAmelCase ( _lowerCamelCase ): @staticmethod def lowerCamelCase ( lowerCAmelCase_ ): """simple docstring""" _snake_case = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=lowerCAmelCase_ , help='Name of the model to download' ) download_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = model _snake_case = cache _snake_case = force _snake_case = trust_remote_code def lowerCamelCase ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
160
'''simple docstring''' from ...processing_utils import ProcessorMixin class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """SpeechT5FeatureExtractor""" __lowercase = """SpeechT5Tokenizer""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('audio' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('audio_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('sampling_rate' , lowerCAmelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: _snake_case = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) elif text is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if audio_target is not None: _snake_case = self.feature_extractor(audio_target=lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_values'] elif text_target is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('input_values' , lowerCAmelCase_ ) _snake_case = kwargs.pop('input_ids' , lowerCAmelCase_ ) _snake_case = kwargs.pop('labels' , lowerCAmelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) elif input_ids is not None: _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and "input_ids" in labels[0]): _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = self.feature_extractor.feature_size _snake_case = self.feature_extractor.num_mel_bins _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = feature_size_hack _snake_case = targets['input_values'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
160
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowercase__( UpperCAmelCase ): """simple docstring""" a :Any = '' a :Optional[Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[DatasetInfo] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> int: super().__init__(self , **SCREAMING_SNAKE_CASE_ ) lowercase_ = repo_info lowercase_ = token lowercase_ = None def _lowercase ( self : Dict ) -> Optional[Any]: if self.dir_cache is None: lowercase_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(SCREAMING_SNAKE_CASE_ ): {'''name''': str(SCREAMING_SNAKE_CASE_ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str = "rb" , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Optional[Any]: if not isinstance(self.repo_info , SCREAMING_SNAKE_CASE_ ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) lowercase_ = hf_hub_url(self.repo_info.id , SCREAMING_SNAKE_CASE_ , revision=self.repo_info.sha ) return fsspec.open( SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ , headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE_ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Dict ) -> int: self._get_dirs() lowercase_ = self._strip_protocol(SCREAMING_SNAKE_CASE_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int=False , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: self._get_dirs() lowercase_ = PurePosixPath(path.strip('''/''' ) ) lowercase_ = {} for p, f in self.dir_cache.items(): lowercase_ = PurePosixPath(p.strip('''/''' ) ) lowercase_ = p.parent if root == path: lowercase_ = f lowercase_ = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
30
from __future__ import annotations from collections.abc import MutableSequence class lowercase__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : MutableSequence[float] ) -> None: if len(SCREAMING_SNAKE_CASE_ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = degree def __add__( self : Any , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: lowercase_ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , SCREAMING_SNAKE_CASE_ ) else: lowercase_ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def __sub__( self : str , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : int ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Any , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: lowercase_ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int | float ) -> int | float: lowercase_ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) -> str: lowercase_ = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(SCREAMING_SNAKE_CASE_ ) return polynomial def __repr__( self : Optional[Any] ) -> str: return self.__str__() def _lowercase ( self : int ) -> Polynomial: lowercase_ = [0] * self.degree for i in range(self.degree ): lowercase_ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : int | float = 0 ) -> Polynomial: lowercase_ = [0] * (self.degree + 2) lowercase_ = constant for i in range(self.degree + 1 ): lowercase_ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , SCREAMING_SNAKE_CASE_ ) def __eq__( self : str , SCREAMING_SNAKE_CASE_ : object ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] , SCREAMING_SNAKE_CASE_ : object ) -> bool: return not self.__eq__(SCREAMING_SNAKE_CASE_ )
30
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} UpperCAmelCase_ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line["""nodeid"""] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = """""" UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = """Too many failed tests, please see the full report in the Action results.""" UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = """No failed tests! 🤗""" print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) UpperCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = """""" UpperCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
363
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
0
import collections import importlib.util import os import re from pathlib import Path _A = 'src/transformers' # Matches is_xxx_available() _A = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _A = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _A = re.compile(R'\s+\"\S*\":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _A = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _A = re.compile(R'^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _A = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _A = re.compile('^\s+\"([^\"]+)\",') # Catches a line with objects between brackets only: ["foo", "bar"], _A = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _A = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _A = re.compile(R'^\s*try:') # Catches a line with else: _A = re.compile(R'^\s*else:') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): if _re_test_backend.search(lowercase__ ) is None: return None __UpperCamelCase =[b[0] for b in _re_backend.findall(lowercase__ )] backends.sort() return "_and_".join(lowercase__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase =f.readlines() __UpperCamelCase =0 while line_index < len(lowercase__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase__ ): return None # First grab the objects without a specific backend in _import_structure __UpperCamelCase =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __UpperCamelCase =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase__ ): __UpperCamelCase =_re_one_line_import_struct.search(lowercase__ ).groups()[0] __UpperCamelCase =re.findall('\[([^\]]+)\]' , lowercase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __UpperCamelCase =_re_import_struct_key_value.search(lowercase__ ) if single_line_import_search is not None: __UpperCamelCase =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __UpperCamelCase ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __UpperCamelCase =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCamelCase =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCamelCase =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __UpperCamelCase =lines[line_index] if _re_import_struct_add_one.search(lowercase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase__ ) is not None: __UpperCamelCase =_re_import_struct_add_many.search(lowercase__ ).groups()[0].split(', ' ) __UpperCamelCase =[obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_between_brackets.search(lowercase__ ) is not None: __UpperCamelCase =_re_between_brackets.search(lowercase__ ).groups()[0].split(', ' ) __UpperCamelCase =[obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_quote_object.search(lowercase__ ) is not None: objects.append(_re_quote_object.search(lowercase__ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __UpperCamelCase =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __UpperCamelCase =[] while ( line_index < len(lowercase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __UpperCamelCase =lines[line_index] __UpperCamelCase =_re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __UpperCamelCase ={'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase__ ): # If the line is an if is_backend_available, we grab all objects associated. __UpperCamelCase =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCamelCase =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCamelCase =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __UpperCamelCase =lines[line_index] __UpperCamelCase =_re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __UpperCamelCase =objects else: line_index += 1 return import_dict_objects, type_hint_objects def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): def find_duplicates(SCREAMING_SNAKE_CASE__ : Tuple ): return [k for k, v in collections.Counter(lowercase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __UpperCamelCase =[] for key in import_dict_objects.keys(): __UpperCamelCase =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) __UpperCamelCase =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __UpperCamelCase ='base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _UpperCAmelCase ( ): __UpperCamelCase =[] for root, _, files in os.walk(lowercase__ ): if "__init__.py" in files: __UpperCamelCase =os.path.join(lowercase__ , '__init__.py' ) __UpperCamelCase =parse_init(lowercase__ ) if objects is not None: __UpperCamelCase =analyze_results(*lowercase__ ) if len(lowercase__ ) > 0: __UpperCamelCase =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowercase__ ) ) if len(lowercase__ ) > 0: raise ValueError('\n\n'.join(lowercase__ ) ) def _UpperCAmelCase ( ): __UpperCamelCase =[] for path, directories, files in os.walk(lowercase__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase__ ) / folder).glob('*.py' ) ) ) == 0: continue __UpperCamelCase =str((Path(lowercase__ ) / folder).relative_to(lowercase__ ) ) __UpperCamelCase =short_path.replace(os.path.sep , '.' ) submodules.append(lowercase__ ) for fname in files: if fname == "__init__.py": continue __UpperCamelCase =str((Path(lowercase__ ) / fname).relative_to(lowercase__ ) ) __UpperCamelCase =short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase__ ) return submodules _A = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def _UpperCAmelCase ( ): # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase =importlib.util.spec_from_file_location( 'transformers' , os.path.join(lowercase__ , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __UpperCamelCase =spec.loader.load_module() __UpperCamelCase =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase__ ) > 0: __UpperCamelCase ='\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
62
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Any = data _lowerCamelCase : Node | None = None class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): _lowerCamelCase : str = None _lowerCamelCase : str = None def __iter__( self ): _lowerCamelCase : List[str] = self.head while self.head: yield node.data _lowerCamelCase : Optional[int] = node.next if node == self.head: break def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join(str(lowercase ) for item in iter(self ) ) def A_ ( self , lowercase ): self.insert_nth(len(self ) , lowercase ) def A_ ( self , lowercase ): self.insert_nth(0 , lowercase ) def A_ ( self , lowercase , lowercase ): if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) _lowerCamelCase : List[Any] = Node(lowercase ) if self.head is None: _lowerCamelCase : str = new_node # first node points itself _lowerCamelCase : Union[str, Any] = new_node elif index == 0: # insert at head _lowerCamelCase : List[str] = self.head _lowerCamelCase : str = new_node else: _lowerCamelCase : Union[str, Any] = self.head for _ in range(index - 1 ): _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : Union[str, Any] = temp.next _lowerCamelCase : List[str] = new_node if index == len(self ) - 1: # insert at tail _lowerCamelCase : Any = new_node def A_ ( self ): return self.delete_nth(0 ) def A_ ( self ): return self.delete_nth(len(self ) - 1 ) def A_ ( self , lowercase = 0 ): if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) _lowerCamelCase : Any = self.head if self.head == self.tail: # just one node _lowerCamelCase : List[str] = None elif index == 0: # delete head node _lowerCamelCase : List[str] = self.tail.next.next _lowerCamelCase : Optional[int] = self.head.next else: _lowerCamelCase : Dict = self.head for _ in range(index - 1 ): _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : int = temp.next _lowerCamelCase : Optional[int] = temp.next.next if index == len(self ) - 1: # delete at tail _lowerCamelCase : List[Any] = temp return delete_node.data def A_ ( self ): return len(self ) == 0 def _snake_case ( ): _lowerCamelCase : Union[str, Any] = CircularLinkedList() assert len(lowercase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowercase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowercase__ ) == i circular_linked_list.insert_nth(lowercase__ , i + 1 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
96
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger("transformers.models.speecht5") def _a ( a :Optional[Any] , a :Tuple , a :Dict ) -> List[str]: hf_model.apply_weight_norm() a = checkpoint['''input_conv.weight_g'''] a = checkpoint['''input_conv.weight_v'''] a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): a = checkpoint[F"""upsamples.{i}.1.weight_g"""] a = checkpoint[F"""upsamples.{i}.1.weight_v"""] a = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] a = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] a = checkpoint['''output_conv.1.weight_g'''] a = checkpoint['''output_conv.1.weight_v'''] a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _a ( a :List[str] , a :Union[str, Any] , a :Dict , a :Dict=None , a :List[Any]=None , ) -> int: if config_path is not None: a = SpeechTaHifiGanConfig.from_pretrained(a ) else: a = SpeechTaHifiGanConfig() a = SpeechTaHifiGan(a ) a = torch.load(a ) load_weights(orig_checkpoint['''model''']['''generator'''] , a , a ) a = np.load(a ) a = stats[0].reshape(-1 ) a = stats[1].reshape(-1 ) a = torch.from_numpy(a ).float() a = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
26
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
1
'''simple docstring''' def _lowerCamelCase ( lowercase : list[int] , lowercase : list[int] ) -> None: _a = len(lowercase ) print("The following activities are selected:" ) # The first activity is always selected _a = 0 print(lowercase , end="," ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end="," ) _a = j if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : Any = [1, 3, 0, 5, 8, 5] lowerCAmelCase_ : Optional[int] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
63
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __UpperCAmelCase (__lowercase ): @slow @require_torch def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) _SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size _SCREAMING_SNAKE_CASE = tokenizer.sep_token_id _SCREAMING_SNAKE_CASE = tokenizer.cls_token_id _SCREAMING_SNAKE_CASE = 128 _SCREAMING_SNAKE_CASE = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) _SCREAMING_SNAKE_CASE = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) _SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) _SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) _SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_: Optional[Any] ): # Tokenizer will automatically set [BOS] <text> [EOS] _SCREAMING_SNAKE_CASE = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_a , max_length=512 ) _SCREAMING_SNAKE_CASE = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_a , max_length=128 ) _SCREAMING_SNAKE_CASE = inputs.input_ids _SCREAMING_SNAKE_CASE = inputs.attention_mask _SCREAMING_SNAKE_CASE = outputs.input_ids _SCREAMING_SNAKE_CASE = outputs.input_ids.copy() _SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] _SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(_a ) == 512 for x in inputs.input_ids ) assert all(len(_a ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_: Any ): _SCREAMING_SNAKE_CASE = pred.label_ids _SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_a , skip_special_tokens=_a ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_a , skip_special_tokens=_a ) _SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_a ) )] ) / len(_a ) return {"accuracy": accuracy} # map train dataset _SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_a , batch_size=_a , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset _SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_a , batch_size=_a , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) _SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=_a , per_device_train_batch_size=_a , per_device_eval_batch_size=_a , predict_with_generate=_a , evaluation_strategy="""steps""" , do_train=_a , do_eval=_a , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=_a , args=_a , compute_metrics=_compute_metrics , train_dataset=_a , eval_dataset=_a , tokenizer=_a , ) # start training trainer.train()
365
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _SCREAMING_SNAKE_CASE = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) _SCREAMING_SNAKE_CASE = in_proj_weight[ : encoder_config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if "handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ViTConfig(image_size=3_84 ,qkv_bias=snake_case__ ) _SCREAMING_SNAKE_CASE = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _SCREAMING_SNAKE_CASE = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 10_24 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = """relu""" _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False # load HuggingFace model _SCREAMING_SNAKE_CASE = ViTModel(snake_case__ ,add_pooling_layer=snake_case__ ) _SCREAMING_SNAKE_CASE = TrOCRForCausalLM(snake_case__ ) _SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel(encoder=snake_case__ ,decoder=snake_case__ ) model.eval() # load state_dict of original model, rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(snake_case__ ,map_location="""cpu""" ,check_hash=snake_case__ )["""model"""] _SCREAMING_SNAKE_CASE = create_rename_keys(snake_case__ ,snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ ,snake_case__ ,snake_case__ ) read_in_q_k_v(snake_case__ ,snake_case__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: _SCREAMING_SNAKE_CASE = val else: _SCREAMING_SNAKE_CASE = val # load state dict model.load_state_dict(snake_case__ ) # Check outputs on an image _SCREAMING_SNAKE_CASE = ViTImageProcessor(size=encoder_config.image_size ) _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("""roberta-large""" ) _SCREAMING_SNAKE_CASE = TrOCRProcessor(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = processor(images=prepare_img(snake_case__ ) ,return_tensors="""pt""" ).pixel_values # verify logits _SCREAMING_SNAKE_CASE = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _SCREAMING_SNAKE_CASE = model(pixel_values=snake_case__ ,decoder_input_ids=snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits _SCREAMING_SNAKE_CASE = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] ,snake_case__ ,atol=1e-3 ), "First elements of logits not as expected" Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
125
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor'''] __lowerCAmelCase = '''SamImageProcessor''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __a : Any = self.image_processor __a : List[Any] = -10 __a : str = self.image_processor.size['''longest_edge'''] def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : Tuple = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless __a : Optional[Any] = encoding_image_processor['''original_sizes'''] if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks if Torch or TF tensor __a : Optional[Any] = original_sizes.numpy() __a , __a , __a : int = self._check_and_preprocess_points( input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , ) __a : List[Any] = self._normalize_and_convert( _UpperCAmelCase , _UpperCAmelCase , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="pt" , ): if input_points is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] ) for point in input_points ] else: __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase ) for point, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __a , __a : Tuple = self._pad_points_and_labels(_UpperCAmelCase , _UpperCAmelCase ) __a : List[Any] = np.array(_UpperCAmelCase ) if input_labels is not None: __a : List[Any] = np.array(_UpperCAmelCase ) if input_boxes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Any = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] , is_bounding_box=_UpperCAmelCase ) for box in input_boxes ] else: __a : int = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase , is_bounding_box=_UpperCAmelCase ) for box, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] __a : Optional[int] = np.array(_UpperCAmelCase ) if input_boxes is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __a : Dict = tf.convert_to_tensor(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __a : int = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __a : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Union[str, Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __a : str = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Dict = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = max([point.shape[0] for point in input_points] ) __a : Dict = [] for i, point in enumerate(_UpperCAmelCase ): if point.shape[0] != expected_nb_points: __a : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __a : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_UpperCAmelCase ) __a : int = processed_input_points return input_points, input_labels def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): __a , __a : str = original_size __a , __a : Optional[int] = self.image_processor._get_preprocess_shape(_UpperCAmelCase , longest_edge=_UpperCAmelCase ) __a : List[str] = deepcopy(_UpperCAmelCase ).astype(_UpperCAmelCase ) if is_bounding_box: __a : Optional[int] = coords.reshape(-1 , 2 , 2 ) __a : str = coords[..., 0] * (new_w / old_w) __a : List[Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: __a : List[Any] = coords.reshape(-1 , 4 ) return coords def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if input_points is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks for TF or Torch tensor __a : str = input_points.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_points[0] , _UpperCAmelCase ): raise ValueError('''Input points must be a list of list of floating points.''' ) __a : str = [np.array(_UpperCAmelCase ) for input_point in input_points] else: __a : Optional[int] = None if input_labels is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : Dict = input_labels.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_labels[0] , _UpperCAmelCase ): raise ValueError('''Input labels must be a list of list integers.''' ) __a : Dict = [np.array(_UpperCAmelCase ) for label in input_labels] else: __a : Tuple = None if input_boxes is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_boxes[0] , _UpperCAmelCase ) or not isinstance(input_boxes[0][0] , _UpperCAmelCase ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __a : Optional[Any] = [np.array(_UpperCAmelCase ).astype(np.floataa ) for box in input_boxes] else: __a : Union[str, Any] = None return input_points, input_labels, input_boxes @property def _lowerCamelCase ( self ): __a : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(_UpperCAmelCase ) ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.image_processor.post_process_masks(*_UpperCAmelCase , **_UpperCAmelCase )
160
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A = logging.get_logger(__name__) class _lowercase ( __UpperCAmelCase ): def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> None: warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
365
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart _A = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } _A = { 'facebook/bart-base': 1_0_2_4, 'facebook/bart-large': 1_0_2_4, 'facebook/bart-large-mnli': 1_0_2_4, 'facebook/bart-large-cnn': 1_0_2_4, 'facebook/bart-large-xsum': 1_0_2_4, 'yjernite/bart_eli5': 1_0_2_4, } class _lowercase ( __UpperCAmelCase ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ['input_ids', 'attention_mask'] lowercase_ = BartTokenizer def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_="replace" , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=False , UpperCAmelCase_=True , **UpperCAmelCase_ , ) -> Union[str, Any]: super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: lowerCamelCase : Tuple = getattr(UpperCAmelCase_ , pre_tok_state.pop('type' ) ) lowerCamelCase : Optional[Any] = add_prefix_space lowerCamelCase : str = pre_tok_class(**UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCamelCase : Dict = 'post_processor' lowerCamelCase : str = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) if tokenizer_component_instance: lowerCamelCase : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase : int = tuple(state['sep'] ) if "cls" in state: lowerCamelCase : str = tuple(state['cls'] ) lowerCamelCase : Optional[Any] = False if state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: lowerCamelCase : Dict = add_prefix_space lowerCamelCase : Tuple = True if state.get('trim_offsets' , UpperCAmelCase_ ) != trim_offsets: lowerCamelCase : Tuple = trim_offsets lowerCamelCase : Dict = True if changes_to_apply: lowerCamelCase : Optional[int] = getattr(UpperCAmelCase_ , state.pop('type' ) ) lowerCamelCase : Any = component_class(**UpperCAmelCase_ ) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) @property def _UpperCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase ( self , UpperCAmelCase_ ) -> List[Any]: lowerCamelCase : Optional[int] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else value lowerCamelCase : int = value def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> BatchEncoding: lowerCamelCase : str = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> BatchEncoding: lowerCamelCase : Optional[Any] = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> Tuple[str]: lowerCamelCase : Any = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=None ) -> List[Any]: lowerCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]: lowerCamelCase : List[Any] = [self.sep_token_id] lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
205
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCamelCase_ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = ['''audio_values''', '''audio_mask'''] def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[Any]=2048 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Optional[Any]=[16, 16] , __UpperCAmelCase : int=128 , __UpperCAmelCase : Union[str, Any]=44100 , __UpperCAmelCase : Optional[int]=86 , __UpperCAmelCase : List[Any]=2048 , __UpperCAmelCase : Dict=0.0 , **__UpperCAmelCase : List[str] , ): '''simple docstring''' super().__init__( feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase , ) _A = spectrogram_length _A = num_channels _A = patch_size _A = feature_size // self.patch_size[1] _A = n_fft _A = sampling_rate // hop_length_to_sampling_rate _A = sampling_rate _A = padding_value _A = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__UpperCAmelCase , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=__UpperCAmelCase , norm="slaney" , mel_scale="slaney" , ).T def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : np.array ): '''simple docstring''' _A = spectrogram( __UpperCAmelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) _A = log_spec[:, :-1] _A = log_spec - 20.0 _A = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , __UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : Optional[bool] = True , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , **__UpperCAmelCase : Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _A = isinstance(__UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): _A = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _A = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _A = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __UpperCAmelCase ): _A = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _A = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _A = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _A = np.array(__UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding _A = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _A = np.ones([len(__UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _A = padded_audio_features * self.padding_value for i in range(len(__UpperCAmelCase ) ): _A = audio_features[i] _A = feature # return as BatchFeature if return_attention_mask: _A = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: _A = {"audio_values": padded_audio_features} _A = BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) return encoded_inputs
79
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCAmelCase ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any: if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCAmelCase ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0
"""simple docstring""" import string from math import logaa def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[str] = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowerCAmelCase : Dict = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowerCAmelCase : List[Any] = corpus_without_punctuation.split('\n' ) __lowerCAmelCase : Optional[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(_UpperCamelCase )) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): return round(tf * idf , 3 )
182
"""simple docstring""" lowerCamelCase__ = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
182
1
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case_ = "AAPL" ): _A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" ) _A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""",class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
26
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCAmelCase_ = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: UpperCAmelCase__ = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) UpperCAmelCase__ = convert_pytorch_state_dict_to_flax(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase__ = convert_pytorch_sharded_state_dict_to_flax(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return flax_state_dict def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, jnp.ndarray] , SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ : Tuple[str] ) -> bool: return len(set(SCREAMING_SNAKE_CASE__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase__ = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase__ = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase__ = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase__ = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase__ = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase__ = pt_tuple_key[-2] + """_v""" if name is not None: UpperCAmelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase__ = flax_model.params["""params"""] else: UpperCAmelCase__ = flax_model.params UpperCAmelCase__ = flatten_dict(SCREAMING_SNAKE_CASE__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase__ = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary UpperCAmelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # add model prefix if necessary UpperCAmelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase__ = jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase__ = jnp.asarray(SCREAMING_SNAKE_CASE__ ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase__ = jnp.asarray(SCREAMING_SNAKE_CASE__ ) return unflatten_dict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' import torch # Load the index UpperCAmelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase__ = flax_model.params["""params"""] UpperCAmelCase__ = flatten_dict(SCREAMING_SNAKE_CASE__ ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: UpperCAmelCase__ = flax_model.params UpperCAmelCase__ = flatten_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary UpperCAmelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # add model prefix if necessary UpperCAmelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase__ = jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue if "var" in flax_key[-1]: UpperCAmelCase__ = jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase__ = jnp.asarray(SCREAMING_SNAKE_CASE__ ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase__ = jnp.asarray(SCREAMING_SNAKE_CASE__ ) return unflatten_dict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as state_f: try: UpperCAmelCase__ = from_bytes(SCREAMING_SNAKE_CASE__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCAmelCase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE__ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values() if any(SCREAMING_SNAKE_CASE__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCAmelCase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = flatten_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = pt_model.state_dict() UpperCAmelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase__ = [] UpperCAmelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase__ = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(SCREAMING_SNAKE_CASE__ ) not in pt_model_dict: # conv layer UpperCAmelCase__ = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ = jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE__ ) not in pt_model_dict: # linear layer UpperCAmelCase__ = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase__ = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase__ = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: UpperCAmelCase__ = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: UpperCAmelCase__ = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase__ = """.""".join(SCREAMING_SNAKE_CASE__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase__ = key.split(""".""" ) UpperCAmelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase__ = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase__ = key_components[-2] + """_v""" if name is not None: UpperCAmelCase__ = key_components[:-3] + [name] UpperCAmelCase__ = """.""".join(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = key if flax_key in special_pt_names: UpperCAmelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict UpperCAmelCase__ = np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE__ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # re-transform missing_keys to list UpperCAmelCase__ = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' """If your task is similar to the task the model of the checkpoint was trained on, """ F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
61
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = """pix2struct_text_model""" lowerCAmelCase_ : str = ["""past_key_values"""] lowerCAmelCase_ : Dict = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , _UpperCAmelCase : Dict=5_02_44 , _UpperCAmelCase : Tuple=7_68 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Dict=20_48 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Any=1_28 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=1E-6 , _UpperCAmelCase : List[str]=1.0 , _UpperCAmelCase : str="gelu_new" , _UpperCAmelCase : str=0 , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : str , ): """simple docstring""" UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = d_kv UpperCAmelCase__ = d_ff UpperCAmelCase__ = num_layers UpperCAmelCase__ = num_heads UpperCAmelCase__ = relative_attention_num_buckets UpperCAmelCase__ = relative_attention_max_distance UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = use_cache UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = decoder_start_token_id # for backwards compatibility UpperCAmelCase__ = dense_act_fn super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , is_decoder=_UpperCAmelCase , **_UpperCAmelCase , ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : int ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """pix2struct_vision_model""" def __init__( self : Any , _UpperCAmelCase : List[Any]=7_68 , _UpperCAmelCase : Optional[int]=7_68 , _UpperCAmelCase : Dict=20_48 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Dict="gelu_new" , _UpperCAmelCase : List[Any]=1E-6 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Union[str, Any]=1E-10 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[int]=40_96 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Dict=1_28 , **_UpperCAmelCase : int , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = patch_embed_hidden_size UpperCAmelCase__ = d_ff UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = initializer_range UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = dense_act_fn UpperCAmelCase__ = seq_len UpperCAmelCase__ = relative_attention_num_buckets UpperCAmelCase__ = relative_attention_max_distance UpperCAmelCase__ = d_kv @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = """pix2struct""" lowerCAmelCase_ : Union[str, Any] = True def __init__( self : int , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : Optional[int] , ): """simple docstring""" super().__init__(tie_word_embeddings=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) if text_config is None: UpperCAmelCase__ = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase__ = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) UpperCAmelCase__ = PixaStructTextConfig(**_UpperCAmelCase ) UpperCAmelCase__ = PixaStructVisionConfig(**_UpperCAmelCase ) UpperCAmelCase__ = self.text_config.decoder_start_token_id UpperCAmelCase__ = self.text_config.pad_token_id UpperCAmelCase__ = self.text_config.eos_token_id UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = initializer_range UpperCAmelCase__ = self.initializer_range UpperCAmelCase__ = self.initializer_range UpperCAmelCase__ = is_vqa @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , _UpperCAmelCase : PixaStructTextConfig , _UpperCAmelCase : PixaStructVisionConfig , **_UpperCAmelCase : Any ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.text_config.to_dict() UpperCAmelCase__ = self.vision_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
61
1
def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int , A__ : int , A__ : set ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = len(A__ ), len(grid[0] ) if ( min(A__ , A__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __lowerCamelCase = 0 count += depth_first_search(A__ , row + 1 , A__ , A__ ) count += depth_first_search(A__ , row - 1 , A__ , A__ ) count += depth_first_search(A__ , A__ , col + 1 , A__ ) count += depth_first_search(A__ , A__ , col - 1 , A__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
12
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : CLIPSegForImageSegmentation , __magic_name__ : CLIPSegProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> str: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Optional[int] = dict(scheduler.config ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = FrozenDict(__magic_name__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Dict = dict(scheduler.config ) UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = FrozenDict(__magic_name__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__magic_name__ , segmentation_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ : Tuple = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : str , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase_ : int = self.segmentation_model(**__magic_name__ ) UpperCAmelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , )
125
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) lowerCAmelCase__ = img lowerCAmelCase__ = img.shape[1] lowerCAmelCase__ = img.shape[0] lowerCAmelCase__ = dst_width lowerCAmelCase__ = dst_height lowerCAmelCase__ = self.src_w / self.dst_w lowerCAmelCase__ = self.src_h / self.dst_h lowerCAmelCase__ = lowerCAmelCase__ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def UpperCamelCase__ ( self ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): lowerCAmelCase__ = self.img[self.get_y(_lowerCamelCase )][self.get_x(_lowerCamelCase )] def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return int(self.ratio_x * x ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __snake_case , __snake_case : Any = 8_00, 6_00 __snake_case : Dict = imread("""image_data/lena.jpg""", 1) __snake_case : Tuple = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
368
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = 3 lowerCAmelCase__ = (32, 32) lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase ) return image @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_UpperCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) return CLIPTextModel(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=_UpperCamelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] lowerCAmelCase__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCAmelCase__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images assert image.shape[0] == 2 lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCAmelCase__ = unet.half() lowerCAmelCase__ = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type='np' , ).images lowerCAmelCase__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained( _UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained( _UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , output_type='np' , ) lowerCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
122
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] ={} UpperCAmelCase : Union[str, Any] =job['''started_at'''] UpperCAmelCase : Union[str, Any] =job['''completed_at'''] UpperCAmelCase : List[str] =date_parser.parse(A__ ) UpperCAmelCase : Optional[Any] =date_parser.parse(A__ ) UpperCAmelCase : Optional[Any] =round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase : Optional[int] =start UpperCAmelCase : Optional[Any] =end UpperCAmelCase : Optional[int] =duration_in_min return job_info def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=None )-> Tuple: '''simple docstring''' UpperCAmelCase : str =None if token is not None: UpperCAmelCase : List[Any] ={'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} UpperCAmelCase : Tuple =f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' UpperCAmelCase : List[str] =requests.get(A__ , headers=A__ ).json() UpperCAmelCase : Optional[int] ={} try: job_time.update({job['''name''']: extract_time_from_single_job(A__ ) for job in result['''jobs''']} ) UpperCAmelCase : List[str] =math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(A__ ): UpperCAmelCase : int =requests.get(url + f'''&page={i + 2}''' , headers=A__ ).json() job_time.update({job['''name''']: extract_time_from_single_job(A__ ) for job in result['''jobs''']} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') __snake_case = parser.parse_args() __snake_case = get_job_time(args.workflow_run_id) __snake_case = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'{k}: {v["duration"]}')
348
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowercase_ = 'Create a default config file for Accelerate with only a few flags set.' def a ( A__ : Optional[Any]="no" , A__ : str = default_json_config_file , A__ : bool = False ) -> Optional[int]: """simple docstring""" _lowercase =Path(A__ ) path.parent.mkdir(parents=A__ , exist_ok=A__ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False _lowercase =mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) _lowercase ={ 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): _lowercase =torch.cuda.device_count() _lowercase =num_gpus _lowercase =False if num_gpus > 1: _lowercase ='MULTI_GPU' else: _lowercase ='NO' elif is_xpu_available() and use_xpu: _lowercase =torch.xpu.device_count() _lowercase =num_xpus _lowercase =False if num_xpus > 1: _lowercase ='MULTI_XPU' else: _lowercase ='NO' elif is_npu_available(): _lowercase =torch.npu.device_count() _lowercase =num_npus _lowercase =False if num_npus > 1: _lowercase ='MULTI_NPU' else: _lowercase ='NO' else: _lowercase =0 _lowercase =True _lowercase =1 _lowercase ='NO' _lowercase =ClusterConfig(**A__ ) config.to_json_file(A__ ) return path def a ( A__ : Dict , A__ : Optional[Any] ) -> List[Any]: """simple docstring""" _lowercase =parser.add_parser('default' , parents=A__ , help=A__ , formatter_class=A__ ) parser.add_argument( '--config_file' , default=A__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=A__ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=A__ ) return parser def a ( A__ : List[str] ) -> Any: """simple docstring""" _lowercase =write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
205
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _UpperCAmelCase : '''simple docstring''' __A = XGLMConfig __A = {} __A = '''gelu''' def __init__( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=14 , lowercase_ : Any=7 , lowercase_ : Optional[Any]=True , lowercase_ : List[str]=True , lowercase_ : Any=True , lowercase_ : List[str]=99 , lowercase_ : Any=32 , lowercase_ : Optional[int]=2 , lowercase_ : List[Any]=4 , lowercase_ : Any=37 , lowercase_ : List[Any]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = activation_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = None _UpperCamelCase = 0 _UpperCamelCase = 2 _UpperCamelCase = 1 def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M") def __UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = self.get_config() _UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def __UpperCAmelCase ( self : int) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def __UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ( _UpperCamelCase ) = config_and_inputs _UpperCamelCase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __A = (TFXGLMForCausalLM,) if is_tf_available() else () __A = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) __A = False __A = False __A = False def __UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" _UpperCamelCase = TFXGLMModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37) def __UpperCAmelCase ( self : List[str]) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFXGLMModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def __UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : Optional[int] , lowercase_ : Optional[Any]=True) -> Tuple: """simple docstring""" _UpperCamelCase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") _UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on _UpperCamelCase = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__) @slow def __UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCamelCase = XGLMTokenizer.from_pretrained("facebook/xglm-564M") _UpperCamelCase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tf.random.set_seed(0) _UpperCamelCase = tokenizer("Today is a nice day and" , return_tensors="tf") _UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0"): _UpperCamelCase = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0]) _UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__) _UpperCamelCase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def __UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCamelCase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") _UpperCamelCase = XGLMTokenizer.from_pretrained("facebook/xglm-564M") _UpperCamelCase = "left" # use different length sentences to test batching _UpperCamelCase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCamelCase = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__) _UpperCamelCase = inputs["input_ids"] _UpperCamelCase = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=12) _UpperCamelCase = tokenizer(sentences[0] , return_tensors="tf").input_ids _UpperCamelCase = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12) _UpperCamelCase = tokenizer(sentences[1] , return_tensors="tf").input_ids _UpperCamelCase = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12) _UpperCamelCase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) _UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__) _UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__) _UpperCamelCase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence])
367
import os def lowerCAmelCase__ ( ) ->Any: '''simple docstring''' with open(os.path.dirname(a__ ) + "/grid.txt" ) as f: _UpperCamelCase = [] # noqa: E741 for _ in range(20 ): l.append([int(a__ ) for x in f.readline().split()] ) _UpperCamelCase = 0 # right for i in range(20 ): for j in range(17 ): _UpperCamelCase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _UpperCamelCase = temp # down for i in range(17 ): for j in range(20 ): _UpperCamelCase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _UpperCamelCase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _UpperCamelCase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _UpperCamelCase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _UpperCamelCase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _UpperCamelCase = temp return maximum if __name__ == "__main__": print(solution())
63
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __UpperCamelCase : Any = getLogger(__name__) __UpperCamelCase : int = 'cuda' if torch.cuda.is_available() else 'cpu' def A ( _lowercase , _lowercase , _lowercase , _lowercase = 8 , _lowercase = DEFAULT_DEVICE , _lowercase=False , _lowercase="summarization" , _lowercase=None , **_lowercase , ): SCREAMING_SNAKE_CASE : List[str] = Path(_lowercase ).open('''w''' , encoding='''utf-8''' ) SCREAMING_SNAKE_CASE : int = str(_lowercase ) SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM.from_pretrained(_lowercase ).to(_lowercase ) if fpaa: SCREAMING_SNAKE_CASE : Dict = model.half() SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(_lowercase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. SCREAMING_SNAKE_CASE : str = time.time() # update config with task specific params use_task_specific_params(_lowercase , _lowercase ) if prefix is None: SCREAMING_SNAKE_CASE : Optional[int] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(_lowercase , _lowercase ) ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prefix + text for text in examples_chunk] SCREAMING_SNAKE_CASE : Dict = tokenizer(_lowercase , return_tensors='''pt''' , truncation=_lowercase , padding='''longest''' ).to(_lowercase ) SCREAMING_SNAKE_CASE : str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowercase , ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() SCREAMING_SNAKE_CASE : Tuple = int(time.time() - start_time ) # seconds SCREAMING_SNAKE_CASE : str = len(_lowercase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A ( ): return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A ( _lowercase=True ): SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=_lowercase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=_lowercase , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=_lowercase , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=_lowercase , required=_lowercase , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=_lowercase , required=_lowercase , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=_lowercase , required=_lowercase , default=_lowercase , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=_lowercase , required=_lowercase , default=_lowercase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=_lowercase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_lowercase , default=8 , required=_lowercase , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=_lowercase , default=-1 , required=_lowercase , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=_lowercase , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_known_args() SCREAMING_SNAKE_CASE : Optional[Any] = parse_numeric_n_bool_cl_kwargs(_lowercase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: SCREAMING_SNAKE_CASE : Any = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowercase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) SCREAMING_SNAKE_CASE : List[str] = generate_summaries_or_translations( _lowercase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowercase , ) if args.reference_path is None: return {} # Compute scores SCREAMING_SNAKE_CASE : Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge SCREAMING_SNAKE_CASE : Union[str, Any] = [x.rstrip() for x in open(args.save_path ).readlines()] SCREAMING_SNAKE_CASE : Optional[int] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowercase )] SCREAMING_SNAKE_CASE : dict = score_fn(_lowercase , _lowercase ) scores.update(_lowercase ) if args.dump_args: scores.update(_lowercase ) if args.info: SCREAMING_SNAKE_CASE : Tuple = args.info if verbose: print(_lowercase ) if args.score_path is not None: json.dump(_lowercase , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
182
from math import ceil def A ( _lowercase = 1_001 ): SCREAMING_SNAKE_CASE : Any = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * i + 1 SCREAMING_SNAKE_CASE : int = 2 * i SCREAMING_SNAKE_CASE : List[str] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCamelCase : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
182
1
from __future__ import annotations from typing import Any def __magic_name__ ( __lowerCAmelCase : list ) -> int: if not postfix_notation: return 0 __lowerCamelCase = {"+", "-", "*", "/"} __lowerCamelCase = [] for token in postfix_notation: if token in operations: __lowerCamelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
363
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
"""simple docstring""" import argparse from collections import defaultdict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : List[Any] = f.readlines() UpperCAmelCase_ : int = f"""class {class_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{4 * " "}def {test_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{8 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : Tuple = f"""{16 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : int = False UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : int = [] for line in lines: if line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Tuple = True elif in_class and line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Optional[int] = True elif in_class and in_func and (line.startswith(__lowerCamelCase ) or line.startswith(__lowerCamelCase )): UpperCAmelCase_ : Any = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ : Union[str, Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) UpperCAmelCase_ : int = False else: new_lines.append(__lowerCamelCase ) with open(__lowerCamelCase, "w" ) as f: for line in new_lines: f.write(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase=None ): if fail is not None: with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Tuple = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ : str = None with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() UpperCAmelCase_ : Any = defaultdict(__lowerCamelCase ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _a = parser.parse_args() main(args.correct_filename, args.fail_filename)
61
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a ( ): UpperCAmelCase_ : List[Any] = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } UpperCAmelCase_ : Optional[int] = Dataset.from_dict(__lowerCamelCase ) return dataset class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_dataset() UpperCAmelCase_ : Any = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = get_dataset() UpperCAmelCase_ , UpperCAmelCase_ : List[str] = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowercase_ )
61
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple=13 , __magic_name__ : Optional[Any]=10 , __magic_name__ : Any=3 , __magic_name__ : str=2 , __magic_name__ : Tuple=2 , __magic_name__ : int=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Dict=True , __magic_name__ : str=32 , __magic_name__ : str=5 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Any=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Dict=10 , __magic_name__ : Any=0.02 , __magic_name__ : Optional[Any]=0.9 , __magic_name__ : str=None , ) -> Dict: """simple docstring""" __snake_case : Optional[int] = parent __snake_case : List[Any] = batch_size __snake_case : Dict = image_size __snake_case : Union[str, Any] = num_channels __snake_case : Optional[Any] = patch_size __snake_case : List[str] = tubelet_size __snake_case : Union[str, Any] = num_frames __snake_case : List[str] = is_training __snake_case : str = use_labels __snake_case : str = hidden_size __snake_case : Dict = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Any = mask_ratio __snake_case : List[str] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __snake_case : Optional[Any] = (image_size // patch_size) ** 2 __snake_case : List[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __snake_case : Union[str, Any] = int(mask_ratio * self.seq_length ) def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" __snake_case : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowercase__ ( self : Any , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Any ) -> Optional[int]: """simple docstring""" __snake_case : str = VideoMAEModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = VideoMAEForPreTraining(__magic_name__ ) model.to(__magic_name__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case : Tuple = torch.ones((self.num_masks,) ) __snake_case : Tuple = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __snake_case : Any = mask.expand(self.batch_size , -1 ).bool() __snake_case : int = model(__magic_name__ , __magic_name__ ) # model only returns predictions for masked patches __snake_case : Tuple = mask.sum().item() __snake_case : Union[str, Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase__: int = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase__: int = False lowercase__: Optional[int] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Tuple = VideoMAEModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int=False ) -> Tuple: """simple docstring""" __snake_case : Tuple = copy.deepcopy(__magic_name__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case : int = torch.ones((self.model_tester.num_masks,) ) __snake_case : str = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __snake_case : Union[str, Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() __snake_case : List[Any] = bool_masked_pos.to(__magic_name__ ) if return_labels: if model_class in [ *get_values(__magic_name__ ), ]: __snake_case : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> str: """simple docstring""" pass def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(__magic_name__ ) __snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = VideoMAEModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = True for model_class in self.all_model_classes: __snake_case : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks __snake_case : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __snake_case : Optional[int] = True __snake_case : Union[str, Any] = False __snake_case : Any = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Union[str, Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Dict = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Optional[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __snake_case : Any = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Tuple = True __snake_case : Union[str, Any] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : Any = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): __snake_case : List[Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : List[str] = outputs.hidden_states __snake_case : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks __snake_case : str = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[Any] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : Optional[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case : int = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( __magic_name__ ) __snake_case : Any = self.default_image_processor __snake_case : Any = prepare_video() __snake_case : int = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(**__magic_name__ ) # verify the logits __snake_case : Dict = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Tuple = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case : Any = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(__magic_name__ ) __snake_case : str = self.default_image_processor __snake_case : List[str] = prepare_video() __snake_case : List[Any] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # add boolean mask, indicating which patches to mask __snake_case : List[Any] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __snake_case : Any = torch.load(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : str = model(**__magic_name__ ) # verify the logits __snake_case : Tuple = torch.Size([1, 14_08, 15_36] ) __snake_case : Any = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__magic_name__ ) self.assertEqual(outputs.logits.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __snake_case : Union[str, Any] = torch.tensor([0.5142] , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __snake_case : Tuple = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=__magic_name__ ).to( __magic_name__ ) with torch.no_grad(): __snake_case : Optional[Any] = model(**__magic_name__ ) __snake_case : str = torch.tensor(torch.tensor([0.6469] ) , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) )
13
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" lowerCAmelCase__ : Tuple = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert("""RGB""" ) return image def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = dct.pop(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = val def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase__ : List[Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCAmelCase__ : str = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCAmelCase__ : Dict = torch.cat((q_bias, torch.zeros_like(UpperCamelCase , requires_grad=UpperCamelCase ), v_bias) ) lowerCAmelCase__ : Optional[int] = qkv_bias def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = 364 if """coco""" in model_name else 224 lowerCAmelCase__ : str = InstructBlipVisionConfig(image_size=UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowerCAmelCase__ : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase__ : Optional[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowerCAmelCase__ : Optional[int] = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: lowerCAmelCase__ : Optional[Any] = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowerCAmelCase__ : Dict = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() lowerCAmelCase__ : List[Any] = InstructBlipConfig(vision_config=UpperCamelCase , text_config=UpperCamelCase , qformer_config=UpperCamelCase ) return config, image_size @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=None , UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ : int = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: lowerCAmelCase__ : Optional[int] = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowerCAmelCase__ : Optional[int] = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = get_blipa_config(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = InstructBlipForConditionalGeneration(UpperCamelCase ).eval() lowerCAmelCase__ : Optional[Any] = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowerCAmelCase__ : str = """cuda:1""" if torch.cuda.is_available() else """cpu""" lowerCAmelCase__ : Tuple = """cuda:2""" if torch.cuda.is_available() else """cpu""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = load_model_and_preprocess( name=UpperCamelCase , model_type=UpperCamelCase , is_eval=UpperCamelCase , device=UpperCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys lowerCAmelCase__ : Union[str, Any] = original_model.state_dict() lowerCAmelCase__ : List[Any] = create_rename_keys(UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase__ : List[str] = state_dict.pop(UpperCamelCase ) if key.startswith("""Qformer.bert""" ): lowerCAmelCase__ : Optional[int] = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowerCAmelCase__ : Tuple = key.replace("""self""" , """attention""" ) if "llm_proj" in key: lowerCAmelCase__ : int = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: lowerCAmelCase__ : Optional[int] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): lowerCAmelCase__ : Optional[int] = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): lowerCAmelCase__ : Tuple = key.replace("""t5""" , """language""" ) lowerCAmelCase__ : int = val # read in qv biases read_in_q_v_bias(UpperCamelCase , UpperCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) lowerCAmelCase__ : List[str] = load_demo_image() lowerCAmelCase__ : Optional[Any] = """What is unusual about this image?""" # create processor lowerCAmelCase__ : Dict = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=UpperCamelCase , image_std=UpperCamelCase ) lowerCAmelCase__ : List[str] = InstructBlipProcessor( image_processor=UpperCamelCase , tokenizer=UpperCamelCase , qformer_tokenizer=UpperCamelCase , ) lowerCAmelCase__ : str = processor(images=UpperCamelCase , text=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # make sure processor creates exact same pixel values lowerCAmelCase__ : Tuple = vis_processors["""eval"""](UpperCamelCase ).unsqueeze(0 ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , UpperCamelCase ) original_model.to(UpperCamelCase ) hf_model.to(UpperCamelCase ) with torch.no_grad(): if "vicuna" in model_name: lowerCAmelCase__ : Union[str, Any] = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits lowerCAmelCase__ : Union[str, Any] = hf_model(**UpperCamelCase ).logits else: lowerCAmelCase__ : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits lowerCAmelCase__ : Optional[Any] = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(UpperCamelCase ) lowerCAmelCase__ : Any = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowerCAmelCase__ : Any = hf_model(**UpperCamelCase , labels=UpperCamelCase ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowerCAmelCase__ : Any = 1e-4 if """vicuna""" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , UpperCamelCase , atol=UpperCamelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) lowerCAmelCase__ : Any = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) lowerCAmelCase__ : Optional[int] = hf_model.generate( **UpperCamelCase , do_sample=UpperCamelCase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowerCAmelCase__ : Any = 2 print("""Original generation:""" , UpperCamelCase ) lowerCAmelCase__ : str = processor.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) lowerCAmelCase__ : str = [text.strip() for text in output_text] print("""HF generation:""" , UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase ) hf_model.save_pretrained(UpperCamelCase ) if push_to_hub: processor.push_to_hub(f"""Salesforce/{model_name}""" ) hf_model.push_to_hub(f"""Salesforce/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() _lowerCAmelCase = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) _lowerCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _A = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase_ ( unittest.TestCase ): A__ : List[str] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A__ : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A__ : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = ZeroShotClassificationPipeline( model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # No kwarg UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCamelCase_ = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(1 ) ] , ) UpperCamelCase_ = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__UpperCamelCase ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier(__UpperCamelCase , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels=__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__UpperCamelCase , ) self.run_entailment_id(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = zero_shot_classifier.model.config UpperCamelCase_ = config.labelaid UpperCamelCase_ = zero_shot_classifier.entailment_id UpperCamelCase_ = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) UpperCamelCase_ = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) UpperCamelCase_ = original_labelaid self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_0_0 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
122
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE : Optional[Any] = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } _SCREAMING_SNAKE_CASE : List[str] = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } _SCREAMING_SNAKE_CASE : Optional[Any] = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class _snake_case ( _a ): lowerCAmelCase_ : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Optional[int] = ConvBertTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ) -> int: '''simple docstring''' super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _a ) != do_lower_case or normalizer_state.get("strip_accents" , _a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _a ) != tokenize_chinese_chars ): snake_case_ = getattr(_a , normalizer_state.pop("type" ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_a ) snake_case_ = do_lower_case def lowerCAmelCase__ ( self , a__ , a__=None ) -> Union[str, Any]: '''simple docstring''' snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Any: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Dict: '''simple docstring''' snake_case_ = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
370
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"facebook/bart-base": BartForConditionalGeneration} _SCREAMING_SNAKE_CASE : Union[str, Any] = {"facebook/bart-base": BartTokenizer} def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case , default=snake_case , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case , default=snake_case , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case , ) parser.add_argument( "--config_name" , type=snake_case , default=snake_case , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case , default=snake_case , help="Where to store the final ONNX file." ) snake_case_ = parser.parse_args() return args def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str]="cpu" ): '''simple docstring''' snake_case_ = model_dict[model_name].from_pretrained(snake_case ).to(snake_case ) snake_case_ = tokenizer_dict[model_name].from_pretrained(snake_case ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCamelCase_( snake_case : int , snake_case : Tuple , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(snake_case ) ) with torch.no_grad(): snake_case_ = "My friends are cool but they eat too many carbs." snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="pt" ).to(model.device ) snake_case_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case , max_length=snake_case , early_stopping=snake_case , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case , opset_version=1_4 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case , ) logger.info("Model exported to {}".format(snake_case ) ) snake_case_ = remove_dup_initializers(os.path.abspath(snake_case ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case ) ) snake_case_ = onnxruntime.InferenceSession(snake_case ) snake_case_ = ort_sess.run( snake_case , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case ), "max_length": np.array(snake_case ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ , snake_case_ = load_model_tokenizer(args.model_name_or_path , snake_case ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case , snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
92
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE :Dict = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = AlbertTokenizer snake_case_ = AlbertTokenizerFast snake_case_ = True snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing __A = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Tuple ,A : List[str] ): __A = "this is a test" __A = "this is a test" return input_text, output_text def UpperCamelCase_ ( self : List[Any] ): __A = "<pad>" __A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) ,A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<pad>" ) self.assertEqual(vocab_keys[1] ,"<unk>" ) self.assertEqual(vocab_keys[-1] ,"▁eloquent" ) self.assertEqual(len(A ) ,3_00_00 ) def UpperCamelCase_ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size ,3_00_00 ) def UpperCamelCase_ ( self : str ): if not self.test_rust_tokenizer: return __A = self.get_tokenizer() __A = self.get_rust_tokenizer() __A = "I was born in 92000, and this is falsé." __A = tokenizer.tokenize(A ) __A = rust_tokenizer.tokenize(A ) self.assertListEqual(A ,A ) __A = tokenizer.encode(A ,add_special_tokens=A ) __A = rust_tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) __A = self.get_rust_tokenizer() __A = tokenizer.encode(A ) __A = rust_tokenizer.encode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Any ): __A = AlbertTokenizer(A ,keep_accents=A ) __A = tokenizer.tokenize("This is a test" ) self.assertListEqual(A ,["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[48, 25, 21, 12_89] ) __A = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A ,["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __A = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A ,[31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __A = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A ,["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] ,) def UpperCamelCase_ ( self : List[str] ): __A = AlbertTokenizer(A ) __A = tokenizer.encode("sequence builders" ) __A = tokenizer.encode("multi-sequence build" ) __A = tokenizer.build_inputs_with_special_tokens(A ) __A = tokenizer.build_inputs_with_special_tokens(A ,A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase_ ( self : int ): # fmt: off __A = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A ,model_name="albert-base-v2" ,revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" ,)
15
'''simple docstring''' import argparse import os import re lowerCAmelCase_ : Any = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase_ : List[str] = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings lowerCAmelCase_ : Tuple = re.compile(R'\s*\(\s*"(\S[^"]+)"') def _lowerCamelCase ( lowercase : Any , lowercase : bool = False ) -> Optional[Any]: with open(lowercase , "r" , encoding="utf-8" ) as f: _a = f.read() _a = content.split("\n" ) _a = [] _a = 0 while line_idx < len(lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _a = len(re.search(r"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 _a = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _a = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _a = sorted(lowercase , key=lambda lowercase : _re_identifier.search(lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase , "w" , encoding="utf-8" ) as f: f.write("\n".join(lowercase ) ) elif "\n".join(lowercase ) != content: return True def _lowerCamelCase ( lowercase : bool = False ) -> List[str]: _a = [os.path.join(lowercase , lowercase ) for f in os.listdir(lowercase ) if f.endswith(".py" )] _a = [sort_auto_mapping(lowercase , overwrite=lowercase ) for fname in fnames] if not overwrite and any(lowercase ): _a = [f for f, d in zip(lowercase , lowercase ) if d] raise ValueError( F'The following files have auto mappings that need sorting: {", ".join(lowercase )}. Run `make style` to fix' " this." ) if __name__ == "__main__": lowerCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowerCAmelCase_ : Optional[int] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
63
0
from math import isqrt def _a ( lowerCamelCase: int ) -> list[int]: '''simple docstring''' __A = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCamelCase , lowerCamelCase ): __A = False return [i for i in range(2 , lowerCamelCase ) if is_prime[i]] def _a ( lowerCamelCase: int = 10**8 ) -> int: '''simple docstring''' __A = calculate_prime_numbers(max_number // 2 ) __A = 0 __A = 0 __A = len(lowerCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'{solution() = }')
360
from __future__ import annotations from math import pi, sqrt def _a ( lowerCamelCase: float , lowerCamelCase: float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
250
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __lowercase ( __lowercase , __lowercase , __lowercase = 10**-10 ) -> float: '''simple docstring''' _A = a while True: _A = Decimal(__lowercase ) - ( Decimal(eval(__lowercase ) ) / Decimal(eval(str(diff(__lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowercase ) ) < precision: # noqa: S307 return float(__lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(F"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(F"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(F"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
79
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' _UpperCAmelCase = multiprocessing.Manager() _UpperCAmelCase = manager.list() _UpperCAmelCase = multiprocessing.Process(target=_UpperCAmelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def A ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _UpperCAmelCase = shutil.rmtree _UpperCAmelCase = os.rmdir _UpperCAmelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _UpperCAmelCase = {} with swallow_io(): with time_limit(_UpperCAmelCase ): exec(_UpperCAmelCase , _UpperCAmelCase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F"failed: {e}" ) # Needed for cleaning up. _UpperCAmelCase = rmtree _UpperCAmelCase = rmdir _UpperCAmelCase = chdir @contextlib.contextmanager def A ( _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' def signal_handler(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , _UpperCAmelCase ) signal.signal(signal.SIGALRM , _UpperCAmelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def A ( ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(_UpperCAmelCase ): with contextlib.redirect_stderr(_UpperCAmelCase ): with redirect_stdin(_UpperCAmelCase ): yield @contextlib.contextmanager def A ( ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(_UpperCAmelCase ): yield dirname class __lowerCAmelCase ( A ): pass class __lowerCAmelCase ( io.StringIO ): def _lowerCamelCase ( self : Tuple , *A : str , **A : Any) -> Any: """simple docstring""" raise OSError def _lowerCamelCase ( self : List[str] , *A : Optional[Any] , **A : Optional[Any]) -> Optional[int]: """simple docstring""" raise OSError def _lowerCamelCase ( self : str , *A : List[str] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" raise OSError def _lowerCamelCase ( self : Union[str, Any] , *A : Optional[Any] , **A : List[str]) -> Optional[int]: """simple docstring""" return False class __lowerCAmelCase ( contextlib._RedirectStream ): # type: ignore UpperCamelCase = '''stdin''' @contextlib.contextmanager def A ( _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if root == ".": yield return _UpperCAmelCase = os.getcwd() os.chdir(_UpperCAmelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str]=None ) -> Any: '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _UpperCAmelCase = None _UpperCAmelCase = None import os _UpperCAmelCase = '1' _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None import shutil _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None import subprocess _UpperCAmelCase = None # type: ignore _UpperCAmelCase = None import sys _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None
339
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ : int = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = to_pil_image(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = pil_image.size __SCREAMING_SNAKE_CASE = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type="dict" , config=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates __SCREAMING_SNAKE_CASE = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] __SCREAMING_SNAKE_CASE = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __SCREAMING_SNAKE_CASE = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes __SCREAMING_SNAKE_CASE = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[Any] = ["pixel_values"] def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : float = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[float, Iterable[float]] = None , UpperCAmelCase__ : Union[float, Iterable[float]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = "" , **UpperCAmelCase__ : Optional[Any] , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"height": 2_2_4, "width": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_value __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD __SCREAMING_SNAKE_CASE = apply_ocr __SCREAMING_SNAKE_CASE = ocr_lang __SCREAMING_SNAKE_CASE = tesseract_config def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = (size["height"], size["width"]) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : List[Any] , ) -> np.ndarray: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, Iterable[float]] , UpperCAmelCase__ : Union[float, Iterable[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Union[float, Iterable[float]] = None , UpperCAmelCase__ : Union[float, Iterable[float]] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : List[Any] , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = apply_ocr if apply_ocr is not None else self.apply_ocr __SCREAMING_SNAKE_CASE = ocr_lang if ocr_lang is not None else self.ocr_lang __SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else self.tesseract_config __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for image in images: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = apply_tesseract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) words_batch.append(UpperCAmelCase__ ) boxes_batch.append(UpperCAmelCase__ ) if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = BatchFeature(data={"pixel_values": images} , tensor_type=UpperCAmelCase__ ) if apply_ocr: __SCREAMING_SNAKE_CASE = words_batch __SCREAMING_SNAKE_CASE = boxes_batch return data
195
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowerCAmelCase_ ): print(f"""{i}\t\t{d}""" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for j in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [float("inf" )] * vertex_count __SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: __SCREAMING_SNAKE_CASE = distance[u] + w __SCREAMING_SNAKE_CASE = check_negative_cycle(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() a__ : Union[str, Any] = int(input('''Enter number of vertices: ''').strip()) a__ : Any = int(input('''Enter number of edges: ''').strip()) a__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) a__ , a__ , a__ : str = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) a__ : str = {'''src''': src, '''dst''': dest, '''weight''': weight} a__ : str = int(input('''\nEnter shortest path source:''').strip()) a__ : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
195
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=13 , lowerCAmelCase__ : Optional[int]=10 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Optional[Any]=37 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Optional[Any]=10 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : str=0.9 , lowerCAmelCase__ : int=None , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: int = batch_size SCREAMING_SNAKE_CASE_: Dict = image_size SCREAMING_SNAKE_CASE_: Any = num_channels SCREAMING_SNAKE_CASE_: int = patch_size SCREAMING_SNAKE_CASE_: int = tubelet_size SCREAMING_SNAKE_CASE_: Optional[int] = num_frames SCREAMING_SNAKE_CASE_: int = is_training SCREAMING_SNAKE_CASE_: Dict = use_labels SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_: str = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Any = mask_ratio SCREAMING_SNAKE_CASE_: Dict = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame SCREAMING_SNAKE_CASE_: Any = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos SCREAMING_SNAKE_CASE_: Dict = int(mask_ratio * self.seq_length) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Tuple = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : int): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = VideoMAEModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[Any] = VideoMAEForPreTraining(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE_: Dict = torch.ones((self.num_masks,)) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) SCREAMING_SNAKE_CASE_: List[str] = mask.expand(self.batch_size , -1).bool() SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__) # model only returns predictions for masked patches SCREAMING_SNAKE_CASE_: Optional[int] = mask.sum().item() SCREAMING_SNAKE_CASE_: str = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = config_and_inputs SCREAMING_SNAKE_CASE_: int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _UpperCAmelCase : Dict = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : List[str] = False def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[Any] = VideoMAEModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=False): SCREAMING_SNAKE_CASE_: Any = copy.deepcopy(lowerCAmelCase__) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE_: List[str] = torch.ones((self.model_tester.num_masks,)) SCREAMING_SNAKE_CASE_: List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) SCREAMING_SNAKE_CASE_: Dict = mask.expand(self.model_tester.batch_size , -1).bool() SCREAMING_SNAKE_CASE_: Union[str, Any] = bool_masked_pos.to(lowerCAmelCase__) if return_labels: if model_class in [ *get_values(lowerCAmelCase__), ]: SCREAMING_SNAKE_CASE_: Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Dict = VideoMAEModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Union[str, Any] = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE_: Optional[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_: Union[str, Any] = True SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_: Dict = True SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = len(lowerCAmelCase__) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_: Any = True SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) self.assertEqual(out_len + 1 , len(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: str = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _SCREAMING_SNAKE_CASE ( self : Any): def check_hidden_states_output(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Dict = outputs.hidden_states SCREAMING_SNAKE_CASE_: Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE_: Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[str] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def A_ ( ): SCREAMING_SNAKE_CASE_: Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) SCREAMING_SNAKE_CASE_: Optional[Any] = np.load(_UpperCAmelCase ) return list(_UpperCAmelCase ) @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to( lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE_: int = prepare_video() SCREAMING_SNAKE_CASE_: Tuple = image_processor(lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: str = torch.Size((1, 400)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([0.3669, -0.0688, -0.2421]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self.default_image_processor SCREAMING_SNAKE_CASE_: Optional[int] = prepare_video() SCREAMING_SNAKE_CASE_: Optional[int] = image_processor(lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # add boolean mask, indicating which patches to mask SCREAMING_SNAKE_CASE_: List[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt") SCREAMING_SNAKE_CASE_: str = torch.load(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Optional[int] = torch.Size([1, 1408, 1536]) SCREAMING_SNAKE_CASE_: Optional[int] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=lowerCAmelCase__) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `True`) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.5142] , device=lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase__ , atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `False`) SCREAMING_SNAKE_CASE_: int = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=lowerCAmelCase__).to( lowerCAmelCase__) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any = model(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor(torch.tensor([0.6469]) , device=lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase__ , atol=1E-4))
13
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=True , UpperCAmelCase=2 ) -> str: """simple docstring""" from .. import __version__ lowerCamelCase__ : Optional[Any] = take_from lowerCamelCase__ : Any = () if not isinstance(args[0] , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCAmelCase ).base_version ) >= version.parse(UpperCAmelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowerCamelCase__ : List[Any] = None if isinstance(UpperCAmelCase , UpperCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCAmelCase ),) lowerCamelCase__ : Tuple = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCAmelCase , UpperCAmelCase ): values += (getattr(UpperCAmelCase , UpperCAmelCase ),) lowerCamelCase__ : Union[str, Any] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowerCamelCase__ : int = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowerCamelCase__ : int = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , UpperCAmelCase , stacklevel=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0: lowerCamelCase__ : Tuple = inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase__ : Optional[Any] = call_frame.filename lowerCamelCase__ : List[Any] = call_frame.lineno lowerCamelCase__ : Optional[Any] = call_frame.function lowerCamelCase__ : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCAmelCase ) == 0: return elif len(UpperCAmelCase ) == 1: return values[0] return values
359
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=True , UpperCAmelCase=2 ) -> str: """simple docstring""" from .. import __version__ lowerCamelCase__ : Optional[Any] = take_from lowerCamelCase__ : Any = () if not isinstance(args[0] , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCAmelCase ).base_version ) >= version.parse(UpperCAmelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowerCamelCase__ : List[Any] = None if isinstance(UpperCAmelCase , UpperCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCAmelCase ),) lowerCamelCase__ : Tuple = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCAmelCase , UpperCAmelCase ): values += (getattr(UpperCAmelCase , UpperCAmelCase ),) lowerCamelCase__ : Union[str, Any] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowerCamelCase__ : int = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowerCamelCase__ : int = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , UpperCAmelCase , stacklevel=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0: lowerCamelCase__ : Tuple = inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase__ : Optional[Any] = call_frame.filename lowerCamelCase__ : List[Any] = call_frame.lineno lowerCamelCase__ : Optional[Any] = call_frame.function lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCAmelCase ) == 0: return elif len(UpperCAmelCase ) == 1: return values[0] return values
265
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowercase = 250004 __lowercase = 250020 @require_sentencepiece @require_tokenizers class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Optional[Any] = MBartTokenizer UpperCAmelCase : Dict = MBartTokenizerFast UpperCAmelCase : Optional[Any] = True UpperCAmelCase : str = True def __snake_case ( self : List[Any]): super().setUp() # We have a SentencePiece fixture for testing a : Any = MBartTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __snake_case ( self : List[Any]): a : str = MBartTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase) a : Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a : int = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a : Tuple = tokenizer.convert_ids_to_tokens(__UpperCAmelCase) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __snake_case ( self : Any): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a : Optional[Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): a : Dict = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase) a : List[Any] = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase) a : Optional[int] = tempfile.mkdtemp() a : Optional[int] = tokenizer_r.save_pretrained(__UpperCAmelCase) a : List[Any] = tokenizer_p.save_pretrained(__UpperCAmelCase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) a : Optional[int] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase) # Checks everything loads correctly in the same way a : Dict = tokenizer_r.from_pretrained(__UpperCAmelCase) a : int = tokenizer_p.from_pretrained(__UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCAmelCase) # Save tokenizer rust, legacy_format=True a : Optional[Any] = tempfile.mkdtemp() a : Tuple = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase) a : List[str] = tokenizer_p.save_pretrained(__UpperCAmelCase) # Checks it save with the same files self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase) # Checks everything loads correctly in the same way a : Dict = tokenizer_r.from_pretrained(__UpperCAmelCase) a : Optional[Any] = tokenizer_p.from_pretrained(__UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase)) shutil.rmtree(__UpperCAmelCase) # Save tokenizer rust, legacy_format=False a : Dict = tempfile.mkdtemp() a : List[str] = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase) a : Optional[int] = tokenizer_p.save_pretrained(__UpperCAmelCase) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way a : Any = tokenizer_r.from_pretrained(__UpperCAmelCase) a : Any = tokenizer_p.from_pretrained(__UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase)) shutil.rmtree(__UpperCAmelCase) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[str] = """facebook/mbart-large-en-ro""" UpperCAmelCase : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCAmelCase : str = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCAmelCase : str = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __snake_case ( cls : str): a : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO") a : Optional[int] = 1 return cls def __snake_case ( self : Optional[Any]): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020) def __snake_case ( self : Union[str, Any]): a : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase) def __snake_case ( self : int): self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids) a : Tuple = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] a : List[Any] = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) a : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase) def __snake_case ( self : List[str]): a : List[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __UpperCAmelCase) a : Tuple = 10 a : Dict = self.tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , __UpperCAmelCase) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) def __snake_case ( self : List[str]): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]) , [250026, 250001]) def __snake_case ( self : str): a : List[str] = tempfile.mkdtemp() a : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCAmelCase) a : Dict = MBartTokenizer.from_pretrained(__UpperCAmelCase) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCAmelCase) @require_torch def __snake_case ( self : Dict): a : Union[str, Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="pt") a : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __snake_case ( self : List[Any]): a : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=len(self.expected_src_tokens) , return_tensors="pt" , ) a : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) self.assertEqual((2, 14) , batch.input_ids.shape) self.assertEqual((2, 14) , batch.attention_mask.shape) a : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE]) def __snake_case ( self : Optional[int]): a : List[str] = self.tokenizer(self.src_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=3 , return_tensors="pt") a : List[str] = self.tokenizer( text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=10 , return_tensors="pt") a : str = targets["input_ids"] a : Optional[Any] = shift_tokens_right(__UpperCAmelCase , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def __snake_case ( self : Any): a : Tuple = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR") self.assertEqual( nested_simplify(__UpperCAmelCase) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
40
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a__ ( snake_case__ ): _a : List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **_A ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCAmelCase = deprecated_arg[3:] __lowerCAmelCase = not kwargs.pop(_A ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __lowerCAmelCase = kwargs.pop("tpu_name" , self.tpu_name ) __lowerCAmelCase = kwargs.pop("device_idx" , self.device_idx ) __lowerCAmelCase = kwargs.pop("eager_mode" , self.eager_mode ) __lowerCAmelCase = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**_A ) _a : str = field( default=snake_case__ , metadata={"""help""": """Name of TPU"""} , ) _a : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) _a : bool = field(default=snake_case__ , metadata={"""help""": """Benchmark models in eager model."""} ) _a : bool = field( default=snake_case__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) __lowerCAmelCase = None if self.tpu: try: if self.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowerCAmelCase = None return tpu @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __lowerCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.n_gpu > 0
92
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
1
def a__ ( UpperCAmelCase : str = 1_000_000 ) -> int: UpperCAmelCase : Any = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
336
'''simple docstring''' def _A ( snake_case , snake_case ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
250
0
lowercase : Optional[Any] = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} lowercase : str = ["a", "b", "c", "d", "e"] def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int ): __UpperCamelCase : Optional[Any] = start # add current to visited visited.append(_lowerCAmelCase ) __UpperCamelCase : int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCamelCase : List[Any] = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(_lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): for vertice in vertices: if vertice not in visited: __UpperCamelCase : Optional[int] = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # return sort return sort if __name__ == "__main__": lowercase : int = topological_sort("a", [], []) print(sort)
359
def UpperCAmelCase_ (_lowerCAmelCase : list ): if len(_lowerCAmelCase ) <= 1: return lst __UpperCamelCase : Dict = 1 while i < len(_lowerCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: __UpperCamelCase : Any = 1 return lst if __name__ == "__main__": lowercase : Dict = input("Enter numbers separated by a comma:\n").strip() lowercase : Union[str, Any] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
171
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if len(__SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: lowercase = False if low == high: return swapped lowercase = low lowercase = high while left < right: if collection[left] > collection[right]: lowercase , lowercase = ( collection[right], collection[left], ) lowercase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowercase , lowercase = ( collection[right + 1], collection[left], ) lowercase = True lowercase = low + int((high - low) / 2 ) lowercase = circle_sort_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = circle_sort_util(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap lowercase = True while is_not_sorted is True: lowercase = circle_sort_util(__SCREAMING_SNAKE_CASE , 0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
195
import os from datetime import datetime as dt from github import Github UpperCAmelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def UpperCAmelCase_ ( ): lowercase = Github(os.environ['GITHUB_TOKEN'] ) lowercase = g.get_repo('huggingface/diffusers' ) lowercase = repo.get_issues(state='open' ) for issue in open_issues: lowercase = sorted(issue.get_comments() , key=lambda __SCREAMING_SNAKE_CASE : i.created_at , reverse=__SCREAMING_SNAKE_CASE ) lowercase = comments[0] if len(__SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
195
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Tuple: __snake_case: Any = original_name.split(""".""")[0] __snake_case: Optional[int] = key.split(""".""") __snake_case: List[Any] = int(key_list[key_list.index(snake_case_) - 2]) __snake_case: Optional[int] = int(key_list[key_list.index(snake_case_) - 1]) __snake_case: str = orig_block_num - offset __snake_case: Tuple = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''') return key def A__ ( SCREAMING_SNAKE_CASE__) -> str: __snake_case: Union[str, Any] = OrderedDict() __snake_case , __snake_case: Tuple = 0, 0 for key, value in state_dict.items(): if key.startswith("""network"""): __snake_case: List[Any] = key.replace("""network""" , """poolformer.encoder""") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""") and "patch_embed" not in key: patch_emb_offset += 1 __snake_case: List[str] = key[: key.find("""proj""")] __snake_case: Optional[Any] = key.replace(snake_case_ , F'''patch_embeddings.{total_embed_found}.''') __snake_case: Union[str, Any] = key.replace("""proj""" , """projection""") if key.endswith("""bias"""): total_embed_found += 1 if "patch_embeddings" in key: __snake_case: Any = """poolformer.encoder.""" + key if "mlp.fc1" in key: __snake_case: Tuple = replace_key_with_offset(snake_case_ , snake_case_ , """mlp.fc1""" , """output.conv1""") if "mlp.fc2" in key: __snake_case: Dict = replace_key_with_offset(snake_case_ , snake_case_ , """mlp.fc2""" , """output.conv2""") if "norm1" in key: __snake_case: Optional[Any] = replace_key_with_offset(snake_case_ , snake_case_ , """norm1""" , """before_norm""") if "norm2" in key: __snake_case: Any = replace_key_with_offset(snake_case_ , snake_case_ , """norm2""" , """after_norm""") if "layer_scale_1" in key: __snake_case: Tuple = replace_key_with_offset(snake_case_ , snake_case_ , """layer_scale_1""" , """layer_scale_1""") if "layer_scale_2" in key: __snake_case: List[str] = replace_key_with_offset(snake_case_ , snake_case_ , """layer_scale_2""" , """layer_scale_2""") if "head" in key: __snake_case: Any = key.replace("""head""" , """classifier""") __snake_case: List[Any] = value return new_state_dict def A__ ( ) -> Any: __snake_case: Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case: Union[str, Any] = Image.open(requests.get(snake_case_ , stream=snake_case_).raw) return image @torch.no_grad() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Optional[int]: __snake_case: Dict = PoolFormerConfig() # set attributes based on model_name __snake_case: str = """huggingface/label-files""" __snake_case: Dict = model_name[-3:] __snake_case: Optional[int] = 1000 __snake_case: Dict = """imagenet-1k-id2label.json""" __snake_case: Optional[Any] = (1, 1000) # set config attributes __snake_case: Optional[int] = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""") , """r""")) __snake_case: str = {int(snake_case_): v for k, v in idalabel.items()} __snake_case: List[str] = idalabel __snake_case: Optional[int] = {v: k for k, v in idalabel.items()} if size == "s12": __snake_case: List[Any] = [2, 2, 6, 2] __snake_case: int = [64, 128, 320, 512] __snake_case: Dict = 4.0 __snake_case: Any = 0.9 elif size == "s24": __snake_case: Optional[Any] = [4, 4, 12, 4] __snake_case: Optional[Any] = [64, 128, 320, 512] __snake_case: Dict = 4.0 __snake_case: List[str] = 0.9 elif size == "s36": __snake_case: Optional[Any] = [6, 6, 18, 6] __snake_case: List[Any] = [64, 128, 320, 512] __snake_case: int = 4.0 __snake_case: List[Any] = 1e-6 __snake_case: Any = 0.9 elif size == "m36": __snake_case: str = [6, 6, 18, 6] __snake_case: str = [96, 192, 384, 768] __snake_case: Any = 4.0 __snake_case: Tuple = 1e-6 __snake_case: Union[str, Any] = 0.95 elif size == "m48": __snake_case: List[str] = [8, 8, 24, 8] __snake_case: List[Any] = [96, 192, 384, 768] __snake_case: str = 4.0 __snake_case: List[Any] = 1e-6 __snake_case: List[Any] = 0.95 else: raise ValueError(F'''Size {size} not supported''') # load image processor __snake_case: int = PoolFormerImageProcessor(crop_pct=snake_case_) # Prepare image __snake_case: Optional[Any] = prepare_img() __snake_case: Any = image_processor(images=snake_case_ , return_tensors="""pt""").pixel_values logger.info(F'''Converting model {model_name}...''') # load original state dict __snake_case: List[Any] = torch.load(snake_case_ , map_location=torch.device("""cpu""")) # rename keys __snake_case: Optional[int] = rename_keys(snake_case_) # create HuggingFace model and load state dict __snake_case: List[str] = PoolFormerForImageClassification(snake_case_) model.load_state_dict(snake_case_) model.eval() # Define image processor __snake_case: Any = PoolFormerImageProcessor(crop_pct=snake_case_) __snake_case: List[str] = image_processor(images=prepare_img() , return_tensors="""pt""").pixel_values # forward pass __snake_case: int = model(snake_case_) __snake_case: Optional[Any] = outputs.logits # define expected logit slices for different models if size == "s12": __snake_case: List[str] = torch.tensor([-0.3_045, -0.6_758, -0.4_869]) elif size == "s24": __snake_case: Any = torch.tensor([0.4_402, -0.1_374, -0.8_045]) elif size == "s36": __snake_case: List[Any] = torch.tensor([-0.6_080, -0.5_133, -0.5_898]) elif size == "m36": __snake_case: Optional[int] = torch.tensor([0.3_952, 0.2_263, -1.2_668]) elif size == "m48": __snake_case: Union[str, Any] = torch.tensor([0.1_167, -0.0_656, -0.3_423]) else: raise ValueError(F'''Size {size} not supported''') # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , snake_case_ , atol=1e-2) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(snake_case_).mkdir(exist_ok=snake_case_) model.save_pretrained(snake_case_) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(snake_case_) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you\'d like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __UpperCAmelCase : Optional[int] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
368
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def UpperCAmelCase__ ( self : Any ): __snake_case: str = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase__ = """down""" def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Union[str, Any] = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def UpperCAmelCase__ ( self : Any ): __snake_case: Union[str, Any] = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def UpperCAmelCase__ ( self : List[str] ): __snake_case , __snake_case: List[str] = super().prepare_init_args_and_inputs_for_common() __snake_case: List[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_encoder_hidden_states=A ) def UpperCAmelCase__ ( self : int ): __snake_case , __snake_case: Union[str, Any] = super().prepare_init_args_and_inputs_for_common() __snake_case: Optional[Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Optional[Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SkipDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : Any ): return super().get_dummy_input(include_skip_sample=A ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : List[Any] ): return super().get_dummy_input(include_skip_sample=A ) def UpperCAmelCase__ ( self : int ): __snake_case: str = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DownEncoderBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : Union[str, Any] ): return super().get_dummy_input(include_temb=A ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: str = { """in_channels""": 32, """out_channels""": 32, } __snake_case: Dict = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : str ): __snake_case: Optional[int] = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : List[str] ): return super().get_dummy_input(include_temb=A ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } __snake_case: Tuple = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Dict = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaD # noqa F405 lowerCAmelCase__ = """mid""" def UpperCAmelCase__ ( self : str ): __snake_case: Optional[int] = { """in_channels""": 32, """temb_channels""": 128, } __snake_case: List[str] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : str ): __snake_case: Tuple = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase__ = """mid""" def UpperCAmelCase__ ( self : str ): __snake_case , __snake_case: int = super().prepare_init_args_and_inputs_for_common() __snake_case: int = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase__ = """mid""" @property def UpperCAmelCase__ ( self : Optional[int] ): return super().get_dummy_input(include_encoder_hidden_states=A ) def UpperCAmelCase__ ( self : str ): __snake_case , __snake_case: Any = super().prepare_init_args_and_inputs_for_common() __snake_case: str = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: Tuple = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: int = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Optional[int] ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Dict ): __snake_case , __snake_case: Any = super().prepare_init_args_and_inputs_for_common() __snake_case: Optional[int] = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: List[Any] = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Optional[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=A , include_encoder_hidden_states=A ) def UpperCAmelCase__ ( self : Dict ): __snake_case , __snake_case: Optional[Any] = super().prepare_init_args_and_inputs_for_common() __snake_case: str = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Union[str, Any] = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : int ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: Optional[Any] = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SkipUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : str ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[int] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : str ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UpDecoderBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Optional[int] ): return super().get_dummy_input(include_temb=A ) def UpperCAmelCase__ ( self : str ): __snake_case: Union[str, Any] = {"""in_channels""": 32, """out_channels""": 32} __snake_case: Dict = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Optional[Any] ): return super().get_dummy_input(include_temb=A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = {"""in_channels""": 32, """out_channels""": 32} __snake_case: Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : int ): __snake_case: Any = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(A )
293
0
from math import factorial class _lowercase : """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = real if isinstance(lowerCamelCase_ , lowerCamelCase_ ): a = [1] * rank else: a = rank def __repr__(self ): """simple docstring""" return ( F'''{self.real}+''' F'''{'+'.join(str(lowerCamelCase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def UpperCamelCase_ (self ): """simple docstring""" a = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCamelCase_ ) def __add__(self , lowerCamelCase_ ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return Dual(self.real + other , self.duals ) a = self.duals.copy() a = other.duals.copy() if len(lowerCamelCase_ ) > len(lowerCamelCase_ ): o_dual.extend([1] * (len(lowerCamelCase_ ) - len(lowerCamelCase_ )) ) elif len(lowerCamelCase_ ) < len(lowerCamelCase_ ): s_dual.extend([1] * (len(lowerCamelCase_ ) - len(lowerCamelCase_ )) ) a = [] for i in range(len(lowerCamelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCamelCase_ ) __A = __add__ def __sub__(self , lowerCamelCase_ ): """simple docstring""" return self + other * -1 def __mul__(self , lowerCamelCase_ ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): a = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCamelCase_ ) a = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCamelCase_ ) __A = __mul__ def __truediv__(self , lowerCamelCase_ ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): a = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCamelCase_ ) raise ValueError def __floordiv__(self , lowerCamelCase_ ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): a = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCamelCase_ ) raise ValueError def __pow__(self , lowerCamelCase_ ): """simple docstring""" if n < 0 or isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self a = self for _ in range(n - 1 ): x *= self return x def a( A : Tuple , A : Optional[Any] , A : List[str] ) -> List[Any]: """simple docstring""" if not callable(_lowercase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(_lowercase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(_lowercase , _lowercase ): raise ValueError("differentiate() requires an int as input for order" ) a = Dual(_lowercase , 1 ) a = func(_lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def a( A : Union[str, Any] ) -> int: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
227
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionDiffEditPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase = frozenset([] ) def _lowercase( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A , ) UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) UpperCAmelCase : List[Any] = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_zero=A , ) torch.manual_seed(0 ) UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) UpperCAmelCase : Optional[Any] = CLIPTextModel(A ) UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : int = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase( self , A , A=0 ) -> Optional[Any]: UpperCAmelCase : Any = floats_tensor((1, 16, 16) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Any = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): UpperCAmelCase : List[Any] = torch.manual_seed(A ) else: UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : int = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase( self , A , A=0 ) -> Optional[int]: UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : int = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Any = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase( self , A , A=0 ) -> str: UpperCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : int = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: UpperCAmelCase : Optional[int] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : str = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> List[Any]: if not hasattr(self.pipeline_class , """_optional_components""" ): return UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A , A , A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase : Any = self.get_dummy_inputs(A ) UpperCAmelCase : Optional[Any] = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) UpperCAmelCase : Dict = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A , A ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(A ) UpperCAmelCase : Tuple = pipe_loaded(**A )[0] UpperCAmelCase : Optional[Any] = np.abs(output - output_loaded ).max() self.assertLess(A , 1e-4 ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = """cpu""" UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : List[str] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Union[str, Any] = self.get_dummy_mask_inputs(A ) UpperCAmelCase : List[Any] = pipe.generate_mask(**A ) UpperCAmelCase : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase : Optional[int] = np.array([0] * 9 ) UpperCAmelCase : Union[str, Any] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = """cpu""" UpperCAmelCase : List[str] = self.get_dummy_components() UpperCAmelCase : Optional[Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Optional[int] = self.get_dummy_inversion_inputs(A ) UpperCAmelCase : List[str] = pipe.invert(**A ).images UpperCAmelCase : Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase : Dict = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) UpperCAmelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) def _lowercase( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = """cpu""" UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : List[Any] = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""} UpperCAmelCase : int = DPMSolverMultistepScheduler(**A ) UpperCAmelCase : int = DPMSolverMultistepInverseScheduler(**A ) UpperCAmelCase : List[str] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = self.get_dummy_inversion_inputs(A ) UpperCAmelCase : Any = pipe.invert(**A ).images UpperCAmelCase : Dict = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase : Any = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) UpperCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowercase( cls ) -> Dict: UpperCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) UpperCAmelCase : Union[str, Any] = raw_image.convert("""RGB""" ).resize((768, 768) ) UpperCAmelCase : List[str] = raw_image def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : int = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa ) UpperCAmelCase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = """a bowl of fruit""" UpperCAmelCase : List[Any] = """a bowl of pears""" UpperCAmelCase : str = pipe.generate_mask( image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , ) UpperCAmelCase : Tuple = pipe.invert( prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A ).latents UpperCAmelCase : Any = pipe( prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] UpperCAmelCase : List[str] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa ) UpperCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : int = """a bowl of fruit""" UpperCAmelCase : int = """a bowl of pears""" UpperCAmelCase : str = pipe.generate_mask( image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , ) UpperCAmelCase : Any = pipe.invert( prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A , num_inference_steps=25 , ).latents UpperCAmelCase : str = pipe( prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] UpperCAmelCase : Tuple = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
265
0
def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Dict = [int(__a ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(__a ) == 4 and all(0 <= int(__a ) <= 2_54 for octet in octets ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input().strip() _SCREAMING_SNAKE_CASE = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
88
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
1
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Any = "" a__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) a__ : str = None # compression type in fsspec. ex: "gzip" a__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , _lowercase : str = "" , _lowercase : Optional[str] = None , _lowercase : Optional[dict] = None , **_lowercase : Optional[int] ): super().__init__(self , **_lowercase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __UpperCAmelCase = fsspec.open( _lowercase , mode='''rb''' , protocol=_lowercase , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __UpperCAmelCase = os.path.basename(self.file.path.split('''::''' )[0] ) __UpperCAmelCase = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) __UpperCAmelCase = None @classmethod def a ( cls : Optional[Any] , _lowercase : Tuple ): # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowercase ).lstrip('''/''' ) def a ( self : int ): if self.dir_cache is None: __UpperCAmelCase = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} __UpperCAmelCase = {f['''name''']: f} def a ( self : List[Any] , _lowercase : str ): return self.file.open().read() def a ( self : Optional[int] , _lowercase : str , _lowercase : str = "rb" , _lowercase : Any=None , _lowercase : Optional[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): __UpperCAmelCase = self._strip_protocol(_lowercase ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = "bz2" a__ : str = "bz2" a__ : str = ".bz2" class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = "gzip" a__ : List[Any] = "gzip" a__ : int = ".gz" class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[Any] = "lz4" a__ : Optional[Any] = "lz4" a__ : int = ".lz4" class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "xz" a__ : Dict = "xz" a__ : Any = ".xz" class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Any = "zstd" a__ : Optional[int] = "zstd" a__ : int = ".zst" def __init__( self : List[Any] , _lowercase : str , _lowercase : str = "rb" , _lowercase : Optional[str] = None , _lowercase : Optional[dict] = None , _lowercase : int = DEFAULT_BLOCK_SIZE , **_lowercase : Dict , ): super().__init__( fo=_lowercase , mode=_lowercase , target_protocol=_lowercase , target_options=_lowercase , block_size=_lowercase , **_lowercase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __UpperCAmelCase = self.file.__enter__ class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Any ): __UpperCAmelCase = file_ def __enter__( self : str ): self._file.__enter__() return self def __exit__( self : Union[str, Any] , *_lowercase : List[Any] , **_lowercase : Any ): self._file.__exit__(*_lowercase , **_lowercase ) def __iter__( self : str ): return iter(self._file ) def a ( self : Optional[int] ): return next(self._file ) def __getattr__( self : Optional[int] , _lowercase : Tuple ): return getattr(self._file , _lowercase ) def fixed_enter(*_lowercase : Any , **_lowercase : int ): return WrappedFile(_enter(*_lowercase , **_lowercase ) ) __UpperCAmelCase = fixed_enter
332
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Dict = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class _a ( _lowercase): _a : Union[str, Any] = '''align_text_model''' def __init__( self : Any , _SCREAMING_SNAKE_CASE : Tuple=3_0522 , _SCREAMING_SNAKE_CASE : Dict=768 , _SCREAMING_SNAKE_CASE : List[str]=12 , _SCREAMING_SNAKE_CASE : Optional[int]=12 , _SCREAMING_SNAKE_CASE : Union[str, Any]=3072 , _SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , _SCREAMING_SNAKE_CASE : Tuple=0.1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE : List[Any]=512 , _SCREAMING_SNAKE_CASE : Optional[int]=2 , _SCREAMING_SNAKE_CASE : List[str]=0.02 , _SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , _SCREAMING_SNAKE_CASE : Any=0 , _SCREAMING_SNAKE_CASE : List[str]="absolute" , _SCREAMING_SNAKE_CASE : List[Any]=True , **_SCREAMING_SNAKE_CASE : str , )-> Optional[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : Dict = type_vocab_size lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Tuple = position_embedding_type lowerCAmelCase__ : List[str] = use_cache lowerCAmelCase__ : Dict = pad_token_id @classmethod def UpperCAmelCase__( cls : Any , _SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **_SCREAMING_SNAKE_CASE : Union[str, Any] )-> "PretrainedConfig": cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": lowerCAmelCase__ : List[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : Any = '''align_vision_model''' def __init__( self : Any , _SCREAMING_SNAKE_CASE : int = 3 , _SCREAMING_SNAKE_CASE : int = 600 , _SCREAMING_SNAKE_CASE : float = 2.0 , _SCREAMING_SNAKE_CASE : float = 3.1 , _SCREAMING_SNAKE_CASE : int = 8 , _SCREAMING_SNAKE_CASE : List[int] = [3, 3, 5, 3, 5, 5, 3] , _SCREAMING_SNAKE_CASE : List[int] = [32, 16, 24, 40, 80, 112, 192] , _SCREAMING_SNAKE_CASE : List[int] = [16, 24, 40, 80, 112, 192, 320] , _SCREAMING_SNAKE_CASE : List[int] = [] , _SCREAMING_SNAKE_CASE : List[int] = [1, 2, 2, 2, 1, 2, 1] , _SCREAMING_SNAKE_CASE : List[int] = [1, 2, 2, 3, 3, 4, 1] , _SCREAMING_SNAKE_CASE : List[int] = [1, 6, 6, 6, 6, 6, 6] , _SCREAMING_SNAKE_CASE : float = 0.25 , _SCREAMING_SNAKE_CASE : str = "swish" , _SCREAMING_SNAKE_CASE : int = 2560 , _SCREAMING_SNAKE_CASE : str = "mean" , _SCREAMING_SNAKE_CASE : float = 0.02 , _SCREAMING_SNAKE_CASE : float = 0.001 , _SCREAMING_SNAKE_CASE : float = 0.99 , _SCREAMING_SNAKE_CASE : float = 0.2 , **_SCREAMING_SNAKE_CASE : List[str] , )-> Optional[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : int = image_size lowerCAmelCase__ : List[str] = width_coefficient lowerCAmelCase__ : Optional[Any] = depth_coefficient lowerCAmelCase__ : Dict = depth_divisor lowerCAmelCase__ : int = kernel_sizes lowerCAmelCase__ : Any = in_channels lowerCAmelCase__ : str = out_channels lowerCAmelCase__ : Union[str, Any] = depthwise_padding lowerCAmelCase__ : str = strides lowerCAmelCase__ : Tuple = num_block_repeats lowerCAmelCase__ : int = expand_ratios lowerCAmelCase__ : Any = squeeze_expansion_ratio lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : List[str] = hidden_dim lowerCAmelCase__ : List[str] = pooling_type lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Tuple = batch_norm_eps lowerCAmelCase__ : Optional[int] = batch_norm_momentum lowerCAmelCase__ : Any = drop_connect_rate lowerCAmelCase__ : List[str] = sum(_SCREAMING_SNAKE_CASE ) * 4 @classmethod def UpperCAmelCase__( cls : Any , _SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **_SCREAMING_SNAKE_CASE : str )-> "PretrainedConfig": cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": lowerCAmelCase__ : Optional[int] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : List[str] = '''align''' _a : Tuple = True def __init__( self : Any , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : str=640 , _SCREAMING_SNAKE_CASE : int=1.0 , _SCREAMING_SNAKE_CASE : int=0.02 , **_SCREAMING_SNAKE_CASE : int , )-> Union[str, Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) if text_config is None: lowerCAmelCase__ : Optional[Any] = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: lowerCAmelCase__ : Union[str, Any] = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) lowerCAmelCase__ : int = AlignTextConfig(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = AlignVisionConfig(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = projection_dim lowerCAmelCase__ : int = temperature_init_value lowerCAmelCase__ : Union[str, Any] = initializer_range @classmethod def UpperCAmelCase__( cls : Tuple , _SCREAMING_SNAKE_CASE : AlignTextConfig , _SCREAMING_SNAKE_CASE : AlignVisionConfig , **_SCREAMING_SNAKE_CASE : str )-> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int )-> Any: lowerCAmelCase__ : str = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Any = self.text_config.to_dict() lowerCAmelCase__ : List[str] = self.vision_config.to_dict() lowerCAmelCase__ : Tuple = self.__class__.model_type return output
352
import math class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any=0 )-> Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Optional[int] = n lowerCAmelCase__ : List[Any] = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowerCAmelCase__ : str = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase__( self : List[Any] )-> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase__ : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )-> str: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
0
import json import sys def lowerCAmelCase_ ( __A, __A ) -> str: '''simple docstring''' with open(__A, encoding="utf-8" ) as f: UpperCAmelCase__ = json.load(__A ) UpperCAmelCase__ = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(__A ): UpperCAmelCase__ = results[benchmark_name] UpperCAmelCase__ = benchmark_name.split("/" )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase__ = """| metric |""" UpperCAmelCase__ = """|--------|""" UpperCAmelCase__ = """| new / old (diff) |""" for metric_name in sorted(__A ): UpperCAmelCase__ = benchmark_res[metric_name] UpperCAmelCase__ = metric_vals["""new"""] UpperCAmelCase__ = metric_vals.get("old", __A ) UpperCAmelCase__ = metric_vals.get("diff", __A ) UpperCAmelCase__ = f""" {new_val:f}""" if isinstance(__A, (int, float) ) else """None""" if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(__A, (int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(__A, (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(__A, "w", encoding="utf-8" ) as f: f.writelines("\n".join(__A ) ) if __name__ == "__main__": UpperCamelCase__ = sys.argv[1] UpperCamelCase__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
65
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _A = 10 def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: for i in range(lowerCAmelCase , lowerCAmelCase ): if array[i] == target: return i return -1 def a__ ( lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Dict = len(lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase__ : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase__ : str = one_third - 1 elif array[two_third] < target: UpperCAmelCase__ : Tuple = two_third + 1 else: UpperCAmelCase__ : Any = one_third + 1 UpperCAmelCase__ : str = two_third - 1 else: return -1 def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: if left < right: if right - left < precision: return lin_search(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = (left + right) // 3 + 1 UpperCAmelCase__ : Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowerCAmelCase , one_third - 1 , lowerCAmelCase , lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCAmelCase , lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _A = input("""Enter numbers separated by comma:\n""").strip() _A = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _A = int(input("""Enter the number to be found in the list:\n""").strip()) _A = ite_ternary_search(collection, target) _A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
171
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase ( A_ )-> Dict: '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' for char in word: a : List[Any] = ord(A_ ) if not _is_chinese_char(A_ ): return 0 return 1 def lowercase ( A_ )-> Union[str, Any]: '''simple docstring''' a : List[str] = set() for token in tokens: a : Union[str, Any] = len(A_ ) > 1 and is_chinese(A_ ) if chinese_word: word_set.add(A_ ) a : List[Any] = list(A_ ) return word_list def lowercase ( A_ , A_ )-> Tuple: '''simple docstring''' if not chinese_word_set: return bert_tokens a : Any = max([len(A_ ) for w in chinese_word_set] ) a : Dict = bert_tokens a : int = 0, len(A_ ) while start < end: a : Optional[Any] = True if is_chinese(bert_word[start] ): a : List[Any] = min(end - start , A_ ) for i in range(A_ , 1 , -1 ): a : Any = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a : Dict = "##" + bert_word[j] a : Any = start + i a : Optional[Any] = False break if single_word: start += 1 return bert_word def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' a : Any = [] for i in range(0 , len(A_ ) , 100 ): a : List[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] a : Union[str, Any] = [get_chinese_word(A_ ) for r in res] ltp_res.extend(A_ ) assert len(A_ ) == len(A_ ) a : int = [] for i in range(0 , len(A_ ) , 100 ): a : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=A_ , truncation=A_ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(A_ ) == len(A_ ) a : Optional[Any] = [] for input_ids, chinese_word in zip(A_ , A_ ): a : Any = [] for id in input_ids: a : List[str] = bert_tokenizer._convert_id_to_token(A_ ) input_tokens.append(A_ ) a : int = add_sub_symbol(A_ , A_ ) a : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A_ ): if token[:2] == "##": a : List[Any] = token[2:] # save chinese tokens' pos if len(A_ ) == 1 and _is_chinese_char(ord(A_ ) ): ref_id.append(A_ ) ref_ids.append(A_ ) assert len(A_ ) == len(A_ ) return ref_ids def lowercase ( A_ )-> str: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: a : Optional[int] = f.readlines() a : Optional[Any] = [line.strip() for line in data if len(A_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a : Tuple = LTP(args.ltp ) # faster in GPU device a : int = BertTokenizer.from_pretrained(args.bert ) a : Optional[Any] = prepare_ref(A_ , A_ , A_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: a : List[str] = [json.dumps(A_ ) + "\n" for ref in ref_ids] f.writelines(A_ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") __lowercase = parser.parse_args() main(args)
367
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
226
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : str = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} return Dataset.from_dict(lowercase) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = self._create_example_records() a__ : Dict = Dataset.from_list(lowercase) self.assertListEqual(dset.column_names , ['col_1', 'col_2']) for i, r in enumerate(lowercase): self.assertDictEqual(lowercase , example_records[i]) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Any = self._create_example_records() a__ : Optional[int] = Dataset.from_list(lowercase) a__ : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]}) self.assertEqual(dset.info , dset_from_dict.info) def __lowercase ( self) -> Optional[int]: # checks what happens with missing columns '''simple docstring''' a__ : int = [{'col_1': 1}, {'col_2': 'x'}] a__ : int = Dataset.from_list(lowercase) self.assertDictEqual(dset[0] , {'col_1': 1}) self.assertDictEqual(dset[1] , {'col_1': None}) # NB: first record is used for columns def __lowercase ( self) -> int: # checks if the type can be inferred from the second record '''simple docstring''' a__ : Union[str, Any] = [{'col_1': []}, {'col_1': [1, 2]}] a__ : Any = Dataset.from_list(lowercase) self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64'))) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[str] = Dataset.from_list([]) self.assertEqual(len(lowercase) , 0) self.assertListEqual(dset.column_names , [])
99
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) lowerCAmelCase__ :Union[str, Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
293
0
"""simple docstring""" from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowercase__: int = 0 # Number of processes finished lowercase__: Dict = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase__: Any = [0] * no_of_process # List to include calculation results lowercase__: List[Any] = [0] * no_of_process # Sort by arrival time. lowercase__: Union[str, Any] = [burst_time[i] for i in np.argsort(SCREAMING_SNAKE_CASE_ )] lowercase__: str = [process_name[i] for i in np.argsort(SCREAMING_SNAKE_CASE_ )] arrival_time.sort() while no_of_process > finished_process_count: lowercase__: Optional[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase__: List[str] = arrival_time[i] lowercase__: Any = 0 # Index showing the location of the process being performed lowercase__: int = 0 # Saves the current response ratio. lowercase__: Dict = 0 for i in range(0 , SCREAMING_SNAKE_CASE_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase__: Optional[int] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase__: Union[str, Any] = temp lowercase__: int = i # Calculate the turn around time lowercase__: Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase__: List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__: int = [0] * no_of_process for i in range(0 , SCREAMING_SNAKE_CASE_ ): lowercase__: List[str] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __A = 5 __A = ["A", "B", "C", "D", "E"] __A = [1, 2, 3, 4, 5] __A = [1, 2, 3, 4, 5] __A = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __A = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Optional[Any] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : List[Any] = 16 __lowerCAmelCase : Any = 32 def a__ ( A_, A_, A_, A_, A_ = 16 ): '''simple docstring''' __magic_name__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __magic_name__ = DatasetDict( { """train""": dataset["""train"""].select(A_ ), """validation""": dataset["""train"""].select(A_ ), """test""": dataset["""validation"""], } ) def tokenize_function(A_ ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=A_, max_length=A_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ = datasets.map( A_, batched=A_, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(A_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ = 16 elif accelerator.mixed_precision != "no": __magic_name__ = 8 else: __magic_name__ = None return tokenizer.pad( A_, padding="""longest""", max_length=A_, pad_to_multiple_of=A_, return_tensors="""pt""", ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets["""train"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) __magic_name__ = DataLoader( tokenized_datasets["""validation"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) __magic_name__ = DataLoader( tokenized_datasets["""test"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = [] # Download the dataset __magic_name__ = load_dataset("""glue""", """mrpc""" ) # Create our splits __magic_name__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __magic_name__ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config["""lr"""] __magic_name__ = int(config["""num_epochs"""] ) __magic_name__ = int(config["""seed"""] ) __magic_name__ = int(config["""batch_size"""] ) __magic_name__ = evaluate.load("""glue""", """mrpc""" ) # If the batch size is too big we use gradient accumulation __magic_name__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ = MAX_GPU_BATCH_SIZE set_seed(A_ ) # New Code # # Create our folds: __magic_name__ = kfold.split(np.zeros(datasets["""train"""].num_rows ), datasets["""train"""]["""label"""] ) __magic_name__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A_ ): __magic_name__ , __magic_name__ , __magic_name__ = get_fold_dataloaders( A_, A_, A_, A_, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=A_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ = AdamW(params=model.parameters(), lr=A_ ) # Instantiate scheduler __magic_name__ = get_linear_schedule_with_warmup( optimizer=A_, num_warmup_steps=100, num_training_steps=(len(A_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( A_, A_, A_, A_, A_ ) # Now we train the model for epoch in range(A_ ): model.train() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ = model(**A_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(A_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=A_, references=A_, ) __magic_name__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''', A_ ) # New Code # # We also run predictions on the test set at the very end __magic_name__ = [] for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A_, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __magic_name__ = torch.cat(A_, dim=0 ) __magic_name__ = torch.stack(A_, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __magic_name__ = metric.compute(predictions=A_, references=A_ ) accelerator.print("""Average test metrics from all folds:""", A_ ) def a__ ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=A_, default=A_, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""", type=A_, default=3, help="""The number of splits to perform across the dataset""" ) __magic_name__ = parser.parse_args() __magic_name__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(A_, A_ ) if __name__ == "__main__": main()
88
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """swinv2""" lowerCAmelCase__ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Union[str, Any] , A : Any=224 , A : Optional[int]=4 , A : Any=3 , A : int=96 , A : Optional[int]=[2, 2, 6, 2] , A : Optional[int]=[3, 6, 12, 24] , A : List[str]=7 , A : Dict=4.0 , A : Optional[Any]=True , A : List[str]=0.0 , A : str=0.0 , A : int=0.1 , A : Dict="gelu" , A : int=False , A : int=0.02 , A : Union[str, Any]=1E-5 , A : str=32 , **A : Union[str, Any] , ): super().__init__(**A ) __snake_case: List[str] = image_size __snake_case: List[str] = patch_size __snake_case: int = num_channels __snake_case: str = embed_dim __snake_case: Union[str, Any] = depths __snake_case: Any = len(A ) __snake_case: List[str] = num_heads __snake_case: Tuple = window_size __snake_case: List[str] = mlp_ratio __snake_case: Dict = qkv_bias __snake_case: List[Any] = hidden_dropout_prob __snake_case: Optional[Any] = attention_probs_dropout_prob __snake_case: Any = drop_path_rate __snake_case: Optional[Any] = hidden_act __snake_case: List[str] = use_absolute_embeddings __snake_case: Any = layer_norm_eps __snake_case: Union[str, Any] = initializer_range __snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case: Any = int(embed_dim * 2 ** (len(A ) - 1) ) __snake_case: str = (0, 0, 0, 0)
293
from __future__ import annotations from decimal import Decimal from numpy import array def A__ ( SCREAMING_SNAKE_CASE__) -> list[list[float]]: __snake_case: Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE__) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix __snake_case: Tuple = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError("""This matrix has no inverse.""") # Creates a copy of the matrix with swapped positions of the elements __snake_case: Optional[int] = [[0.0, 0.0], [0.0, 0.0]] __snake_case , __snake_case: Optional[Any] = matrix[1][1], matrix[0][0] __snake_case , __snake_case: Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE__)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE__) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __snake_case: Any = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError("""This matrix has no inverse.""") # Creating cofactor matrix __snake_case: Tuple = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] __snake_case: Dict = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) __snake_case: Tuple = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) __snake_case: Optional[int] = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) __snake_case: Union[str, Any] = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) __snake_case: str = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) __snake_case: List[Any] = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) __snake_case: Optional[Any] = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) __snake_case: List[str] = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) __snake_case: Optional[int] = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) __snake_case: List[Any] = array(SCREAMING_SNAKE_CASE__) for i in range(3): for j in range(3): __snake_case: Tuple = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __snake_case: List[Any] = array(SCREAMING_SNAKE_CASE__) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE__) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE__)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""")
293
1
lowercase_ = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowercase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowercase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
205
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __A ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __lowerCamelCase : bool = None __lowerCamelCase : bool = None class __A ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __lowerCamelCase : int = datasets.Audio() __lowerCamelCase : str = 'audio' __lowerCamelCase : Optional[Any] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : Union[str, Any] = AudioClassification(audio_column='audio' , label_column='label' ) lowercase_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowercase_ = AUDIO_EXTENSIONS
211
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : str ) -> Dict: """simple docstring""" # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ : Optional[Any] = mock.Mock() SCREAMING_SNAKE_CASE__ : int = 5_0_0 SCREAMING_SNAKE_CASE__ : List[str] = {} SCREAMING_SNAKE_CASE__ : Tuple = HTTPError SCREAMING_SNAKE_CASE__ : Any = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request", return_value=_UpperCAmelCase ) as mock_head: SCREAMING_SNAKE_CASE__ : Optional[int] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ : List[str] = mock.Mock() SCREAMING_SNAKE_CASE__ : Any = 5_0_0 SCREAMING_SNAKE_CASE__ : int = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = HTTPError SCREAMING_SNAKE_CASE__ : Dict = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ : List[str] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request", return_value=_UpperCAmelCase ) as mock_head: SCREAMING_SNAKE_CASE__ : Tuple = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def A_ ( self : Tuple ) -> List[str]: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE__ : Dict = tempfile.mktemp() with open(_UpperCAmelCase, "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = AlbertTokenizer.from_pretrained(_UpperCAmelCase ) finally: os.remove(_UpperCAmelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json", "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size, 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def A_ ( self : str ) -> Optional[Any]: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE__ : List[str] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A_ ( cls : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def A_ ( cls : List[str] ) -> int: """simple docstring""" try: delete_repo(token=cls._token, repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def A_ ( self : Any ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(_UpperCAmelCase, "vocab.txt" ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Tuple = BertTokenizer(_UpperCAmelCase ) tokenizer.push_to_hub("test-tokenizer", use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Optional[int] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase, repo_id="test-tokenizer", push_to_hub=_UpperCAmelCase, use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : str = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) def A_ ( self : List[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(_UpperCAmelCase, "vocab.txt" ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : str = BertTokenizer(_UpperCAmelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org", use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : int = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _UpperCAmelCase, repo_id="valid_org/test-tokenizer-org", push_to_hub=_UpperCAmelCase, use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Dict = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) @require_tokenizers def A_ ( self : int ) -> Tuple: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : int = os.path.join(_UpperCAmelCase, "vocab.txt" ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Dict = CustomTokenizer(_UpperCAmelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : int = os.path.join(_UpperCAmelCase, "vocab.txt" ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = BertTokenizerFast.from_pretrained(_UpperCAmelCase ) bert_tokenizer.save_pretrained(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = CustomTokenizerFast.from_pretrained(_UpperCAmelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizerFast" ) SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''', use_fast=_UpperCAmelCase, trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" ) class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def A_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS]", " This is a ", "extra_id_100"] ) def A_ ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ), ["A", "BC"] ) self.assertEqual(trie.split("BCA" ), ["BC", "A"] ) def A_ ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] ) def A_ ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] ) def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ), ["AB", "C"] ) def A_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ), ["ABC", "D"] ) def A_ ( self : Optional[int] ) -> Dict: """simple docstring""" # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE__ : List[Any] = Trie() SCREAMING_SNAKE_CASE__ : Optional[Any] = trie.cut_text("ABC", [0, 0, 2, 1, 2, 3] ) self.assertEqual(_UpperCAmelCase, ["AB", "C"] )
191
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "AutoTokenizer" UpperCAmelCase_ = ["tokenizer"] UpperCAmelCase_ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : Union[str, Any], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = speaker_embeddings @classmethod def A_ ( cls : Any, _UpperCAmelCase : List[str], _UpperCAmelCase : Dict="speaker_embeddings_path.json", **_UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if speaker_embeddings_dict_path is not None: SCREAMING_SNAKE_CASE__ : Any = get_file_from_repo( _UpperCAmelCase, _UpperCAmelCase, subfolder=kwargs.pop("subfolder", _UpperCAmelCase ), cache_dir=kwargs.pop("cache_dir", _UpperCAmelCase ), force_download=kwargs.pop("force_download", _UpperCAmelCase ), proxies=kwargs.pop("proxies", _UpperCAmelCase ), resume_download=kwargs.pop("resume_download", _UpperCAmelCase ), local_files_only=kwargs.pop("local_files_only", _UpperCAmelCase ), use_auth_token=kwargs.pop("use_auth_token", _UpperCAmelCase ), revision=kwargs.pop("revision", _UpperCAmelCase ), ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(_UpperCAmelCase, _UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) SCREAMING_SNAKE_CASE__ : Dict = None else: with open(_UpperCAmelCase ) as speaker_embeddings_json: SCREAMING_SNAKE_CASE__ : Union[str, Any] = json.load(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) return cls(tokenizer=_UpperCAmelCase, speaker_embeddings=_UpperCAmelCase ) def A_ ( self : str, _UpperCAmelCase : Optional[int], _UpperCAmelCase : List[str]="speaker_embeddings_path.json", _UpperCAmelCase : Optional[Any]="speaker_embeddings", _UpperCAmelCase : bool = False, **_UpperCAmelCase : List[str], ) -> Union[str, Any]: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(_UpperCAmelCase, _UpperCAmelCase, "v2" ), exist_ok=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = {} SCREAMING_SNAKE_CASE__ : Any = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": SCREAMING_SNAKE_CASE__ : List[Any] = self._load_voice_preset(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"], _UpperCAmelCase, F'''{prompt_key}_{key}''' ), voice_preset[key], allow_pickle=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(_UpperCAmelCase, F'''{prompt_key}_{key}.npy''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_dict with open(os.path.join(_UpperCAmelCase, _UpperCAmelCase ), "w" ) as fp: json.dump(_UpperCAmelCase, _UpperCAmelCase ) super().save_pretrained(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : List[Any], _UpperCAmelCase : str = None, **_UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.speaker_embeddings[voice_preset] SCREAMING_SNAKE_CASE__ : Optional[int] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) SCREAMING_SNAKE_CASE__ : List[Any] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path", "/" ), voice_preset_paths[key], subfolder=kwargs.pop("subfolder", _UpperCAmelCase ), cache_dir=kwargs.pop("cache_dir", _UpperCAmelCase ), force_download=kwargs.pop("force_download", _UpperCAmelCase ), proxies=kwargs.pop("proxies", _UpperCAmelCase ), resume_download=kwargs.pop("resume_download", _UpperCAmelCase ), local_files_only=kwargs.pop("local_files_only", _UpperCAmelCase ), use_auth_token=kwargs.pop("use_auth_token", _UpperCAmelCase ), revision=kwargs.pop("revision", _UpperCAmelCase ), ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/" ), voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) SCREAMING_SNAKE_CASE__ : int = np.load(_UpperCAmelCase ) return voice_preset_dict def A_ ( self : int, _UpperCAmelCase : Optional[dict] = None ) -> Optional[int]: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key], np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : List[Any], _UpperCAmelCase : Optional[Any]=None, _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : Optional[int]="pt", _UpperCAmelCase : List[str]=2_5_6, _UpperCAmelCase : int=False, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : Any=False, **_UpperCAmelCase : List[str], ) -> List[Any]: """simple docstring""" if voice_preset is not None and not isinstance(_UpperCAmelCase, _UpperCAmelCase ): if ( isinstance(_UpperCAmelCase, _UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): SCREAMING_SNAKE_CASE__ : List[str] = self._load_voice_preset(_UpperCAmelCase ) else: if isinstance(_UpperCAmelCase, _UpperCAmelCase ) and not voice_preset.endswith(".npz" ): SCREAMING_SNAKE_CASE__ : Optional[int] = voice_preset + ".npz" SCREAMING_SNAKE_CASE__ : List[str] = np.load(_UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer( _UpperCAmelCase, return_tensors=_UpperCAmelCase, padding="max_length", max_length=_UpperCAmelCase, return_attention_mask=_UpperCAmelCase, return_token_type_ids=_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, **_UpperCAmelCase, ) if voice_preset is not None: SCREAMING_SNAKE_CASE__ : str = voice_preset return encoded_text
191
1
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __lowercase ( _a , _a , _a = False ): if radian_mode: return [magnitude * cos(_UpperCAmelCase ), magnitude * sin(_UpperCAmelCase )] return [magnitude * cos(radians(_UpperCAmelCase ) ), magnitude * sin(radians(_UpperCAmelCase ) )] def __lowercase ( _a , _a , _a = 10**-1 ): snake_case_ : NDArray[floataa] = cross(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : float = sum(_UpperCAmelCase ) return abs(_UpperCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ : List[str] = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase__ : List[str] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ : Any = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase__ : Optional[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ : int = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase__ : int = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
264
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , a_ : Dict , a_ : Union[str, Any]=7 , a_ : Optional[Any]=3 , a_ : List[str]=18 , a_ : Union[str, Any]=30 , a_ : Union[str, Any]=4_00 , a_ : Union[str, Any]=True , a_ : Tuple=None , a_ : Optional[int]=True , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} __UpperCAmelCase : Dict = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Optional[int] = min_resolution __UpperCAmelCase : Union[str, Any] = max_resolution __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : List[Any] = apply_ocr def snake_case__ ( self : Optional[int] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = LayoutLMvaImageProcessingTester(self ) @property def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''apply_ocr''' ) ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def snake_case__ ( self : int ): '''simple docstring''' pass def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCAmelCase : Any = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __UpperCAmelCase : Optional[int] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __UpperCAmelCase : Any = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCAmelCase : Any = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __UpperCAmelCase : Tuple = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False __UpperCAmelCase : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ ) __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
226
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __A = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str _UpperCAmelCase :str _UpperCAmelCase :Optional[str] = None _UpperCAmelCase :Optional[str] = None _UpperCAmelCase :Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :List[int] _UpperCAmelCase :Optional[List[int]] = None _UpperCAmelCase :Optional[List[int]] = None _UpperCAmelCase :Optional[Union[int, float]] = None _UpperCAmelCase :Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[InputFeatures] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase = False , ): lowercase__: Any = hans_processors[task]() lowercase__: int = os.path.join( _UpperCAmelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , ) lowercase__: Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__, lowercase__: Any = label_list[2], label_list[1] lowercase__: Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__: Optional[int] = cached_features_file + '''.lock''' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowercase__: Optional[Any] = torch.load(_UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowercase__: int = ( processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) ) logger.info('''Training examples: %s''' , len(_UpperCAmelCase ) ) lowercase__: Tuple = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info('''Saving features into cached file %s''' , _UpperCAmelCase ) torch.save(self.features , _UpperCAmelCase ) def __len__( self ): return len(self.features ) def __getitem__( self , _UpperCAmelCase ): return self.features[i] def _snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :List[InputFeatures] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 128 , _UpperCAmelCase=False , _UpperCAmelCase = False , ): lowercase__: Tuple = hans_processors[task]() lowercase__: Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__, lowercase__: Union[str, Any] = label_list[2], label_list[1] lowercase__: Dict = label_list lowercase__: Union[str, Any] = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) lowercase__: Any = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase__: Optional[Any] = tf.data.Dataset.from_generator( _UpperCAmelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , _UpperCAmelCase ): return self.features[i] def _snake_case ( self ): return self.label_list class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def _snake_case ( self , _UpperCAmelCase ): return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _snake_case ( self , _UpperCAmelCase ): return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _snake_case ( self ): return ["contradiction", "entailment", "neutral"] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = [] for i, line in enumerate(_UpperCAmelCase ): if i == 0: continue lowercase__: int = '''%s-%s''' % (set_type, line[0]) lowercase__: Optional[int] = line[5] lowercase__: Optional[Any] = line[6] lowercase__: Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] lowercase__: List[str] = line[0] examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: lowercase__: Tuple = {label: i for i, label in enumerate(__UpperCAmelCase )} lowercase__: Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(__UpperCAmelCase ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) lowercase__: Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , truncation=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , ) lowercase__: Dict = label_map[example.label] if example.label in label_map else 0 lowercase__: Optional[int] = int(example.pairID ) features.append(InputFeatures(**__UpperCAmelCase , label=__UpperCAmelCase , pairID=__UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features __A = { "hans": 3, } __A = { "hans": HansProcessor, }
2
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
1
"""simple docstring""" def lowercase ( ) ->Optional[Any]: """simple docstring""" __snake_case : Dict = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __snake_case : Optional[Any] = 6 __snake_case : Tuple = 1 __snake_case : Tuple = 1_901 __snake_case : Tuple = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __snake_case : str = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __snake_case : Optional[Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 __snake_case : Tuple = day - days_per_month[month - 2] if month > 12: year += 1 __snake_case : Tuple = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
102
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
"""simple docstring""" import unittest from knapsack import knapsack as k class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = [0] UpperCAmelCase_ = [0] UpperCAmelCase_ = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 ) UpperCAmelCase_ = [60] UpperCAmelCase_ = [10] UpperCAmelCase_ = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 ) def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = 3 UpperCAmelCase_ = [1, 2, 3] UpperCAmelCase_ = [3, 2, 1] UpperCAmelCase_ = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 5 ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = 50 UpperCAmelCase_ = [60, 100, 120] UpperCAmelCase_ = [10, 20, 30] UpperCAmelCase_ = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 220 ) if __name__ == "__main__": unittest.main()
241
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
241
1
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __A (_SCREAMING_SNAKE_CASE = 3 ) ->qiskit.result.counts.Counts: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(_SCREAMING_SNAKE_CASE ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) lowerCAmelCase__ :List[Any] = QuantumRegister(_SCREAMING_SNAKE_CASE , 'qr' ) lowerCAmelCase__ :Any = ClassicalRegister(_SCREAMING_SNAKE_CASE , 'cr' ) lowerCAmelCase__ :List[str] = QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = number_of_qubits for i in range(_SCREAMING_SNAKE_CASE ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_SCREAMING_SNAKE_CASE ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # simulate with 10000 shots lowerCAmelCase__ :Any = Aer.get_backend('qasm_simulator' ) lowerCAmelCase__ :Any = execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1_0000 ) return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
293
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __A = logging.getLogger(__name__) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" if os.path.exists(_SCREAMING_SNAKE_CASE ): if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) else: os.makedirs(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Optional[int]: """simple docstring""" lowerCAmelCase__ :Dict = 2 if unlogit: lowerCAmelCase__ :List[str] = torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = p * torch.log(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = 0 return -plogp.sum(dim=-1 ) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" logger.info('lv, h >\t' + '\t'.join(F"{x + 1}" for x in range(len(_SCREAMING_SNAKE_CASE ) ) ) ) for row in range(len(_SCREAMING_SNAKE_CASE ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:d}" for x in tensor[row].cpu().data ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :Dict = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ :Any = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) lowerCAmelCase__ :Tuple = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) if head_mask is None: lowerCAmelCase__ :Optional[int] = torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) head_mask.requires_grad_(requires_grad=_SCREAMING_SNAKE_CASE ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ :List[str] = None lowerCAmelCase__ :Any = 0.0 lowerCAmelCase__ :Any = 0.0 for step, inputs in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ :str = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) , ) :Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ :str = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = entropy(attn.detach() , _SCREAMING_SNAKE_CASE ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_SCREAMING_SNAKE_CASE ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ :Union[str, Any] = 2 lowerCAmelCase__ :Tuple = torch.pow(torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowerCAmelCase__ :str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) logger.info('Head ranked by importance scores' ) lowerCAmelCase__ :List[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ :List[Any] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ :int = head_ranks.view_as(_SCREAMING_SNAKE_CASE ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) return attn_entropy, head_importance, total_loss def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _SCREAMING_SNAKE_CASE , original_score * args.masking_threshold ) lowerCAmelCase__ :Optional[int] = torch.ones_like(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ :List[str] = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ :List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ :str = float('Inf' ) lowerCAmelCase__ :List[str] = head_importance.view(-1 ).sort()[1] if len(_SCREAMING_SNAKE_CASE ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads lowerCAmelCase__ :int = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ :Dict = new_head_mask.view(-1 ) lowerCAmelCase__ :Any = 0.0 lowerCAmelCase__ :Tuple = new_head_mask.view_as(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = new_head_mask.clone().detach() print_ad_tensor(_SCREAMING_SNAKE_CASE ) # Compute metric and head importance again lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = datetime.now() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = 1 / loss lowerCAmelCase__ :Tuple = datetime.now() - before_time lowerCAmelCase__ :List[str] = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ :List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_SCREAMING_SNAKE_CASE ) ) } for k, v in heads_to_prune.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = [ v, ] assert sum(len(_SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ :int = datetime.now() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , actually_pruned=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ :int = 1 / loss lowerCAmelCase__ :Tuple = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(_SCREAMING_SNAKE_CASE , args.output_dir ) def __A () ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_SCREAMING_SNAKE_CASE , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_SCREAMING_SNAKE_CASE , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=_SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_SCREAMING_SNAKE_CASE , help='Batch size.' ) parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ :Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ :List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) lowerCAmelCase__ :Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ :Dict = torch.device('cuda' , args.local_rank ) lowerCAmelCase__ :Tuple = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ :int = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ :Optional[Any] = nn.parallel.DistributedDataParallel( _SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_SCREAMING_SNAKE_CASE ) elif args.n_gpu > 1: lowerCAmelCase__ :Union[str, Any] = nn.DataParallel(_SCREAMING_SNAKE_CASE ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Prepare dataset lowerCAmelCase__ :Optional[int] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ :Union[str, Any] = (torch.from_numpy(_SCREAMING_SNAKE_CASE ),) lowerCAmelCase__ :Optional[int] = TensorDataset(*_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = RandomSampler(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ :Optional[Any] = mask_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) prune_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
293
1
import torch from diffusers import DiffusionPipeline class __A ( a ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def __call__( self ): """simple docstring""" __UpperCamelCase : Dict =torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __UpperCamelCase : Tuple =1 __UpperCamelCase : Optional[int] =self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample __UpperCamelCase : Optional[Any] =self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample __UpperCamelCase : str =scheduler_output - scheduler_output + torch.ones_like(lowerCamelCase__ ) return result
245
def A ( a_ ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') A_ :List[str] = int(input('''Enter number: ''').strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
245
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE( metaclass=A ): SCREAMING_SNAKE_CASE_ : Dict = ['''torch''', '''torchsde'''] def __init__( self ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def _UpperCamelCase ( cls ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def _UpperCamelCase ( cls ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
191
"""simple docstring""" from typing import Any def __lowerCamelCase ( a_ : list ) -> list[Any]: if not input_list: return [] __SCREAMING_SNAKE_CASE :int = [input_list.count(a_ ) for value in input_list] __SCREAMING_SNAKE_CASE :str = max(a_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
191
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() __SCREAMING_SNAKE_CASE =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __SCREAMING_SNAKE_CASE =CLIPImageProcessor() __SCREAMING_SNAKE_CASE =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") __SCREAMING_SNAKE_CASE =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
358
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : str lowerCAmelCase__ : str lowerCAmelCase__ : Optional[str] = None lowerCAmelCase__ : Optional[str] = None lowerCAmelCase__ : Optional[str] = None @dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : List[int] lowerCAmelCase__ : Optional[List[int]] = None lowerCAmelCase__ : Optional[List[int]] = None lowerCAmelCase__ : Optional[Union[int, float]] = None lowerCAmelCase__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[InputFeatures] def __init__(self : Optional[int] , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : str , UpperCamelCase : Optional[int] = None , UpperCamelCase : List[Any]=False , UpperCamelCase : bool = False , ): '''simple docstring''' lowercase__ = hans_processors[task]() lowercase__ = os.path.join( UpperCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(UpperCamelCase ) , UpperCamelCase , ) , ) lowercase__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ ,lowercase__ = label_list[2], label_list[1] lowercase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__ = cached_features_file + '''.lock''' with FileLock(UpperCamelCase ): if os.path.exists(UpperCamelCase ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowercase__ = torch.load(UpperCamelCase ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowercase__ = ( processor.get_dev_examples(UpperCamelCase ) if evaluate else processor.get_train_examples(UpperCamelCase ) ) logger.info('''Training examples: %s''' , len(UpperCamelCase ) ) lowercase__ = hans_convert_examples_to_features(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) logger.info('''Saving features into cached file %s''' , UpperCamelCase ) torch.save(self.features , UpperCamelCase ) def __len__(self : Optional[int] ): '''simple docstring''' return len(self.features ) def __getitem__(self : Tuple , UpperCamelCase : str ): '''simple docstring''' return self.features[i] def UpperCamelCase__ (self : str ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : List[InputFeatures] def __init__(self : List[Any] , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : str , UpperCamelCase : Optional[int] = 128 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : bool = False , ): '''simple docstring''' lowercase__ = hans_processors[task]() lowercase__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ ,lowercase__ = label_list[2], label_list[1] lowercase__ = label_list lowercase__ = processor.get_dev_examples(UpperCamelCase ) if evaluate else processor.get_train_examples(UpperCamelCase ) lowercase__ = hans_convert_examples_to_features(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(UpperCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase__ = tf.data.Dataset.from_generator( UpperCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return self.dataset def __len__(self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__(self : Union[str, Any] , UpperCamelCase : Tuple ): '''simple docstring''' return self.features[i] def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.label_list class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Any ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[Any] ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = [] for i, line in enumerate(UpperCamelCase ): if i == 0: continue lowercase__ = '''%s-%s''' % (set_type, line[0]) lowercase__ = line[5] lowercase__ = line[6] lowercase__ = line[7][2:] if line[7].startswith('''ex''' ) else line[7] lowercase__ = line[0] examples.append(InputExample(guid=UpperCamelCase , text_a=UpperCamelCase , text_b=UpperCamelCase , label=UpperCamelCase , pairID=UpperCamelCase ) ) return examples def _SCREAMING_SNAKE_CASE (A , A , A , A , ) -> int: """simple docstring""" lowercase__ = {label: i for i, label in enumerate(A )} lowercase__ = [] for ex_index, example in tqdm.tqdm(enumerate(A ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) lowercase__ = tokenizer( example.text_a , example.text_b , add_special_tokens=A , max_length=A , padding='''max_length''' , truncation=A , return_overflowing_tokens=A , ) lowercase__ = label_map[example.label] if example.label in label_map else 0 lowercase__ = int(example.pairID ) features.append(InputFeatures(**A , label=A , pairID=A ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"guid: {example}" ) logger.info(f"features: {features[i]}" ) return features lowerCamelCase : Tuple = { 'hans': 3, } lowerCamelCase : str = { 'hans': HansProcessor, }
2
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowerCAmelCase : List[Any] =True except ImportError: lowerCAmelCase : str =False lowerCAmelCase : int =logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase_ ( __lowerCamelCase : Namespace ): return AddNewModelCommand(args.testing ,args.testing_file ,path=args.path ) class a_ ( _lowerCAmelCase ): @staticmethod def lowercase__ ( lowercase : ArgumentParser ): """simple docstring""" lowercase_ :Tuple = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=lowerCAmelCase__ , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=lowerCAmelCase__ , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self : Union[str, Any] , lowercase : bool , lowercase : str , lowercase : List[Any]=None , *lowercase : List[Any] ): """simple docstring""" lowercase_ :Dict = testing lowercase_ :Tuple = testing_file lowercase_ :Optional[Any] = path def lowercase__ ( self : str ): """simple docstring""" warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowercase_ :List[str] = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(lowerCAmelCase__ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) lowercase_ :List[str] = ( Path(lowerCAmelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowercase_ :List[Any] = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase__ ) ) else: with open(self._testing_file , "r" ) as configuration_file: lowercase_ :int = json.load(lowerCAmelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCAmelCase__ , extra_context=lowerCAmelCase__ , ) lowercase_ :str = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: lowercase_ :str = json.load(lowerCAmelCase__ ) lowercase_ :List[Any] = configuration["lowercase_modelname"] lowercase_ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F'{directory}/configuration.json' ) lowercase_ :Dict = "PyTorch" in generate_tensorflow_pytorch_and_flax lowercase_ :Union[str, Any] = "TensorFlow" in generate_tensorflow_pytorch_and_flax lowercase_ :Optional[int] = "Flax" in generate_tensorflow_pytorch_and_flax lowercase_ :Optional[Any] = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowerCAmelCase__ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , "w" ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowercase : List[Any] ): with open(lowerCAmelCase__ , "r" ) as f: lowercase_ :str = f.readlines() with open(lowerCAmelCase__ , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase : str , lowercase : str , lowercase : List[str] ): # Create temp file lowercase_ :Dict = mkstemp() lowercase_ :List[Any] = False with fdopen(lowerCAmelCase__ , "w" ) as new_file: with open(lowerCAmelCase__ ) as old_file: for line in old_file: new_file.write(lowerCAmelCase__ ) if line_to_copy_below in line: lowercase_ :Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase__ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase__ , lowerCAmelCase__ ) # Remove original file remove(lowerCAmelCase__ ) # Move new file move(lowerCAmelCase__ , lowerCAmelCase__ ) def skip_units(lowercase : Optional[int] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase : Union[str, Any] ): with open(lowerCAmelCase__ ) as datafile: lowercase_ :int = [] lowercase_ :Union[str, Any] = False lowercase_ :List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowercase_ :Union[str, Any] = line.split("\"" )[1] lowercase_ :str = skip_units(lowerCAmelCase__ ) elif "# Below: " in line and "##" not in line: lowercase_ :Union[str, Any] = line.split("\"" )[1] lowercase_ :List[str] = skip_units(lowerCAmelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :Tuple = [] elif "# Replace with" in line and "##" not in line: lowercase_ :List[str] = [] elif "##" not in line: lines_to_copy.append(lowerCAmelCase__ ) remove(lowerCAmelCase__ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowerCAmelCase__ )
367
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a_ ( _lowerCAmelCase ): def __init__( self : Any , lowercase : int , lowercase : Union[str, Any]=13 , lowercase : List[str]=7 , lowercase : List[str]=True , lowercase : int=True , lowercase : Tuple=True , lowercase : int=True , lowercase : List[Any]=99 , lowercase : Optional[int]=32 , lowercase : Dict=5 , lowercase : Optional[int]=4 , lowercase : List[str]=37 , lowercase : Tuple="gelu" , lowercase : List[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : List[str]=512 , lowercase : str=16 , lowercase : Tuple=2 , lowercase : List[Any]=0.02 , lowercase : Dict=False , lowercase : Dict=True , lowercase : int="None" , lowercase : Optional[Any]=3 , lowercase : Dict=4 , lowercase : List[Any]=None , ): """simple docstring""" lowercase_ :int = parent lowercase_ :str = batch_size lowercase_ :Tuple = seq_length lowercase_ :Union[str, Any] = is_training lowercase_ :Dict = use_input_mask lowercase_ :Any = use_token_type_ids lowercase_ :Tuple = use_labels lowercase_ :Dict = vocab_size lowercase_ :Tuple = hidden_size lowercase_ :Union[str, Any] = num_hidden_layers lowercase_ :int = num_attention_heads lowercase_ :List[Any] = intermediate_size lowercase_ :Tuple = hidden_act lowercase_ :str = hidden_dropout_prob lowercase_ :Any = attention_probs_dropout_prob lowercase_ :List[Any] = max_position_embeddings lowercase_ :Union[str, Any] = type_vocab_size lowercase_ :Union[str, Any] = type_sequence_label_size lowercase_ :Any = initializer_range lowercase_ :List[Any] = num_labels lowercase_ :str = num_choices lowercase_ :Optional[Any] = relative_attention lowercase_ :Tuple = position_biased_input lowercase_ :Union[str, Any] = pos_att_type lowercase_ :Tuple = scope def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :Union[str, Any] = None if self.use_input_mask: lowercase_ :int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase_ :List[Any] = None if self.use_token_type_ids: lowercase_ :Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ :str = None lowercase_ :Union[str, Any] = None lowercase_ :List[str] = None if self.use_labels: lowercase_ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ :str = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ :Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Dict = self.get_config() lowercase_ :Optional[Any] = 300 return config def lowercase__ ( self : Optional[Any] , lowercase : Dict ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase__ ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str , lowercase : Optional[Any] , lowercase : Optional[int] ): """simple docstring""" lowercase_ :str = DebertaModel(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[int] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase )[0] lowercase_ :Union[str, Any] = model(lowercase , token_type_ids=lowercase )[0] lowercase_ :Dict = model(lowercase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase__ ( self : Dict , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Dict , lowercase : Dict , lowercase : str , lowercase : Tuple ): """simple docstring""" lowercase_ :Dict = DebertaForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : List[Any] , lowercase : int , lowercase : Dict ): """simple docstring""" lowercase_ :Dict = self.num_labels lowercase_ :int = DebertaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowercase_ :Union[str, Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase ) def lowercase__ ( self : List[Any] , lowercase : List[str] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : int ): """simple docstring""" lowercase_ :List[str] = self.num_labels lowercase_ :Optional[int] = DebertaForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , lowercase : Tuple , lowercase : Any , lowercase : List[Any] , lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : List[Any] ): """simple docstring""" lowercase_ :Any = DebertaForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :List[Any] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) :List[str] = config_and_inputs lowercase_ :Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __A = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) __A = True __A = False __A = False __A = False __A = False def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = DebertaModelTester(self ) lowercase_ :str = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase ) def lowercase__ ( self : int ): """simple docstring""" lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase ) def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase ) @slow def lowercase__ ( self : Optional[int] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Tuple = DebertaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def lowercase__ ( self : Dict ): """simple docstring""" pass @slow def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Optional[Any] = DebertaModel.from_pretrained("microsoft/deberta-base" ) lowercase_ :Dict = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowercase_ :Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ :Optional[int] = model(lowercase , attention_mask=lowercase )[0] # compare the actual values for a slice. lowercase_ :List[Any] = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
147
0
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: """simple docstring""" with open(__UpperCamelCase ) as metadata_file: lowerCAmelCase_ : Optional[int] = json.load(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = LukeConfig(use_entity_aware_attention=__UpperCamelCase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowerCAmelCase_ : List[str] = torch.load(__UpperCamelCase , map_location="cpu" ) # Load the entity vocab file lowerCAmelCase_ : int = load_entity_vocab(__UpperCamelCase ) lowerCAmelCase_ : Dict = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowerCAmelCase_ : Union[str, Any] = AddedToken("<ent>" , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) lowerCAmelCase_ : Tuple = AddedToken("<ent2>" , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = LukeTokenizer.from_pretrained(__UpperCamelCase ) # Initialize the embeddings of the special tokens lowerCAmelCase_ : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] lowerCAmelCase_ : int = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) lowerCAmelCase_ : List[Any] = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) lowerCAmelCase_ : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCAmelCase_ : Tuple = f'''encoder.layer.{layer_index}.attention.self.''' lowerCAmelCase_ : Any = state_dict[prefix + matrix_name] lowerCAmelCase_ : List[str] = state_dict[prefix + matrix_name] lowerCAmelCase_ : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCAmelCase_ : Tuple = state_dict["entity_embeddings.entity_embeddings.weight"] lowerCAmelCase_ : Dict = entity_emb[entity_vocab["[MASK]"]] lowerCAmelCase_ : Tuple = LukeModel(config=__UpperCamelCase ).eval() lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) if not (len(__UpperCamelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'''Missing keys {", ".join(__UpperCamelCase )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" f''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs lowerCAmelCase_ : str = LukeTokenizer.from_pretrained(__UpperCamelCase , task="entity_classification" ) lowerCAmelCase_ : List[Any] = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) lowerCAmelCase_ : str = (39, 42) lowerCAmelCase_ : List[str] = tokenizer(__UpperCamelCase , entity_spans=[span] , add_prefix_space=__UpperCamelCase , return_tensors="pt" ) lowerCAmelCase_ : int = model(**__UpperCamelCase ) # Verify word hidden states if model_size == "large": lowerCAmelCase_ : Optional[Any] = torch.Size((1, 42, 1024) ) lowerCAmelCase_ : Tuple = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base lowerCAmelCase_ : str = torch.Size((1, 42, 768) ) lowerCAmelCase_ : List[Any] = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCamelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": lowerCAmelCase_ : Optional[int] = torch.Size((1, 1, 1024) ) lowerCAmelCase_ : Optional[int] = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base lowerCAmelCase_ : List[str] = torch.Size((1, 1, 768) ) lowerCAmelCase_ : Optional[Any] = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __UpperCamelCase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__UpperCamelCase ) ) model.save_pretrained(__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase ) -> str: """simple docstring""" lowerCAmelCase_ : str = {} with open(__UpperCamelCase , "r" , encoding="utf-8" ) as f: for index, line in enumerate(__UpperCamelCase ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = line.rstrip().split("\t" ) lowerCAmelCase_ : Optional[Any] = index return entity_vocab if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowercase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
241
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" return EnvironmentCommand() def __lowerCamelCase ( __UpperCamelCase ) -> Optional[int]: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __lowerCamelCase ( A__ ): '''simple docstring''' @staticmethod def lowerCamelCase ( a_ : ArgumentParser ): lowerCAmelCase_ : str = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) download_parser.add_argument( "--accelerate-config_file" , default=a_ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=a_ ) def __init__( self : Dict , a_ : Dict , *a_ : str ): lowerCAmelCase_ : Union[str, Any] = accelerate_config_file def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Optional[int] = "not installed" if is_safetensors_available(): import safetensors lowerCAmelCase_ : int = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors lowerCAmelCase_ : Optional[Any] = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' lowerCAmelCase_ : List[Any] = "not installed" lowerCAmelCase_ : Dict = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCAmelCase_ : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a_ ): lowerCAmelCase_ : int = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCAmelCase_ : Any = ( "\n".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(a_ , a_ ) else f'''\t{accelerate_config}''' ) lowerCAmelCase_ : Union[str, Any] = "not installed" lowerCAmelCase_ : Dict = "NA" if is_torch_available(): import torch lowerCAmelCase_ : Tuple = torch.__version__ lowerCAmelCase_ : Union[str, Any] = torch.cuda.is_available() lowerCAmelCase_ : List[str] = "not installed" lowerCAmelCase_ : Tuple = "NA" if is_tf_available(): import tensorflow as tf lowerCAmelCase_ : Union[str, Any] = tf.__version__ try: # deprecated in v2.1 lowerCAmelCase_ : Tuple = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCAmelCase_ : List[str] = bool(tf.config.list_physical_devices("GPU" ) ) lowerCAmelCase_ : Optional[Any] = "not installed" lowerCAmelCase_ : Optional[int] = "not installed" lowerCAmelCase_ : Tuple = "not installed" lowerCAmelCase_ : Tuple = "NA" if is_flax_available(): import flax import jax import jaxlib lowerCAmelCase_ : List[Any] = flax.__version__ lowerCAmelCase_ : Tuple = jax.__version__ lowerCAmelCase_ : List[Any] = jaxlib.__version__ lowerCAmelCase_ : str = jax.lib.xla_bridge.get_backend().platform lowerCAmelCase_ : Dict = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'''{safetensors_version}''', "Accelerate version": f'''{accelerate_version}''', "Accelerate config": f'''{accelerate_config_str}''', "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Tensorflow version (GPU?)": f'''{tf_version} ({tf_cuda_available})''', "Flax version (CPU?/GPU?/TPU?)": f'''{flax_version} ({jax_backend})''', "Jax version": f'''{jax_version}''', "JaxLib version": f'''{jaxlib_version}''', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def lowerCamelCase ( a_ : Tuple ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
241
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP UpperCAmelCase__ : Tuple = False try: UpperCAmelCase__ : Optional[Any] = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class a__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : str = None , UpperCAmelCase__ : list = [] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : List[Any] = choices SCREAMING_SNAKE_CASE : Any = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE : List[Any] = """*""" else: SCREAMING_SNAKE_CASE : List[str] = """➔ """ def _lowercase ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str = "" ) ->Union[str, Any]: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , UpperCAmelCase__ ) else: forceWrite(self.choices[index] , UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : int ) ->Optional[int]: """simple docstring""" if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(UpperCAmelCase__ ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def _lowercase ( self : Tuple , UpperCAmelCase__ : Direction , UpperCAmelCase__ : int = 1 ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCAmelCase__ ) move_cursor(UpperCAmelCase__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self : Any ) ->str: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self : List[Any] ) ->Any: """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self : Any ) ->Optional[Any]: """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCAmelCase__ )] for number in range(1_0 )] ) def _lowercase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCAmelCase__ ) else: return else: return def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : int = 0 ) ->List[Any]: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) SCREAMING_SNAKE_CASE : str = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCAmelCase__ ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE : List[Any] = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE : List[Any] = default_choice else: SCREAMING_SNAKE_CASE : Dict = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(UpperCAmelCase__ , """\n""" ) return choice
245
import os import pytest from attr import dataclass UpperCAmelCase__ : Optional[int] = """us-east-1""" # defaults region @dataclass class a__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : Union[str, Any] ="""arn:aws:iam::558105141721:role/sagemaker_execution_role""" UpperCAmelCase__ : Tuple ={ """task_name""": """mnli""", """per_device_train_batch_size""": 1_6, """per_device_eval_batch_size""": 1_6, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 5_0_0, """save_steps""": 5_5_0_0, } UpperCAmelCase__ : Optional[int] ={**hyperparameters, """max_steps""": 1_0_0_0} @property def _lowercase ( self : List[str] ) ->str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowercase ( self : Any ) ->str: """simple docstring""" return f"{self.framework}-transfromers-test" @property def _lowercase ( self : Union[str, Any] ) ->str: """simple docstring""" return f"./tests/sagemaker/scripts/{self.framework}" @property def _lowercase ( self : Dict ) ->str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __lowercase ( _A ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
245
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
258
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __UpperCamelCase : Union[str, Any] = datasets.load_iris() __UpperCamelCase : Any = np.array(data['data']) __UpperCamelCase : Dict = np.array(data['target']) __UpperCamelCase : Union[str, Any] = data['target_names'] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = train_test_split(X, y) def A ( _lowercase , _lowercase ): return np.linalg.norm(np.array(_lowercase ) - np.array(_lowercase ) ) def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=5 ): SCREAMING_SNAKE_CASE : int = zip(_lowercase , _lowercase ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE : str = [] for data_point in data: SCREAMING_SNAKE_CASE : Optional[Any] = euclidean_distance(data_point[0] , _lowercase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE : Optional[int] = [i[1] for i in sorted(_lowercase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE : Optional[int] = Counter(_lowercase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
258
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A_ ( tf.keras.layers.Layer ): def __init__( self : Tuple , snake_case_ : Dict[str, int] , snake_case_ : List[str] , snake_case_ : int = None , snake_case_ : int = None ): super().__init__() _UpperCAmelCase = pad_token_id _UpperCAmelCase = max_length _UpperCAmelCase = vocab _UpperCAmelCase = merges _UpperCAmelCase = BytePairTokenizer(snake_case_ , snake_case_ , sequence_length=snake_case_ ) @classmethod def lowercase ( cls : Optional[int] , snake_case_ : GPTaTokenizer , *snake_case_ : List[Any] , **snake_case_ : Any ): _UpperCAmelCase = [" ".join(snake_case_ ) for m in tokenizer.bpe_ranks.keys()] _UpperCAmelCase = tokenizer.get_vocab() return cls(snake_case_ , snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def lowercase ( cls : Optional[int] , snake_case_ : Union[str, os.PathLike] , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ): _UpperCAmelCase = GPTaTokenizer.from_pretrained(snake_case_ , *snake_case_ , **snake_case_ ) return cls.from_tokenizer(snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def lowercase ( cls : int , snake_case_ : List[Any] ): return cls(**snake_case_ ) def lowercase ( self : str ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase ( self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : int = None ): _UpperCAmelCase = self.tf_tokenizer(snake_case_ ) _UpperCAmelCase = tf.ones_like(snake_case_ ) if self.pad_token_id is not None: # pad the tokens up to max length _UpperCAmelCase = max_length if max_length is not None else self.max_length if max_length is not None: _UpperCAmelCase , _UpperCAmelCase = pad_model_inputs( snake_case_ , max_seq_length=snake_case_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
22
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ = 2_5_6 class a_ ( lowerCamelCase ): lowercase = ["""melgan"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__() # From MELGAN UpperCamelCase = math.log(1e-5 ) # Matches MelGAN training. UpperCamelCase = 4.0 # Largest value for most examples UpperCamelCase = 128 self.register_modules( notes_encoder=_SCREAMING_SNAKE_CASE , continuous_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , melgan=_SCREAMING_SNAKE_CASE , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=(-1.0, 1.0) , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = output_range if clip: UpperCamelCase = torch.clip(_SCREAMING_SNAKE_CASE , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=(-1.0, 1.0) , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = input_range UpperCamelCase = torch.clip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if clip else outputs # Scale to [0, 1]. UpperCamelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = input_tokens > 0 UpperCamelCase ,UpperCamelCase = self.notes_encoder( encoder_input_tokens=_SCREAMING_SNAKE_CASE , encoder_inputs_mask=_SCREAMING_SNAKE_CASE ) UpperCamelCase ,UpperCamelCase = self.continuous_encoder( encoder_inputs=_SCREAMING_SNAKE_CASE , encoder_inputs_mask=_SCREAMING_SNAKE_CASE ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = noise_time if not torch.is_tensor(_SCREAMING_SNAKE_CASE ): UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: UpperCamelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase = self.decoder( encodings_and_masks=_SCREAMING_SNAKE_CASE , decoder_input_tokens=_SCREAMING_SNAKE_CASE , decoder_noise_time=_SCREAMING_SNAKE_CASE ) return logits @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "numpy" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_SCREAMING_SNAKE_CASE )}." ) UpperCamelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_SCREAMING_SNAKE_CASE , device=self.device ) for i, encoder_input_tokens in enumerate(_SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_SCREAMING_SNAKE_CASE , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase = ones UpperCamelCase = self.scale_features( _SCREAMING_SNAKE_CASE , output_range=[-1.0, 1.0] , clip=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_SCREAMING_SNAKE_CASE , continuous_mask=_SCREAMING_SNAKE_CASE , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase = self.decode( encodings_and_masks=_SCREAMING_SNAKE_CASE , input_tokens=_SCREAMING_SNAKE_CASE , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = self.scale_to_features(_SCREAMING_SNAKE_CASE , input_range=[-1.0, 1.0] ) UpperCamelCase = mel[:1] UpperCamelCase = mel.cpu().float().numpy() UpperCamelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info("""Generated segment""" , _SCREAMING_SNAKE_CASE ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": UpperCamelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_SCREAMING_SNAKE_CASE )
321
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' if len(lowerCamelCase__ ) <= 1: return lst _UpperCAmelCase : Any = 1 while i < len(lowerCamelCase__ ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase : Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase : List[Any] = 1 return lst if __name__ == "__main__": A_ = input("""Enter numbers separated by a comma:\n""").strip() A_ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowerCamelCase : str = ["""gpt2"""] _lowerCamelCase : str = """gpt2""" if is_tf_available(): class UpperCamelCase_ ( tf.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__() A__ = tokenizer A__ = AutoConfig.from_pretrained(UpperCAmelCase__) A__ = TFGPTaLMHeadModel.from_config(UpperCAmelCase__) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text'''),)) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str]) ->Optional[int]: '''simple docstring''' A__ = self.tokenizer(UpperCAmelCase__) A__ = tokenized['''input_ids'''].to_tensor() A__ = tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) A__ = self.model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__)['''logits'''] return outputs @require_tf @require_keras_nlp class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' super().setUp() A__ = [GPTaTokenizer.from_pretrained(UpperCAmelCase__) for checkpoint in (TOKENIZER_CHECKPOINTS)] A__ = [TFGPTaTokenizer.from_pretrained(UpperCAmelCase__) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) A__ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] A__ = list(zip(self.test_sentences , self.test_sentences[::-1])) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: A__ = tokenizer([test_inputs] , return_tensors='''tf''') A__ = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors A__ = python_outputs[key].numpy() A__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(UpperCAmelCase__ , tf.intaa) == tf_outputs_values)) @slow def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ = tf.function(UpperCAmelCase__) for test_inputs in self.test_sentences: A__ = tf.constant(UpperCAmelCase__) A__ = compiled_tokenizer(UpperCAmelCase__) A__ = tf_tokenizer(UpperCAmelCase__) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ = ModelToSave(tokenizer=UpperCAmelCase__) A__ = tf.convert_to_tensor([self.test_sentences[0]]) A__ = model.serving(UpperCAmelCase__) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A__ = Path(UpperCAmelCase__) / '''saved.model''' tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={'''serving_default''': model.serving}) A__ = tf.saved_model.load(UpperCAmelCase__) A__ = loaded_model.signatures['''serving_default'''](UpperCAmelCase__)['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ = tf.convert_to_tensor([self.test_sentences[0]]) A__ = tf_tokenizer(UpperCAmelCase__) # Build model with some sample inputs A__ = tf_tokenizer.get_config() A__ = TFGPTaTokenizer.from_config(UpperCAmelCase__) A__ = model_from_config(UpperCAmelCase__) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run A__ = 123_123 for max_length in [3, 5, 1_024]: A__ = tf.convert_to_tensor([self.test_sentences[0]]) A__ = tf_tokenizer(UpperCAmelCase__ , max_length=UpperCAmelCase__) A__ = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
14
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: int , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: int = hf_hub_url(repo_id=lowerCAmelCase__ , path=lowerCAmelCase__ , revision=lowerCAmelCase__ ) assert url == F'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(lowerCAmelCase__ )}'
147
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Optional[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( snake_case_ :Union[str, Any]=None ): if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=snake_case_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(snake_case_ ), '''PyTorch NPU available''': str(snake_case_ ), '''System RAM''': F'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) print(snake_case_ ) __UpperCAmelCase = accelerate_config return info def lowercase__ ( ): __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(snake_case_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
332
1
'''simple docstring''' snake_case__ : Optional[Any] = tuple[float, float, float] snake_case__ : Tuple = tuple[float, float, float] def _lowerCamelCase ( lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad ): """simple docstring""" UpperCAmelCase_ : Any = end_pointa[0] - end_pointa[0] UpperCAmelCase_ : Optional[Any] = end_pointa[1] - end_pointa[1] UpperCAmelCase_ : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _lowerCamelCase ( lowerCamelCase_ : Vectorad , lowerCamelCase_ : Vectorad ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCAmelCase_ : Optional[Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCAmelCase_ : Dict = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _lowerCamelCase ( lowerCamelCase_ : Vectorad , lowerCamelCase_ : int ): """simple docstring""" return tuple(round(lowerCamelCase_ , lowerCamelCase_ ) for x in vector ) == (0, 0, 0) def _lowerCamelCase ( lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad , lowerCamelCase_ : int = 10 ): """simple docstring""" UpperCAmelCase_ : List[str] = create_vector(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = create_vector(lowerCamelCase_ , lowerCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ )
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
1
'''simple docstring''' from collections.abc import Sequence def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(UpperCAmelCase ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" A = 0.0 for coeff in reversed(UpperCAmelCase ): A = result * x + coeff return result if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCamelCase : List[Any] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
258
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _lowerCamelCase : Dict = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=3_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : int = seq_length SCREAMING_SNAKE_CASE_ : List[str] = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE_ : Any = use_token_type_ids SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Tuple = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = num_labels SCREAMING_SNAKE_CASE_ : Any = num_choices SCREAMING_SNAKE_CASE_ : int = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self ): """simple docstring""" ( SCREAMING_SNAKE_CASE_ ) : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = NezhaModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_a , attention_mask=_a , token_type_ids=_a ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(_a , token_type_ids=_a ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = NezhaModel(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model( _a , attention_mask=_a , token_type_ids=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model( _a , attention_mask=_a , token_type_ids=_a , encoder_hidden_states=_a , ) SCREAMING_SNAKE_CASE_ : Any = model(_a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = NezhaForMaskedLM(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = NezhaForNextSentencePrediction(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = NezhaForPreTraining(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , next_sentence_label=_a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = NezhaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = NezhaForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = NezhaForTokenClassification(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_choices SCREAMING_SNAKE_CASE_ : Tuple = NezhaForMultipleChoice(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Tuple = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase (__lowercase , __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class in get_values(_a ): SCREAMING_SNAKE_CASE_ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_a ) SCREAMING_SNAKE_CASE_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = NezhaModelTester(self ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_a ) def UpperCamelCase__ ( self ): """simple docstring""" ( SCREAMING_SNAKE_CASE_ ) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE_ : int = None self.model_tester.create_and_check_model_as_decoder( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_a ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = NezhaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : List[Any] = model_class(config=_a ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._prepare_for_class(_a , _a ) SCREAMING_SNAKE_CASE_ : Tuple = torch.jit.trace( _a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_a , os.path.join(_a , 'bert.pt' ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.jit.load(os.path.join(_a , 'bert.pt' ) , map_location=_a ) loaded(inputs_dict['input_ids'].to(_a ) , inputs_dict['attention_mask'].to(_a ) ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(_a , attention_mask=_a )[0] SCREAMING_SNAKE_CASE_ : Any = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , _a ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(_a , attention_mask=_a )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , _a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1E-4 ) )
365
import socket def a__ ( ): SCREAMING_SNAKE_CASE_ : Dict = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE_ : Any = socket.gethostname() SCREAMING_SNAKE_CASE_ : List[str] = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file', 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: SCREAMING_SNAKE_CASE_ : Tuple = sock.recv(1_0_2_4 ) if not data: break out_file.write(A__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
162
0
import colorsys from PIL import Image # type: ignore def a__ ( _UpperCamelCase : float ,_UpperCamelCase : float ,_UpperCamelCase : int ): __lowerCamelCase = x __lowerCamelCase = y for step in range(_UpperCamelCase ): # noqa: B007 __lowerCamelCase = a * a - b * b + x __lowerCamelCase = 2 * a * b + y __lowerCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( _UpperCamelCase : float ): if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def a__ ( _UpperCamelCase : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(_UpperCamelCase ,1 ,1 ) ) def a__ ( _UpperCamelCase : int = 8_00 ,_UpperCamelCase : int = 6_00 ,_UpperCamelCase : float = -0.6 ,_UpperCamelCase : float = 0 ,_UpperCamelCase : float = 3.2 ,_UpperCamelCase : int = 50 ,_UpperCamelCase : bool = True ,): __lowerCamelCase = Image.new('''RGB''' ,(image_width, image_height) ) __lowerCamelCase = img.load() # loop through the image-coordinates for image_x in range(_UpperCamelCase ): for image_y in range(_UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates __lowerCamelCase = figure_width / image_width * image_height __lowerCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowerCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowerCamelCase = get_distance(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowerCamelCase = get_color_coded_rgb(_UpperCamelCase ) else: __lowerCamelCase = get_black_and_white_rgb(_UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
330
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowercase : def __init__( self : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any]=13 , _UpperCamelCase : int=7 , _UpperCamelCase : Tuple=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Union[str, Any]=99 , _UpperCamelCase : Tuple=32 , _UpperCamelCase : Tuple=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : List[Any]=37 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : List[str]=50 , _UpperCamelCase : List[Any]=0.0_2 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=None , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = scope def __snake_case( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, token_labels def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def __snake_case( self : List[Any] ) -> int: '''simple docstring''' ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __snake_case( self : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , **_UpperCamelCase : Tuple , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = BertGenerationEncoder(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(_lowercase , attention_mask=_lowercase ) SCREAMING_SNAKE_CASE = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , **_UpperCamelCase : List[str] , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = BertGenerationEncoder(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) SCREAMING_SNAKE_CASE = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Tuple , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , **_UpperCamelCase : str , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = BertGenerationDecoder(config=_lowercase ).to(_lowercase ).eval() # first forward pass SCREAMING_SNAKE_CASE = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , use_cache=_lowercase , ) SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] SCREAMING_SNAKE_CASE = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def __snake_case( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , *_UpperCamelCase : List[Any] , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = BertGenerationDecoder(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase__ : Dict = (BertGenerationDecoder,) if is_torch_available() else () lowercase__ : Dict = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def __snake_case( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = BertGenerationEncoderTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __snake_case( self : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = "bert" self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase , _lowercase ) def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowercase ) def __snake_case( self : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_lowercase ) def __snake_case( self : str ) -> Dict: '''simple docstring''' ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE = None self.model_tester.create_and_check_model_as_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def __snake_case( self : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(_lowercase ) @require_torch class lowercase ( unittest.TestCase ): @slow def __snake_case( self : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) SCREAMING_SNAKE_CASE = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_lowercase )[0] SCREAMING_SNAKE_CASE = torch.Size([1, 8, 1_024] ) self.assertEqual(output.shape , _lowercase ) SCREAMING_SNAKE_CASE = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase ): @slow def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) SCREAMING_SNAKE_CASE = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_lowercase )[0] SCREAMING_SNAKE_CASE = torch.Size([1, 8, 50_358] ) self.assertEqual(output.shape , _lowercase ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
370
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCamelCase : str = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def __lowerCamelCase (UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Optional[str] , UpperCAmelCase__ : Optional[str] ): SCREAMING_SNAKE_CASE = to_pil_image(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pil_image.size SCREAMING_SNAKE_CASE = pytesseract.image_to_data(UpperCAmelCase__ , lang=UpperCAmelCase__ , output_type="dict" , config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE = [idx for idx, word in enumerate(UpperCAmelCase__ ) if not word.strip()] SCREAMING_SNAKE_CASE = [word for idx, word in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(UpperCAmelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE = [] for x, y, w, h in zip(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase__ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase ( a ): lowercase__ : Optional[int] = ["""pixel_values"""] def __init__( self : int , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : bool = True , _UpperCamelCase : float = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = "" , **_UpperCamelCase : Union[str, Any] , ) -> None: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = size if size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_value SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD SCREAMING_SNAKE_CASE = apply_ocr SCREAMING_SNAKE_CASE = ocr_lang SCREAMING_SNAKE_CASE = tesseract_config def __snake_case( self : Dict , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) SCREAMING_SNAKE_CASE = (size["height"], size["width"]) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, Iterable[float]] , _UpperCamelCase : Union[float, Iterable[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Tuple , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : Union[float, Iterable[float]] = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(_UpperCamelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for image in images: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = apply_tesseract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) words_batch.append(_UpperCamelCase ) boxes_batch.append(_UpperCamelCase ) if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = BatchFeature(data={"pixel_values": images} , tensor_type=_UpperCamelCase ) if apply_ocr: SCREAMING_SNAKE_CASE = words_batch SCREAMING_SNAKE_CASE = boxes_batch return data
206
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCAmelCase ( lowercase_, lowercase_, unittest.TestCase ): lowerCamelCase_ : Optional[int] = StableDiffusionPanoramaPipeline lowerCamelCase_ : Optional[int] = TEXT_TO_IMAGE_PARAMS lowerCamelCase_ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase (self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) snake_case_ : List[Any] = DDIMScheduler() torch.manual_seed(0 ) snake_case_ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case_ : Tuple = CLIPTextModel(__magic_name__ ) snake_case_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase (self , __magic_name__ , __magic_name__=0 ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.manual_seed(__magic_name__ ) snake_case_ : Tuple = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : Optional[Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : List[str] = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Dict = sd_pipe(**__magic_name__ ).images snake_case_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> List[str]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : List[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : int = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : int = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Dict = '''french fries''' snake_case_ : Tuple = sd_pipe(**__magic_name__ , negative_prompt=__magic_name__ ) snake_case_ : Union[str, Any] = output.images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Tuple = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : Dict = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : List[str] = self.get_dummy_inputs(__magic_name__ ) snake_case_ : int = sd_pipe(**__magic_name__ , view_batch_size=2 ) snake_case_ : Optional[Any] = output.images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : List[Any] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) snake_case_ : Dict = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : str = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : int = self.get_dummy_inputs(__magic_name__ ) snake_case_ : str = sd_pipe(**__magic_name__ ).images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : Optional[int] = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=__magic_name__ ) snake_case_ : List[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ ) snake_case_ : str = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Dict = sd_pipe(**__magic_name__ ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase (self , __magic_name__=0 ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.manual_seed(__magic_name__ ) snake_case_ : Union[str, Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = '''stabilityai/stable-diffusion-2-base''' snake_case_ : Any = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' ) snake_case_ : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() snake_case_ : Dict = self.get_inputs() snake_case_ : Any = pipe(**__magic_name__ ).images snake_case_ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case_ : List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=__magic_name__ ) snake_case_ : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() snake_case_ : int = self.get_inputs() snake_case_ : str = pipe(**__magic_name__ ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case_ : Optional[int] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : List[str] = 0 def callback_fn(__magic_name__ , __magic_name__ , __magic_name__ ) -> None: snake_case_ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case_ : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case_ : Optional[int] = latents[0, -3:, -3:, -1] snake_case_ : List[str] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case_ : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case_ : str = latents[0, -3:, -3:, -1] snake_case_ : Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case_ : str = False snake_case_ : Tuple = '''stabilityai/stable-diffusion-2-base''' snake_case_ : Union[str, Any] = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' ) snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) snake_case_ : Tuple = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() snake_case_ : int = self.get_inputs() pipe(**__magic_name__ , callback=__magic_name__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase (self ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : List[Any] = '''stabilityai/stable-diffusion-2-base''' snake_case_ : Tuple = DDIMScheduler.from_pretrained(__magic_name__ , subfolder='''scheduler''' ) snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) snake_case_ : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : int = self.get_inputs() snake_case_ : Optional[int] = pipe(**__magic_name__ ) snake_case_ : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
279
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
0
"""simple docstring""" import fire from utils import calculate_rouge, save_json def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) ->Dict: """simple docstring""" a_ = [x.strip() for x in open(UpperCAmelCase ).readlines()] a_ = [x.strip() for x in open(UpperCAmelCase ).readlines()][: len(UpperCAmelCase )] a_ = calculate_rouge(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) if save_path is not None: save_json(UpperCAmelCase , UpperCAmelCase , indent=UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
366
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A : '''simple docstring''' def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=3 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=3 , __lowerCAmelCase : Tuple=10 , __lowerCAmelCase : Tuple=[8, 16, 32, 64] , __lowerCAmelCase : int=[1, 1, 2, 1] , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="relu" , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=["stage2", "stage3", "stage4"] , __lowerCAmelCase : Dict=[2, 3, 4] , __lowerCAmelCase : Optional[Any]=1 , ) -> Any: """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = embeddings_size A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = hidden_act A__ = num_labels A__ = scope A__ = len(__lowerCAmelCase ) A__ = out_features A__ = out_indices A__ = num_groups def a_ ( self : str ) -> Dict: """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def a_ ( self : Dict ) -> Tuple: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def a_ ( self : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" A__ = BitModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a_ ( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ) -> Any: """simple docstring""" A__ = self.num_labels A__ = BitForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" A__ = BitBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A__ = None A__ = BitBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a_ ( self : Optional[int] ) -> Tuple: """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCamelCase : Tuple = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) __lowerCamelCase : int = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a_ ( self : Any ) -> Any: """simple docstring""" A__ = BitModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self : str ) -> Dict: """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def a_ ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def a_ ( self : Optional[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def a_ ( self : str ) -> Optional[int]: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCAmelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCAmelCase ) def a_ ( self : str ) -> List[str]: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(config=__lowerCAmelCase ) for name, module in model.named_modules(): if isinstance(__lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def a_ ( self : Tuple ) -> List[str]: """simple docstring""" def check_hidden_states_output(__lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): A__ = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A__ = layer_type A__ = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def a_ ( self : Tuple ) -> str: """simple docstring""" pass def a_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def a_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = BitModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A (unittest.TestCase ): '''simple docstring''' @cached_property def a_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" A__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCAmelCase ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): A__ = model(**__lowerCAmelCase ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) A__ = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) ) @require_torch class A (SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = (BitBackbone,) if is_torch_available() else () __lowerCamelCase : str = BitConfig __lowerCamelCase : List[Any] = False def a_ ( self : List[Any] ) -> List[Any]: """simple docstring""" A__ = BitModelTester(self )
274
from math import ceil def __lowerCamelCase ( __a :int = 1_0_0_1 ) -> int: """simple docstring""" A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
274
1
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE_ : List[str] = tuple[int, int] class a : """simple docstring""" def __init__( self: List[str] , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: Node | None , ): """simple docstring""" A__ = pos_x A__ = pos_y A__ = (pos_y, pos_x) A__ = goal_x A__ = goal_y A__ = g_cost A__ = parent A__ = self.calculate_heuristic() A__ = self.g_cost + self.h_cost def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.pos_x - self.goal_x A__ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(UpperCamelCase ) + abs(UpperCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: Optional[Any] , UpperCamelCase: Node ): """simple docstring""" return self.f_cost < other.f_cost class a : """simple docstring""" def __init__( self: Tuple , UpperCamelCase: TPosition , UpperCamelCase: TPosition ): """simple docstring""" A__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase ) A__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , UpperCamelCase ) A__ = [self.start] A__ = [] A__ = False def UpperCamelCase ( self: int ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(UpperCamelCase ) self.closed_nodes.append(UpperCamelCase ) A__ = self.get_successors(UpperCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCamelCase ) else: # retrieve the best current path A__ = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCamelCase ) else: self.open_nodes.append(UpperCamelCase ) return [self.start.pos] def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Node ): """simple docstring""" A__ = [] for action in delta: A__ = parent.pos_x + action[1] A__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCamelCase , UpperCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase , ) ) return successors def UpperCamelCase ( self: int , UpperCamelCase: Node | None ): """simple docstring""" A__ = node A__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A__ = current_node.parent path.reverse() return path class a : """simple docstring""" def __init__( self: int , UpperCamelCase: TPosition , UpperCamelCase: TPosition ): """simple docstring""" A__ = AStar(UpperCamelCase , UpperCamelCase ) A__ = AStar(UpperCamelCase , UpperCamelCase ) A__ = False def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() A__ = self.fwd_astar.open_nodes.pop(0 ) A__ = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( UpperCamelCase , UpperCamelCase ) self.fwd_astar.closed_nodes.append(UpperCamelCase ) self.bwd_astar.closed_nodes.append(UpperCamelCase ) A__ = current_bwd_node A__ = current_fwd_node A__ = { self.fwd_astar: self.fwd_astar.get_successors(UpperCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(UpperCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(UpperCamelCase ) else: # retrieve the best current path A__ = astar.open_nodes.pop( astar.open_nodes.index(UpperCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(UpperCamelCase ) else: astar.open_nodes.append(UpperCamelCase ) return [self.fwd_astar.start.pos] def UpperCamelCase ( self: List[str] , UpperCamelCase: Node , UpperCamelCase: Node ): """simple docstring""" A__ = self.fwd_astar.retrace_path(UpperCamelCase ) A__ = self.bwd_astar.retrace_path(UpperCamelCase ) bwd_path.pop() bwd_path.reverse() A__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE_ : Any = (0, 0) SCREAMING_SNAKE_CASE_ : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE_ : List[str] = time.time() SCREAMING_SNAKE_CASE_ : int = AStar(init, goal) SCREAMING_SNAKE_CASE_ : int = a_star.search() SCREAMING_SNAKE_CASE_ : Any = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") SCREAMING_SNAKE_CASE_ : Any = time.time() SCREAMING_SNAKE_CASE_ : Union[str, Any] = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE_ : List[Any] = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
69
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: int , UpperCamelCase: str = "▁" , UpperCamelCase: bool = True , UpperCamelCase: Union[str, AddedToken] = "<unk>" , UpperCamelCase: Union[str, AddedToken] = "</s>" , UpperCamelCase: Union[str, AddedToken] = "<pad>" , ): """simple docstring""" A__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } A__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): A__ = token_dict["""token"""] A__ = Tokenizer(Unigram() ) A__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) A__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCamelCase , add_prefix_space=UpperCamelCase ), pre_tokenizers.Digits(individual_digits=UpperCamelCase ), pre_tokenizers.Punctuation(), ] ) A__ = decoders.Metaspace(replacement=UpperCamelCase , add_prefix_space=UpperCamelCase ) A__ = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) A__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Union[str, List[str]] , UpperCamelCase: int = 80_00 , UpperCamelCase: bool = True , ): """simple docstring""" A__ = trainers.UnigramTrainer( vocab_size=UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=UpperCamelCase , ) if isinstance(UpperCamelCase , UpperCamelCase ): A__ = [files] self._tokenizer.train(UpperCamelCase , trainer=UpperCamelCase ) self.add_unk_id() def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Union[Iterator[str], Iterator[Iterator[str]]] , UpperCamelCase: int = 80_00 , UpperCamelCase: bool = True , ): """simple docstring""" A__ = trainers.UnigramTrainer( vocab_size=UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=UpperCamelCase , ) self._tokenizer.train_from_iterator(UpperCamelCase , trainer=UpperCamelCase ) self.add_unk_id() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = json.loads(self._tokenizer.to_str() ) A__ = self.special_tokens["""unk"""]["""id"""] A__ = Tokenizer.from_str(json.dumps(UpperCamelCase ) )
69
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __lowerCamelCase = {"""unk_token""": """<unk>"""} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) __lowerCamelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __lowerCamelCase = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: str ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , **UpperCamelCase_: List[str] ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowerCamelCase = self.get_image_processor(do_normalize=UpperCamelCase_ ) __lowerCamelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = processor(images=UpperCamelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = """lower newer""" __lowerCamelCase = processor(text=UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = """lower newer""" __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """google/owlvit-base-patch32""" __lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = ["""cat""", """nasa badge"""] __lowerCamelCase = processor(text=UpperCamelCase_ ) __lowerCamelCase = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = """google/owlvit-base-patch32""" __lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = [["""cat""", """nasa badge"""], ["""person"""]] __lowerCamelCase = processor(text=UpperCamelCase_ ) __lowerCamelCase = 16 __lowerCamelCase = len(UpperCamelCase_ ) __lowerCamelCase = max([len(UpperCamelCase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = """google/owlvit-base-patch32""" __lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = ["""cat""", """nasa badge"""] __lowerCamelCase = processor(text=UpperCamelCase_ ) __lowerCamelCase = 16 __lowerCamelCase = inputs["""input_ids"""] __lowerCamelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=UpperCamelCase_ , query_images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(UpperCamelCase_ ) __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
12
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A__ ( unittest.TestCase ): lowercase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = TextaTextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = generator("""Something there""" ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) A_ = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) A_ = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility A_ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] ) A_ = 3 A_ = generator( """Something there""" , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , ) A_ = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = generator("""This is a test""" , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) A_ = generator.model.config.eos_token_id A_ = """<pad>""" A_ = generator( ["""This is a test""", """This is a second test"""] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility A_ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] )
162
0
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :int = BlenderbotSmallTokenizer __SCREAMING_SNAKE_CASE :Optional[int] = False def snake_case__ ( self : Optional[int] ): super().setUp() __magic_name__ = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] __magic_name__ = dict(zip(a__ , range(len(a__ ) ) ) ) __magic_name__ = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] __magic_name__ = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def snake_case__ ( self : Optional[int] , **a__ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **a__ ) def snake_case__ ( self : List[str] , a__ : List[Any] ): __magic_name__ = '''adapt act apte''' __magic_name__ = '''adapt act apte''' return input_text, output_text def snake_case__ ( self : List[str] ): __magic_name__ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __magic_name__ = '''adapt act apte''' __magic_name__ = ['''adapt''', '''act''', '''ap@@''', '''te'''] __magic_name__ = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __magic_name__ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __magic_name__ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def snake_case__ ( self : int ): __magic_name__ = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] __magic_name__ = '''I am a small frog.''' __magic_name__ = tok([src_text] , padding=a__ , truncation=a__ )['''input_ids'''] __magic_name__ = tok.batch_decode(a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case__ ( self : List[str] ): __magic_name__ = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) __magic_name__ = '''I am a small frog .''' __magic_name__ = '''.''' __magic_name__ = tok(a__ )['''input_ids'''] __magic_name__ = tok(a__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
98
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def UpperCamelCase ( a="ro" , a="en" , a="wmt16" , a=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __magic_name__ = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) __magic_name__ = datasets.load_dataset(a , a ) if save_dir is None: __magic_name__ = F'''{dataset}-{pair}''' __magic_name__ = Path(a ) save_dir.mkdir(exist_ok=a ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __magic_name__ = '''val''' if split == '''validation''' else split __magic_name__ = save_dir.joinpath(F'''{fn}.source''' ) __magic_name__ = save_dir.joinpath(F'''{fn}.target''' ) __magic_name__ = src_path.open('''w+''' ) __magic_name__ = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
98
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=10 , __A=3 , __A=2 , __A=2 , __A=True , __A=True , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A="divided_space_time" , __A=None , ) -> str: a =parent a =batch_size a =image_size a =num_channels a =patch_size a =num_frames a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =attention_type a =initializer_range a =scope a =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token a =(image_size // patch_size) ** 2 a =(num_frames) * self.num_patches_per_frame + 1 def SCREAMING_SNAKE_CASE ( self ) -> Any: a =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a =None if self.use_labels: a =ids_tensor([self.batch_size] , self.num_labels ) a =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) a =self.num_labels return config def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict: a =TimesformerModel(config=__A ) model.to(__A ) model.eval() a =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Union[str, Any]: a =TimesformerForVideoClassification(__A ) model.to(__A ) model.eval() a =model(__A ) # verify the logits shape a =torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =TimesformerModelTester(self ) a =ConfigTester( self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> str: a =copy.deepcopy(__A ) if return_labels: if model_class in get_values(__A ): a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> str: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =TimesformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE ( self ) -> str: if not self.has_attentions: pass else: a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True for model_class in self.all_model_classes: a =self.model_tester.seq_length a =self.model_tester.num_frames a =True a =False a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) a =len(__A ) # Check attention is always last and order is fine a =True a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + 1 , len(__A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: def check_hidden_states_output(__A , __A , __A ): a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.hidden_states a =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__A ) , __A ) a =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__A , __A , __A ) def _A ( ): """simple docstring""" a =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) a =np.load(lowercase ) return list(lowercase ) @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __A ) a =self.default_image_processor a =prepare_video() a =image_processor(video[:8] , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): a =model(**__A ) # verify the logits a =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __A ) a =torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) )
81
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=3 , lowercase=True , lowercase=True , lowercase=0.1 , lowercase=0.1 , lowercase=224 , lowercase=1000 , lowercase=[3, 3, 6, 4] , lowercase=[48, 56, 112, 220] , ): A_ : Dict = parent A_ : List[Any] = batch_size A_ : Dict = num_channels A_ : Optional[Any] = is_training A_ : List[str] = use_labels A_ : List[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Tuple = num_labels A_ : List[str] = image_size A_ : str = layer_depths A_ : Optional[int] = embed_dims def _a (self ): A_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : int = None if self.use_labels: A_ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) A_ : int = self.get_config() return config, pixel_values, labels def _a (self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase , layer_scale_init_value=1E-5 , ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[Any] = SwiftFormerModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : Union[str, Any] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a (self , lowercase , lowercase , lowercase ): A_ : Any = self.num_labels A_ : Any = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) A_ : int = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self ): ((A_), (A_), (A_)) : int = self.prepare_config_and_inputs() A_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def _a (self ): A_ : Optional[int] = SwiftFormerModelTester(self ) A_ : Any = ConfigTester( self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(lowercase ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _a (self ): A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(lowercase ) A_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _a (self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = SwiftFormerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a (self ): pass def _a (self ): def check_hidden_states_output(lowercase , lowercase , lowercase ): A_ : str = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) A_ : Any = outputs.hidden_states A_ : Any = 8 self.assertEqual(len(lowercase ) , lowercase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) A_, A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) def _a (self ): def _config_zero_init(lowercase ): A_ : Optional[Any] = copy.deepcopy(lowercase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase , lowercase , 1E-10 ) if isinstance(getattr(lowercase , lowercase , lowercase ) , lowercase ): A_ : Any = _config_zero_init(getattr(lowercase , lowercase ) ) setattr(lowercase , lowercase , lowercase ) return configs_no_init A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Any = _config_zero_init(lowercase ) for model_class in self.all_model_classes: A_ : List[str] = model_class(config=lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a (self ): pass def a ( ): '''simple docstring''' A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a (self ): A_ : Any = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowercase ) A_ : Dict = self.default_image_processor A_ : Dict = prepare_img() A_ : int = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): A_ : int = model(**lowercase ) # verify the logits A_ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : List[str] = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
206
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _a : Optional[int] = logging.get_logger("""transformers.models.encodec""") _a : List[str] = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } _a : Union[str, Any] = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } _a : Optional[int] = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } _a : Tuple = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } _a : Any = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } _a : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _a : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _a : Any = [] _a : str = [] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value elif weight_type == "running_mean": __lowerCAmelCase = value elif weight_type == "running_var": __lowerCAmelCase = value elif weight_type == "num_batches_tracked": __lowerCAmelCase = value elif weight_type == "weight_ih_l0": __lowerCAmelCase = value elif weight_type == "weight_hh_l0": __lowerCAmelCase = value elif weight_type == "bias_ih_l0": __lowerCAmelCase = value elif weight_type == "bias_hh_l0": __lowerCAmelCase = value elif weight_type == "weight_ih_l1": __lowerCAmelCase = value elif weight_type == "weight_hh_l1": __lowerCAmelCase = value elif weight_type == "bias_ih_l1": __lowerCAmelCase = value elif weight_type == "bias_hh_l1": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> Optional[int]: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCAmelCase , __lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]: __lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": __lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": __lowerCAmelCase = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(lowercase , lowercase ): logger.info(f'{name} was ignored' ) continue __lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: __lowerCAmelCase , __lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: __lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "weight_ih_l0" in name: __lowerCAmelCase = """weight_ih_l0""" elif "weight_hh_l0" in name: __lowerCAmelCase = """weight_hh_l0""" elif "bias_ih_l0" in name: __lowerCAmelCase = """bias_ih_l0""" elif "bias_hh_l0" in name: __lowerCAmelCase = """bias_hh_l0""" elif "weight_ih_l1" in name: __lowerCAmelCase = """weight_ih_l1""" elif "weight_hh_l1" in name: __lowerCAmelCase = """weight_hh_l1""" elif "bias_ih_l1" in name: __lowerCAmelCase = """bias_ih_l1""" elif "bias_hh_l1" in name: __lowerCAmelCase = """bias_hh_l1""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: __lowerCAmelCase = """weight""" elif "running_mean" in name: __lowerCAmelCase = """running_mean""" elif "running_var" in name: __lowerCAmelCase = """running_var""" elif "num_batches_tracked" in name: __lowerCAmelCase = """num_batches_tracked""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ) -> Tuple: if config_path is not None: __lowerCAmelCase = EncodecConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __lowerCAmelCase = [8, 5, 4, 4] __lowerCAmelCase = [2.2] __lowerCAmelCase = 64 __lowerCAmelCase = 3_2000 __lowerCAmelCase = 2048 __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False elif model_name == "encodec_48khz": __lowerCAmelCase = [8, 5, 4, 2] __lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] __lowerCAmelCase = 4_8000 __lowerCAmelCase = 2 __lowerCAmelCase = False __lowerCAmelCase = """time_group_norm""" __lowerCAmelCase = True __lowerCAmelCase = 1.0 __lowerCAmelCase = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) __lowerCAmelCase = EncodecModel(lowercase ) __lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowercase ) __lowerCAmelCase = torch.load(lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __lowerCAmelCase = original_checkpoint["""best_state"""] recursively_load_weights(lowercase , lowercase , lowercase ) model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(lowercase ) model.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _a : Union[str, Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
46
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Dict =MvpTokenizer a : int =MvpTokenizerFast a : Any =True a : int =filter_roberta_detectors def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase = {"""unk_token""": """<unk>"""} __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file,"""w""",encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,max_length=len(__SCREAMING_SNAKE_CASE ),padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9),batch.input_ids.shape ) self.assertEqual((2, 9),batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Test that special tokens are reset @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""",__SCREAMING_SNAKE_CASE ) self.assertIn("""attention_mask""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""labels""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""decoder_attention_mask""",__SCREAMING_SNAKE_CASE ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(text_target=__SCREAMING_SNAKE_CASE,max_length=32,padding="""max_length""",return_tensors="""pt""" ) self.assertEqual(32,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""],padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape,(2, 10_24) ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization."""] __lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,text_target=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = inputs["""input_ids"""] __lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """A, <mask> AllenNLP sentence.""" __lowerCAmelCase = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ),sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ),sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ),) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
46
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class a_ (lowerCAmelCase__ ): __lowerCAmelCase : Any = """audio-spectrogram-transformer""" def __init__( self , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=1_6 , snake_case_=True , snake_case_=1_0 , snake_case_=1_0 , snake_case_=1_0_2_4 , snake_case_=1_2_8 , **snake_case_ , ): super().__init__(**_A ) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Tuple = patch_size _lowerCAmelCase : Union[str, Any] = qkv_bias _lowerCAmelCase : int = frequency_stride _lowerCAmelCase : int = time_stride _lowerCAmelCase : int = max_length _lowerCAmelCase : List[str] = num_mel_bins
309
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : str = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class A__ ( A__ ): A__ = 'mvp' A__ = ['past_key_values'] A__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str , _a : List[str]=5_0267 , _a : int=1024 , _a : str=12 , _a : Tuple=4096 , _a : List[Any]=16 , _a : str=12 , _a : Union[str, Any]=4096 , _a : Dict=16 , _a : Any=0.0 , _a : Union[str, Any]=0.0 , _a : str="gelu" , _a : List[Any]=1024 , _a : List[str]=0.1 , _a : List[Any]=0.0 , _a : Any=0.0 , _a : Any=0.02 , _a : Any=0.0 , _a : Any=False , _a : Tuple=True , _a : List[Any]=1 , _a : Tuple=0 , _a : Union[str, Any]=2 , _a : Union[str, Any]=True , _a : str=2 , _a : str=2 , _a : Optional[int]=False , _a : List[Any]=100 , _a : List[Any]=800 , **_a : Union[str, Any] , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =encoder_ffn_dim _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =encoder_attention_heads _SCREAMING_SNAKE_CASE =decoder_ffn_dim _SCREAMING_SNAKE_CASE =decoder_layers _SCREAMING_SNAKE_CASE =decoder_attention_heads _SCREAMING_SNAKE_CASE =dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =init_std _SCREAMING_SNAKE_CASE =encoder_layerdrop _SCREAMING_SNAKE_CASE =decoder_layerdrop _SCREAMING_SNAKE_CASE =classifier_dropout _SCREAMING_SNAKE_CASE =use_cache _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True _SCREAMING_SNAKE_CASE =use_prompt _SCREAMING_SNAKE_CASE =prompt_length _SCREAMING_SNAKE_CASE =prompt_mid_dim super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , **_a , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _a ): _SCREAMING_SNAKE_CASE =self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " 'The config can simply be saved and uploaded again to be fixed.' )
350
'''simple docstring''' from math import factorial def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : float ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _SCREAMING_SNAKE_CASE =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _SCREAMING_SNAKE_CASE =float(factorial(_UpperCamelCase ) ) coefficient /= factorial(_UpperCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.7_5))
114
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> None: warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.', lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__)
69
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis snake_case_ = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] snake_case_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ = primes[:idx] break snake_case_ , snake_case_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ = False for r in range(UpperCAmelCase ): snake_case_ = pow(UpperCAmelCase , d * 2**r , UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCAmelCase ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
69
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowercase : Optional[int] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowercase : List[str] = TaTokenizerFast lowercase : Any = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowercase : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
285
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
285
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCAmelCase__ : Tuple = datasets.utils.logging.get_logger(__name__) lowerCAmelCase__ : Any = ['names', 'prefix'] lowerCAmelCase__ : List[Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowerCAmelCase__ : List[str] = ['encoding_errors', 'on_bad_lines'] lowerCAmelCase__ : Optional[Any] = ['date_format'] @dataclass class snake_case ( datasets.BuilderConfig ): """simple docstring""" snake_case__ = "," snake_case__ = None snake_case__ = "infer" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = True snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = False snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = True snake_case__ = True snake_case__ = False snake_case__ = True snake_case__ = None snake_case__ = "." snake_case__ = None snake_case__ = '"' snake_case__ = 0 snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = True snake_case__ = True snake_case__ = 0 snake_case__ = True snake_case__ = False snake_case__ = None snake_case__ = 1_00_00 snake_case__ = None snake_case__ = "strict" snake_case__ = "error" snake_case__ = None def __lowerCAmelCase ( self : int ): if self.delimiter is not None: UpperCAmelCase__ = self.delimiter if self.column_names is not None: UpperCAmelCase__ = self.column_names @property def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,lowerCamelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): """simple docstring""" snake_case__ = CsvConfig def __lowerCAmelCase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Optional[Any] ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCAmelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ ,(str, list, tuple) ): UpperCAmelCase__ = data_files if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): UpperCAmelCase__ = [files] UpperCAmelCase__ = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] UpperCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): UpperCAmelCase__ = [files] UpperCAmelCase__ = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ ,gen_kwargs={'files': files} ) ) return splits def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : pa.Table ): if self.config.features is not None: UpperCAmelCase__ = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase__ ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=lowerCamelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase__ = table_cast(lowerCamelCase__ ,lowerCamelCase__ ) return pa_table def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Any ): UpperCAmelCase__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase__ ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): UpperCAmelCase__ = pd.read_csv(lowerCamelCase__ ,iterator=lowerCamelCase__ ,dtype=lowerCamelCase__ ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase__ ): UpperCAmelCase__ = pa.Table.from_pandas(lowerCamelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(lowerCamelCase__ )}: {e}''' ) raise
98
"""simple docstring""" import os import sys import unittest lowerCAmelCase__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase__ : Tuple = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowerCAmelCase__ : Optional[Any] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = get_test_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_test_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = {'BertModelTest': 'BertModelTester'} UpperCAmelCase__ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = get_model_to_test_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_model_to_test_mapping(lowerCamelCase__ ) UpperCAmelCase__ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } UpperCAmelCase__ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = get_model_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_model_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } UpperCAmelCase__ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ )
98
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : List[Any] = RobertaConfig _snake_case : str = 'roberta' def __init__( self : Tuple , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = RobertaEmbeddings(lowerCAmelCase__ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Any = RobertaConfig _snake_case : int = 'roberta' def __init__( self : str , lowerCAmelCase__ : int ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config.num_labels _UpperCamelCase = config.num_hidden_layers _UpperCamelCase = DeeRobertaModel(lowerCAmelCase__ ) _UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) _UpperCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : int=-1 , lowerCAmelCase__ : Optional[int]=False , ) -> Any: '''simple docstring''' _UpperCamelCase = self.num_layers try: _UpperCamelCase = self.roberta( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , ) _UpperCamelCase = outputs[1] _UpperCamelCase = self.dropout(lowerCAmelCase__ ) _UpperCamelCase = self.classifier(lowerCAmelCase__ ) _UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCamelCase = e.message _UpperCamelCase = e.exit_layer _UpperCamelCase = outputs[0] if not self.training: _UpperCamelCase = entropy(lowerCAmelCase__ ) _UpperCamelCase = [] _UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCamelCase = MSELoss() _UpperCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _UpperCamelCase = [] for highway_exit in outputs[-1]: _UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(lowerCAmelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _UpperCamelCase = MSELoss() _UpperCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCAmelCase__ ) if train_highway: _UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _UpperCamelCase = (loss,) + outputs if not self.training: _UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
287
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowercase ): for j in range(lowercase ): _UpperCamelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowercase__ : Optional[int] = imread('image_data/lena.jpg', 1) # convert to its negative lowercase__ : Union[str, Any] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
287
1
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class lowercase : def __init__( self , lowercase = None ) -> List[Any]: lowerCAmelCase = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCAmelCase = Extractor def _snake_case ( self , lowercase ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCAmelCase = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def _snake_case ( self , lowercase , lowercase ) -> bool: return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def _snake_case ( self , lowercase , lowercase = False ) -> str: lowerCAmelCase = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path lowerCAmelCase = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class lowercase ( _UpperCAmelCase ): @classmethod @abstractmethod def _snake_case ( cls , lowercase , **lowercase ) -> bool: ... @staticmethod @abstractmethod def _snake_case ( lowercase , lowercase ) -> None: ... class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [] @staticmethod def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: with open(lowercase , """rb""" ) as f: return f.read(lowercase ) @classmethod def _snake_case ( cls , lowercase , lowercase = b"" ) -> bool: if not magic_number: lowerCAmelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: lowerCAmelCase = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class lowercase ( _UpperCAmelCase ): @classmethod def _snake_case ( cls , lowercase , **lowercase ) -> bool: return tarfile.is_tarfile(lowercase ) @staticmethod def _snake_case ( lowercase , lowercase ) -> Optional[int]: def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link lowerCAmelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) lowerCAmelCase = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def _snake_case ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) lowerCAmelCase = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [B'\x1F\x8B'] @staticmethod def _snake_case ( lowercase , lowercase ) -> None: with gzip.open(lowercase , """rb""" ) as gzip_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def _snake_case ( cls , lowercase , lowercase = b"" ) -> bool: if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , """rb""" ) as fp: lowerCAmelCase = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCAmelCase = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: lowerCAmelCase = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _snake_case ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , """r""" ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def _snake_case ( lowercase , lowercase ) -> None: with lzma.open(lowercase ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def _snake_case ( lowercase , lowercase ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) lowerCAmelCase = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [B'\x28\xb5\x2F\xFD'] @staticmethod def _snake_case ( lowercase , lowercase ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd lowerCAmelCase = zstd.ZstdDecompressor() with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh: dctx.copy_stream(lowercase , lowercase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [B'\x42\x5A\x68'] @staticmethod def _snake_case ( lowercase , lowercase ) -> None: with bza.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def _snake_case ( lowercase , lowercase ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , """r""" ) as archive: archive.extractall(lowercase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = [B'\x04\x22\x4D\x18'] @staticmethod def _snake_case ( lowercase , lowercase ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class lowercase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _snake_case ( cls ) -> List[str]: return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _snake_case ( lowercase , lowercase ) -> str: try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def _snake_case ( cls , lowercase , lowercase = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase , ) lowerCAmelCase = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _snake_case ( cls , lowercase ) -> str: # <Added version="2.4.0"/> lowerCAmelCase = cls._get_magic_number_max_length() lowerCAmelCase = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def _snake_case ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions lowerCAmelCase = str(Path(lowercase ).with_suffix(""".lock""" ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase , ) lowerCAmelCase = extractor if extractor != """deprecated""" else extractor_format else: lowerCAmelCase = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
46
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'imagegpt' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowercase=512 + 1 , lowercase=32 * 32 , lowercase=512 , lowercase=24 , lowercase=8 , lowercase=None , lowercase="quick_gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , **lowercase , ) -> Any: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = scale_attn_by_inverse_layer_idx lowerCAmelCase = reorder_and_upcast_attn lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase , **lowercase ) class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _snake_case ( self , lowercase , lowercase = 1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 32 , lowercase = 32 , ) -> Mapping[str, Any]: lowerCAmelCase = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase ) lowerCAmelCase = dict(preprocessor(images=lowercase , return_tensors=lowercase ) ) return inputs
46
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case_=None, snake_case_=None ) -> Union[str, Any]: """simple docstring""" return field(default_factory=lambda: default, metadata=snake_case_ ) @dataclass class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) SCREAMING_SNAKE_CASE_ = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) SCREAMING_SNAKE_CASE_ = list_field( default=[8, 32, 1_28, 5_12] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) SCREAMING_SNAKE_CASE_ = field( default=a_ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) SCREAMING_SNAKE_CASE_ = field( default=a_ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) SCREAMING_SNAKE_CASE_ = field( default=a_ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Use FP16 to accelerate inference.'} ) SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Benchmark training of model'} ) SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Verbose memory tracing'} ) SCREAMING_SNAKE_CASE_ = field( default=a_ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) SCREAMING_SNAKE_CASE_ = field( default=a_ , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Trace memory line by line'} ) SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Save result to a CSV file'} ) SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Save all print statements in a log file'} ) SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Whether to print environment information'} ) SCREAMING_SNAKE_CASE_ = field( default=a_ , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) SCREAMING_SNAKE_CASE_ = field( default=f"inference_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"inference_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"train_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"train_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"env_info_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving environment information.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"log_{round(time() )}.csv" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) SCREAMING_SNAKE_CASE_ = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) SCREAMING_SNAKE_CASE_ = field( default=a_ , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' ,__lowerCamelCase ,) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
367
import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class a__ ( lowercase__ ): A = 'MCTCTFeatureExtractor' A = 'AutoTokenizer' def __init__( self : Tuple,_A : int,_A : Dict ): """simple docstring""" super().__init__(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.feature_extractor SCREAMING_SNAKE_CASE_ : Optional[int] = False def __call__( self : int,*_A : Tuple,**_A : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowercase,**__lowercase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop("raw_speech" ) else: SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop("audio",__lowercase ) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop("sampling_rate",__lowercase ) SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("text",__lowercase ) if len(__lowercase ) > 0: SCREAMING_SNAKE_CASE_ : Tuple = args[0] SCREAMING_SNAKE_CASE_ : str = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.feature_extractor(__lowercase,*__lowercase,sampling_rate=__lowercase,**__lowercase ) if text is not None: SCREAMING_SNAKE_CASE_ : str = self.tokenizer(__lowercase,**__lowercase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ : Dict = encodings["""input_ids"""] return inputs def __UpperCamelCase ( self : Optional[Any],*_A : List[Any],**_A : int ): """simple docstring""" return self.tokenizer.batch_decode(*__lowercase,**__lowercase ) def __UpperCamelCase ( self : Optional[int],*_A : Optional[Any],**_A : List[str] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*__lowercase,**__lowercase ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop("input_features",__lowercase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop("labels",__lowercase ) if len(__lowercase ) > 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = args[0] SCREAMING_SNAKE_CASE_ : str = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(__lowercase,*__lowercase,**__lowercase ) if labels is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(__lowercase,**__lowercase ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ : Any = labels["""input_ids"""] return input_features def __UpperCamelCase ( self : Any,*_A : Union[str, Any],**_A : Dict ): """simple docstring""" return self.tokenizer.decode(*__lowercase,**__lowercase ) @contextmanager def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer yield SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor SCREAMING_SNAKE_CASE_ : int = False
18
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : List[Any] = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class a ( lowercase__ ): """simple docstring""" a : List[Any] = 'xglm' a : str = ['past_key_values'] a : Any = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , __lowercase : int=256008 , __lowercase : Tuple=2048 , __lowercase : List[Any]=1024 , __lowercase : str=4096 , __lowercase : Optional[Any]=24 , __lowercase : Optional[int]=16 , __lowercase : List[Any]="gelu" , __lowercase : str=0.1 , __lowercase : Dict=0.1 , __lowercase : Tuple=0.0 , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.02 , __lowercase : Optional[int]=True , __lowercase : Any=True , __lowercase : Dict=2 , __lowercase : Optional[Any]=1 , __lowercase : List[Any]=0 , __lowercase : Optional[Any]=2 , **__lowercase : List[str] , ) -> Optional[int]: __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : str = ffn_dim __UpperCAmelCase : List[str] = num_layers __UpperCAmelCase : Dict = attention_heads __UpperCAmelCase : str = activation_function __UpperCAmelCase : Optional[Any] = dropout __UpperCAmelCase : Any = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Tuple = layerdrop __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = use_cache super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , **__lowercase , )
114
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # sigma(t_i) @classmethod def UpperCAmelCase__ ( cls : Dict ) -> List[Any]: """simple docstring""" return cls() @dataclass class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class lowerCAmelCase__ ( a , a ): """simple docstring""" @property def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return True @register_to_config def __init__( self : str , __SCREAMING_SNAKE_CASE : float = 0.02 , __SCREAMING_SNAKE_CASE : float = 100 , __SCREAMING_SNAKE_CASE : float = 1.007 , __SCREAMING_SNAKE_CASE : float = 80 , __SCREAMING_SNAKE_CASE : float = 0.05 , __SCREAMING_SNAKE_CASE : float = 50 , ) -> str: """simple docstring""" pass def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" return KarrasVeSchedulerState.create() def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple = () ) -> KarrasVeSchedulerState: """simple docstring""" __SCREAMING_SNAKE_CASE = jnp.arange(0 , __SCREAMING_SNAKE_CASE )[::-1].copy() __SCREAMING_SNAKE_CASE = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__SCREAMING_SNAKE_CASE , schedule=jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) , timesteps=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : random.KeyArray , ) -> Tuple[jnp.ndarray, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE = random.split(__SCREAMING_SNAKE_CASE , num=1 ) __SCREAMING_SNAKE_CASE = self.config.s_noise * random.normal(key=__SCREAMING_SNAKE_CASE , shape=sample.shape ) __SCREAMING_SNAKE_CASE = sigma + gamma * sigma __SCREAMING_SNAKE_CASE = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" raise NotImplementedError()
331
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : Optional[int] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "retribert" def __init__( self : int , __SCREAMING_SNAKE_CASE : str=30_522 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : List[str]=3_072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Tuple=0 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = share_encoders __SCREAMING_SNAKE_CASE = projection_dim
331
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _UpperCAmelCase : Union[str, Any] = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class lowercase ( unittest.TestCase ): def a ( self , snake_case , snake_case , snake_case = None , snake_case = None ): snake_case_ = None snake_case_ = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) snake_case_ = os.path.abspath('examples' ) for item in os.listdir(snake_case ): if item not in EXCLUDE_EXAMPLES: snake_case_ = os.path.join(snake_case , snake_case ) if os.path.isfile(snake_case ) and ".py" in item_path: with self.subTest( tested_script=snake_case , feature_script=snake_case , tested_section='main()' if parser_only else 'training_function()' , ): snake_case_ = compare_against_test( os.path.join(snake_case , snake_case ) , snake_case , snake_case , snake_case ) snake_case_ = '\n'.join(snake_case ) if special_strings is not None: for string in special_strings: snake_case_ = diff.replace(snake_case , '' ) self.assertEqual(snake_case , '' ) def a ( self ): self.one_complete_example('complete_nlp_example.py' , snake_case ) self.one_complete_example('complete_nlp_example.py' , snake_case ) def a ( self ): snake_case_ = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) snake_case_ = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , snake_case , snake_case , snake_case ) self.one_complete_example('complete_cv_example.py' , snake_case , snake_case , snake_case ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = False @classmethod def a ( cls ): super().setUpClass() snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) snake_case_ = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def a ( cls ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def a ( self ): snake_case_ = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def a ( self ): snake_case_ = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() snake_case_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def a ( self ): snake_case_ = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=snake_case ) self.assertNotIn('epoch 0:' , snake_case ) self.assertIn('epoch 1:' , snake_case ) def a ( self ): snake_case_ = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=snake_case ) if torch.cuda.is_available(): snake_case_ = torch.cuda.device_count() else: snake_case_ = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , snake_case ) self.assertIn('epoch 1:' , snake_case ) else: self.assertIn('epoch 0:' , snake_case ) self.assertIn('epoch 1:' , snake_case ) @slow def a ( self ): snake_case_ = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): snake_case_ = run_command(self._launch_args + testargs , return_stdout=snake_case ) snake_case_ = re.findall('({.+})' , snake_case ) snake_case_ = [r for r in results if 'accuracy' in r][-1] snake_case_ = ast.literal_eval(snake_case ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def a ( self ): snake_case_ = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def a ( self ): with tempfile.TemporaryDirectory() as tmpdir: snake_case_ = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(snake_case , 'tracking' ) ) ) def a ( self ): snake_case_ = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def a ( self ): snake_case_ = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
285
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( lowercase_ ): @staticmethod @abstractmethod def a ( snake_case ): raise NotImplementedError() @abstractmethod def a ( self ): raise NotImplementedError()
285
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Dict=32 , lowerCamelCase__ : Any=3 , lowerCamelCase__ : List[Any]=10 , lowerCamelCase__ : List[Any]=[8, 16, 32, 64] , lowerCamelCase__ : Union[str, Any]=[1, 1, 2, 1] , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : Optional[Any]="relu" , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Optional[int]=["stage2", "stage3", "stage4"] , lowerCamelCase__ : Optional[Any]=[2, 3, 4] , lowerCamelCase__ : Optional[int]=1 , ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Any = image_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[Any] = embeddings_size _UpperCAmelCase : str = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : Tuple = use_labels _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Tuple = num_labels _UpperCAmelCase : Dict = scope _UpperCAmelCase : str = len(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = out_features _UpperCAmelCase : Dict = out_indices _UpperCAmelCase : str = num_groups def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Dict ) ->Any: '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = BitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.num_labels _UpperCAmelCase : Optional[int] = BitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase : int = None _UpperCAmelCase : List[Any] = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase__ ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCAmelCase : List[str] = config_and_inputs _UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : int = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase : Dict = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : str = False lowerCAmelCase : Any = False lowerCAmelCase : Dict = False lowerCAmelCase : Dict = False def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = BitModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : List[str] ) ->str: '''simple docstring''' return @unittest.skip(reason="Bit does not output attentions" ) def lowerCAmelCase__ ( self : Dict ) ->Any: '''simple docstring''' pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCamelCase__ ) _UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : int = [*signature.parameters.keys()] _UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : Dict ): _UpperCAmelCase : Union[str, Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Any = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase : Optional[int] = layer_type _UpperCAmelCase : Any = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : List[str] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = BitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase (): _UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : List[str] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) _UpperCAmelCase : Tuple = self.default_image_processor _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : Any = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCamelCase__ ) # verify the logits _UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : int = (BitBackbone,) if is_torch_available() else () lowerCAmelCase : Any = BitConfig lowerCAmelCase : int = False def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = BitModelTester(self )
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
0
_lowerCamelCase =[sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( lowerCamelCase ): lowerCamelCase : List[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowerCamelCase =[None] * 1_0_0_0_0_0_0_0 _lowerCamelCase =True _lowerCamelCase =False def _a ( lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase : Tuple = chain(next_number(lowerCamelCase ) ) lowerCamelCase : Dict = number_chain while number < 1000_0000: lowerCamelCase : Optional[int] = number_chain number *= 10 return number_chain def _a ( lowerCamelCase = 1000_0000 ): for i in range(1, lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
287
def _a ( lowerCamelCase ): if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCamelCase : Any = 4 lowerCamelCase : List[str] = (1 << p) - 1 for _ in range(p - 2 ): lowerCamelCase : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
287
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=2 , __lowercase=3 , __lowercase=4 , __lowercase=2 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=9_9 , __lowercase=3_6 , __lowercase=3 , __lowercase=4 , __lowercase=3_7 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_1_2 , __lowercase=1_6 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=6 , __lowercase=6 , __lowercase=3 , __lowercase=4 , __lowercase=None , __lowercase=1_0_0_0 , ) -> Dict: """simple docstring""" a__ : Optional[Any] = parent a__ : Optional[int] = batch_size a__ : List[str] = num_channels a__ : Optional[Any] = image_size a__ : int = patch_size a__ : int = text_seq_length a__ : Union[str, Any] = is_training a__ : Any = use_input_mask a__ : Optional[int] = use_token_type_ids a__ : str = use_labels a__ : Union[str, Any] = vocab_size a__ : List[str] = hidden_size a__ : int = num_hidden_layers a__ : Optional[int] = num_attention_heads a__ : Optional[Any] = intermediate_size a__ : List[str] = hidden_act a__ : str = hidden_dropout_prob a__ : str = attention_probs_dropout_prob a__ : Union[str, Any] = max_position_embeddings a__ : List[str] = type_vocab_size a__ : str = type_sequence_label_size a__ : Optional[int] = initializer_range a__ : int = coordinate_size a__ : str = shape_size a__ : Optional[Any] = num_labels a__ : List[str] = num_choices a__ : Optional[Any] = scope a__ : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a__ : Optional[int] = text_seq_length a__ : Dict = (image_size // patch_size) ** 2 + 1 a__ : str = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) a__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a__ : Tuple = bbox[i, j, 3] a__ : List[Any] = bbox[i, j, 1] a__ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: a__ : List[str] = bbox[i, j, 2] a__ : Union[str, Any] = bbox[i, j, 0] a__ : str = t a__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : List[str] = None if self.use_input_mask: a__ : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) a__ : List[str] = None if self.use_token_type_ids: a__ : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) a__ : int = None a__ : Tuple = None if self.use_labels: a__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) a__ : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> int: """simple docstring""" a__ : str = LayoutLMvaModel(config=__lowercase ) model.to(__lowercase ) model.eval() # text + image a__ : List[str] = model(__lowercase , pixel_values=__lowercase ) a__ : List[str] = model( __lowercase , bbox=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase ) a__ : Dict = model(__lowercase , bbox=__lowercase , pixel_values=__lowercase , token_type_ids=__lowercase ) a__ : Union[str, Any] = model(__lowercase , bbox=__lowercase , pixel_values=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only a__ : Optional[int] = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a__ : Any = model(pixel_values=__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" a__ : Union[str, Any] = self.num_labels a__ : Optional[int] = LayoutLMvaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() a__ : Any = model( __lowercase , bbox=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: """simple docstring""" a__ : List[Any] = self.num_labels a__ : List[Any] = LayoutLMvaForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() a__ : List[Any] = model( __lowercase , bbox=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> int: """simple docstring""" a__ : List[Any] = LayoutLMvaForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() a__ : Dict = model( __lowercase , bbox=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : str = self.prepare_config_and_inputs() ( a__ ) : Tuple = config_and_inputs a__ : List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class snake_case__ (A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :List[Any] = False __lowerCAmelCase :Dict = False __lowerCAmelCase :Any = False __lowerCAmelCase :Tuple = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase :str = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" return True def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = LayoutLMvaModelTester(self ) a__ : List[Any] = ConfigTester(self , config_class=__lowercase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase=False ) -> List[str]: """simple docstring""" a__ : Optional[int] = copy.deepcopy(__lowercase ) if model_class in get_values(__lowercase ): a__ : Union[str, Any] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__lowercase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__lowercase ): a__ : Any = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) elif model_class in get_values(__lowercase ): a__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) a__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) elif model_class in [ *get_values(__lowercase ), ]: a__ : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) elif model_class in [ *get_values(__lowercase ), ]: a__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__lowercase , ) return inputs_dict def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ : Optional[int] = type self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[int] = LayoutLMvaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase_ ( ) -> str: """simple docstring""" a__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__lowercase ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : Any = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__lowercase ) a__ : List[Any] = self.default_image_processor a__ : Union[str, Any] = prepare_img() a__ : Any = image_processor(images=__lowercase , return_tensors="""pt""" ).pixel_values.to(__lowercase ) a__ : Dict = torch.tensor([[1, 2]] ) a__ : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass a__ : List[Any] = model( input_ids=input_ids.to(__lowercase ) , bbox=bbox.to(__lowercase ) , pixel_values=pixel_values.to(__lowercase ) , ) # verify the logits a__ : List[Any] = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , __lowercase ) a__ : int = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ) )
363
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase_ ( _lowercase : List[str]) -> Union[str, Any]: """simple docstring""" a__ : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : List[Any]) -> Optional[Any]: """simple docstring""" a__ , a__ : Union[str, Any] = emb.weight.shape a__ : str = nn.Linear(_lowercase , _lowercase , bias=_lowercase) a__ : Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( _lowercase : int , _lowercase : int=None) -> List[Any]: """simple docstring""" a__ : List[str] = {} for old_key in state_dict.keys(): a__ : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: a__ : Dict = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''') else: a__ : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""") if "gate" in key: a__ : Tuple = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""") if "fc2" and "experts" not in key: a__ : Optional[int] = key.replace(""".fc2.""" , """.ffn.fc2.""") if "fc1" and "experts" not in key: a__ : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""") if ".encoder_attn." in key: a__ : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""") if "encoder_attn_layer_norm" in key: a__ : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""") if "final_layer_norm" in key: a__ : List[str] = key.replace("""final_layer_norm""" , """ff_layer_norm""") a__ : str = state_dict[old_key] return new_dict def lowerCAmelCase_ ( _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Dict , _lowercase : str = WEIGHTS_NAME) -> Tuple: """simple docstring""" a__ : Tuple = [] a__ : Optional[Any] = 0 os.makedirs(_lowercase , exist_ok=_lowercase) for expert in range(_lowercase): a__ : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowercase): a__ : List[str] = torch.load(_lowercase)["""model"""] remove_ignore_keys_(_lowercase) a__ : Tuple = rename_fairseq_keys(_lowercase , _lowercase) a__ : str = os.path.join( _lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase)+1:05d}-of-???.bin''')) torch.save(_lowercase , _lowercase) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(_lowercase)[0]].dtype) # Add the last block a__ : int = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase)+1:05d}-of-???.bin''')) a__ : Union[str, Any] = torch.load(switch_checkpoint_path + """-shared.pt""")["""model"""] remove_ignore_keys_(_lowercase) a__ : List[str] = rename_fairseq_keys(_lowercase , _lowercase) a__ : int = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowercase) == 1: a__ : Optional[int] = os.path.join(_lowercase , _lowercase) torch.save(_lowercase , _lowercase) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowercase , _lowercase) # Otherwise, let's build the index a__ : List[str] = {} for idx, shard in enumerate(_lowercase): a__ : Union[str, Any] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowercase):05d}.bin''') a__ : List[str] = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''')) os.rename(_lowercase , os.path.join(_lowercase , _lowercase)) for key in shard: a__ : Tuple = shard_file # Add the metadata a__ : Tuple = {"""total_size""": total_size} a__ : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowercase , _lowercase) , """w""" , encoding="""utf-8""") as f: a__ : Dict = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase) + """\n""" f.write(_lowercase) return metadata, index if __name__ == "__main__": _lowercase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) _lowercase : Tuple =parser.parse_args() _lowercase , _lowercase : List[Any] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowercase : int =NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowercase : List[str] =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
266
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = AudioLDMPipeline UpperCamelCase_ : Tuple = TEXT_TO_AUDIO_PARAMS UpperCamelCase_ : str = TEXT_TO_AUDIO_BATCH_PARAMS UpperCamelCase_ : List[str] = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(3_2, 6_4) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=__UpperCAmelCase , ) _UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) _UpperCAmelCase : Optional[Any] = ClapTextModelWithProjection(__UpperCAmelCase ) _UpperCAmelCase : Optional[Any] = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=7_7 ) _UpperCAmelCase : List[str] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__UpperCAmelCase , ) _UpperCAmelCase : Optional[Any] = SpeechTaHifiGan(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int=0 ) -> List[str]: """simple docstring""" if str(__UpperCAmelCase ).startswith("mps" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(__UpperCAmelCase ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _UpperCAmelCase : Tuple = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Dict = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : int = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 2_5_6 _UpperCAmelCase : List[str] = audio[:1_0] _UpperCAmelCase : List[Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Dict = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Tuple = audioldm_pipe.to(__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Tuple = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = 3 * [inputs["prompt"]] # forward _UpperCAmelCase : Optional[Any] = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : List[str] = output.audios[0] _UpperCAmelCase : str = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : Tuple = 3 * [inputs.pop("prompt" )] _UpperCAmelCase : Any = audioldm_pipe.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="pt" , ) _UpperCAmelCase : List[Any] = text_inputs["input_ids"].to(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = audioldm_pipe.text_encoder( __UpperCAmelCase , ) _UpperCAmelCase : Optional[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _UpperCAmelCase : Optional[int] = F.normalize(__UpperCAmelCase , dim=-1 ) _UpperCAmelCase : Dict = prompt_embeds # forward _UpperCAmelCase : Optional[int] = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Tuple = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : List[Any] = audioldm_pipe.to(__UpperCAmelCase ) _UpperCAmelCase : Any = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : str = 3 * ["this is a negative prompt"] _UpperCAmelCase : Dict = negative_prompt _UpperCAmelCase : Optional[Any] = 3 * [inputs["prompt"]] # forward _UpperCAmelCase : Tuple = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = output.audios[0] _UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = 3 * [inputs.pop("prompt" )] _UpperCAmelCase : Tuple = [] for p in [prompt, negative_prompt]: _UpperCAmelCase : Any = audioldm_pipe.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="pt" , ) _UpperCAmelCase : Union[str, Any] = text_inputs["input_ids"].to(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = audioldm_pipe.text_encoder( __UpperCAmelCase , ) _UpperCAmelCase : Union[str, Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _UpperCAmelCase : Optional[Any] = F.normalize(__UpperCAmelCase , dim=-1 ) embeds.append(__UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Dict = embeds # forward _UpperCAmelCase : Any = audioldm_pipe(**__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Dict = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) _UpperCAmelCase : Tuple = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : int = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : Tuple = "egg cracking" _UpperCAmelCase : int = audioldm_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) _UpperCAmelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 2_5_6 _UpperCAmelCase : List[Any] = audio[:1_0] _UpperCAmelCase : str = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : Dict = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) _UpperCAmelCase : Any = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Tuple = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : List[Any] = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) _UpperCAmelCase : Dict = audioldm_pipe(__UpperCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts _UpperCAmelCase : Any = 2 _UpperCAmelCase : Optional[Any] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : List[Any] = audioldm_pipe(__UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=__UpperCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : Dict = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__UpperCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : int = self.get_dummy_components() _UpperCAmelCase : Tuple = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe.vocoder.config.sampling_rate _UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe(audio_length_in_s=0.016 , **__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) / vocoder_sampling_rate == 0.016 _UpperCAmelCase : Dict = audioldm_pipe(audio_length_in_s=0.032 , **__UpperCAmelCase ) _UpperCAmelCase : int = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) / vocoder_sampling_rate == 0.032 def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : List[Any] = AudioLDMPipeline(**__UpperCAmelCase ) _UpperCAmelCase : Tuple = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Tuple = ["hey"] _UpperCAmelCase : int = audioldm_pipe(__UpperCAmelCase , num_inference_steps=1 ) _UpperCAmelCase : List[str] = output.audios.shape assert audio_shape == (1, 2_5_6) _UpperCAmelCase : List[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _UpperCAmelCase : Dict = SpeechTaHifiGan(__UpperCAmelCase ).to(__UpperCAmelCase ) _UpperCAmelCase : str = audioldm_pipe(__UpperCAmelCase , num_inference_steps=1 ) _UpperCAmelCase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__UpperCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=__UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase ) @slow class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any="cpu" , lowerCAmelCase__ : Union[str, Any]=torch.floataa , lowerCAmelCase__ : List[Any]=0 ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 8, 1_2_8, 1_6) ) _UpperCAmelCase : Optional[Any] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) _UpperCAmelCase : int = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : List[str] = self.get_inputs(__UpperCAmelCase ) _UpperCAmelCase : List[str] = 2_5 _UpperCAmelCase : Union[str, Any] = audioldm_pipe(**__UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 8_1_9_2_0 _UpperCAmelCase : List[str] = audio[7_7_2_3_0:7_7_2_4_0] _UpperCAmelCase : Dict = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _UpperCAmelCase : int = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Any = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) _UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _UpperCAmelCase : int = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _UpperCAmelCase : Optional[int] = self.get_inputs(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = audioldm_pipe(**__UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 8_1_9_2_0 _UpperCAmelCase : str = audio[2_7_7_8_0:2_7_7_9_0] _UpperCAmelCase : Union[str, Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _UpperCAmelCase : str = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
145
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->list[int]: '''simple docstring''' if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
79
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowercase , 2 ) + pow(_lowercase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
79
1