code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __snake_case ( ): lowerCamelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" lowerCamelCase_ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert("RGB" ) return image def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): lowerCamelCase_ = dct.pop(UpperCAmelCase_ ) lowerCamelCase_ = val def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase_ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCamelCase_ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCamelCase_ = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) ) lowerCamelCase_ = qkv_bias def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): lowerCamelCase_ = 364 if "coco" in model_name else 224 lowerCamelCase_ = BlipaVisionConfig(image_size=UpperCAmelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCamelCase_ = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=UpperCAmelCase_ ).to_dict() elif "opt-6.7b" in model_name: lowerCamelCase_ = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=UpperCAmelCase_ ).to_dict() elif "t5-xl" in model_name: lowerCamelCase_ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase_ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() lowerCamelCase_ = BlipaConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ ) return config, image_size @torch.no_grad() def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[str, Any]=False ): lowerCamelCase_ = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) lowerCamelCase_ = tokenizer("\n" , add_special_tokens=UpperCAmelCase_ ).input_ids[0] lowerCamelCase_ ,lowerCamelCase_ = get_blipa_config(UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCamelCase_ = BlipaForConditionalGeneration(UpperCAmelCase_ ).eval() lowerCamelCase_ = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } lowerCamelCase_ ,lowerCamelCase_ = model_name_to_original[model_name] # load original model print("Loading original model..." ) lowerCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = load_model_and_preprocess( name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ ) original_model.eval() print("Done!" ) # update state dict keys lowerCamelCase_ = original_model.state_dict() lowerCamelCase_ = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase_ = state_dict.pop(UpperCAmelCase_ ) if key.startswith("Qformer.bert" ): lowerCamelCase_ = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: lowerCamelCase_ = key.replace("self" , "attention" ) if "opt_proj" in key: lowerCamelCase_ = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: lowerCamelCase_ = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): lowerCamelCase_ = key.replace("opt" , "language" ) if key.startswith("t5" ): lowerCamelCase_ = key.replace("t5" , "language" ) lowerCamelCase_ = val # read in qv biases read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCamelCase_ = load_demo_image() lowerCamelCase_ = vis_processors["eval"](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) lowerCamelCase_ = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(UpperCAmelCase_ ) # create processor lowerCamelCase_ = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) lowerCamelCase_ = BlipaProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) lowerCamelCase_ = processor(images=UpperCAmelCase_ , return_tensors="pt" ).pixel_values.to(UpperCAmelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) original_model.to(UpperCAmelCase_ ) hf_model.to(UpperCAmelCase_ ) with torch.no_grad(): if "opt" in model_name: lowerCamelCase_ = original_model({"image": original_pixel_values, "text_input": [""]} ).logits lowerCamelCase_ = hf_model(UpperCAmelCase_ , UpperCAmelCase_ ).logits else: lowerCamelCase_ = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits lowerCamelCase_ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCamelCase_ = hf_model(UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCamelCase_ = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=UpperCAmelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCamelCase_ = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=UpperCAmelCase_ ) else: # cast to same type lowerCamelCase_ = logits.dtype assert torch.allclose(original_logits.to(UpperCAmelCase_ ) , UpperCAmelCase_ , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) lowerCamelCase_ = "" lowerCamelCase_ = tokenizer(UpperCAmelCase_ , return_tensors="pt" ).input_ids.to(UpperCAmelCase_ ) lowerCamelCase_ = original_model.generate({"image": original_pixel_values} ) lowerCamelCase_ = hf_model.generate( UpperCAmelCase_ , UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , UpperCAmelCase_ ) lowerCamelCase_ = input_ids.shape[1] lowerCamelCase_ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase_ = [text.strip() for text in output_text] print("HF generation:" , UpperCAmelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() a_ : Optional[Any] = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) a_ : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
55
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = StableUnCLIPPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 32 lowerCamelCase_ = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=UpperCamelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) lowerCamelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL() lowerCamelCase_ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def snake_case ( self , UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" if str(UpperCamelCase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ = pipe("anime turle" , generator=UpperCamelCase , output_type="np" ) lowerCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
55
1
"""simple docstring""" from maths.prime_factors import prime_factors def _lowerCamelCase( a ): if not isinstance(_a , _a ): __a = F"Input value of [number={number}] must be an integer" raise TypeError(_a ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(_a ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" def _lowerCamelCase( a ): __a = len(a ) for i in range(1 , a ): __a = collection[i] __a = 0 __a = i - 1 while low <= high: __a = (low + high) // 2 if val < collection[mid]: __a = mid - 1 else: __a = mid + 1 for j in range(a , a , -1 ): __a = collection[j - 1] __a = val return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE__:str = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE__:Any = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
268
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[int] =["input_ids", "attention_mask"] a : int =RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: lowerCAmelCase : Optional[int] = getattr(snake_case__ , pre_tok_state.pop("type" ) ) lowerCAmelCase : Union[str, Any] = add_prefix_space lowerCAmelCase : Union[str, Any] = pre_tok_class(**snake_case__ ) lowerCAmelCase : int = add_prefix_space lowerCAmelCase : Union[str, Any] = "post_processor" lowerCAmelCase : List[str] = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: lowerCAmelCase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase : Tuple = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase : List[Any] = tuple(state["cls"] ) lowerCAmelCase : int = False if state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: lowerCAmelCase : Union[str, Any] = add_prefix_space lowerCAmelCase : List[Any] = True if state.get("trim_offsets" , snake_case__ ) != trim_offsets: lowerCAmelCase : List[str] = trim_offsets lowerCAmelCase : Optional[int] = True if changes_to_apply: lowerCAmelCase : Union[str, Any] = getattr(snake_case__ , state.pop("type" ) ) lowerCAmelCase : Optional[Any] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value lowerCAmelCase : Optional[Any] = value def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Any = kwargs.get("is_split_into_words" , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : List[Any] = [self.sep_token_id] lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
108
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate lowerCAmelCase : Tuple = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowerCAmelCase : List[Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
108
1
"""simple docstring""" import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ): a__ : Tuple = 1 @register_to_config def __init__( self : str , _lowercase : Union[str, Any]=20_00 , _lowercase : Union[str, Any]=0.1 , _lowercase : Tuple=20 , _lowercase : str=1E-3 ): __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None def a ( self : Dict , _lowercase : int , _lowercase : Union[str, torch.device] = None ): __UpperCAmelCase = torch.linspace(1 , self.config.sampling_eps , _lowercase , device=_lowercase ) def a ( self : List[str] , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : str , _lowercase : Any=None ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __UpperCAmelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __UpperCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __UpperCAmelCase = std.flatten() while len(std.shape ) < len(score.shape ): __UpperCAmelCase = std.unsqueeze(-1 ) __UpperCAmelCase = -score / std # compute __UpperCAmelCase = -1.0 / len(self.timesteps ) __UpperCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __UpperCAmelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __UpperCAmelCase = beta_t.unsqueeze(-1 ) __UpperCAmelCase = -0.5 * beta_t * x __UpperCAmelCase = torch.sqrt(_lowercase ) __UpperCAmelCase = drift - diffusion**2 * score __UpperCAmelCase = x + drift * dt # add noise __UpperCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=_lowercase , device=x.device , dtype=x.dtype ) __UpperCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : int ): return self.config.num_train_timesteps
357
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _lowercase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : List[Any] , _lowercase : GenericTensor ): if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def a ( self : List[str] , _lowercase : GenericTensor ): __UpperCAmelCase = self.get_masked_index(_lowercase ) __UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def a ( self : Optional[int] , _lowercase : GenericTensor ): if isinstance(_lowercase , _lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowercase ) def a ( self : List[str] , _lowercase : Optional[int] , _lowercase : Tuple=None , **_lowercase : Tuple ): if return_tensors is None: __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase ) self.ensure_exactly_one_mask_token(_lowercase ) return model_inputs def a ( self : Optional[int] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) __UpperCAmelCase = model_inputs['''input_ids'''] return model_outputs def a ( self : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any]=5 , _lowercase : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __UpperCAmelCase = target_ids.shape[0] __UpperCAmelCase = model_outputs['''input_ids'''][0] __UpperCAmelCase = model_outputs['''logits'''] if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __UpperCAmelCase = outputs.numpy() __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = stable_softmax(_lowercase , axis=-1 ) if target_ids is not None: __UpperCAmelCase = tf.gather_nd(tf.squeeze(_lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) __UpperCAmelCase = tf.expand_dims(_lowercase , 0 ) __UpperCAmelCase = tf.math.top_k(_lowercase , k=_lowercase ) __UpperCAmelCase , __UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __UpperCAmelCase = probs[..., target_ids] __UpperCAmelCase , __UpperCAmelCase = probs.topk(_lowercase ) __UpperCAmelCase = [] __UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __UpperCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: __UpperCAmelCase = target_ids[p].tolist() __UpperCAmelCase = p # Filter padding out: __UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_lowercase ) result.append(_lowercase ) if single_mask: return result[0] return result def a ( self : str , _lowercase : List[Any] , _lowercase : List[Any]=None ): if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = [targets] try: __UpperCAmelCase = self.tokenizer.get_vocab() except Exception: __UpperCAmelCase = {} __UpperCAmelCase = [] for target in targets: __UpperCAmelCase = vocab.get(_lowercase , _lowercase ) if id_ is None: __UpperCAmelCase = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , max_length=1 , truncation=_lowercase , )['''input_ids'''] if len(_lowercase ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue __UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __UpperCAmelCase = list(set(_lowercase ) ) if len(_lowercase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __UpperCAmelCase = np.array(_lowercase ) return target_ids def a ( self : int , _lowercase : Dict=None , _lowercase : Optional[Any]=None ): __UpperCAmelCase = {} if targets is not None: __UpperCAmelCase = self.get_target_ids(_lowercase , _lowercase ) __UpperCAmelCase = target_ids if top_k is not None: __UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Union[str, Any] , _lowercase : Optional[Any] , *_lowercase : Union[str, Any] , **_lowercase : int ): __UpperCAmelCase = super().__call__(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs
86
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class a__( lowerCamelCase__ ): lowercase__ = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowercase__ = Features({"""audio""": Audio()} ) lowercase__ = Features({"""labels""": ClassLabel} ) lowercase__ = "audio" lowercase__ = "labels" def lowercase_ ( self : Dict , __snake_case : Optional[int] ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __snake_case ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) a : str = copy.deepcopy(self ) a : Dict = self.label_schema.copy() a : Optional[int] = features[self.label_column] a : str = label_schema return task_template @property def lowercase_ ( self : Tuple ): return { self.audio_column: "audio", self.label_column: "labels", }
297
'''simple docstring''' def lowerCamelCase__ ( _A , _A , _A , _A , _A , ): a : Dict = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: a : Union[str, Any] = 1 - (matter_density + radiation_density + dark_energy) a : Union[str, Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) a : int = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase: Optional[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _UpperCamelCase ( UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if isinstance(UpperCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class __SCREAMING_SNAKE_CASE : def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = TFVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE , text_model=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE , text_model=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = TFVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = after_output[0].numpy() lowerCAmelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE , text_model=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = model( input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = np.abs((a - b) ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , F"Difference between torch and flax is {diff} (>= {tol})." ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_save_load(**_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_SCREAMING_SNAKE_CASE ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_pretrained_model_and_inputs() lowerCAmelCase__ = model_a(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = TFVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = model_a(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = after_outputs[0].numpy() lowerCAmelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @require_tf class __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ = 13 lowerCAmelCase__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = TFViTModel(_SCREAMING_SNAKE_CASE , name='vision_model' ) lowerCAmelCase__ = TFBertModel(_SCREAMING_SNAKE_CASE , name='text_model' ) return vision_model, text_model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFViTModelTester(self ) lowerCAmelCase__ = TFBertModelTester(self ) lowerCAmelCase__ = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ = vision_config_and_inputs ( lowerCAmelCase__ ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ = 13 lowerCAmelCase__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE , text_model=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = model( input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = TFDeiTModel(_SCREAMING_SNAKE_CASE , name='vision_model' ) lowerCAmelCase__ = TFRobertaModel(_SCREAMING_SNAKE_CASE , name='text_model' ) return vision_model, text_model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = TFRobertaModelTester(self ) lowerCAmelCase__ = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ = vision_config_and_inputs ( lowerCAmelCase__ ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ = 13 lowerCAmelCase__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = TFCLIPVisionModel(_SCREAMING_SNAKE_CASE , name='vision_model' ) lowerCAmelCase__ = TFBertModel(_SCREAMING_SNAKE_CASE , name='text_model' ) return vision_model, text_model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFCLIPVisionModelTester(self ) lowerCAmelCase__ = TFBertModelTester(self ) lowerCAmelCase__ = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ = vision_config_and_inputs ( lowerCAmelCase__ ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='np' ) lowerCAmelCase__ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _SCREAMING_SNAKE_CASE , atol=1E-3 ) )
360
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=30 , _UpperCamelCase=4_00 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=True , _UpperCamelCase=1 / 2_55 , _UpperCamelCase=True , ): """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean lowerCAmelCase__ = image_std lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_pad def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" if not batched: lowerCAmelCase__ = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): lowerCAmelCase__ , lowerCAmelCase__ = image.size else: lowerCAmelCase__ , lowerCAmelCase__ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ = int(self.size['shortest_edge'] * h / w ) lowerCAmelCase__ = self.size['shortest_edge'] elif w > h: lowerCAmelCase__ = self.size['shortest_edge'] lowerCAmelCase__ = int(self.size['shortest_edge'] * w / h ) else: lowerCAmelCase__ = self.size['shortest_edge'] lowerCAmelCase__ = self.size['shortest_edge'] else: lowerCAmelCase__ = [] for image in image_inputs: lowerCAmelCase__ , lowerCAmelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] lowerCAmelCase__ = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Dict = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_rescale' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_pad' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'size' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) lowerCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # prepare image and target lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {'image_id': 3_97_69, 'annotations': target} # encode them lowerCAmelCase__ = DeformableDetrImageProcessor() lowerCAmelCase__ = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors='pt' ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify orig_size lowerCAmelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size lowerCAmelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # prepare image, target and masks_path lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} lowerCAmelCase__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCAmelCase__ = DeformableDetrImageProcessor(format='coco_panoptic' ) lowerCAmelCase__ = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors='pt' ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify masks lowerCAmelCase__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCamelCase ) # verify orig_size lowerCAmelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size lowerCAmelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) )
122
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case : """simple docstring""" snake_case__ = field( metadata={"help": "The output directory where the model will be written."} , ) snake_case__ = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) snake_case__ = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) snake_case__ = field( default=_UpperCamelCase , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) snake_case__ = field( default=_UpperCamelCase , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def a_ ( ): UpperCAmelCase__ = HfArgumentParser((ModelArguments,) ) ((UpperCAmelCase__ ) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: UpperCAmelCase__ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: UpperCAmelCase__ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: UpperCAmelCase__ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: UpperCAmelCase__ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCAmelCase_ , decoder_config=lowerCAmelCase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens UpperCAmelCase__ = decoder_config.decoder_start_token_id UpperCAmelCase__ = decoder_config.pad_token_id if decoder_start_token_id is None: UpperCAmelCase__ = decoder_config.bos_token_id if pad_token_id is None: UpperCAmelCase__ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work UpperCAmelCase__ = decoder_config.eos_token_id UpperCAmelCase__ = decoder_start_token_id UpperCAmelCase__ = pad_token_id UpperCAmelCase__ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
98
from __future__ import annotations import math def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : bool, lowerCAmelCase_ : list[int], lowerCAmelCase_ : float ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase_ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) return min( minimax(depth + 1, node_index * 2, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) def a_ ( ): __lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423] __lowerCAmelCase = math.log(len(lowerCAmelCase_ ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
284
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''cvt''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =num_channels _lowerCAmelCase =patch_sizes _lowerCAmelCase =patch_stride _lowerCAmelCase =patch_padding _lowerCAmelCase =embed_dim _lowerCAmelCase =num_heads _lowerCAmelCase =depth _lowerCAmelCase =mlp_ratio _lowerCAmelCase =attention_drop_rate _lowerCAmelCase =drop_rate _lowerCAmelCase =drop_path_rate _lowerCAmelCase =qkv_bias _lowerCAmelCase =cls_token _lowerCAmelCase =qkv_projection_method _lowerCAmelCase =kernel_qkv _lowerCAmelCase =padding_kv _lowerCAmelCase =stride_kv _lowerCAmelCase =padding_q _lowerCAmelCase =stride_q _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps
341
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> int: _lowerCAmelCase = """laion/clap-htsat-unfused""" _lowerCAmelCase = tempfile.mkdtemp() def lowercase__ ( self : int , **__snake_case : Dict ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **__snake_case ) def lowercase__ ( self : int , **__snake_case : List[Any] ) -> Any: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__snake_case ) def lowercase__ ( self : Any ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Dict: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = ClapProcessor(tokenizer=__snake_case , feature_extractor=__snake_case ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __snake_case ) def lowercase__ ( self : int ) -> List[str]: _lowerCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase = self.get_feature_extractor(do_normalize=__snake_case , padding_value=1.0 ) _lowerCAmelCase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __snake_case ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ClapProcessor(tokenizer=__snake_case , feature_extractor=__snake_case ) _lowerCAmelCase = floats_list((3, 10_00) ) _lowerCAmelCase = feature_extractor(__snake_case , return_tensors="""np""" ) _lowerCAmelCase = processor(audios=__snake_case , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : str ) -> Any: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ClapProcessor(tokenizer=__snake_case , feature_extractor=__snake_case ) _lowerCAmelCase = """This is a test string""" _lowerCAmelCase = processor(text=__snake_case ) _lowerCAmelCase = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ) -> int: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ClapProcessor(tokenizer=__snake_case , feature_extractor=__snake_case ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(__snake_case ) _lowerCAmelCase = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowercase__ ( self : Any ) -> Union[str, Any]: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ClapProcessor(tokenizer=__snake_case , feature_extractor=__snake_case ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
70
"""simple docstring""" from __future__ import annotations import time lowerCamelCase_ = list[tuple[int, int]] lowerCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase_ : def __init__( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Node | None ) -> Dict: UpperCAmelCase_ : Any = pos_x UpperCAmelCase_ : str = pos_y UpperCAmelCase_ : int = (pos_y, pos_x) UpperCAmelCase_ : int = goal_x UpperCAmelCase_ : Tuple = goal_y UpperCAmelCase_ : Union[str, Any] = parent class UpperCamelCase_ : def __init__( self : List[Any] , lowerCAmelCase_ : tuple[int, int] , lowerCAmelCase_ : tuple[int, int] ) -> Tuple: UpperCAmelCase_ : List[str] = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCAmelCase_ ) UpperCAmelCase_ : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = [self.start] UpperCAmelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Any ) -> Path | None: while self.node_queue: UpperCAmelCase_ : str = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase_ : Optional[Any] = True return self.retrace_path(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.get_successors(lowerCAmelCase_ ) for node in successors: self.node_queue.append(lowerCAmelCase_ ) if not self.reached: return [self.start.pos] return None def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Node ) -> list[Node]: UpperCAmelCase_ : List[str] = [] for action in delta: UpperCAmelCase_ : List[Any] = parent.pos_x + action[1] UpperCAmelCase_ : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCAmelCase_ , lowerCAmelCase_ , self.target.pos_y , self.target.pos_x , lowerCAmelCase_ ) ) return successors def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Node | None ) -> Path: UpperCAmelCase_ : Union[str, Any] = node UpperCAmelCase_ : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Tuple = current_node.parent path.reverse() return path class UpperCamelCase_ : def __init__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = BreadthFirstSearch(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = BreadthFirstSearch(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = False def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCAmelCase_ : int = self.fwd_bfs.node_queue.pop(0 ) UpperCAmelCase_ : Dict = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCAmelCase_ : str = True return self.retrace_bidirectional_path( lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = current_bwd_node UpperCAmelCase_ : List[str] = current_fwd_node UpperCAmelCase_ : Tuple = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCAmelCase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCAmelCase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCAmelCase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Node , lowerCAmelCase_ : Node ) -> Path: UpperCAmelCase_ : Optional[Any] = self.fwd_bfs.retrace_path(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.bwd_bfs.retrace_path(lowerCAmelCase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase_ = (0, 0) lowerCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase_ = time.time() lowerCamelCase_ = BreadthFirstSearch(init, goal) lowerCamelCase_ = bfs.search() lowerCamelCase_ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) lowerCamelCase_ = time.time() lowerCamelCase_ = BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase_ = bd_bfs.search() lowerCamelCase_ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
268
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class snake_case_: def __init__( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any]=1_3 , UpperCamelCase_ : str=7 , UpperCamelCase_ : Dict=False , UpperCamelCase_ : str=True , UpperCamelCase_ : int=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Any=3_3 , UpperCamelCase_ : List[Any]=3_2 , UpperCamelCase_ : str=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : int=3_7 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : int=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Union[str, Any]=4 , UpperCamelCase_ : Optional[int]=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : Dict = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[Any] = use_token_type_ids lowerCAmelCase : str = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : int = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Any = type_sequence_label_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Dict = num_choices lowerCAmelCase : str = scope def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_input_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : List[str] ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Any = EsmModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Dict = model(UpperCamelCase_ ) lowerCAmelCase : int = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : List[str] = EsmForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Dict = EsmForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : str = config_and_inputs lowerCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = False __UpperCamelCase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase = () __UpperCamelCase = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[str] = EsmModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : Dict = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : List[Any] ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Dict = EsmModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()[0] lowerCAmelCase : Dict = EsmEmbeddings(config=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] ) lowerCAmelCase : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCAmelCase : List[Any] = create_position_ids_from_input_ids(UpperCamelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()[0] lowerCAmelCase : str = EsmEmbeddings(config=UpperCamelCase_ ) lowerCAmelCase : Tuple = torch.empty(2 , 4 , 3_0 ) lowerCAmelCase : Optional[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCAmelCase : Union[str, Any] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCAmelCase : Dict = embeddings.create_position_ids_from_inputs_embeds(UpperCamelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowerCamelCase__ ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @require_torch class snake_case_( a__ ): @slow def lowerCamelCase__ ( self : str ): with torch.no_grad(): lowerCAmelCase : Dict = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() lowerCAmelCase : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : str = model(UpperCamelCase_ )[0] lowerCAmelCase : Optional[Any] = 3_3 lowerCAmelCase : Dict = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase_ ) lowerCAmelCase : Any = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : List[Any] ): with torch.no_grad(): lowerCAmelCase : Optional[int] = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() lowerCAmelCase : Any = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowerCAmelCase : str = model(UpperCamelCase_ )[0] # compare the actual values for a slice. lowerCAmelCase : str = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
314
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase__ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): for attribute in key.split('.' ): __lowerCAmelCase : str = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: __lowerCAmelCase : Tuple = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: __lowerCAmelCase : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": __lowerCAmelCase : Any = value elif weight_type == "bias": __lowerCAmelCase : List[str] = value else: __lowerCAmelCase : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = [] __lowerCAmelCase : Optional[int] = fairseq_model.state_dict() __lowerCAmelCase : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) __lowerCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCAmelCase : int = True if "*" in mapped_key: __lowerCAmelCase : List[str] = name.split(_UpperCamelCase )[0].split('.' )[-2] __lowerCAmelCase : Optional[Any] = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: __lowerCAmelCase : Union[str, Any] = 'weight_g' elif "weight_v" in name: __lowerCAmelCase : int = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __lowerCAmelCase : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase : List[str] = 'weight' else: __lowerCAmelCase : Optional[Any] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = full_name.split('conv_layers.' )[-1] __lowerCAmelCase : Any = name.split('.' ) __lowerCAmelCase : List[Any] = int(items[0] ) __lowerCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCAmelCase : int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowerCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCAmelCase : Any = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): # load the pre-trained checkpoints __lowerCAmelCase : Any = torch.load(_UpperCamelCase ) __lowerCAmelCase : List[str] = WavLMConfigOrig(checkpoint['cfg'] ) __lowerCAmelCase : Optional[Any] = WavLMOrig(_UpperCamelCase ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __lowerCAmelCase : Dict = WavLMConfig.from_pretrained(_UpperCamelCase ) else: __lowerCAmelCase : List[str] = WavLMConfig() __lowerCAmelCase : List[str] = WavLMModel(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavlm.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
86
0
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : int ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCamelCase__ : Optional[Any] =Dataset.from_dict(UpperCAmelCase ) return dataset class __a ( snake_case__ ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Tuple =get_dataset() UpperCamelCase__ : List[str] =make_duplicate_clusters(lowercase_ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : str =get_dataset() UpperCamelCase__ : int =deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowercase_ )
362
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _SCREAMING_SNAKE_CASE : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Any = logging.getLogger() def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Any =argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase__ : Dict =parser.parse_args() return args.f def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int="eval" ): '''simple docstring''' UpperCamelCase__ : Dict =os.path.join(UpperCAmelCase , F'''{split}_results.json''' ) if os.path.exists(UpperCAmelCase ): with open(UpperCAmelCase , '''r''' ) as f: return json.load(UpperCAmelCase ) raise ValueError(F'''can\'t find {path}''' ) _SCREAMING_SNAKE_CASE : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __a ( snake_case__ ): """simple docstring""" def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Union[str, Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : int =f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_flax_glue.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : List[str] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : str =f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_clm_flax.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : List[Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[Any] =f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_summarization_flax.main() UpperCamelCase__ : Union[str, Any] =get_results(lowercase_ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def _lowerCAmelCase ( self : Dict ): UpperCamelCase__ : int =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] =f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_mlm_flax.main() UpperCamelCase__ : List[Any] =get_results(lowercase_ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] =f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_ta_mlm_flax.main() UpperCamelCase__ : Optional[int] =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.4_2 ) @slow def _lowerCAmelCase ( self : List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase__ : Union[str, Any] =7 if get_gpu_count() > 1 else 2 UpperCamelCase__ : int =self.get_auto_remove_tmp_dir() UpperCamelCase__ : int =f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_flax_ner.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : Union[str, Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Any =f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_qa.main() UpperCamelCase__ : Tuple =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
157
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: # noqa: E741 while r - l > 1: __lowerCamelCase : int = (l + r) // 2 if v[m] >= key: __lowerCamelCase : str = m else: __lowerCamelCase : Tuple = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: if len(lowerCamelCase__ ) == 0: return 0 __lowerCamelCase : Union[str, Any] = [0] * len(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : str = v[0] for i in range(1 , len(lowerCamelCase__ ) ): if v[i] < tail[0]: __lowerCamelCase : Optional[Any] = v[i] elif v[i] > tail[length - 1]: __lowerCamelCase : List[str] = v[i] length += 1 else: __lowerCamelCase : str = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
73
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : torch.FloatTensor class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , __UpperCamelCase = 3 , __UpperCamelCase = 3 , __UpperCamelCase = ("DownEncoderBlock2D",) , __UpperCamelCase = ("UpDecoderBlock2D",) , __UpperCamelCase = (6_4,) , __UpperCamelCase = 1 , __UpperCamelCase = "silu" , __UpperCamelCase = 3 , __UpperCamelCase = 3_2 , __UpperCamelCase = 2_5_6 , __UpperCamelCase = 3_2 , __UpperCamelCase = None , __UpperCamelCase = 0.18_215 , __UpperCamelCase = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder UpperCamelCase_ = Encoder( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , down_block_types=__UpperCamelCase , block_out_channels=__UpperCamelCase , layers_per_block=__UpperCamelCase , act_fn=__UpperCamelCase , norm_num_groups=__UpperCamelCase , double_z=__UpperCamelCase , ) UpperCamelCase_ = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCamelCase_ = nn.Convad(__UpperCamelCase , __UpperCamelCase , 1 ) UpperCamelCase_ = VectorQuantizer(__UpperCamelCase , __UpperCamelCase , beta=0.25 , remap=__UpperCamelCase , sane_index_shape=__UpperCamelCase ) UpperCamelCase_ = nn.Convad(__UpperCamelCase , __UpperCamelCase , 1 ) # pass init params to Decoder UpperCamelCase_ = Decoder( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , up_block_types=__UpperCamelCase , block_out_channels=__UpperCamelCase , layers_per_block=__UpperCamelCase , act_fn=__UpperCamelCase , norm_num_groups=__UpperCamelCase , norm_type=__UpperCamelCase , ) @apply_forward_hook def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = True ): """simple docstring""" UpperCamelCase_ = self.encoder(__UpperCamelCase ) UpperCamelCase_ = self.quant_conv(__UpperCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__UpperCamelCase ) @apply_forward_hook def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = True ): """simple docstring""" if not force_not_quantize: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.quantize(__UpperCamelCase ) else: UpperCamelCase_ = h UpperCamelCase_ = self.post_quant_conv(__UpperCamelCase ) UpperCamelCase_ = self.decoder(__UpperCamelCase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = True ): """simple docstring""" UpperCamelCase_ = sample UpperCamelCase_ = self.encode(__UpperCamelCase ).latents UpperCamelCase_ = self.decode(__UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCamelCase )
122
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase ): lowercase = """vit_mae""" def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=0.7_5 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = qkv_bias UpperCamelCase = decoder_num_attention_heads UpperCamelCase = decoder_hidden_size UpperCamelCase = decoder_num_hidden_layers UpperCamelCase = decoder_intermediate_size UpperCamelCase = mask_ratio UpperCamelCase = norm_pix_loss
183
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def lowercase__ ( __UpperCamelCase )-> str: return "".join(sorted(__UpperCamelCase ) ) def lowercase__ ( __UpperCamelCase )-> list[str]: return word_by_signature[signature(__UpperCamelCase )] SCREAMING_SNAKE_CASE__ = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') SCREAMING_SNAKE_CASE__ = sorted({word.strip().lower() for word in data.splitlines()}) SCREAMING_SNAKE_CASE__ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
183
1
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Any = int(_SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(_SCREAMING_SNAKE_CASE ) lowercase , lowercase : List[str] = divmod(_SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(_SCREAMING_SNAKE_CASE ) + str(_SCREAMING_SNAKE_CASE ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : int = str(_SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError('''No input value was provided''' ) lowercase : Tuple = '''-''' if number.startswith('''-''' ) else '''''' lowercase : str = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F"""{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
308
'''simple docstring''' __lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) _snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: _snake_case = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
0
from ...processing_utils import ProcessorMixin class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "SpeechT5FeatureExtractor" _UpperCAmelCase :Optional[int] = "SpeechT5Tokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Optional[Any] = kwargs.pop('''audio''' , _UpperCAmelCase ) lowercase__: Tuple = kwargs.pop('''text''' , _UpperCAmelCase ) lowercase__: Dict = kwargs.pop('''text_target''' , _UpperCAmelCase ) lowercase__: Dict = kwargs.pop('''audio_target''' , _UpperCAmelCase ) lowercase__: Union[str, Any] = kwargs.pop('''sampling_rate''' , _UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowercase__: List[Any] = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) elif text is not None: lowercase__: Optional[int] = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) else: lowercase__: Optional[Any] = None if audio_target is not None: lowercase__: Union[str, Any] = self.feature_extractor(audio_target=_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Tuple = targets['''input_values'''] elif text_target is not None: lowercase__: Dict = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Union[str, Any] = targets['''input_ids'''] else: lowercase__: Tuple = None if inputs is None: return targets if targets is not None: lowercase__: Union[str, Any] = labels lowercase__: Tuple = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__: Any = decoder_attention_mask return inputs def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Any = kwargs.pop('''input_values''' , _UpperCAmelCase ) lowercase__: List[Any] = kwargs.pop('''input_ids''' , _UpperCAmelCase ) lowercase__: Any = kwargs.pop('''labels''' , _UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowercase__: List[str] = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif input_ids is not None: lowercase__: str = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) else: lowercase__: Tuple = None if labels is not None: if "input_ids" in labels or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and "input_ids" in labels[0]): lowercase__: Tuple = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Union[str, Any] = targets['''input_ids'''] else: lowercase__: List[Any] = self.feature_extractor.feature_size lowercase__: List[Any] = self.feature_extractor.num_mel_bins lowercase__: Union[str, Any] = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: List[Any] = feature_size_hack lowercase__: str = targets['''input_values'''] else: lowercase__: Optional[Any] = None if inputs is None: return targets if targets is not None: lowercase__: Dict = labels lowercase__: Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__: Any = decoder_attention_mask return inputs def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE : str = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : Any=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : List[Any]=9 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=6.67 , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , **__lowerCamelCase : Optional[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
314
1
def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , ) -> float: SCREAMING_SNAKE_CASE_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: SCREAMING_SNAKE_CASE_ = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCamelCase__ : List[str] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
210
import cva import numpy as np class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : float , _lowerCAmelCase : int ): if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : Tuple ): return str(self.k ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = cva.imread(_lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(_lowerCAmelCase , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.gradient(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(_lowerCAmelCase , h - offset ): for x in range(_lowerCAmelCase , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase__ , lowerCamelCase__ : str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
210
1
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) _lowercase : Optional[int] = None _lowercase : Any = { '7B': 1_10_08, '13B': 1_38_24, '30B': 1_79_20, '65B': 2_20_16, '70B': 2_86_72, } _lowercase : List[str] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def lowercase__ ( snake_case_ :int , snake_case_ :List[Any]=1 , snake_case_ :Dict=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase__ ( snake_case_ :int ): with open(snake_case__ , '''r''' ) as f: return json.load(snake_case__ ) def lowercase__ ( snake_case_ :Dict , snake_case_ :str ): with open(snake_case__ , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :int , snake_case_ :str , snake_case_ :List[Any]=True ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) __UpperCAmelCase = os.path.join(snake_case__ , '''tmp''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) __UpperCAmelCase = read_json(os.path.join(snake_case__ , '''params.json''' ) ) __UpperCAmelCase = NUM_SHARDS[model_size] __UpperCAmelCase = params["n_layers"] __UpperCAmelCase = params["n_heads"] __UpperCAmelCase = n_heads // num_shards __UpperCAmelCase = params["dim"] __UpperCAmelCase = dim // n_heads __UpperCAmelCase = 10_000.0 __UpperCAmelCase = 1.0 / (base ** (torch.arange(0 , snake_case__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: __UpperCAmelCase = params["n_kv_heads"] # for GQA / MQA __UpperCAmelCase = n_heads_per_shard // num_key_value_heads __UpperCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints __UpperCAmelCase = n_heads __UpperCAmelCase = n_heads_per_shard __UpperCAmelCase = dim # permute for sliced rotary def permute(snake_case_ :List[Any] , snake_case_ :List[str]=n_heads , snake_case_ :Optional[Any]=dim , snake_case_ :Optional[int]=dim ): return w.view(snake_case__ , dima // n_heads // 2 , 2 , snake_case__ ).transpose(1 , 2 ).reshape(snake_case__ , snake_case__ ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __UpperCAmelCase = torch.load(os.path.join(snake_case__ , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded __UpperCAmelCase = [ torch.load(os.path.join(snake_case__ , F'''consolidated.{i:02d}.pth''' ) , map_location='''cpu''' ) for i in range(snake_case__ ) ] __UpperCAmelCase = 0 __UpperCAmelCase = {"weight_map": {}} for layer_i in range(snake_case__ ): __UpperCAmelCase = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded __UpperCAmelCase = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __UpperCAmelCase = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } __UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(snake_case__ , snake_case__ , snake_case__ ) for i in range(snake_case__ ) ] , dim=0 , ).reshape(snake_case__ , snake_case__ ) ) __UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( snake_case__ , snake_case__ , snake_case__ ) for i in range(snake_case__ ) ] , dim=0 , ).reshape(snake_case__ , snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , ) __UpperCAmelCase = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( snake_case__ , snake_case__ , snake_case__ ) for i in range(snake_case__ ) ] , dim=0 , ).reshape(snake_case__ , snake_case__ ) __UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(snake_case__ )] , dim=1 ) __UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(snake_case__ )] , dim=0 ) __UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(snake_case__ )] , dim=1 ) __UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(snake_case__ )] , dim=0 ) __UpperCAmelCase = inv_freq for k, v in state_dict.items(): __UpperCAmelCase = filename param_count += v.numel() torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) __UpperCAmelCase = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded __UpperCAmelCase = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: __UpperCAmelCase = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(snake_case__ )] , dim=1 ), "lm_head.weight": torch.cat([loaded[i]['''output.weight'''] for i in range(snake_case__ )] , dim=0 ), } for k, v in state_dict.items(): __UpperCAmelCase = filename param_count += v.numel() torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) # Write configs __UpperCAmelCase = {"total_size": param_count * 2} write_json(snake_case__ , os.path.join(snake_case__ , '''pytorch_model.bin.index.json''' ) ) __UpperCAmelCase = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 __UpperCAmelCase = params["multiple_of"] if "multiple_of" in params else 256 __UpperCAmelCase = LlamaConfig( hidden_size=snake_case__ , intermediate_size=compute_intermediate_size(snake_case__ , snake_case__ , snake_case__ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=snake_case__ , ) config.save_pretrained(snake_case__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) __UpperCAmelCase = LlamaForCausalLM.from_pretrained(snake_case__ , torch_dtype=torch.floataa , low_cpu_mem_usage=snake_case__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(snake_case__ , safe_serialization=snake_case__ ) shutil.rmtree(snake_case__ ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :Optional[Any] ): # Initialize the tokenizer based on the `spm` model __UpperCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) __UpperCAmelCase = tokenizer_class(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=snake_case__ , help='''Whether or not to save using `safetensors`.''' ) __UpperCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) __UpperCAmelCase = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , snake_case__ ) if __name__ == "__main__": main()
332
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : int = "" for word_or_phrase in separated: if not isinstance(snake_case__, snake_case__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
157
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=A_ ): a__ : List[Any] = ["torch", "torchsde"] def __init__( self : Tuple , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def a ( cls : int , *_lowercase : int , **_lowercase : Tuple ): requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def a ( cls : List[str] , *_lowercase : Optional[Any] , **_lowercase : Tuple ): requires_backends(cls , ['''torch''', '''torchsde'''] )
368
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : List[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _SCREAMING_SNAKE_CASE : Optional[int] = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = '''hopper-medium-v2''' _SCREAMING_SNAKE_CASE : str = gym.make(env_name) _SCREAMING_SNAKE_CASE : Union[str, Any] = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) _SCREAMING_SNAKE_CASE : str = env.reset() _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : List[Any] = 1000 _SCREAMING_SNAKE_CASE : Tuple = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _SCREAMING_SNAKE_CASE : Optional[Any] = pipeline(obs, planning_horizon=32) # execute action in environment _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = env.step(denorm_actions) _SCREAMING_SNAKE_CASE : Dict = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) _SCREAMING_SNAKE_CASE : Optional[int] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
183
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class a ( __snake_case ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str = "▁" , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[str, AddedToken] = "<unk>" , __SCREAMING_SNAKE_CASE : Union[str, AddedToken] = "</s>" , __SCREAMING_SNAKE_CASE : Union[str, AddedToken] = "<pad>" , ) -> Optional[int]: lowerCamelCase_ = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } lowerCamelCase_ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase_ = token_dict['token'] lowerCamelCase_ = Tokenizer(Unigram() ) lowerCamelCase_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) lowerCamelCase_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=__SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase_ = decoders.Metaspace(replacement=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) lowerCamelCase_ = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : int = 8000 , __SCREAMING_SNAKE_CASE : bool = True , ) -> Tuple: lowerCamelCase_ = trainers.UnigramTrainer( vocab_size=__SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=__SCREAMING_SNAKE_CASE , ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = [files] self._tokenizer.train(__SCREAMING_SNAKE_CASE , trainer=__SCREAMING_SNAKE_CASE ) self.add_unk_id() def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[Iterator[str], Iterator[Iterator[str]]] , __SCREAMING_SNAKE_CASE : int = 8000 , __SCREAMING_SNAKE_CASE : bool = True , ) -> str: lowerCamelCase_ = trainers.UnigramTrainer( vocab_size=__SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=__SCREAMING_SNAKE_CASE , ) self._tokenizer.train_from_iterator(__SCREAMING_SNAKE_CASE , trainer=__SCREAMING_SNAKE_CASE ) self.add_unk_id() def UpperCamelCase ( self : List[Any] ) -> Dict: lowerCamelCase_ = json.loads(self._tokenizer.to_str() ) lowerCamelCase_ = self.special_tokens['unk']['id'] lowerCamelCase_ = Tokenizer.from_str(json.dumps(__SCREAMING_SNAKE_CASE ) )
183
1
"""simple docstring""" from statistics import mean import numpy as np def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list: lowercase__ : str = 0 # Number of processes finished lowercase__ : List[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase__ : int = [0] * no_of_process # List to include calculation results lowercase__ : Dict = [0] * no_of_process # Sort by arrival time. lowercase__ : str = [burst_time[i] for i in np.argsort(__lowerCamelCase )] lowercase__ : Tuple = [process_name[i] for i in np.argsort(__lowerCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: lowercase__ : Optional[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase__ : Tuple = arrival_time[i] lowercase__ : Tuple = 0 # Index showing the location of the process being performed lowercase__ : Any = 0 # Saves the current response ratio. lowercase__ : List[str] = 0 for i in range(0 , __lowerCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase__ : int = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase__ : List[Any] = temp lowercase__ : Union[str, Any] = i # Calculate the turn around time lowercase__ : Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase__ : Union[str, Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list: lowercase__ : Optional[int] = [0] * no_of_process for i in range(0 , __lowerCamelCase ): lowercase__ : str = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCAmelCase_ = 5 lowerCAmelCase_ = ['A', 'B', 'C', 'D', 'E'] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCAmelCase_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
__snake_case : int =[ (1_0_0_0, 'M'), (9_0_0, 'CM'), (5_0_0, 'D'), (4_0_0, 'CD'), (1_0_0, 'C'), (9_0, 'XC'), (5_0, 'L'), (4_0, 'XL'), (1_0, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : Tuple = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Any = 0 while place < len(lowerCamelCase_): if (place + 1 < len(lowerCamelCase_)) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' lowerCAmelCase__ : Dict = [] for arabic, roman in ROMAN: ((lowerCAmelCase__) , (lowerCAmelCase__)) : int = divmod(lowerCamelCase_ ,lowerCamelCase_) result.append(roman * factor) if number == 0: break return "".join(lowerCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
129
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True _UpperCAmelCase : str = 4 _UpperCAmelCase : int = (1 << p) - 1 for _ in range(p - 2 ): _UpperCAmelCase : int = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
202
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = 'owlvit_text_model' def __init__( self : int , A : int=4_9_4_0_8 , A : Optional[Any]=5_1_2 , A : Optional[Any]=2_0_4_8 , A : str=1_2 , A : int=8 , A : Tuple=1_6 , A : List[Any]="quick_gelu" , A : Tuple=1e-5 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : str=1.0 , A : str=0 , A : List[str]=4_9_4_0_6 , A : str=4_9_4_0_7 , **A : Optional[Any] , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = initializer_factor @classmethod def snake_case_ ( cls : Any , A : Union[str, os.PathLike] , **A : Dict ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'owlvit_vision_model' def __init__( self : Union[str, Any] , A : Optional[int]=7_6_8 , A : int=3_0_7_2 , A : List[str]=1_2 , A : List[str]=1_2 , A : Optional[int]=3 , A : Optional[int]=7_6_8 , A : str=3_2 , A : Tuple="quick_gelu" , A : Dict=1e-5 , A : Optional[int]=0.0 , A : List[Any]=0.02 , A : str=1.0 , **A : Tuple , ): super().__init__(**A ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Any = attention_dropout _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = initializer_factor @classmethod def snake_case_ ( cls : Optional[int] , A : Union[str, os.PathLike] , **A : int ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = 'owlvit' __SCREAMING_SNAKE_CASE : Optional[Any] = True def __init__( self : Optional[Any] , A : Dict=None , A : Tuple=None , A : Optional[Any]=5_1_2 , A : Optional[Any]=2.6_592 , A : int=True , **A : Tuple , ): super().__init__(**A ) if text_config is None: _UpperCAmelCase : List[Any] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: _UpperCAmelCase : Tuple = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) _UpperCAmelCase : str = OwlViTTextConfig(**A ) _UpperCAmelCase : int = OwlViTVisionConfig(**A ) _UpperCAmelCase : Optional[Any] = projection_dim _UpperCAmelCase : str = logit_scale_init_value _UpperCAmelCase : Optional[Any] = return_dict _UpperCAmelCase : str = 1.0 @classmethod def snake_case_ ( cls : Dict , A : Union[str, os.PathLike] , **A : Any ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) @classmethod def snake_case_ ( cls : Optional[int] , A : Dict , A : Dict , **A : Optional[Any] ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : int = text_config _UpperCAmelCase : Dict = vision_config return cls.from_dict(A , **A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _UpperCamelCase ): @property def snake_case_ ( self : List[str] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def snake_case_ ( self : Optional[int] ): return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def snake_case_ ( self : str ): return 1e-4 def snake_case_ ( self : str , A : "ProcessorMixin" , A : int = -1 , A : int = -1 , A : Optional["TensorType"] = None , ): _UpperCAmelCase : Optional[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _UpperCAmelCase : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def snake_case_ ( self : List[Any] ): return 1_4
202
1
from manim import * class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = Rectangle(height=0.5 , width=0.5 ) __lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowercase = Rectangle(height=0.25 , width=0.25 ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) __lowercase = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) __lowercase = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) __lowercase = Text('''CPU''' , font_size=24 ) __lowercase = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) __lowercase = [mem.copy() for i in range(4 )] __lowercase = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) __lowercase = Text('''GPU''' , font_size=24 ) __lowercase = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) __lowercase = Text('''Model''' , font_size=24 ) __lowercase = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) __lowercase = [] __lowercase = [] for i, rect in enumerate(lowerCAmelCase__ ): __lowercase = fill.copy().set_fill(lowerCAmelCase__ , opacity=0.8 ) target.move_to(lowerCAmelCase__ ) model_arr.append(lowerCAmelCase__ ) __lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ ) __lowercase = [meta_mem.copy() for i in range(6 )] __lowercase = [meta_mem.copy() for i in range(6 )] __lowercase = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) __lowercase = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) __lowercase = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) __lowercase = Text('''Disk''' , font_size=24 ) __lowercase = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(lowerCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCAmelCase__ ) __lowercase = MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ ) ) __lowercase = Square(0.3 ) input.set_fill(lowerCAmelCase__ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCAmelCase__ , buff=0.5 ) self.play(Write(lowerCAmelCase__ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCAmelCase__ , buff=0.02 ) self.play(MoveToTarget(lowerCAmelCase__ ) ) self.play(FadeOut(lowerCAmelCase__ ) ) __lowercase = Arrow(start=lowerCAmelCase__ , end=lowerCAmelCase__ , color=lowerCAmelCase__ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCAmelCase__ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __lowercase = MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) ) __lowercase = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(lowerCAmelCase__ ) , Circumscribe(model_arr[0] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , Circumscribe(model_cpu_arr[0] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __lowercase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCAmelCase__ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __lowercase = AnimationGroup( FadeOut(lowerCAmelCase__ , run_time=0.5 ) , MoveToTarget(lowerCAmelCase__ , run_time=0.5 ) , FadeIn(lowerCAmelCase__ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCAmelCase__ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __lowercase = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCAmelCase__ ) , Circumscribe(cpu_left_col_base[i] , **lowerCAmelCase__ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , Circumscribe(model_arr[i + 1] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCAmelCase__ , **lowerCAmelCase__ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __lowercase = a_c __lowercase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCAmelCase__ ) , FadeOut(lowerCAmelCase__ , run_time=0.5 ) , ) __lowercase = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) , MoveToTarget(lowerCAmelCase__ ) ) self.wait()
210
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __a : Optional[Any] = logging.get_logger(__name__) __a : List[str] = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) else: return _interleave_iterable_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = 0 , ): """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase ) else: return _concatenate_iterable_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase )
210
1
"""simple docstring""" from math import isqrt def lowerCamelCase (a_ :int) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(a_) + 1)) def lowerCamelCase (a_ :int = 10**6) -> int: lowercase :Tuple = 0 lowercase :List[str] = 1 lowercase :Optional[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(a_) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
362
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = "maskformer-swin" __A : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , snake_case__ : Dict=2_2_4 , snake_case__ : Any=4 , snake_case__ : Dict=3 , snake_case__ : str=9_6 , snake_case__ : List[str]=[2, 2, 6, 2] , snake_case__ : Optional[int]=[3, 6, 1_2, 2_4] , snake_case__ : Optional[Any]=7 , snake_case__ : int=4.0 , snake_case__ : str=True , snake_case__ : Dict=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : List[str]="gelu" , snake_case__ : Tuple=False , snake_case__ : int=0.02 , snake_case__ : Tuple=1e-5 , snake_case__ : Optional[int]=None , snake_case__ : Tuple=None , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Optional[int] = image_size lowercase :List[Any] = patch_size lowercase :Optional[Any] = num_channels lowercase :Union[str, Any] = embed_dim lowercase :Union[str, Any] = depths lowercase :List[Any] = len(snake_case__ ) lowercase :Optional[Any] = num_heads lowercase :Optional[Any] = window_size lowercase :Optional[int] = mlp_ratio lowercase :str = qkv_bias lowercase :int = hidden_dropout_prob lowercase :List[str] = attention_probs_dropout_prob lowercase :str = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Tuple = use_absolute_embeddings lowercase :Union[str, Any] = layer_norm_eps lowercase :Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase :Optional[int] = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) lowercase :Optional[int] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(snake_case__ ) + 1 )] lowercase , lowercase :List[str] = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
172
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _SCREAMING_SNAKE_CASE : snake_case__ : List[str] = XGLMConfig snake_case__ : Optional[Any] = {} snake_case__ : Optional[int] = """gelu""" def __init__( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=14 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Any=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=99 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : int="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : List[Any]=0.02 , ): UpperCamelCase :Tuple = parent UpperCamelCase :Optional[Any] = batch_size UpperCamelCase :List[Any] = seq_length UpperCamelCase :Union[str, Any] = is_training UpperCamelCase :Tuple = use_input_mask UpperCamelCase :List[str] = use_labels UpperCamelCase :Union[str, Any] = vocab_size UpperCamelCase :Tuple = d_model UpperCamelCase :Any = num_hidden_layers UpperCamelCase :Union[str, Any] = num_attention_heads UpperCamelCase :Optional[Any] = ffn_dim UpperCamelCase :List[Any] = activation_function UpperCamelCase :str = activation_dropout UpperCamelCase :List[str] = attention_dropout UpperCamelCase :List[str] = max_position_embeddings UpperCamelCase :Dict = initializer_range UpperCamelCase :List[Any] = None UpperCamelCase :str = 0 UpperCamelCase :Any = 2 UpperCamelCase :Any = 1 def _A ( self : int ): return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _A ( self : List[str] ): UpperCamelCase :Union[str, Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase :List[str] = None if self.use_input_mask: UpperCamelCase :List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :str = self.get_config() UpperCamelCase :List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _A ( self : str ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__lowerCamelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__lowerCamelCase , ) def _A ( self : Union[str, Any] ): UpperCamelCase :Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :Optional[Any] = config_and_inputs UpperCamelCase :str = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case__ : int = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () snake_case__ : Dict = (TFXGLMForCausalLM,) if is_tf_available() else () snake_case__ : Optional[Any] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) snake_case__ : List[str] = False snake_case__ : Optional[int] = False snake_case__ : List[str] = False def _A ( self : List[Any] ): UpperCamelCase :Optional[Any] = TFXGLMModelTester(self ) UpperCamelCase :List[Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def _A ( self : int ): self.config_tester.run_common_tests() @slow def _A ( self : int ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :str = TFXGLMModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _A ( self : Dict ): super().test_resize_token_embeddings() @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _A ( self : Optional[Any] , __lowerCamelCase : Optional[int]=True ): UpperCamelCase :Dict = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase :str = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase :int = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase :str = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __lowerCamelCase ) @slow def _A ( self : Tuple ): UpperCamelCase :Tuple = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase :Tuple = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) UpperCamelCase :Optional[int] = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) UpperCamelCase :str = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): UpperCamelCase :Any = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase , seed=[7, 0] ) UpperCamelCase :str = tokenizer.decode(output_ids[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def _A ( self : int ): UpperCamelCase :List[str] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase :Tuple = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) UpperCamelCase :str = """left""" # use different length sentences to test batching UpperCamelCase :Union[str, Any] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] UpperCamelCase :str = tokenizer(__lowerCamelCase , return_tensors="""tf""" , padding=__lowerCamelCase ) UpperCamelCase :Optional[int] = inputs["""input_ids"""] UpperCamelCase :Dict = model.generate(input_ids=__lowerCamelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) UpperCamelCase :List[str] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids UpperCamelCase :List[Any] = model.generate(input_ids=__lowerCamelCase , max_new_tokens=12 ) UpperCamelCase :str = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids UpperCamelCase :str = model.generate(input_ids=__lowerCamelCase , max_new_tokens=12 ) UpperCamelCase :Any = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase :List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase :List[Any] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] )
38
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( _lowerCamelCase , unittest.TestCase): A_ : str = ShapEImgaImgPipeline A_ : str = ['image'] A_ : int = ['image'] A_ : Tuple = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A_ : Tuple = False @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self ): return 8 @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCAmelCase : Tuple = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) return model @property def __lowerCamelCase ( self ): __lowerCAmelCase : Any = CLIPImageProcessor( crop_size=2_24 , do_center_crop=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCAmelCase : List[Any] = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Dict = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCAmelCase : int = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.dummy_prior __lowerCAmelCase : List[Any] = self.dummy_image_encoder __lowerCAmelCase : int = self.dummy_image_processor __lowerCAmelCase : Any = self.dummy_renderer __lowerCAmelCase : Any = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=_SCREAMING_SNAKE_CASE , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) __lowerCAmelCase : Tuple = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): __lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : str = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : str = 'cpu' __lowerCAmelCase : Dict = self.get_dummy_components() __lowerCAmelCase : Optional[int] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Any = output.images[0] __lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCAmelCase : List[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = torch_device == 'cpu' __lowerCAmelCase : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.get_dummy_components() __lowerCAmelCase : List[str] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : List[str] = 2 __lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: __lowerCAmelCase : Optional[Any] = batch_size * [inputs[key]] __lowerCAmelCase : List[str] = pipe(**_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) __lowerCAmelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) __lowerCAmelCase : Union[str, Any] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) __lowerCAmelCase : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCAmelCase : int = pipe( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
86
0
"""simple docstring""" import qiskit def lowerCAmelCase_( lowercase_ : int , lowercase_ : int ) -> qiskit.result.counts.Counts: _lowerCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _lowerCamelCase = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _lowerCamelCase = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
73
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def lowerCAmelCase_( lowercase_ : float ) -> float: if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase_ , 0 , lowercase_ , args=(lowercase_) )[0] def lowerCAmelCase_( lowercase_ : float , lowercase_ : float ) -> float: return math.pow(lowercase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
73
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Tuple = KandinskyVaaPriorPipeline UpperCamelCase : Union[str, Any] = ['prompt'] UpperCamelCase : Any = ['prompt', 'negative_prompt'] UpperCamelCase : List[str] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] UpperCamelCase : List[Any] = False @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return self.time_input_dim @property def UpperCAmelCase_ ( self ): return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self ): return 100 @property def UpperCAmelCase_ ( self ): __A : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : List[str] = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } __A : Dict = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __A : str = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __A : int = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCAmelCase_ ( self ): __A : List[str] = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase_ ( self ): __A : List[str] = self.dummy_prior __A : Optional[int] = self.dummy_image_encoder __A : Optional[Any] = self.dummy_text_encoder __A : List[str] = self.dummy_tokenizer __A : int = self.dummy_image_processor __A : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=1_0.0 , ) __A : Tuple = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def UpperCAmelCase_ ( self , _A , _A=0 ): if str(__lowercase ).startswith('mps' ): __A : List[str] = torch.manual_seed(__lowercase ) else: __A : Optional[int] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __A : Any = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def UpperCAmelCase_ ( self ): __A : int = 'cpu' __A : int = self.get_dummy_components() __A : Tuple = self.pipeline_class(**__lowercase ) __A : Tuple = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __A : Any = pipe(**self.get_dummy_inputs(__lowercase ) ) __A : Optional[Any] = output.image_embeds __A : Union[str, Any] = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __A : Tuple = image[0, -10:] __A : List[str] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __A : Union[str, Any] = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase_ ( self ): __A : int = torch_device == 'cpu' __A : Tuple = True __A : Tuple = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCAmelCase_ ( self ): __A : Optional[Any] = torch_device == 'cpu' __A : Optional[int] = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
280
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowercase : Any = logging.get_logger(__name__) # General docstring _lowercase : Dict = 'ResNetConfig' # Base docstring _lowercase : Union[str, Any] = 'microsoft/resnet-50' _lowercase : List[str] = [1, 20_48, 7, 7] # Image classification docstring _lowercase : Any = 'microsoft/resnet-50' _lowercase : List[str] = 'tiger cat' _lowercase : Union[str, Any] = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[int] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[Any] = 3 , _lowercase : Dict = 1 , _lowercase : int = "relu" ): super().__init__() __UpperCAmelCase = nn.Convad( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=kernel_size // 2 , bias=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def a ( self : str , _lowercase : str ): __UpperCAmelCase = self.convolution(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.normalization(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[int] , _lowercase : int ): super().__init__() __UpperCAmelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __UpperCAmelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __UpperCAmelCase = config.num_channels def a ( self : List[Any] , _lowercase : int ): __UpperCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) __UpperCAmelCase = self.embedder(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.pooler(SCREAMING_SNAKE_CASE_ ) return embedding class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int] = 2 ): super().__init__() __UpperCAmelCase = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) def a ( self : List[str] , _lowercase : Optional[int] ): __UpperCAmelCase = self.convolution(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.normalization(SCREAMING_SNAKE_CASE_ ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : List[str] = 1 , _lowercase : Tuple = "relu" ): super().__init__() __UpperCAmelCase = in_channels != out_channels or stride != 1 __UpperCAmelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) __UpperCAmelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , activation=SCREAMING_SNAKE_CASE_ ) , ) __UpperCAmelCase = ACTaFN[activation] def a ( self : Dict , _lowercase : int ): __UpperCAmelCase = hidden_state __UpperCAmelCase = self.layer(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual __UpperCAmelCase = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self : int , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[int] = 1 , _lowercase : Any = "relu" , _lowercase : int = 4 ): super().__init__() __UpperCAmelCase = in_channels != out_channels or stride != 1 __UpperCAmelCase = out_channels // reduction __UpperCAmelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) __UpperCAmelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ ) , ) __UpperCAmelCase = ACTaFN[activation] def a ( self : Optional[Any] , _lowercase : Any ): __UpperCAmelCase = hidden_state __UpperCAmelCase = self.layer(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual __UpperCAmelCase = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self : Dict , _lowercase : List[str] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : List[Any] = 2 , _lowercase : Any = 2 , ): super().__init__() __UpperCAmelCase = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer __UpperCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) , *[layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def a ( self : Union[str, Any] , _lowercase : Dict ): __UpperCAmelCase = input for layer in self.layers: __UpperCAmelCase = layer(SCREAMING_SNAKE_CASE_ ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[int] , _lowercase : List[Any] ): super().__init__() __UpperCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( SCREAMING_SNAKE_CASE_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE_ , config.depths[1:] ): self.stages.append(ResNetStage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , depth=SCREAMING_SNAKE_CASE_ ) ) def a ( self : Tuple , _lowercase : Any , _lowercase : Optional[Any] = False , _lowercase : str = True ): __UpperCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase = hidden_states + (hidden_state,) __UpperCAmelCase = stage_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: __UpperCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , ) class _UpperCAmelCase ( a__ ): a__ : int = ResNetConfig a__ : List[str] = "resnet" a__ : int = "pixel_values" a__ : Optional[Any] = True def a ( self : Union[str, Any] , _lowercase : Tuple ): if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a ( self : Optional[int] , _lowercase : List[Any] , _lowercase : Optional[int]=False ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase = value _lowercase : List[str] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowercase : Dict = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , a__ , ) class _UpperCAmelCase ( a__ ): def __init__( self : Any , _lowercase : List[str] ): super().__init__(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = config __UpperCAmelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = ResNetEncoder(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : List[str] , _lowercase : List[str] , _lowercase : Optional[int] = None , _lowercase : int = None ): __UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase = self.embedder(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = encoder_outputs[0] __UpperCAmelCase = self.pooler(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a__ , ) class _UpperCAmelCase ( a__ ): def __init__( self : Dict , _lowercase : Tuple ): super().__init__(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = config.num_labels __UpperCAmelCase = ResNetModel(SCREAMING_SNAKE_CASE_ ) # classification head __UpperCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : Any , _lowercase : int = None , _lowercase : List[str] = None , _lowercase : Any = None , _lowercase : Optional[Any] = None , ): __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase = self.resnet(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase = self.classifier(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase = 'single_label_classification' else: __UpperCAmelCase = 'multi_label_classification' if self.config.problem_type == "regression": __UpperCAmelCase = MSELoss() if self.num_labels == 1: __UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __UpperCAmelCase = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase = CrossEntropyLoss() __UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase = BCEWithLogitsLoss() __UpperCAmelCase = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: __UpperCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , a__ , ) class _UpperCAmelCase ( a__ , a__ ): def __init__( self : Tuple , _lowercase : Dict ): super().__init__(SCREAMING_SNAKE_CASE_ ) super()._init_backbone(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [config.embedding_size] + config.hidden_sizes __UpperCAmelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = ResNetEncoder(SCREAMING_SNAKE_CASE_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC ) def a ( self : str , _lowercase : List[str] , _lowercase : Optional[int] = None , _lowercase : Optional[Any] = None ): __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase = self.embedder(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.encoder(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __UpperCAmelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=SCREAMING_SNAKE_CASE_ , )
364
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : List[str] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } _lowercase : Optional[Any] = {'mobilebert-uncased': 5_12} _lowercase : Optional[int] = {} class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION a__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : int = MobileBertTokenizer def __init__( self : int , _lowercase : Union[str, Any]=None , _lowercase : int=None , _lowercase : Optional[Any]=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : Union[str, Any]="[SEP]" , _lowercase : str="[PAD]" , _lowercase : List[Any]="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : Any=True , _lowercase : str=None , **_lowercase : Dict , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : Optional[int] , _lowercase : Optional[int] , _lowercase : str=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : List[Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
86
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} _A : int = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } _A : str = { """allenai/longformer-base-4096""": 40_96, """allenai/longformer-large-4096""": 40_96, """allenai/longformer-large-4096-finetuned-triviaqa""": 40_96, """allenai/longformer-base-4096-extra.pos.embd.only""": 40_96, """allenai/longformer-large-4096-extra.pos.embd.only""": 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __magic_name__ ( ) -> str: lowercase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase : List[Any] = bs[:] lowercase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def __magic_name__ ( __snake_case : Union[str, Any] ) -> Optional[Any]: lowercase : List[str] = set() lowercase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : Optional[int] = char return pairs class a__ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , _a , _a , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , **_a , ): lowercase : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token lowercase : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token lowercase : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token lowercase : List[str] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token lowercase : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token lowercase : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : str = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( errors=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , **_a , ) with open(_a , encoding="utf-8" ) as vocab_handle: lowercase : Optional[int] = json.load(_a ) lowercase : Optional[Any] = {v: k for k, v in self.encoder.items()} lowercase : Dict = errors # how to handle errors in decoding lowercase : List[str] = bytes_to_unicode() lowercase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(_a , encoding="utf-8" ) as merges_handle: lowercase : Any = merges_handle.read().split("\n" )[1:-1] lowercase : Tuple = [tuple(merge.split() ) for merge in bpe_merges] lowercase : List[str] = dict(zip(_a , range(len(_a ) ) ) ) lowercase : Tuple = {} lowercase : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __magic_name__ ( self ): return len(self.encoder ) def __magic_name__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , _a ): if token in self.cache: return self.cache[token] lowercase : List[Any] = tuple(_a ) lowercase : List[str] = get_pairs(_a ) if not pairs: return token while True: lowercase : Optional[Any] = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Union[str, Any] = bigram lowercase : List[Any] = [] lowercase : Dict = 0 while i < len(_a ): try: lowercase : Union[str, Any] = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Any = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : Dict = tuple(_a ) lowercase : int = new_word if len(_a ) == 1: break else: lowercase : Tuple = get_pairs(_a ) lowercase : Optional[int] = " ".join(_a ) lowercase : Union[str, Any] = word return word def __magic_name__ ( self , _a ): lowercase : List[Any] = [] for token in re.findall(self.pat , _a ): lowercase : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_a ).split(" " ) ) return bpe_tokens def __magic_name__ ( self , _a ): return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , _a ): return self.decoder.get(_a ) def __magic_name__ ( self , _a ): lowercase : Optional[int] = "".join(_a ) lowercase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __magic_name__ ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : List[Any] = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase : Any = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + "\n" ) lowercase : List[str] = 0 with open(_a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowercase : Dict = token_index writer.write(" ".join(_a ) + "\n" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , _a , _a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Any = [self.cls_token_id] lowercase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __magic_name__ ( self , _a , _a = None ): lowercase : str = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , _a , _a=False , **_a ): lowercase : Any = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_a ) > 0 and not text[0].isspace()): lowercase : Any = " " + text return (text, kwargs)
202
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A : List[str] = logging.get_logger(__name__) _A : List[str] = {"""vocab_file""": """spiece.model"""} _A : List[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } _A : str = { """google/bigbird-roberta-base""": 40_96, """google/bigbird-roberta-large""": 40_96, """google/bigbird-base-trivia-itc""": 40_96, } class a__ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] __lowerCAmelCase = [] def __init__( self , _a , _a="<unk>" , _a="<s>" , _a="</s>" , _a="<pad>" , _a="[SEP]" , _a="[MASK]" , _a="[CLS]" , _a = None , **_a , ): lowercase : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token lowercase : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token lowercase : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowercase : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token lowercase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , sep_token=_a , mask_token=_a , cls_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowercase : Optional[Any] = vocab_file lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def __magic_name__ ( self ): return self.sp_model.get_piece_size() def __magic_name__ ( self ): lowercase : str = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase : Union[str, Any] = self.__dict__.copy() lowercase : Dict = None return state def __setstate__( self , _a ): lowercase : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase : List[str] = {} lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self , _a ): return self.sp_model.encode(_a , out_type=_a ) def __magic_name__ ( self , _a ): return self.sp_model.piece_to_id(_a ) def __magic_name__ ( self , _a ): lowercase : Union[str, Any] = self.sp_model.IdToPiece(_a ) return token def __magic_name__ ( self , _a ): lowercase : List[Any] = [] lowercase : List[Any] = "" lowercase : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token lowercase : int = True lowercase : Union[str, Any] = [] else: current_sub_tokens.append(_a ) lowercase : int = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __magic_name__ ( self , _a , _a = False , _a = None , _a = True , **_a , ): lowercase : int = kwargs.pop("use_source_tokenizer" , _a ) lowercase : Union[str, Any] = self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase : Any = [] lowercase : Dict = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) lowercase : int = [] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowercase : Dict = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(_a ) ) else: lowercase : Union[str, Any] = "".join(_a ) lowercase : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase : Union[str, Any] = self.clean_up_tokenization(_a ) return clean_text else: return text def __magic_name__ ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : List[Any] = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: lowercase : int = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def __magic_name__ ( self , _a , _a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : List[str] = [self.cls_token_id] lowercase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def __magic_name__ ( self , _a , _a = None ): lowercase : Tuple = [self.sep_token_id] lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
202
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( SCREAMING_SNAKE_CASE__ = "laptop") -> DataFrame: __snake_case: Dict = F'''https://www.amazon.in/laptop/s?k={product}''' __snake_case: Any = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } __snake_case: List[Any] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__).text) # Initialize a Pandas dataframe with the column titles __snake_case: str = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""}) , ): try: __snake_case: List[Any] = item.ha.text __snake_case: Tuple = """https://www.amazon.in/""" + item.ha.a["""href"""] __snake_case: Union[str, Any] = item.find("""span""" , attrs={"""class""": """a-offscreen"""}).text try: __snake_case: Any = item.find("""span""" , attrs={"""class""": """a-icon-alt"""}).text except AttributeError: __snake_case: Any = """Not available""" try: __snake_case: List[Any] = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""}).text.split("""₹""")[1] ) except AttributeError: __snake_case: Union[str, Any] = """""" try: __snake_case: List[Any] = float( ( ( float(product_mrp.strip("""₹""").replace(""",""" , """""")) - float(product_price.strip("""₹""").replace(""",""" , """""")) ) / float(product_mrp.strip("""₹""").replace(""",""" , """""")) ) * 100) except ValueError: __snake_case: Tuple = float("""nan""") except AttributeError: pass __snake_case: str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __snake_case: Optional[int] = """ """ __snake_case: Optional[Any] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = "headphones" get_amazon_product_data(product).to_csv(f'Amazon Product Data for {product}.csv')
367
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( __lowerCamelCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A , """num_attention_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self : int , A : str , A : Dict=13 , A : str=32 , A : Any=2 , A : Optional[Any]=3 , A : str=640 , A : Tuple=4 , A : Dict="silu" , A : List[Any]=3 , A : Any=32 , A : Any=0.1 , A : int=0.1 , A : Dict=0.1 , A : Optional[Any]=0.02 , A : List[Any]=True , A : Tuple=True , A : Any=10 , A : Optional[int]=None , ): __snake_case: List[Any] = parent __snake_case: Dict = batch_size __snake_case: int = image_size __snake_case: Tuple = patch_size __snake_case: Tuple = num_channels __snake_case: str = last_hidden_size __snake_case: Dict = num_attention_heads __snake_case: Dict = hidden_act __snake_case: Tuple = conv_kernel_size __snake_case: List[str] = output_stride __snake_case: List[str] = hidden_dropout_prob __snake_case: Optional[Any] = attention_probs_dropout_prob __snake_case: int = classifier_dropout_prob __snake_case: List[Any] = use_labels __snake_case: Union[str, Any] = is_training __snake_case: Union[str, Any] = num_labels __snake_case: str = initializer_range __snake_case: List[Any] = scope def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case: Tuple = None __snake_case: Any = None if self.use_labels: __snake_case: Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case: str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case: Any = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self : int ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : str , A : Optional[Any] , A : Any , A : Any , A : Union[str, Any] ): __snake_case: List[Any] = MobileViTModel(config=A ) model.to(A ) model.eval() __snake_case: int = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : str , A : List[Any] , A : Any , A : Any , A : int ): __snake_case: str = self.num_labels __snake_case: Optional[int] = MobileViTForImageClassification(A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] , A : str , A : Optional[Any] , A : int , A : str ): __snake_case: List[Any] = self.num_labels __snake_case: Dict = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case: Tuple = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Tuple = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case: Any = config_and_inputs __snake_case: Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[Any] = MobileViTModelTester(self ) __snake_case: str = MobileViTConfigTester(self , config_class=A , has_text_modality=A ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[Any] ): pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Dict ): pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def UpperCAmelCase__ ( self : Optional[Any] ): pass def UpperCAmelCase__ ( self : str ): __snake_case , __snake_case: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[Any] = model_class(A ) __snake_case: int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case: Optional[int] = [*signature.parameters.keys()] __snake_case: List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : Optional[int] ): pass def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ ( self : Dict ): def check_hidden_states_output(A : List[Any] , A : int , A : Tuple ): __snake_case: List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __snake_case: str = model(**self._prepare_for_class(A , A ) ) __snake_case: Optional[int] = outputs.hidden_states __snake_case: Any = 5 self.assertEqual(len(A ) , A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case: Union[str, Any] = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case: Dict = True check_hidden_states_output(A , A , A ) def UpperCAmelCase__ ( self : int ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case: List[Any] = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def A__ ( ) -> Optional[int]: __snake_case: Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase__ ( self : Dict ): return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Tuple = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(A ) __snake_case: str = self.default_image_processor __snake_case: Optional[Any] = prepare_img() __snake_case: List[Any] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Dict = model(**A ) # verify the logits __snake_case: List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A ) __snake_case: Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Tuple ): __snake_case: Tuple = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[str] = model.to(A ) __snake_case: Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[Any] = prepare_img() __snake_case: List[str] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: List[Any] = model(**A ) __snake_case: Optional[int] = outputs.logits # verify the logits __snake_case: Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A ) __snake_case: Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: int = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: str = model.to(A ) __snake_case: Optional[Any] = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[str] = prepare_img() __snake_case: Optional[int] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Dict = model(**A ) __snake_case: List[Any] = outputs.logits.detach().cpu() __snake_case: List[str] = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(50, 60)] ) __snake_case: str = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A ) __snake_case: int = image_processor.post_process_semantic_segmentation(outputs=A ) __snake_case: Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A )
293
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : str = """biogpt""" def __init__( self , __A=4_2384 , __A=1024 , __A=24 , __A=16 , __A=4096 , __A="gelu" , __A=0.1 , __A=0.1 , __A=1024 , __A=0.02 , __A=1e-12 , __A=True , __A=True , __A=0.0 , __A=0.0 , __A=1 , __A=0 , __A=2 , **__A , ): """simple docstring""" lowerCamelCase : int = vocab_size lowerCamelCase : List[Any] = max_position_embeddings lowerCamelCase : Optional[Any] = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Any = num_attention_heads lowerCamelCase : Optional[int] = intermediate_size lowerCamelCase : Tuple = hidden_act lowerCamelCase : int = hidden_dropout_prob lowerCamelCase : Optional[Any] = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Union[str, Any] = scale_embedding lowerCamelCase : Optional[int] = use_cache lowerCamelCase : Optional[int] = layerdrop lowerCamelCase : List[Any] = activation_dropout super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A )
283
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _a : str= logging.get_logger(__name__) _a : str= {"vocab_file": "spiece.model"} _a : Tuple= { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } _a : int= { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) _a : Optional[int]= 0 _a : str= 1 _a : Tuple= 2 _a : str= 3 _a : Optional[Any]= 4 class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : str = """left""" def __init__(self : List[Any] , _A : List[str] , _A : int=False , _A : Tuple=True , _A : Optional[Any]=False , _A : List[Any]="<s>" , _A : Dict="</s>" , _A : str="<unk>" , _A : Optional[Any]="<sep>" , _A : Optional[Any]="<pad>" , _A : Optional[Any]="<cls>" , _A : Dict="<mask>" , _A : List[Any]=["<eop>", "<eod>"] , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __snake_case : str = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else mask_token __snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case : Tuple = 3 __snake_case : Optional[int] = do_lower_case __snake_case : Union[str, Any] = remove_space __snake_case : Dict = keep_accents __snake_case : str = vocab_file __snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_A) @property def _lowercase (self : Dict) -> List[str]: return len(self.sp_model) def _lowercase (self : Dict) -> Union[str, Any]: __snake_case : str = {self.convert_ids_to_tokens(_A): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : Union[str, Any]) -> List[str]: __snake_case : Optional[Any] = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__(self : Union[str, Any] , _A : Optional[Any]) -> str: __snake_case : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case : List[Any] = {} __snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowercase (self : Any , _A : Tuple) -> List[str]: if self.remove_space: __snake_case : List[Any] = ' '.join(inputs.strip().split()) else: __snake_case : Tuple = inputs __snake_case : int = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __snake_case : str = unicodedata.normalize('NFKD' , _A) __snake_case : Tuple = ''.join([c for c in outputs if not unicodedata.combining(_A)]) if self.do_lower_case: __snake_case : Union[str, Any] = outputs.lower() return outputs def _lowercase (self : List[Any] , _A : str) -> List[str]: __snake_case : int = self.preprocess_text(_A) __snake_case : Dict = self.sp_model.encode(_A , out_type=_A) __snake_case : Union[str, Any] = [] for piece in pieces: if len(_A) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __snake_case : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __snake_case : List[str] = cur_pieces[1:] else: __snake_case : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_A) else: new_pieces.append(_A) return new_pieces def _lowercase (self : Union[str, Any] , _A : Union[str, Any]) -> Any: return self.sp_model.PieceToId(_A) def _lowercase (self : Tuple , _A : str) -> Optional[int]: return self.sp_model.IdToPiece(_A) def _lowercase (self : List[str] , _A : Dict) -> List[Any]: __snake_case : str = ''.join(_A).replace(_A , ' ').strip() return out_string def _lowercase (self : Dict , _A : List[int] , _A : bool = False , _A : bool = None , _A : bool = True , **_A : str , ) -> str: __snake_case : Tuple = kwargs.pop('use_source_tokenizer' , _A) __snake_case : Tuple = self.convert_ids_to_tokens(_A , skip_special_tokens=_A) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case : List[str] = [] __snake_case : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A)) __snake_case : List[Any] = [] sub_texts.append(_A) else: current_sub_text.append(_A) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __snake_case : Optional[int] = ''.join(_A) __snake_case : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case : str = self.clean_up_tokenization(_A) return clean_text else: return text def _lowercase (self : Dict , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : int = [self.sep_token_id] __snake_case : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase (self : List[str] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A) if token_ids_a is not None: return ([0] * len(_A)) + [1] + ([0] * len(_A)) + [1, 1] return ([0] * len(_A)) + [1, 1] def _lowercase (self : Dict , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowercase (self : Tuple , _A : str , _A : Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_A): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __snake_case : str = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _A) elif not os.path.isfile(self.vocab_file): with open(_A , 'wb') as fi: __snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(_A) return (out_vocab_file,)
172
0
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : list[list[str]] = [[] for _ in range(UpperCAmelCase_ )] _UpperCamelCase : Tuple = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(UpperCAmelCase_ ) <= key: return input_string for position, character in enumerate(UpperCAmelCase_ ): _UpperCamelCase : Any = position % (lowest * 2) # puts it in bounds _UpperCamelCase : Optional[Any] = min(UpperCAmelCase_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCAmelCase_ ) _UpperCamelCase : List[str] = [''.join(UpperCAmelCase_ ) for row in temp_grid] _UpperCamelCase : Optional[Any] = ''.join(UpperCAmelCase_ ) return output_string def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[str] = [] _UpperCamelCase : Optional[Any] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string _UpperCamelCase : list[list[str]] = [[] for _ in range(UpperCAmelCase_ )] # generates template for position in range(len(UpperCAmelCase_ ) ): _UpperCamelCase : Optional[Any] = position % (lowest * 2) # puts it in bounds _UpperCamelCase : Tuple = min(UpperCAmelCase_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) _UpperCamelCase : Optional[int] = 0 for row in temp_grid: # fills in the characters _UpperCamelCase : List[Any] = input_string[counter : counter + len(UpperCAmelCase_ )] grid.append(list(UpperCAmelCase_ ) ) counter += len(UpperCAmelCase_ ) _UpperCamelCase : int = '' # reads as zigzag for position in range(len(UpperCAmelCase_ ) ): _UpperCamelCase : Optional[int] = position % (lowest * 2) # puts it in bounds _UpperCamelCase : int = min(UpperCAmelCase_ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = {} for key_guess in range(1 , len(UpperCAmelCase_ ) ): # tries every key _UpperCamelCase : Union[str, Any] = decrypt(UpperCAmelCase_ , UpperCAmelCase_ ) return results if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] _UpperCamelCase : str = (low + high) // 2 _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Dict = max_subarray(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = max_subarray(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = max_cross_sum(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Optional[Any] = float('-inf' ), -1 _UpperCamelCase , _UpperCamelCase : int = float('-inf' ), -1 _UpperCamelCase : int | float = 0 for i in range(UpperCAmelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _UpperCamelCase : Optional[int] = summ _UpperCamelCase : Union[str, Any] = i _UpperCamelCase : List[Any] = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _UpperCamelCase : List[Any] = summ _UpperCamelCase : List[str] = i return max_left, max_right, (left_sum + right_sum) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = [randint(1 , UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ )] _UpperCamelCase : Optional[Any] = time.time() max_subarray(UpperCAmelCase_ , 0 , input_size - 1 ) _UpperCamelCase : str = time.time() return end - start def A__ ( ): _UpperCamelCase : Any = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] _UpperCamelCase : Dict = [time_max_subarray(UpperCAmelCase_ ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(UpperCAmelCase_ , UpperCAmelCase_ ): print(UpperCAmelCase_ , '\t\t' , UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
236
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a ={ """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
73
# Function to print upper half of diamond (pyramid) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: for i in range(0 , lowerCamelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Tuple: for i in range(lowerCamelCase__ , 0 , -1 ): for _ in range(lowerCamelCase__ , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCamelCase__ ) # upper half reverse_floyd(lowerCamelCase__ ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") a =1 while K: a =int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a =int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
73
1
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _UpperCamelCase = logging.getLogger(__name__) def lowercase_ ( lowerCAmelCase__ : torch.nn.Module , lowerCAmelCase__ : BnbQuantizationConfig , lowerCAmelCase__ : Union[str, os.PathLike] = None , lowerCAmelCase__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , lowerCAmelCase__ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase__ : bool = False , ): """simple docstring""" __UpperCAmelCase : Optional[Any] = bnb_quantization_config.load_in_abit __UpperCAmelCase : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) __UpperCAmelCase : Tuple = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: __UpperCAmelCase : List[str] = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __UpperCAmelCase : str = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) __UpperCAmelCase : Any = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __UpperCAmelCase : Dict = [] __UpperCAmelCase : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft __UpperCAmelCase : str = load_in_abit __UpperCAmelCase : Optional[Any] = load_in_abit __UpperCAmelCase : Dict = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) __UpperCAmelCase : Dict = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype __UpperCAmelCase : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __UpperCAmelCase : Union[str, Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) __UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): __UpperCAmelCase : Union[str, Any] = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __UpperCAmelCase : Dict = True __UpperCAmelCase : List[str] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[Any]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): __UpperCAmelCase : Tuple = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) __UpperCAmelCase : Any = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __UpperCAmelCase : Tuple = {} __UpperCAmelCase : str = special_dtypes __UpperCAmelCase : int = no_split_module_classes __UpperCAmelCase : List[str] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __UpperCAmelCase : List[str] = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) __UpperCAmelCase : Any = max_memory __UpperCAmelCase : Union[str, Any] = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu __UpperCAmelCase : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __UpperCAmelCase : Union[str, Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : str=None ): """simple docstring""" if modules_to_not_convert is None: __UpperCAmelCase : str = [] __UpperCAmelCase , __UpperCAmelCase : Dict = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=None , ): """simple docstring""" __UpperCAmelCase : Any = False for name, module in model.named_children(): if current_key_name is None: __UpperCAmelCase : str = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __UpperCAmelCase : List[Any] = """.""".join(lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __UpperCAmelCase : Optional[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __UpperCAmelCase : List[str] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __UpperCAmelCase : Any = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) __UpperCAmelCase : Optional[Any] = module.weight.data if module.bias is not None: __UpperCAmelCase : Dict = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : str = True if len(list(module.children() ) ) > 0: __UpperCAmelCase , __UpperCAmelCase : Any = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" with init_empty_weights(): __UpperCAmelCase : Optional[Any] = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __UpperCAmelCase : str = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __UpperCAmelCase : Any = sum(lowerCAmelCase__ , [] ) __UpperCAmelCase : Dict = len(lowerCAmelCase__ ) > 0 # Check if it is a base model __UpperCAmelCase : Optional[Any] = False if hasattr(lowerCAmelCase__ , """base_model_prefix""" ): __UpperCAmelCase : Optional[Any] = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __UpperCAmelCase : Union[str, Any] = list(model.named_children() ) __UpperCAmelCase : Tuple = [list_modules[-1][0]] # add last module together with tied weights __UpperCAmelCase : int = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) __UpperCAmelCase : Dict = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys __UpperCAmelCase : Tuple = [""".weight""", """.bias"""] __UpperCAmelCase : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __UpperCAmelCase : Dict = name.replace(lowerCAmelCase__ , """""" ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def lowercase_ ( lowerCAmelCase__ : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) __UpperCAmelCase : Any = param_name __UpperCAmelCase : Union[str, Any] = model if "." in tensor_name: __UpperCAmelCase : Any = tensor_name.split(""".""" ) for split in splits[:-1]: __UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) __UpperCAmelCase : Any = new_module __UpperCAmelCase : Tuple = splits[-1] # offload weights __UpperCAmelCase : List[str] = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , """meta""" , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
16
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : def __init__( self ,A__ ,A__=2 ,A__=3 ,A__=4 ,A__=2 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=9_9 ,A__=3_6 ,A__=3 ,A__=4 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=1_6 ,A__=2 ,A__=0.02 ,A__=6 ,A__=6 ,A__=3 ,A__=4 ,A__=None ,A__=1_0_0_0 ,): lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = patch_size lowercase = text_seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = coordinate_size lowercase = shape_size lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase = text_seq_length lowercase = (image_size // patch_size) ** 2 + 1 lowercase = self.text_seq_length + self.image_seq_length def A__ ( self): lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size) lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase = bbox[i, j, 3] lowercase = bbox[i, j, 1] lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase = bbox[i, j, 2] lowercase = bbox[i, j, 0] lowercase = t lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.text_seq_length]) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size) lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels) lowercase = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = LayoutLMvaModel(config=A__) model.to(A__) model.eval() # text + image lowercase = model(A__ ,pixel_values=A__) lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__) lowercase = model(A__ ,bbox=A__ ,pixel_values=A__ ,token_type_ids=A__) lowercase = model(A__ ,bbox=A__ ,pixel_values=A__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) # text only lowercase = model(A__) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size)) # image only lowercase = model(pixel_values=A__) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = LayoutLMvaForSequenceClassification(A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = LayoutLMvaForTokenClassification(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = LayoutLMvaForQuestionAnswering(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,start_positions=A__ ,end_positions=A__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length)) def A__ ( self): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Dict =False lowercase_ : Any =False lowercase_ : Tuple =False lowercase_ : Any =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ : int =( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def A__ ( self): lowercase = LayoutLMvaModelTester(self) lowercase = ConfigTester(self ,config_class=A__ ,hidden_size=3_7) def A__ ( self ,A__ ,A__ ,A__=False): lowercase = copy.deepcopy(A__) if model_class in get_values(A__): lowercase = { k: v.unsqueeze(1).expand(-1 ,self.model_tester.num_choices ,-1).contiguous() if isinstance(A__ ,torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A__): lowercase = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in get_values(A__): lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in [ *get_values(A__), ]: lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in [ *get_values(A__), ]: lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A__ ,) return inputs_dict def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__) @slow def A__ ( self): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = LayoutLMvaModel.from_pretrained(A__) self.assertIsNotNone(A__) def UpperCamelCase ( ): '''simple docstring''' lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase ( unittest.TestCase ): @cached_property def A__ ( self): return LayoutLMvaImageProcessor(apply_ocr=A__) if is_vision_available() else None @slow def A__ ( self): lowercase = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''').to(A__) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=A__ ,return_tensors='''pt''').pixel_values.to(A__) lowercase = torch.tensor([[1, 2]]) lowercase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass lowercase = model( input_ids=input_ids.to(A__) ,bbox=bbox.to(A__) ,pixel_values=pixel_values.to(A__) ,) # verify the logits lowercase = torch.Size((1, 1_9_9, 7_6_8)) self.assertEqual(outputs.last_hidden_state.shape ,A__) lowercase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(A__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A__ ,atol=1E-4))
101
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): __lowerCAmelCase : Dict = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __lowerCAmelCase : List[str] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): super().__init__() self.register_modules( text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if latents is None: __lowerCAmelCase : Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __lowerCAmelCase : Any = latents.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else 1 # get prompt text embeddings __lowerCAmelCase : Dict = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , max_length=77 , return_attention_mask=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) __lowerCAmelCase : Tuple = text_inputs.input_ids __lowerCAmelCase : Union[str, Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowerCAmelCase : Dict = text_input_ids.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = text_inputs.attention_mask.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : str = self.text_encoder( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = prompt_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Dict = text_encoder_hidden_states.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Optional[int] = text_mask.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: __lowerCAmelCase : List[str] if negative_prompt is None: __lowerCAmelCase : Union[str, Any] = [''] * batch_size elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=" f" {type(_SCREAMING_SNAKE_CASE )}." ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: __lowerCAmelCase : Optional[int] = negative_prompt __lowerCAmelCase : Tuple = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , max_length=77 , truncation=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) __lowerCAmelCase : Union[str, Any] = uncond_input.input_ids.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = uncond_input.attention_mask.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Any = self.text_encoder( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCAmelCase : List[str] = negative_prompt_embeds.shape[1] __lowerCAmelCase : Any = negative_prompt_embeds.repeat(1 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = uncond_text_encoder_hidden_states.shape[1] __lowerCAmelCase : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) __lowerCAmelCase : Optional[int] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) __lowerCAmelCase : Optional[Any] = uncond_text_mask.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCAmelCase : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) __lowerCAmelCase : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __lowerCAmelCase : int = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowerCAmelCase : Union[str, Any] = torch.device(f"cuda:{gpu_id}" ) __lowerCAmelCase : List[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __lowerCAmelCase : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCAmelCase : Any = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __lowerCAmelCase , __lowerCAmelCase : Any = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) if self.safety_checker is not None: __lowerCAmelCase , __lowerCAmelCase : Dict = cpu_offload_with_hook(self.safety_checker , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. __lowerCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 5_12 , _SCREAMING_SNAKE_CASE = 5_12 , _SCREAMING_SNAKE_CASE = 1_00 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}" ) __lowerCAmelCase : Dict = self._execution_device __lowerCAmelCase : Optional[Any] = batch_size * num_images_per_prompt __lowerCAmelCase : Optional[int] = guidance_scale > 1.0 __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._encode_prompt( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: __lowerCAmelCase : Optional[Any] = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : int = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.scheduler.timesteps __lowerCAmelCase : int = self.unet.config.in_channels __lowerCAmelCase , __lowerCAmelCase : Any = get_new_h_w(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent __lowerCAmelCase : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance __lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCAmelCase : Union[str, Any] = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __lowerCAmelCase : Optional[Any] = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: __lowerCAmelCase , __lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = noise_pred.chunk(2 ) __lowerCAmelCase , __lowerCAmelCase : int = variance_pred.chunk(2 ) __lowerCAmelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCAmelCase : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase : List[str] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample # post-processing __lowerCAmelCase : Tuple = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __lowerCAmelCase : List[str] = image * 0.5 + 0.5 __lowerCAmelCase : Dict = image.clamp(0 , 1 ) __lowerCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCAmelCase : Union[str, Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
86
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0] ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , UpperCAmelCase__ ) UpperCamelCase_: Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase_: Dict = dataset_size < in_memory_max_size else: UpperCamelCase_: str = False UpperCamelCase_: List[Any] = is_small_dataset(UpperCAmelCase__ ) assert result == expected
292
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params A_ : Tuple = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def snake_case (UpperCAmelCase__ ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCamelCase_: List[str] = k.replace(UpperCAmelCase__ , UpperCAmelCase__ ) return k def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> PegasusForConditionalGeneration: UpperCamelCase_: List[str] = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase__ ) UpperCamelCase_: Tuple = PegasusConfig(**UpperCAmelCase__ ) UpperCamelCase_: Tuple = PegasusForConditionalGeneration(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = torch_model.model.state_dict() UpperCamelCase_: str = {} for k, v in tf_weights.items(): UpperCamelCase_: Dict = rename_state_dict_key(UpperCAmelCase__ ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: UpperCamelCase_: int = v.T UpperCamelCase_: Union[str, Any] = torch.tensor(UpperCAmelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected UpperCamelCase_: Tuple = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCamelCase_: int = mapping['shared.weight'] UpperCamelCase_: Union[str, Any] = mapping['shared.weight'] UpperCamelCase_: Dict = {k: torch.zeros_like(UpperCAmelCase__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_: Optional[int] = torch_model.model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) UpperCamelCase_: List[str] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def snake_case (UpperCAmelCase__="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCamelCase_: Union[str, Any] = tf.train.list_variables(UpperCAmelCase__ ) UpperCamelCase_: Tuple = {} UpperCamelCase_: Dict = ['Adafactor', 'global_step'] for name, shape in tqdm(UpperCAmelCase__ , desc='converting tf checkpoint to dict' ): UpperCamelCase_: Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase_: Dict = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = array return tf_weights def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # save tokenizer first UpperCamelCase_: Any = Path(UpperCAmelCase__ ).parent.name UpperCamelCase_: Tuple = task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] UpperCamelCase_: Optional[Any] = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=UpperCAmelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase__ ) # convert model UpperCamelCase_: Optional[Any] = get_tf_weights_as_numpy(UpperCAmelCase__ ) UpperCamelCase_: Any = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": UpperCamelCase_: Union[str, Any] = task_specific_params UpperCamelCase_: Tuple = convert_pegasus(UpperCAmelCase__ , UpperCAmelCase__ ) torch_model.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(UpperCAmelCase__ , Path(UpperCAmelCase__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') A_ : Optional[Any] = parser.parse_args() if args.save_dir is None: A_ : Union[str, Any] = Path(args.tf_ckpt_path).parent.name A_ : Optional[Any] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
292
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __lowerCAmelCase : UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None # sigma(t_i) @classmethod def lowerCamelCase__ ( cls :str ): '''simple docstring''' return cls() @dataclass class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): @property def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' return True @register_to_config def __init__( self :List[Any] , __magic_name__ :Optional[Any] = 0.02 , __magic_name__ :List[Any] = 100 , __magic_name__ :List[Any] = 1.007 , __magic_name__ :str = 80 , __magic_name__ :int = 0.05 , __magic_name__ :Optional[int] = 50 , ): '''simple docstring''' pass def lowerCamelCase__ ( self :int ): '''simple docstring''' return KarrasVeSchedulerState.create() def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :List[str] = () ): '''simple docstring''' a = jnp.arange(0 , __UpperCAmelCase )[::-1].copy() a = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__UpperCAmelCase , schedule=jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) , timesteps=__UpperCAmelCase , ) def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :Any , __magic_name__ :int , __magic_name__ :Union[str, Any] , ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: a = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: a = 0 # sample eps ~ N(0, S_noise^2 * I) a = random.split(__UpperCAmelCase , num=1 ) a = self.config.s_noise * random.normal(key=__UpperCAmelCase , shape=sample.shape ) a = sigma + gamma * sigma a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCamelCase__ ( self :str , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] = True , ): '''simple docstring''' a = sample_hat + sigma_hat * model_output a = (sample_hat - pred_original_sample) / sigma_hat a = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__UpperCAmelCase , derivative=__UpperCAmelCase , state=__UpperCAmelCase ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :str , __magic_name__ :Optional[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Optional[int] = True , ): '''simple docstring''' a = sample_prev + sigma_prev * model_output a = (sample_prev - pred_original_sample) / sigma_prev a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__UpperCAmelCase , derivative=__UpperCAmelCase , state=__UpperCAmelCase ) def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :Any , __magic_name__ :Dict ): '''simple docstring''' raise NotImplementedError()
228
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" lowerCAmelCase__ :List[str] = np.max(_outputs , axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Any = """sigmoid""" __magic_name__ :Optional[Any] = """softmax""" __magic_name__ :Optional[Any] = """none""" @add_end_docstrings( a , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = False __magic_name__ :Dict = ClassificationFunction.NONE def __init__( self , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = tokenizer_kwargs lowerCAmelCase__ :List[Any] = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: lowerCAmelCase__ :List[Any] = self.model.config.return_all_scores if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or top_k is None: lowerCAmelCase__ :int = top_k lowerCAmelCase__ :Dict = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , __UpperCAmelCase , ) if return_all_scores: lowerCAmelCase__ :List[Any] = None else: lowerCAmelCase__ :Union[str, Any] = 1 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowerCAmelCase__ :List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowerCAmelCase__ :Optional[Any] = 'top_k' not in kwargs if isinstance(args[0] , __UpperCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = self.framework if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.tokenizer(**__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1 and isinstance(inputs[0] , __UpperCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.model(**__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowerCAmelCase__ :str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowerCAmelCase__ :int = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: lowerCAmelCase__ :Optional[Any] = self.model.config.function_to_apply else: lowerCAmelCase__ :Dict = ClassificationFunction.NONE lowerCAmelCase__ :int = model_outputs['logits'][0] lowerCAmelCase__ :Union[str, Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowerCAmelCase__ :Dict = sigmoid(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowerCAmelCase__ :int = softmax(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: lowerCAmelCase__ :Tuple = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowerCAmelCase__ :Any = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(__UpperCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase ) if top_k is not None: lowerCAmelCase__ :List[str] = dict_scores[:top_k] return dict_scores
293
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) A__ : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=snake_case__ ) class lowercase__ : _UpperCAmelCase :str _UpperCAmelCase :str _UpperCAmelCase :Optional[str] = None _UpperCAmelCase :Optional[str] = None _UpperCAmelCase :Optional[str] = None @dataclass(frozen=snake_case__ ) class lowercase__ : _UpperCAmelCase :List[int] _UpperCAmelCase :Optional[List[int]] = None _UpperCAmelCase :Optional[List[int]] = None _UpperCAmelCase :Optional[Union[int, float]] = None _UpperCAmelCase :Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[InputFeatures] def __init__( self : Any , snake_case__ : str , snake_case__ : PreTrainedTokenizer , snake_case__ : str , snake_case__ : Optional[int] = None , snake_case__ : Optional[Any]=False , snake_case__ : bool = False , ): lowerCamelCase_ : List[str] =hans_processors[task]() lowerCamelCase_ : List[Any] =os.path.join( snake_case__ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(snake_case__ ) , snake_case__ , ) , ) lowerCamelCase_ : Tuple =processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase_ , lowerCamelCase_ : List[str] =label_list[2], label_list[1] lowerCamelCase_ : int =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ : Optional[Any] =cached_features_file + ".lock" with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase_ : int =torch.load(snake_case__ ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase_ : List[Any] =( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info("Training examples: %s" , len(snake_case__ ) ) lowerCamelCase_ : Union[str, Any] =hans_convert_examples_to_features(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) logger.info("Saving features into cached file %s" , snake_case__ ) torch.save(self.features , snake_case__ ) def __len__( self : str ): return len(self.features ) def __getitem__( self : Dict , snake_case__ : str ): return self.features[i] def UpperCAmelCase__ ( self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class lowercase__ : _UpperCAmelCase :List[InputFeatures] def __init__( self : Tuple , snake_case__ : str , snake_case__ : PreTrainedTokenizer , snake_case__ : str , snake_case__ : Optional[int] = 128 , snake_case__ : List[str]=False , snake_case__ : bool = False , ): lowerCamelCase_ : Any =hans_processors[task]() lowerCamelCase_ : str =processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase_ , lowerCamelCase_ : Any =label_list[2], label_list[1] lowerCamelCase_ : int =label_list lowerCamelCase_ : Optional[int] =processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) lowerCamelCase_ : Tuple =hans_convert_examples_to_features(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase_ : Dict =tf.data.Dataset.from_generator( snake_case__ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase__ ( self : Dict ): return self.dataset def __len__( self : int ): return len(self.features ) def __getitem__( self : List[str] , snake_case__ : Tuple ): return self.features[i] def UpperCAmelCase__ ( self : Tuple ): return self.label_list class lowercase__ ( snake_case__ ): def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[str] ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ , "heuristics_train_set.txt" ) ) , "train" ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : int ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def UpperCAmelCase__ ( self : int ): return ["contradiction", "entailment", "neutral"] def UpperCAmelCase__ ( self : int , snake_case__ : Any , snake_case__ : Dict ): lowerCamelCase_ : List[Any] =[] for i, line in enumerate(snake_case__ ): if i == 0: continue lowerCamelCase_ : Any ="%s-%s" % (set_type, line[0]) lowerCamelCase_ : int =line[5] lowerCamelCase_ : Optional[Any] =line[6] lowerCamelCase_ : Dict =line[7][2:] if line[7].startswith("ex" ) else line[7] lowerCamelCase_ : Optional[int] =line[0] examples.append(InputExample(guid=snake_case__ , text_a=snake_case__ , text_b=snake_case__ , label=snake_case__ , pairID=snake_case__ ) ) return examples def _snake_case ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> List[Any]: lowerCamelCase_ : Any ={label: i for i, label in enumerate(lowerCamelCase__ )} lowerCamelCase_ : Dict =[] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d" % (ex_index) ) lowerCamelCase_ : Optional[int] =tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="max_length" , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) lowerCamelCase_ : int =label_map[example.label] if example.label in label_map else 0 lowerCamelCase_ : List[Any] =int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features A__ : str = { 'hans': 3, } A__ : Tuple = { 'hans': HansProcessor, }
209
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline A__ : int = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": A__ : str = 'hopper-medium-v2' A__ : Dict = gym.make(env_name) A__ : List[Any] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) A__ : Dict = env.reset() A__ : Optional[int] = 0 A__ : str = 0 A__ : List[Any] = 1_000 A__ : Tuple = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy A__ : Union[str, Any] = pipeline(obs, planning_horizon=32) # execute action in environment A__ , A__ , A__ , A__ : Any = env.step(denorm_actions) A__ : List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) A__ : Optional[Any] = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
209
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""pixel_values"""] def __init__( self : str , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**_lowerCAmelCase ) A: int = size if size is not None else {"height": 2_56, "width": 2_56} A: Union[str, Any] = get_size_dict(_lowerCAmelCase ) A: Tuple = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} A: List[Any] = get_size_dict(_lowerCAmelCase , param_name='''crop_size''' ) A: Dict = do_resize A: int = size A: Any = resample A: Optional[Any] = do_center_crop A: Any = crop_size A: List[Any] = do_rescale A: int = rescale_factor A: List[Any] = do_normalize A: Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Dict: '''simple docstring''' A: Any = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _lowerCAmelCase , size=(size['''height'''], size['''width''']) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[Any]: '''simple docstring''' A: Dict = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, float] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> Dict: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> List[Any]: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> str: '''simple docstring''' A: List[str] = do_resize if do_resize is not None else self.do_resize A: int = resample if resample is not None else self.resample A: Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop A: Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale A: Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor A: List[str] = do_normalize if do_normalize is not None else self.do_normalize A: Any = image_mean if image_mean is not None else self.image_mean A: Any = image_std if image_std is not None else self.image_std A: List[str] = size if size is not None else self.size A: str = get_size_dict(_lowerCAmelCase ) A: int = crop_size if crop_size is not None else self.crop_size A: int = get_size_dict(_lowerCAmelCase , param_name='''crop_size''' ) A: Optional[Any] = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A: Tuple = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: A: Optional[Any] = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: A: Optional[int] = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: A: Optional[Any] = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: A: Tuple = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] A: int = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] A: List[str] = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
319
from typing import TYPE_CHECKING from ....utils import _LazyModule _UpperCAmelCase : Dict = {"tokenization_tapex": ["TapexTokenizer"]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
236
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __a :Tuple = logging.get_logger(__name__) __a :Optional[Any] = 'Hello world! cécé herlolip' def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : bool ): """simple docstring""" A_ = FairseqRobertaModel.from_pretrained(__UpperCamelCase ) roberta.eval() # disable dropout A_ = roberta.model.encoder.sentence_encoder A_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: A_ = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__UpperCamelCase ) A_ = XLMRobertaXLForSequenceClassification(__UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings A_ = roberta_sent_encoder.embed_tokens.weight A_ = roberta_sent_encoder.embed_positions.weight A_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. A_ = roberta_sent_encoder.layer_norm.weight A_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A_ = model.roberta.encoder.layer[i] A_ = roberta_sent_encoder.layers[i] A_ = layer.attention A_ = roberta_layer.self_attn_layer_norm.weight A_ = roberta_layer.self_attn_layer_norm.bias # self attention A_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) A_ = roberta_layer.self_attn.q_proj.weight A_ = roberta_layer.self_attn.q_proj.bias A_ = roberta_layer.self_attn.k_proj.weight A_ = roberta_layer.self_attn.k_proj.bias A_ = roberta_layer.self_attn.v_proj.weight A_ = roberta_layer.self_attn.v_proj.bias # self-attention output A_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape A_ = roberta_layer.self_attn.out_proj.weight A_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm A_ = roberta_layer.final_layer_norm.weight A_ = roberta_layer.final_layer_norm.bias # intermediate A_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape A_ = roberta_layer.fca.weight A_ = roberta_layer.fca.bias # output A_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape A_ = roberta_layer.fca.weight A_ = roberta_layer.fca.bias # end of layer if classification_head: A_ = roberta.model.classification_heads["mnli"].dense.weight A_ = roberta.model.classification_heads["mnli"].dense.bias A_ = roberta.model.classification_heads["mnli"].out_proj.weight A_ = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head A_ = roberta.model.encoder.lm_head.dense.weight A_ = roberta.model.encoder.lm_head.dense.bias A_ = roberta.model.encoder.lm_head.layer_norm.weight A_ = roberta.model.encoder.lm_head.layer_norm.bias A_ = roberta.model.encoder.lm_head.weight A_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. A_ = roberta.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 A_ = model(__UpperCamelCase )[0] if classification_head: A_ = roberta.model.classification_heads["mnli"](roberta.extract_features(__UpperCamelCase ) ) else: A_ = roberta.model(__UpperCamelCase )[0] print(our_output.shape ,their_output.shape ) A_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 A_ = torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __a :Optional[int] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
329
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
1
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowerCAmelCase_ = logging.getLogger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , ) -> int: lowercase__ : Dict = bnb_quantization_config.load_in_abit lowercase__ : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) lowercase__ : List[str] = [] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: lowercase__ : str = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase__ : Any = get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) lowercase__ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase__ : Union[str, Any] = [] lowercase__ : Optional[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft lowercase__ : Optional[Any] = load_in_abit lowercase__ : Optional[Any] = load_in_abit lowercase__ : str = get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) lowercase__ : Dict = replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype lowercase__ : Dict = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase__ : Any = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) lowercase__ : Dict = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): lowercase__ : int = replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) lowercase__ : List[str] = get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase__ : List[str] = True lowercase__ : int = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None ) -> int: if device_map is None: if torch.cuda.is_available(): lowercase__ : Optional[int] = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) lowercase__ : List[str] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase__ : List[str] = {} lowercase__ : Tuple = special_dtypes lowercase__ : Optional[int] = no_split_module_classes lowercase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase__ : Optional[Any] = get_balanced_memory( __lowerCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowerCamelCase , **__lowerCamelCase , ) lowercase__ : int = max_memory lowercase__ : List[Any] = infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu lowercase__ : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase__ : Union[str, Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> str: if modules_to_not_convert is None: lowercase__ : Optional[int] = [] lowercase__ , lowercase__ : Optional[Any] = _replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> int: lowercase__ : Optional[Any] = False for name, module in model.named_children(): if current_key_name is None: lowercase__ : Optional[int] = [] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase__ : Union[str, Any] = '''.'''.join(__lowerCamelCase ) lowercase__ : Dict = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase__ : int = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase__ : Optional[int] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase__ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) lowercase__ : List[str] = module.weight.data if module.bias is not None: lowercase__ : Dict = module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Tuple = True if len(list(module.children() ) ) > 0: lowercase__ , lowercase__ : int = _replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Union[str, Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: # Create a copy of the model with init_empty_weights(): lowercase__ : int = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase__ : Optional[Any] = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase__ : Optional[int] = sum(__lowerCamelCase , [] ) lowercase__ : List[str] = len(__lowerCamelCase ) > 0 # Check if it is a base model lowercase__ : Any = False if hasattr(__lowerCamelCase , '''base_model_prefix''' ): lowercase__ : Optional[int] = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase__ : int = list(model.named_children() ) lowercase__ : List[Any] = [list_modules[-1][0]] # add last module together with tied weights lowercase__ : Union[str, Any] = set(__lowerCamelCase ) - set(__lowerCamelCase ) lowercase__ : List[str] = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowercase__ : int = ['''.weight''', '''.bias'''] lowercase__ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase__ : str = name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: return next(parameter.parameters() ).device def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) lowercase__ : Any = param_name lowercase__ : List[Any] = model if "." in tensor_name: lowercase__ : Dict = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase__ : int = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowercase__ : int = new_module lowercase__ : str = splits[-1] # offload weights lowercase__ : Any = False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , '''meta''' , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : List[str] , lowerCamelCase : Any ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any]="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Optional[int] ) -> int: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : str ) -> List[str]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
55
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=9_9 , UpperCAmelCase__ : Any=3_6 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=1_0_0_0 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = text_seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = coordinate_size lowerCAmelCase = shape_size lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase = text_seq_length lowerCAmelCase = (image_size // patch_size) ** 2 + 1 lowerCAmelCase = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self : str ) -> Dict: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> str: lowerCAmelCase = LayoutLMvaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # text + image lowerCAmelCase = model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase = model(pixel_values=UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = False lowerCamelCase : Tuple = False lowerCamelCase : int = False lowerCamelCase : Optional[int] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : int = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=False ) -> Optional[int]: lowerCAmelCase = copy.deepcopy(UpperCAmelCase__ ) if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) return inputs_dict def __UpperCAmelCase ( self : Tuple ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Any ) -> Any: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = LayoutLMvaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> str: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : int ) -> Any: lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[1, 2]] ) lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase = model( input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , ) # verify the logits lowerCAmelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
55
1
"""simple docstring""" _snake_case : Tuple = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _snake_case : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = True A = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) order.append(UpperCamelCase ) return order def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = True A = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return component def A__ ( UpperCamelCase ): A = len(UpperCamelCase ) * [False] A = {vert: [] for vert in range(len(UpperCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCamelCase ) A = [] for i, was_visited in enumerate(UpperCamelCase ): if not was_visited: order += topology_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A = [] A = len(UpperCamelCase ) * [False] for i in range(len(UpperCamelCase ) ): A = order[len(UpperCamelCase ) - i - 1] if not visited[vert]: A = find_components(UpperCamelCase , UpperCamelCase , UpperCamelCase ) components_list.append(UpperCamelCase ) return components_list
292
"""simple docstring""" _snake_case : Optional[int] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
292
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=13 , lowerCAmelCase__ : List[Any]=30 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=32 , lowerCAmelCase__ : Optional[Any]=5 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : str=37 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=2 , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = num_patches + 1 def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase = ViTModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _UpperCamelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ViTForMaskedImageModeling(config=lowercase__ ) model.to(lowercase__ ) model.eval() _UpperCamelCase = model(lowercase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = ViTForMaskedImageModeling(lowercase__ ) model.to(lowercase__ ) model.eval() _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(lowercase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _UpperCamelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = ViTForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _snake_case : int = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _snake_case : Optional[int] = True _snake_case : Any = False _snake_case : Union[str, Any] = False _snake_case : List[str] = False def snake_case__ ( self : Tuple ) -> str: '''simple docstring''' _UpperCamelCase = ViTModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase__ ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def snake_case__ ( self : int ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__ ) def snake_case__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def a__ ( ) -> Any: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def snake_case__ ( self : str ) -> Dict: '''simple docstring''' _UpperCamelCase = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(lowercase__ ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowercase__ ) # verify the logits _UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) _UpperCamelCase = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) ) @slow def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' _UpperCamelCase = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(lowercase__ ) _UpperCamelCase = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 ) _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ) _UpperCamelCase = inputs.pixel_values.to(lowercase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(lowercase__ , interpolate_pos_encoding=lowercase__ ) # verify the logits _UpperCamelCase = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase__ ) _UpperCamelCase = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ) _UpperCamelCase = inputs.pixel_values.to(lowercase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase = model(lowercase__ )
358
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''c'''] ) self.assertEqual(lowerCAmelCase__ , [2] ) # Out indices set to match out features _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [0, 2] ) # Out features set to match out indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , [0, 2] , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [0, 2] ) # Out features selected from negative indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , [-3, -1] , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [-3, -1] ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , lowerCAmelCase__ ) # Out features must be a list with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(lowerCAmelCase__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(lowerCAmelCase__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = BackboneMixin() _UpperCamelCase = ['''a''', '''b''', '''c'''] _UpperCamelCase = ['''a''', '''c'''] _UpperCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _UpperCamelCase = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) _UpperCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
287
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a = logging.get_logger(__name__) _a = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """resnet""" lowerCAmelCase_ = ["""basic""", """bottleneck"""] def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=6_4 , __lowerCAmelCase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __lowerCAmelCase=[3, 4, 6, 3] , __lowerCAmelCase="bottleneck" , __lowerCAmelCase="relu" , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) lowerCamelCase__ = num_channels lowerCamelCase__ = embedding_size lowerCamelCase__ = hidden_sizes lowerCamelCase__ = depths lowerCamelCase__ = layer_type lowerCamelCase__ = hidden_act lowerCamelCase__ = downsample_in_first_stage lowerCamelCase__ = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(__lowerCAmelCase ) + 1 )] lowerCamelCase__ , lowerCamelCase__ = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase , out_indices=__lowerCAmelCase , stage_names=self.stage_names ) class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-3
209
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _a = random.Random() def lowerCAmelCase__(__snake_case ,__snake_case=1.0 ,__snake_case=None ,__snake_case=None ) -> List[Any]: '''simple docstring''' if rng is None: lowerCamelCase__ = global_rng lowerCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=4_0_0 , __lowerCAmelCase=2_0_0_0 , __lowerCAmelCase=2_4 , __lowerCAmelCase=2_4 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1_6_0_0_0 , __lowerCAmelCase=True , __lowerCAmelCase=True , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = min_seq_length lowerCamelCase__ = max_seq_length lowerCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__ = feature_size lowerCamelCase__ = num_mel_bins lowerCamelCase__ = padding_value lowerCamelCase__ = sampling_rate lowerCamelCase__ = return_attention_mask lowerCamelCase__ = do_normalize def __lowerCamelCase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCamelCase ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ): '''simple docstring''' def _flatten(__lowerCAmelCase ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: lowerCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase__ = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = SpeechaTextFeatureExtractor if is_speech_available() else None def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' self.assertTrue(np.all(np.mean(__lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size lowerCamelCase__ = feature_extractor(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features lowerCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test batched lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCamelCase__ = np.asarray(__lowerCAmelCase ) lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase__ = [None, 1_6, None] for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = feature_extractor( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = [np.sum(__lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase__ = [None, 1_6, None] for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = feature_extractor( __lowerCAmelCase , max_length=__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = [np.sum(__lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = feature_extractor( __lowerCAmelCase , padding='''max_length''' , max_length=4 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = feature_extractor( __lowerCAmelCase , padding='''longest''' , max_length=4 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = feature_extractor( __lowerCAmelCase , padding='''longest''' , max_length=1_6 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def __lowerCamelCase ( self ): '''simple docstring''' import torch lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) lowerCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' from datasets import load_dataset lowerCamelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCamelCase__ = ds.sort('''id''' ).select(range(__lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on lowerCamelCase__ = self._load_datasamples(1 ) lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , __lowerCAmelCase , atol=1E-4 ) )
209
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE__ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] SCREAMING_SNAKE_CASE__ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] SCREAMING_SNAKE_CASE__ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) SCREAMING_SNAKE_CASE__ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) SCREAMING_SNAKE_CASE__ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: str ): '''simple docstring''' for tf_name, hf_name in patterns: lowercase_ = k.replace(__lowerCamelCase , __lowerCamelCase ) return k def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , __lowerCamelCase: dict ): '''simple docstring''' lowercase_ = BigBirdPegasusConfig(**__lowerCamelCase ) lowercase_ = BigBirdPegasusForConditionalGeneration(__lowerCamelCase ) lowercase_ = torch_model.state_dict() lowercase_ = {} # separating decoder weights lowercase_ = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} lowercase_ = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): lowercase_ = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue lowercase_ = DECODER_PATTERNS lowercase_ = rename_state_dict_key(__lowerCamelCase , __lowerCamelCase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): lowercase_ = v.T lowercase_ = torch.from_numpy(__lowerCamelCase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): lowercase_ = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue lowercase_ = REMAINING_PATTERNS lowercase_ = rename_state_dict_key(__lowerCamelCase , __lowerCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): lowercase_ = v.T lowercase_ = torch.from_numpy(__lowerCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' lowercase_ = mapping["model.embed_positions.weight"] lowercase_ = mapping.pop("model.embed_positions.weight" ) lowercase_ , lowercase_ = torch_model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) lowercase_ = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCamelCase ) lowercase_ = {} lowercase_ = ["global_step"] for name, shape in tqdm(__lowerCamelCase , desc="converting tf checkpoint to dict" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) lowercase_ = array return tf_weights def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: dict ): '''simple docstring''' lowercase_ = get_tf_weights_as_numpy(__lowerCamelCase ) lowercase_ = convert_bigbird_pegasus(__lowerCamelCase , __lowerCamelCase ) torch_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() lowerCAmelCase__ :Tuple = logging.get_logger(__name__) lowerCAmelCase__ :Union[str, Any] = '''Hello world! cécé herlolip''' def lowerCAmelCase__ ( a__: str , a__: str , a__: bool ) -> str: '''simple docstring''' _UpperCAmelCase = FairseqRobertaModel.from_pretrained(a__ ) roberta.eval() # disable dropout _UpperCAmelCase = roberta.model.encoder.sentence_encoder _UpperCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _UpperCAmelCase = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , a__ ) _UpperCAmelCase = XLMRobertaXLForSequenceClassification(a__ ) if classification_head else XLMRobertaXLForMaskedLM(a__ ) model.eval() # Now let's copy all the weights. # Embeddings _UpperCAmelCase = roberta_sent_encoder.embed_tokens.weight _UpperCAmelCase = roberta_sent_encoder.embed_positions.weight _UpperCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _UpperCAmelCase = roberta_sent_encoder.layer_norm.weight _UpperCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _UpperCAmelCase = model.roberta.encoder.layer[i] _UpperCAmelCase = roberta_sent_encoder.layers[i] _UpperCAmelCase = layer.attention _UpperCAmelCase = roberta_layer.self_attn_layer_norm.weight _UpperCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _UpperCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _UpperCAmelCase = roberta_layer.self_attn.q_proj.weight _UpperCAmelCase = roberta_layer.self_attn.q_proj.bias _UpperCAmelCase = roberta_layer.self_attn.k_proj.weight _UpperCAmelCase = roberta_layer.self_attn.k_proj.bias _UpperCAmelCase = roberta_layer.self_attn.v_proj.weight _UpperCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _UpperCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _UpperCAmelCase = roberta_layer.self_attn.out_proj.weight _UpperCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _UpperCAmelCase = roberta_layer.final_layer_norm.weight _UpperCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _UpperCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _UpperCAmelCase = roberta_layer.fca.weight _UpperCAmelCase = roberta_layer.fca.bias # output _UpperCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _UpperCAmelCase = roberta_layer.fca.weight _UpperCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _UpperCAmelCase = roberta.model.classification_heads['mnli'].dense.weight _UpperCAmelCase = roberta.model.classification_heads['mnli'].dense.bias _UpperCAmelCase = roberta.model.classification_heads['mnli'].out_proj.weight _UpperCAmelCase = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head _UpperCAmelCase = roberta.model.encoder.lm_head.dense.weight _UpperCAmelCase = roberta.model.encoder.lm_head.dense.bias _UpperCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _UpperCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _UpperCAmelCase = roberta.model.encoder.lm_head.weight _UpperCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _UpperCAmelCase = roberta.encode(a__ ).unsqueeze(0 ) # batch of size 1 _UpperCAmelCase = model(a__ )[0] if classification_head: _UpperCAmelCase = roberta.model.classification_heads['mnli'](roberta.extract_features(a__ ) ) else: _UpperCAmelCase = roberta.model(a__ )[0] print(our_output.shape , their_output.shape ) _UpperCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _UpperCAmelCase = torch.allclose(a__ , a__ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(a__ ).mkdir(parents=a__ , exist_ok=a__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) lowerCAmelCase__ :Any = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
329
import math lowerCAmelCase__ :Optional[int] = 1_0 lowerCAmelCase__ :Optional[Any] = 7 lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase__ ( a__: int = 2_0 ) -> str: '''simple docstring''' _UpperCAmelCase = math.comb(a__ , a__ ) _UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) _UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
329
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : Union[str, Any] = """ResNetConfig""" # Base docstring _SCREAMING_SNAKE_CASE : str = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : List[Any] = [1, 2_0_4_8, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """tiger cat""" _SCREAMING_SNAKE_CASE : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 3 , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.Convad( lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , bias=lowercase_ ) UpperCamelCase__ : Tuple =nn.BatchNormad(lowercase_ ) UpperCamelCase__ : int =ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor ): UpperCamelCase__ : List[Any] =self.convolution(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.normalization(lowercase_ ) UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Any =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCamelCase__ : Tuple =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCamelCase__ : Any =config.num_channels def _lowerCAmelCase ( self : str , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCamelCase__ : Dict =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.pooler(lowercase_ ) return embedding class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 ): super().__init__() UpperCamelCase__ : int =nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ ) UpperCamelCase__ : Optional[int] =nn.BatchNormad(lowercase_ ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Dict =self.convolution(lowercase_ ) UpperCamelCase__ : Dict =self.normalization(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : List[str] =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , activation=lowercase_ ) , ) UpperCamelCase__ : Any =ACTaFN[activation] def _lowerCAmelCase ( self : str , lowercase_ : Tuple ): UpperCamelCase__ : Any =hidden_state UpperCamelCase__ : Union[str, Any] =self.layer(lowercase_ ) UpperCamelCase__ : str =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : str =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" , lowercase_ : int = 4 ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : Union[str, Any] =out_channels // reduction UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : int =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 ) , ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , ) UpperCamelCase__ : List[Any] =ACTaFN[activation] def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ): UpperCamelCase__ : Dict =hidden_state UpperCamelCase__ : str =self.layer(lowercase_ ) UpperCamelCase__ : Tuple =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowercase_ : ResNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 , lowercase_ : int = 2 , ): super().__init__() UpperCamelCase__ : Dict =ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer UpperCamelCase__ : Union[str, Any] =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase_ , lowercase_ , stride=lowercase_ , activation=config.hidden_act ) , *[layer(lowercase_ , lowercase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =input for layer in self.layers: UpperCamelCase__ : Tuple =layer(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase__ : int =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) ) def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor , lowercase_ : bool = False , lowercase_ : bool = True ): UpperCamelCase__ : int =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase__ : Union[str, Any] =hidden_states + (hidden_state,) UpperCamelCase__ : List[str] =stage_module(lowercase_ ) if output_hidden_states: UpperCamelCase__ : Optional[Any] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase_ , hidden_states=lowercase_ , ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ResNetConfig SCREAMING_SNAKE_CASE_ = 'resnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' SCREAMING_SNAKE_CASE_ = True def _lowerCAmelCase ( self : str , lowercase_ : Optional[int] ): if isinstance(lowercase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowerCAmelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Dict=False ): if isinstance(lowercase_ , lowercase_ ): UpperCamelCase__ : str =value _SCREAMING_SNAKE_CASE : int = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _SCREAMING_SNAKE_CASE : Optional[int] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Union[str, Any] , lowercase_ : List[Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Dict =config UpperCamelCase__ : str =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : str =ResNetEncoder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Tuple =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Optional[Any] =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : int =encoder_outputs[0] UpperCamelCase__ : List[Any] =self.pooler(lowercase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Dict , lowercase_ : Union[str, Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Any =config.num_labels UpperCamelCase__ : Dict =ResNetModel(lowercase_ ) # classification head UpperCamelCase__ : Any =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.LongTensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ): UpperCamelCase__ : Dict =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : List[Any] =self.resnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : Tuple =outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : Union[str, Any] =self.classifier(lowercase_ ) UpperCamelCase__ : int =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : List[str] ='''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : Dict ='''single_label_classification''' else: UpperCamelCase__ : str ='''multi_label_classification''' if self.config.problem_type == "regression": UpperCamelCase__ : Union[str, Any] =MSELoss() if self.num_labels == 1: UpperCamelCase__ : Optional[Any] =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase__ : Dict =loss_fct(lowercase_ , lowercase_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : List[Any] =CrossEntropyLoss() UpperCamelCase__ : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : Optional[Any] =BCEWithLogitsLoss() UpperCamelCase__ : List[str] =loss_fct(lowercase_ , lowercase_ ) if not return_dict: UpperCamelCase__ : Tuple =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ', snake_case__, ) class __a ( snake_case__, snake_case__ ): """simple docstring""" def __init__( self : str , lowercase_ : List[Any] ): super().__init__(lowercase_ ) super()._init_backbone(lowercase_ ) UpperCamelCase__ : str =[config.embedding_size] + config.hidden_sizes UpperCamelCase__ : Optional[int] =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : Dict =ResNetEncoder(lowercase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @replace_return_docstrings(output_type=lowercase_ , config_class=_CONFIG_FOR_DOC ) def _lowerCAmelCase ( self : int , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Any =self.embedder(lowercase_ ) UpperCamelCase__ : Optional[Any] =self.encoder(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : str =outputs.hidden_states UpperCamelCase__ : Optional[int] =() for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase__ : int =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase_ , )
157
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _SCREAMING_SNAKE_CASE : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Any = logging.getLogger() def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Any =argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase__ : Dict =parser.parse_args() return args.f def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int="eval" ): '''simple docstring''' UpperCamelCase__ : Dict =os.path.join(UpperCAmelCase , F'''{split}_results.json''' ) if os.path.exists(UpperCAmelCase ): with open(UpperCAmelCase , '''r''' ) as f: return json.load(UpperCAmelCase ) raise ValueError(F'''can\'t find {path}''' ) _SCREAMING_SNAKE_CASE : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __a ( snake_case__ ): """simple docstring""" def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Union[str, Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : int =f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_flax_glue.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : List[str] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : str =f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_clm_flax.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : List[Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[Any] =f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_summarization_flax.main() UpperCamelCase__ : Union[str, Any] =get_results(lowercase_ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def _lowerCAmelCase ( self : Dict ): UpperCamelCase__ : int =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] =f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_mlm_flax.main() UpperCamelCase__ : List[Any] =get_results(lowercase_ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] =f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_ta_mlm_flax.main() UpperCamelCase__ : Optional[int] =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.4_2 ) @slow def _lowerCAmelCase ( self : List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase__ : Union[str, Any] =7 if get_gpu_count() > 1 else 2 UpperCamelCase__ : int =self.get_auto_remove_tmp_dir() UpperCamelCase__ : int =f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_flax_ner.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : Union[str, Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Any =f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_qa.main() UpperCamelCase__ : Tuple =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
157
1
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask a_ : Union[str, Any] = logging.getLogger(__name__) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "token-classification" def __init__( self , UpperCamelCase ): """simple docstring""" if type(UpperCamelCase ) == dict: lowerCamelCase_ = Namespace(**UpperCamelCase ) lowerCamelCase_ = import_module("tasks" ) try: lowerCamelCase_ = getattr(UpperCamelCase , hparams.task_type ) lowerCamelCase_ = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowerCamelCase_ = self.token_classification_task.get_labels(hparams.labels ) lowerCamelCase_ = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase , len(self.labels ) , self.mode ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" return self.model(**UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowerCamelCase_ = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase_ = self(**UpperCamelCase ) lowerCamelCase_ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.hparams for mode in ["train", "dev", "test"]: lowerCamelCase_ = self._feature_file(UpperCamelCase ) if os.path.exists(UpperCamelCase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , UpperCamelCase ) lowerCamelCase_ = torch.load(UpperCamelCase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowerCamelCase_ = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase ) lowerCamelCase_ = self.token_classification_task.convert_examples_to_features( UpperCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , UpperCamelCase ) torch.save(UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = False ): """simple docstring""" lowerCamelCase_ = self._feature_file(UpperCamelCase ) logger.info("Loading features from cached file %s" , UpperCamelCase ) lowerCamelCase_ = torch.load(UpperCamelCase ) lowerCamelCase_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCamelCase_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCamelCase_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCamelCase_ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCamelCase_ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , batch_size=UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" """Compute validation""" "" lowerCamelCase_ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowerCamelCase_ = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase_ = self(**UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = outputs[:2] lowerCamelCase_ = logits.detach().cpu().numpy() lowerCamelCase_ = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = torch.stack([x["val_loss"] for x in outputs] ).mean() lowerCamelCase_ = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowerCamelCase_ = np.argmax(UpperCamelCase , axis=2 ) lowerCamelCase_ = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowerCamelCase_ = dict(enumerate(self.labels ) ) lowerCamelCase_ = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase_ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCamelCase_ = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(UpperCamelCase , UpperCamelCase ), "precision": precision_score(UpperCamelCase , UpperCamelCase ), "recall": recall_score(UpperCamelCase , UpperCamelCase ), "f1": fa_score(UpperCamelCase , UpperCamelCase ), } lowerCamelCase_ = dict(results.items() ) lowerCamelCase_ = results return ret, preds_list, out_label_list def snake_case ( self , UpperCamelCase ): """simple docstring""" # when stable lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = self._eval_end(UpperCamelCase ) lowerCamelCase_ = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def snake_case ( self , UpperCamelCase ): """simple docstring""" # updating to test_epoch_end instead of deprecated test_end lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = self._eval_end(UpperCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCamelCase_ = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def snake_case ( UpperCamelCase , UpperCamelCase ): """simple docstring""" # Add NER specific options BaseTransformer.add_model_specific_args(UpperCamelCase , UpperCamelCase ) parser.add_argument( "--task_type" , default="NER" , type=UpperCamelCase , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=UpperCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=UpperCamelCase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=UpperCamelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) a_ : Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd()) a_ : Any = parser.parse_args() a_ : int = NERTransformer(args) a_ : Union[str, Any] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 a_ : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) a_ : Optional[int] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
55
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BlenderbotSmallTokenizer _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() lowerCamelCase_ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] lowerCamelCase_ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = "adapt act apte" return input_text, output_text def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = ["adapt", "act", "ap@@", "te"] lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase_ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] lowerCamelCase_ = "I am a small frog." lowerCamelCase_ = tok([src_text] , padding=UpperCamelCase , truncation=UpperCamelCase )["input_ids"] lowerCamelCase_ = tok.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) lowerCamelCase_ = "I am a small frog ." lowerCamelCase_ = "." lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
55
1
class __magic_name__ : def __init__( self , _a ) -> List[str]: lowerCAmelCase_ = val lowerCAmelCase_ = None lowerCAmelCase_ = None def __a ( self , _a ) -> List[str]: if self.val: if val < self.val: if self.left is None: lowerCAmelCase_ = Node(_lowercase ) else: self.left.insert(_lowercase ) elif val > self.val: if self.right is None: lowerCAmelCase_ = Node(_lowercase ) else: self.right.insert(_lowercase ) else: lowerCAmelCase_ = val def A(__a: List[Any] , __a: Optional[int] ): if root: inorder(root.left , SCREAMING_SNAKE_CASE_ ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE_ ) def A(__a: Optional[Any] ): if len(SCREAMING_SNAKE_CASE_ ) == 0: return arr lowerCAmelCase_ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase_ = [] inorder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
"""simple docstring""" import math import unittest def lowercase ( lowerCAmelCase__ : int ) -> bool: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCAmelCase ( self ): with self.assertRaises(_a ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
45
_lowerCamelCase ={ "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0_2_1_7_6_6_3_4E-1_9, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355818, } def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase : Dict = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
287
0
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ )-> None: '''simple docstring''' UpperCamelCase = len(A_ ) UpperCamelCase = [0] * len_array if len_array > 0: UpperCamelCase = array[0] for i in range(1 , A_ ): UpperCamelCase = self.prefix_sum[i - 1] + array[i] def UpperCAmelCase_ ( self , A_ , A_ )-> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def UpperCAmelCase_ ( self , A_ )-> bool: '''simple docstring''' UpperCamelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
251
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : Any = logging.get_logger(__name__) # General docstring lowerCAmelCase : Tuple = 'MobileNetV1Config' # Base docstring lowerCAmelCase : Dict = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : Any = [1, 10_24, 7, 7] # Image classification docstring lowerCAmelCase : Optional[Any] = 'google/mobilenet_v1_1.0_224' lowerCAmelCase : List[str] = 'tabby, tabby cat' lowerCAmelCase : str = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_( A : Union[str, Any] , A : Optional[Any] , A : Optional[Any]=None): UpperCamelCase = {} if isinstance(A , A): UpperCamelCase = model.mobilenet_va else: UpperCamelCase = model UpperCamelCase = 'MobilenetV1/Conv2d_0/' UpperCamelCase = backbone.conv_stem.convolution.weight UpperCamelCase = backbone.conv_stem.normalization.bias UpperCamelCase = backbone.conv_stem.normalization.weight UpperCamelCase = backbone.conv_stem.normalization.running_mean UpperCamelCase = backbone.conv_stem.normalization.running_var for i in range(13): UpperCamelCase = i + 1 UpperCamelCase = i * 2 UpperCamelCase = backbone.layer[pt_index] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var UpperCamelCase = backbone.layer[pt_index + 1] UpperCamelCase = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var if isinstance(A , A): UpperCamelCase = 'MobilenetV1/Logits/Conv2d_1c_1x1/' UpperCamelCase = model.classifier.weight UpperCamelCase = model.classifier.bias return tf_to_pt_map def A_( A : int , A : str , A : Optional[int]): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.') raise # Load weights from TF model UpperCamelCase = tf.train.list_variables(A) UpperCamelCase = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''') UpperCamelCase = tf.train.load_variable(A , A) UpperCamelCase = array # Build TF to PyTorch weights loading map UpperCamelCase = _build_tf_to_pytorch_map(A , A , A) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''') if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''') continue UpperCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise') UpperCamelCase = np.transpose(A , (2, 3, 0, 1)) elif "weights" in name: logger.info('Transposing') if len(pointer.shape) == 2: # copying into linear layer UpperCamelCase = array.squeeze().transpose() else: UpperCamelCase = np.transpose(A , (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''') logger.info(f'''Initialize PyTorch weight {name} {array.shape}''') UpperCamelCase = torch.from_numpy(A) tf_weights.pop(A , A) tf_weights.pop(name + '/RMSProp' , A) tf_weights.pop(name + '/RMSProp_1' , A) tf_weights.pop(name + '/ExponentialMovingAverage' , A) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys())}''') return model def A_( A : torch.Tensor , A : nn.Convad): UpperCamelCase , UpperCamelCase = features.shape[-2:] UpperCamelCase , UpperCamelCase = conv_layer.stride UpperCamelCase , UpperCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase = max(kernel_height - stride_height , 0) else: UpperCamelCase = max(kernel_height - (in_height % stride_height) , 0) if in_width % stride_width == 0: UpperCamelCase = max(kernel_width - stride_width , 0) else: UpperCamelCase = max(kernel_width - (in_width % stride_width) , 0) UpperCamelCase = pad_along_width // 2 UpperCamelCase = pad_along_width - pad_left UpperCamelCase = pad_along_height // 2 UpperCamelCase = pad_along_height - pad_top UpperCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A , A , 'constant' , 0.0) class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ , A_ , A_ , A_ , A_ = 1 , A_ = 1 , A_ = False , A_ = True , A_ = True , )-> None: '''simple docstring''' super().__init__() UpperCamelCase = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) UpperCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase = nn.Convad( in_channels=A_ , out_channels=A_ , kernel_size=A_ , stride=A_ , padding=A_ , groups=A_ , bias=A_ , padding_mode='zeros' , ) if use_normalization: UpperCamelCase = nn.BatchNormad( num_features=A_ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=A_ , track_running_stats=A_ , ) else: UpperCamelCase = None if use_activation: if isinstance(A_ , A_ ): UpperCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , A_ ): UpperCamelCase = ACTaFN[config.hidden_act] else: UpperCamelCase = config.hidden_act else: UpperCamelCase = None def UpperCAmelCase_ ( self , A_ )-> torch.Tensor: '''simple docstring''' if self.config.tf_padding: UpperCamelCase = apply_tf_padding(A_ , self.convolution ) UpperCamelCase = self.convolution(A_ ) if self.normalization is not None: UpperCamelCase = self.normalization(A_ ) if self.activation is not None: UpperCamelCase = self.activation(A_ ) return features class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = MobileNetVaConfig lowerCAmelCase_ = load_tf_weights_in_mobilenet_va lowerCAmelCase_ = """mobilenet_v1""" lowerCAmelCase_ = """pixel_values""" lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' if isinstance(A_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase : Union[str, Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : Union[str, Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ = True )-> Union[str, Any]: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config UpperCamelCase = 32 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase = MobileNetVaConvLayer( A_ , in_channels=config.num_channels , out_channels=A_ , kernel_size=3 , stride=2 , ) UpperCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase = nn.ModuleList() for i in range(13 ): UpperCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=3 , stride=strides[i] , groups=A_ , ) ) self.layer.append( MobileNetVaConvLayer( A_ , in_channels=A_ , out_channels=A_ , kernel_size=1 , ) ) UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , )-> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) UpperCamelCase = self.conv_stem(A_ ) UpperCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase = layer_module(A_ ) if output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = hidden_states if self.pooler is not None: UpperCamelCase = torch.flatten(self.pooler(A_ ) , start_dim=1 ) else: UpperCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=A_ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> None: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config.num_labels UpperCamelCase = MobileNetVaModel(A_ ) UpperCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=A_ ) UpperCamelCase = nn.Linear(A_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , )-> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.mobilenet_va(A_ , output_hidden_states=A_ , return_dict=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier(self.dropout(A_ ) ) UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase = 'single_label_classification' else: UpperCamelCase = 'multi_label_classification' if self.config.problem_type == "regression": UpperCamelCase = MSELoss() if self.num_labels == 1: UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase = BCEWithLogitsLoss() UpperCamelCase = loss_fct(A_ , A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=A_ , logits=A_ , hidden_states=outputs.hidden_states , )
251
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) SCREAMING_SNAKE_CASE = [] # custom device map if isinstance(_A , _A ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE = get_keys_to_not_convert(_A ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_A ) SCREAMING_SNAKE_CASE = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_A ) # compatibility with peft SCREAMING_SNAKE_CASE = load_in_abit SCREAMING_SNAKE_CASE = load_in_abit SCREAMING_SNAKE_CASE = get_parameter_device(_A ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) SCREAMING_SNAKE_CASE = replace_with_bnb_layers(_A , _A , modules_to_not_convert=_A ) # convert param to the right dtype SCREAMING_SNAKE_CASE = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) SCREAMING_SNAKE_CASE = getattr(_A , _A , _A ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_A ): param.to(_A ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE = replace_with_bnb_layers( _A , _A , modules_to_not_convert=_A ) SCREAMING_SNAKE_CASE = get_quantized_model_device_map( _A , _A , _A , max_memory=_A , no_split_module_classes=_A , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _A , _A , _A , dtype=bnb_quantization_config.torch_dtype , offload_folder=_A , offload_state_dict=_A , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_A , device_map=_A , offload_dir=_A ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Dict: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE = {'': torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{\'\':torch.cuda.current_device()}`.""" ) if isinstance(_A , _A ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or """ """\'sequential\'.""" ) SCREAMING_SNAKE_CASE = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = special_dtypes SCREAMING_SNAKE_CASE = no_split_module_classes SCREAMING_SNAKE_CASE = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE = get_balanced_memory( _A , low_zero=(device_map == """balanced_low_0""") , max_memory=_A , **_A , ) SCREAMING_SNAKE_CASE = max_memory SCREAMING_SNAKE_CASE = infer_auto_device_map(_A , **_A ) if isinstance(_A , _A ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Dict: '''simple docstring''' if modules_to_not_convert is None: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = _replace_with_bnb_layers( _A , _A , _A , _A ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE = [] current_key_name.append(_A ) if isinstance(_A , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE = '.'.join(_A ) SCREAMING_SNAKE_CASE = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_A , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can\'t be both False""" ) SCREAMING_SNAKE_CASE = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE = module.bias.data bnb_module.requires_grad_(_A ) setattr(_A , _A , _A ) SCREAMING_SNAKE_CASE = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE = _replace_with_bnb_layers( _A , _A , _A , _A ) SCREAMING_SNAKE_CASE = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' with init_empty_weights(): SCREAMING_SNAKE_CASE = deepcopy(_A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE = find_tied_parameters(_A ) # For compatibility with Accelerate < 0.18 if isinstance(_A , _A ): SCREAMING_SNAKE_CASE = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE = sum(_A , [] ) SCREAMING_SNAKE_CASE = len(_A ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE = False if hasattr(_A , """base_model_prefix""" ): SCREAMING_SNAKE_CASE = not hasattr(_A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE = list(model.named_children() ) SCREAMING_SNAKE_CASE = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE = set(_A ) - set(_A ) SCREAMING_SNAKE_CASE = list(set(_A ) ) + list(_A ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE = ['.weight', '.bias'] SCREAMING_SNAKE_CASE = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE = name.replace(_A , """""" ) filtered_module_names.append(_A ) return filtered_module_names def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' for m in model.modules(): if isinstance(_A , bnb.nn.Linearabit ): return True return False def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return next(parameter.parameters() ).device def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(_A , _A , 0 , dtype=_A , value=_A ) SCREAMING_SNAKE_CASE = param_name SCREAMING_SNAKE_CASE = model if "." in tensor_name: SCREAMING_SNAKE_CASE = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE = getattr(_A , _A ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) SCREAMING_SNAKE_CASE = new_module SCREAMING_SNAKE_CASE = splits[-1] # offload weights SCREAMING_SNAKE_CASE = False offload_weight(module._parameters[tensor_name] , _A , _A , index=_A ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , _A , index=_A , ) else: offload_weight(_A , _A , _A , index=_A ) offload_weight(_A , param_name.replace("""weight""" , """SCB""" ) , _A , index=_A ) set_module_tensor_to_device(_A , _A , """meta""" , dtype=_A , value=torch.empty(*param.size() ) )
296
'''simple docstring''' def lowerCamelCase__ ( _A , _A ): while second != 0: a : Union[str, Any] = first & second first ^= second a : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase: Optional[int] = int(input('Enter the first number: ').strip()) lowerCAmelCase: Union[str, Any] = int(input('Enter the second number: ').strip()) print(F"{add(first, second) = }")
297
0
import pytest import datasets # Import fixture modules as plugins lowercase__ : Dict = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> List[str]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12") @pytest.fixture(autouse=UpperCAmelCase_) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> Dict: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? a = tmp_path_factory.getbasetemp() / "cache" a = test_hf_cache_home / "datasets" a = test_hf_cache_home / "metrics" a = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(UpperCAmelCase_)) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(UpperCAmelCase_)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(UpperCAmelCase_)) a = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(UpperCAmelCase_)) a = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(UpperCAmelCase_)) @pytest.fixture(autouse=UpperCAmelCase_ , scope="session") def SCREAMING_SNAKE_CASE ( ) -> Dict: datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCAmelCase_) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> str: # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , UpperCAmelCase_) @pytest.fixture def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> str: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , UpperCAmelCase_)
353
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: a = 0 a = number while duplicate > 0: a , a = divmod(__UpperCamelCase , 10) fact_sum += factorial(__UpperCamelCase) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowercase__ : str = int(input("Enter number: ").strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
180
0
import os import sys import unittest _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') _snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Optional[int] ) -> Dict: __UpperCAmelCase : Tuple = get_test_to_tester_mapping(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = get_test_to_tester_mapping(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"BertModelTest": "BertModelTester"} __UpperCAmelCase : Dict = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = get_model_to_test_mapping(__lowerCamelCase ) __UpperCAmelCase : Any = get_model_to_test_mapping(__lowerCamelCase ) __UpperCAmelCase : str = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } __UpperCAmelCase : int = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> Optional[int]: __UpperCAmelCase : int = get_model_to_tester_mapping(__lowerCamelCase ) __UpperCAmelCase : str = get_model_to_tester_mapping(__lowerCamelCase ) __UpperCAmelCase : List[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } __UpperCAmelCase : str = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase )
157
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : int = "" for word_or_phrase in separated: if not isinstance(snake_case__, snake_case__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
157
1
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __A : """simple docstring""" __lowerCAmelCase = 42 # [batch_size x 3] __lowerCAmelCase = 42 # [batch_size x 3] __lowerCAmelCase = 42 # [batch_size x 3] __lowerCAmelCase = 42 # [batch_size x 3] __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE ( self ) -> torch.Tensor: a =torch.arange(self.height * self.width ) a =torch.stack( [ pixel_indices % self.width, torch.div(__A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a , *a =self.shape a =int(np.prod(__A ) ) a =self.get_image_coords() a =torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) a =self.get_camera_rays(__A ) a =rays.view(__A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def SCREAMING_SNAKE_CASE ( self , __A ) -> torch.Tensor: a , *a , a =coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] a =coords.view(__A , -1 , 2 ) a =self.resolution() a =self.fov() a =(flat.float() / (res - 1)) * 2 - 1 a =fracs * torch.tan(fov / 2 ) a =fracs.view(__A , -1 , 2 ) a =( self.z.view(__A , 1 , 3 ) + self.x.view(__A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__A , 1 , 3 ) * fracs[:, :, 1:] ) a =directions / directions.norm(dim=-1 , keepdim=__A ) a =torch.stack( [ torch.broadcast_to(self.origin.view(__A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__A , *__A , 2 , 3 ) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__A , height=__A , x_fov=self.x_fov , y_fov=self.y_fov , ) def _A ( lowercase ): """simple docstring""" a =[] a =[] a =[] a =[] for theta in np.linspace(0 , 2 * np.pi , num=20 ): a =np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) a =-z * 4 a =np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] ) a =np.cross(lowercase , lowercase ) origins.append(lowercase ) xs.append(lowercase ) ys.append(lowercase ) zs.append(lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
371
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar lowerCamelCase_ : List[Any] = TypeVar("""T""") class __A ( Generic[T] ): """simple docstring""" def __init__( self , __A ) -> None: a =data a =self a =0 class __A ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: # map from node name to the node object a ={} def SCREAMING_SNAKE_CASE ( self , __A ) -> None: # create a new set with x as its member a =DisjointSetTreeNode(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) a =self.map[data] if elem_ref != elem_ref.parent: a =self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> None: # helper function for union operation if nodea.rank > nodea.rank: a =nodea else: a =nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> None: # merge 2 disjoint sets self.link(self.find_set(__A ) , self.find_set(__A ) ) class __A ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) a ={} def SCREAMING_SNAKE_CASE ( self , __A ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: a ={} def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> None: # add an edge with the given weight self.add_node(__A ) self.add_node(__A ) a =weight a =weight def SCREAMING_SNAKE_CASE ( self ) -> GraphUndirectedWeighted[T]: a =[] a =set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __A : x[2] ) # creating the disjoint set a =DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__A ) # MST generation a =0 a =0 a =GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: a , a , a =edges[index] index += 1 a =disjoint_set.find_set(__A ) a =disjoint_set.find_set(__A ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__A , __A , __A ) disjoint_set.union(__A , __A ) return graph
215
0
import math from numpy import inf from scipy.integrate import quad def UpperCamelCase ( __lowerCamelCase : float ): if num <= 0: raise ValueError("math domain error" ) return quad(__lowerCamelCase , 0 , __lowerCamelCase , args=(__lowerCamelCase) )[0] def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float ): return math.pow(__lowerCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
59
'''simple docstring''' import math def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' return math.sqrt(__lowercase ) * math.sqrt(__lowercase ) == num def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = n while left <= right: _UpperCAmelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _A = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _A = typing.Union[np.floataa, int, float] # noqa: UP007 def __UpperCamelCase ( _A , _A ): return np.sqrt(np.sum((np.asarray(_A ) - np.asarray(_A )) ** 2 ) ) def __UpperCamelCase ( _A , _A ): return sum((va - va) ** 2 for va, va in zip(_A , _A ) ) ** (1 / 2) if __name__ == "__main__": def __UpperCamelCase ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10000 , globals=globals() , ) ) benchmark()
167
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__, '''embed_dim''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase__, '''num_heads''' ) ) class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=13, UpperCamelCase__=64, UpperCamelCase__=3, UpperCamelCase__=[16, 48, 96], UpperCamelCase__=[1, 3, 6], UpperCamelCase__=[1, 2, 10], UpperCamelCase__=[7, 3, 3], UpperCamelCase__=[4, 2, 2], UpperCamelCase__=[2, 1, 1], UpperCamelCase__=[2, 2, 2], UpperCamelCase__=[False, False, True], UpperCamelCase__=[0.0, 0.0, 0.0], UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=2, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_sizes lowerCAmelCase_ = patch_stride lowerCAmelCase_ = patch_padding lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = num_heads lowerCAmelCase_ = stride_kv lowerCAmelCase_ = depth lowerCAmelCase_ = cls_token lowerCAmelCase_ = attention_drop_rate lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: # create a random int32 tensor of given shape lowerCAmelCase_ = ids_tensor([self.batch_size], self.num_labels ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = TFCvtModel(config=UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, training=UpperCamelCase__ ) lowerCAmelCase_ = (self.image_size, self.image_size) lowerCAmelCase_ , lowerCAmelCase_ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = TFCvtForImageClassification(UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, labels=UpperCamelCase__, training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __snake_case = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFCvtModelTester(self ) lowerCAmelCase_ = TFCvtConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__, hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(UpperCamelCase__ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = len(self.model_tester.depth ) self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = TFCvtModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCamelCase ( ): lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=UpperCamelCase__, return_tensors='''tf''' ) # forward pass lowerCAmelCase_ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), UpperCamelCase__, atol=1E-4 ) )
167
1
'''simple docstring''' def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : str = '' for i in table: res += inp[i - 1] return res def lowercase__( __UpperCamelCase: Dict ): """simple docstring""" return data[1:] + data[0] def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = '' for i in range(len(__UpperCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : str = int('0b' + data[0] + data[-1] ,2 ) SCREAMING_SNAKE_CASE : int = int('0b' + data[1:3] ,2 ) return bin(s[row][col] )[2:] def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: int ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: Any ,__UpperCamelCase: Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = message[:4] SCREAMING_SNAKE_CASE : List[str] = message[4:] SCREAMING_SNAKE_CASE : List[str] = apply_table(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = xor(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = apply_sbox(__UpperCamelCase ,temp[:4] ) # noqa: E741 SCREAMING_SNAKE_CASE : int = apply_sbox(__UpperCamelCase ,temp[4:] ) SCREAMING_SNAKE_CASE : Tuple = '0' * (2 - len(__UpperCamelCase )) + l # noqa: E741 SCREAMING_SNAKE_CASE : Union[str, Any] = '0' * (2 - len(__UpperCamelCase )) + r SCREAMING_SNAKE_CASE : List[Any] = apply_table(l + r ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = xor(__UpperCamelCase ,__UpperCamelCase ) return temp + right if __name__ == "__main__": UpperCamelCase_ = input("Enter 10 bit key: ") UpperCamelCase_ = input("Enter 8 bit message: ") UpperCamelCase_ = [6, 3, 7, 4, 8, 5, 1_0, 9] UpperCamelCase_ = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] UpperCamelCase_ = [2, 4, 3, 1] UpperCamelCase_ = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase_ = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase_ = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase_ = apply_table(key, paa_table) UpperCamelCase_ = temp[:5] UpperCamelCase_ = temp[5:] UpperCamelCase_ = left_shift(left) UpperCamelCase_ = left_shift(right) UpperCamelCase_ = apply_table(left + right, pa_table) UpperCamelCase_ = left_shift(left) UpperCamelCase_ = left_shift(right) UpperCamelCase_ = left_shift(left) UpperCamelCase_ = left_shift(right) UpperCamelCase_ = apply_table(left + right, pa_table) # encryption UpperCamelCase_ = apply_table(message, IP) UpperCamelCase_ = function(expansion, sa, sa, keya, temp) UpperCamelCase_ = temp[4:] + temp[:4] UpperCamelCase_ = function(expansion, sa, sa, keya, temp) UpperCamelCase_ = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption UpperCamelCase_ = apply_table(CT, IP) UpperCamelCase_ = function(expansion, sa, sa, keya, temp) UpperCamelCase_ = temp[4:] + temp[:4] UpperCamelCase_ = function(expansion, sa, sa, keya, temp) UpperCamelCase_ = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A : Union[str, Any] = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
0
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' for i in range(1, len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1, len(__A ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1, len(__A ) ): for j in range(1, len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j], matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
65
import math import sys def snake_case ( snake_case__ :int) -> int: if number != int(snake_case__): raise ValueError("""the value of input must be a natural number""") if number < 0: raise ValueError("""the value of input must not be a negative number""") if number == 0: return 1 _A = [-1] * (number + 1) _A = 0 for i in range(1 , number + 1): _A = sys.maxsize _A = int(math.sqrt(snake_case__)) for j in range(1 , root + 1): _A = 1 + answers[i - (j**2)] _A = min(snake_case__ , snake_case__) _A = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
180
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = RobertaTokenizer lowercase_ = RobertaTokenizerFast lowercase_ = True lowercase_ = {'cls_token': '<s>'} def __lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : List[Any] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , **lowerCAmelCase_ : int ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[str] ) -> Dict: """simple docstring""" _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(lowerCAmelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowerCAmelCase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowerCAmelCase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = self.tokenizer_class.from_pretrained('''roberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase_ ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase_ ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _a = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _a = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _a = self.get_tokenizer() _a = '''Encode this sequence.''' _a = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _a = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing spaces after special tokens _a = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) _a = '''Encode <mask> sequence''' _a = '''Encode <mask>sequence''' _a = tokenizer.encode(lowerCAmelCase_ ) _a = encoded.index(lowerCAmelCase_ ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _a = tokenizer.encode(lowerCAmelCase_ ) _a = encoded.index(lowerCAmelCase_ ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def __lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowerCAmelCase_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowerCAmelCase_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a = F'{text_of_1_token} {text_of_1_token}' _a = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _a = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ) + 1, len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _a = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _a = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ) + 1, len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _a = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _a = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _a = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _a = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _a = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _a = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ) + 1, 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _a = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _a = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ), 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _a = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _a = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ), 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , )
179
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class A : def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=99 , lowerCAmelCase_ : Optional[int]=13 , lowerCAmelCase_ : Tuple=16 , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Any=32 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=30 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Union[str, Any]=None , ) -> Any: """simple docstring""" _a = parent _a = batch_size _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = d_model _a = d_model _a = decoder_layers _a = decoder_layers _a = decoder_ffn_dim _a = decoder_attention_heads _a = decoder_attention_heads _a = eos_token_id _a = bos_token_id _a = pad_token_id _a = decoder_start_token_id _a = use_cache _a = max_position_embeddings _a = None _a = decoder_seq_length _a = 2 _a = 1 def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _a = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , ) -> int: """simple docstring""" _a = True _a = TrOCRDecoder(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval() _a = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _a = model(lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) self.parent.assertTrue(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) ) self.parent.assertTrue(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) + 1 ) _a = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids _a = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(lowerCAmelCase_ )['''last_hidden_state'''] _a = model(lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) def __lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class A ( _a ,_a ,_a ,unittest.TestCase ): lowercase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase_ = (TrOCRForCausalLM,) if is_torch_available() else () lowercase_ = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} lowercase_ = True lowercase_ = False def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _a = TrOCRStandaloneDecoderModelTester(self , is_training=lowerCAmelCase_ ) _a = ConfigTester(self , config_class=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" pass def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass
179
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase_( SCREAMING_SNAKE_CASE_ = True , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) lowerCamelCase : Any = False if main_process_only: lowerCamelCase : List[Any] = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ , disable=lowerCAmelCase_ )
283
'''simple docstring''' # using dfs for finding eulerian path traversal def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None )-> List[str]: '''simple docstring''' _UpperCAmelCase : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _UpperCAmelCase ,_UpperCAmelCase : Tuple = True, True _UpperCAmelCase : List[Any] = dfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return path def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Optional[int] = -1 for i in range(lowerCAmelCase_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _UpperCAmelCase : Optional[int] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : str = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _UpperCAmelCase ,_UpperCAmelCase : int = check_circuit_or_path(lowerCAmelCase_ , lowerCAmelCase_ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return _UpperCAmelCase : Dict = 1 if check == 2: _UpperCAmelCase : Dict = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) _UpperCAmelCase : Dict = dfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print(lowerCAmelCase_ ) def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _UpperCAmelCase : int = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _UpperCAmelCase : Tuple = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _UpperCAmelCase : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _UpperCAmelCase : List[str] = { 1: [], 2: [] # all degree is zero } _UpperCAmelCase : Union[str, Any] = 10 check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) check_euler(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
215
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
1
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = """data2vec-audio""" def __init__( self : Dict , _lowerCamelCase : Any=32 , _lowerCamelCase : List[str]=7_68 , _lowerCamelCase : int=12 , _lowerCamelCase : str=12 , _lowerCamelCase : Dict=30_72 , _lowerCamelCase : Dict="gelu" , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : int=0.0 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.02 , _lowerCamelCase : List[str]=1E-5 , _lowerCamelCase : Dict="gelu" , _lowerCamelCase : str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _lowerCamelCase : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase : Tuple=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=16 , _lowerCamelCase : Union[str, Any]=19 , _lowerCamelCase : Dict=5 , _lowerCamelCase : Any=0.05 , _lowerCamelCase : List[Any]=10 , _lowerCamelCase : Dict=2 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Optional[int]=0 , _lowerCamelCase : Tuple="sum" , _lowerCamelCase : Dict=False , _lowerCamelCase : str=False , _lowerCamelCase : Optional[Any]=2_56 , _lowerCamelCase : List[str]=(5_12, 5_12, 5_12, 5_12, 15_00) , _lowerCamelCase : str=(5, 3, 3, 1, 1) , _lowerCamelCase : int=(1, 2, 3, 1, 1) , _lowerCamelCase : List[Any]=5_12 , _lowerCamelCase : List[str]=0 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : int=2 , _lowerCamelCase : str=False , _lowerCamelCase : Dict=3 , _lowerCamelCase : int=2 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : List[str]=None , **_lowerCamelCase : Dict , ): """simple docstring""" super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) A_ : Any = hidden_size A_ : List[Any] = feat_extract_activation A_ : int = list(_lowerCamelCase ) A_ : Optional[Any] = list(_lowerCamelCase ) A_ : str = list(_lowerCamelCase ) A_ : Optional[Any] = conv_bias A_ : str = num_conv_pos_embeddings A_ : Optional[Any] = num_conv_pos_embedding_groups A_ : Optional[int] = conv_pos_kernel_size A_ : Any = len(self.conv_dim ) A_ : Union[str, Any] = num_hidden_layers A_ : List[str] = intermediate_size A_ : List[str] = hidden_act A_ : int = num_attention_heads A_ : Tuple = hidden_dropout A_ : str = attention_dropout A_ : Union[str, Any] = activation_dropout A_ : List[str] = feat_proj_dropout A_ : int = final_dropout A_ : Tuple = layerdrop A_ : List[Any] = layer_norm_eps A_ : Tuple = initializer_range A_ : int = vocab_size A_ : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : List[Any] = mask_time_prob A_ : Any = mask_time_length A_ : Dict = mask_time_min_masks A_ : Union[str, Any] = mask_feature_prob A_ : Union[str, Any] = mask_feature_length A_ : int = mask_feature_min_masks # ctc loss A_ : Union[str, Any] = ctc_loss_reduction A_ : Dict = ctc_zero_infinity # adapter A_ : int = add_adapter A_ : Any = adapter_kernel_size A_ : Union[str, Any] = adapter_stride A_ : Union[str, Any] = num_adapter_layers A_ : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A_ : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A_ : str = list(_lowerCamelCase ) A_ : Union[str, Any] = list(_lowerCamelCase ) A_ : Union[str, Any] = list(_lowerCamelCase ) A_ : List[str] = xvector_output_dim @property def a_ ( self : List[Any] ): """simple docstring""" return math.prod(self.conv_stride )
167
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase ( __UpperCAmelCase): __lowerCAmelCase : str = ["""image_processor""", """tokenizer"""] __lowerCAmelCase : Optional[Any] = """OwlViTImageProcessor""" __lowerCAmelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Union[str, Any] , _lowerCamelCase : str=None , _lowerCamelCase : Tuple=None , **_lowerCamelCase : List[Any] ): """simple docstring""" A_ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowerCamelCase , ) A_ : List[Any] = kwargs.pop('''feature_extractor''' ) A_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self : Optional[int] , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None , _lowerCamelCase : int=None , _lowerCamelCase : str="max_length" , _lowerCamelCase : List[Any]="np" , **_lowerCamelCase : Optional[int] ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ) or (isinstance(_lowerCamelCase , _lowerCamelCase ) and not isinstance(text[0] , _lowerCamelCase )): A_ : List[str] = [self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(text[0] , _lowerCamelCase ): A_ : Optional[int] = [] # Maximum number of queries across batch A_ : Any = max([len(_lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_lowerCamelCase ) != max_num_queries: A_ : Optional[int] = t + [''' '''] * (max_num_queries - len(_lowerCamelCase )) A_ : Tuple = self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) encodings.append(_lowerCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": A_ : Union[str, Any] = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : Dict = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ : List[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : Any = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ : Any = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) A_ : Union[str, Any] = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ : Tuple = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : str = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) A_ : Any = BatchEncoding() A_ : Optional[Any] = input_ids A_ : str = attention_mask if query_images is not None: A_ : Union[str, Any] = BatchEncoding() A_ : Optional[Any] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ).pixel_values A_ : Dict = query_pixel_values if images is not None: A_ : int = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and images is not None: A_ : str = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def a_ ( self : Optional[Any] , *_lowerCamelCase : int , **_lowerCamelCase : Dict ): """simple docstring""" return self.image_processor.post_process(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : Optional[Any] , *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : Dict ): """simple docstring""" return self.image_processor.post_process_object_detection(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : List[Any] , *_lowerCamelCase : List[str] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : Dict , *_lowerCamelCase : Any , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def a_ ( self : List[str] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowerCamelCase , ) return self.image_processor_class @property def a_ ( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowerCamelCase , ) return self.image_processor
167
1
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Optional[int] = GPTaTokenizer snake_case__ : Dict = GPTaTokenizerFast snake_case__ : Optional[Any] = True snake_case__ : Dict = {"add_prefix_space": True} snake_case__ : Optional[int] = False def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCamelCase : Optional[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCAmelCase : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = '''lower newer''' _lowerCamelCase : Any = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Tuple = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Dict = '''lower newer''' _lowerCamelCase : Dict = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[str] = tokens + [tokenizer.unk_token] _lowerCamelCase : List[str] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Dict = '''lower newer''' # Testing tokenization _lowerCamelCase : Dict = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Dict = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens _lowerCamelCase : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens _lowerCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : List[Any] = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Union[str, Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : str=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input _lowerCamelCase : Tuple = '''This is a simple input''' _lowerCamelCase : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : List[str] = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : int = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _lowerCamelCase : Optional[Any] = '''This is a simple input''' _lowerCamelCase : Union[str, Any] = ['''This is a simple input looooooooong''', '''This is a simple input'''] _lowerCamelCase : Optional[int] = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : str = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _lowerCamelCase : Optional[Any] = tokenizer.pad_token_id _lowerCamelCase : List[str] = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _lowerCamelCase : Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) _lowerCamelCase : Tuple = tokenizer(*__lowerCAmelCase , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _lowerCamelCase : int = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = '''$$$''' _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCAmelCase , add_bos_token=__lowerCAmelCase ) _lowerCamelCase : List[Any] = '''This is a simple input''' _lowerCamelCase : int = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Tuple = tokenizer.bos_token_id _lowerCamelCase : List[Any] = tokenizer(__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : List[Any] = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : List[str] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Dict = [self.get_tokenizer(do_lower_case=__lowerCAmelCase , add_bos_token=__lowerCAmelCase )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _lowerCamelCase : List[str] = '''Encode this.''' _lowerCamelCase : Dict = '''This one too please.''' _lowerCamelCase : Optional[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) encoded_sequence += tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Any = tokenizer.encode_plus( __lowerCAmelCase , __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , ) _lowerCamelCase : List[str] = encoded_sequence_dict['''input_ids'''] _lowerCamelCase : List[str] = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCAmelCase ) ] _lowerCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_tokenizers class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : List[Any] = '''A photo of a cat''' _lowerCamelCase : int = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''test_opt''' ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''./test_opt''' ) _lowerCamelCase : str = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=__lowerCAmelCase ) _lowerCamelCase : str = '''A photo of a cat''' _lowerCamelCase : int = tokenizer.encode( __lowerCAmelCase , ) # Same as above self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Dict = '''bos''' _lowerCamelCase : List[str] = tokenizer.get_vocab()['''bos'''] _lowerCamelCase : List[Any] = '''A photo of a cat''' _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) # We changed the bos token self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''./tok''' ) _lowerCamelCase : str = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) _lowerCamelCase : Union[str, Any] = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
175
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class __snake_case ( _lowercase): snake_case__ : List[Any] = "xglm" snake_case__ : Dict = ["past_key_values"] snake_case__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , __lowerCAmelCase : List[Any]=2_5_6_0_0_8 , __lowerCAmelCase : int=2_0_4_8 , __lowerCAmelCase : Dict=1_0_2_4 , __lowerCAmelCase : List[str]=4_0_9_6 , __lowerCAmelCase : Tuple=2_4 , __lowerCAmelCase : Dict=1_6 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[Any]=2 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : int = d_model _lowerCamelCase : Optional[Any] = ffn_dim _lowerCamelCase : Any = num_layers _lowerCamelCase : Union[str, Any] = attention_heads _lowerCamelCase : List[str] = activation_function _lowerCamelCase : Union[str, Any] = dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : List[str] = init_std _lowerCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : str = use_cache super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
175
1
'''simple docstring''' from torch import nn def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
70
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase: Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = XLMProphetNetTokenizer __A = False __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = "[PAD]" a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase_ ) , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) a = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase_ (self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Hello World!" a = [35389, 6672, 49, 2] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
227
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCAmelCase : Optional[int] = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : bool , lowerCAmelCase__ : str = None , lowerCAmelCase__ : list = None): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: str = os.path.abspath(os.path.join("examples" , "by_feature")) SCREAMING_SNAKE_CASE_: Any = os.path.abspath("examples") for item in os.listdir(lowerCAmelCase__): if item not in EXCLUDE_EXAMPLES: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) if os.path.isfile(lowerCAmelCase__) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase__ , feature_script=lowerCAmelCase__ , tested_section="main()" if parser_only else "training_function()" , ): SCREAMING_SNAKE_CASE_: Optional[int] = compare_against_test( os.path.join(lowerCAmelCase__ , lowerCAmelCase__) , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = "\n".join(lowerCAmelCase__) if special_strings is not None: for string in special_strings: SCREAMING_SNAKE_CASE_: Optional[Any] = diff.replace(lowerCAmelCase__ , "") self.assertEqual(lowerCAmelCase__ , "") def _SCREAMING_SNAKE_CASE ( self : List[str]): self.one_complete_example("complete_nlp_example.py" , lowerCAmelCase__) self.one_complete_example("complete_nlp_example.py" , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Optional[int] = os.path.abspath(os.path.join("examples" , "cv_example.py")) SCREAMING_SNAKE_CASE_: str = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) self.one_complete_example("complete_cv_example.py" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any]): super().setUpClass() SCREAMING_SNAKE_CASE_: Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(cls._tmpdir , "default_config.yml") write_basic_config(save_location=cls.configPath) SCREAMING_SNAKE_CASE_: Union[str, Any] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str]): super().tearDownClass() shutil.rmtree(cls._tmpdir) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0"))) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() SCREAMING_SNAKE_CASE_: Optional[Any] = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2"))) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: str = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')}\n ".split() SCREAMING_SNAKE_CASE_: List[Any] = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__) self.assertNotIn("epoch 0:" , lowerCAmelCase__) self.assertIn("epoch 1:" , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[str] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')}\n ".split() SCREAMING_SNAKE_CASE_: Dict = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__) if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_: List[str] = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_: str = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , lowerCAmelCase__) self.assertIn("epoch 1:" , lowerCAmelCase__) else: self.assertIn("epoch 0:" , lowerCAmelCase__) self.assertIn("epoch 1:" , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"}): SCREAMING_SNAKE_CASE_: Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = re.findall("({.+})" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = [r for r in results if "accuracy" in r][-1] SCREAMING_SNAKE_CASE_: List[Any] = ast.literal_eval(lowerCAmelCase__) self.assertGreaterEqual(results["accuracy"] , 0.75) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"}) def _SCREAMING_SNAKE_CASE ( self : Dict): with tempfile.TemporaryDirectory() as tmpdir: SCREAMING_SNAKE_CASE_: List[Any] = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "tracking"))) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Dict = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs)
127
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Any = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowerCAmelCase : str = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = EfficientNetConfig() SCREAMING_SNAKE_CASE_: Any = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE_: Optional[Any] = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE_: List[Any] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE_: Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE_: Dict = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE_: str = "huggingface/label-files" SCREAMING_SNAKE_CASE_: str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: int = 10_00 SCREAMING_SNAKE_CASE_: int = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any = idalabel SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in idalabel.items()} return config def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: Optional[Any] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_UpperCAmelCase , ) return preprocessor def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE_: Optional[Any] = sorted(set(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: int = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase , range(_UpperCAmelCase ) )} SCREAMING_SNAKE_CASE_: List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE_: List[str] = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE_: Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE_: str = "efficientnet." + item[1] SCREAMING_SNAKE_CASE_: List[str] = "classifier.weight" SCREAMING_SNAKE_CASE_: Optional[Any] = "classifier.bias" return key_mapping def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE_: List[str] = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE_: str = torch.from_numpy(_UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE_: Tuple = torch.from_numpy(np.transpose(_UpperCAmelCase ) ) else: SCREAMING_SNAKE_CASE_: List[str] = torch.from_numpy(_UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCAmelCase ) @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model_classes[model_name]( include_top=_UpperCAmelCase , weights="imagenet" , input_tensor=_UpperCAmelCase , input_shape=_UpperCAmelCase , pooling=_UpperCAmelCase , classes=10_00 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE_: Tuple = original_model.trainable_variables SCREAMING_SNAKE_CASE_: Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE_: List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE_: str = param.numpy() SCREAMING_SNAKE_CASE_: Union[str, Any] = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE_: Any = get_efficientnet_config(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = EfficientNetForImageClassification(_UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_: str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE_: Tuple = rename_keys(_UpperCAmelCase ) replace_params(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE_: Optional[Any] = convert_image_processor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = hf_model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE_: Tuple = image.img_to_array(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = np.expand_dims(_UpperCAmelCase , axis=0 ) SCREAMING_SNAKE_CASE_: str = original_model.predict(_UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCAmelCase ): os.mkdir(_UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCAmelCase ) preprocessor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub..." ) SCREAMING_SNAKE_CASE_: Optional[Any] = f"efficientnet-{model_name}" preprocessor.push_to_hub(_UpperCAmelCase ) hf_model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowerCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
127
1
"""simple docstring""" def __lowercase ( snake_case_ : str ) ->list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
179
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a_ = logging.getLogger(__name__) torch.set_grad_enabled(False) a_ = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowercase ( snake_case_ : str ,snake_case_ : Tuple=100 ,snake_case_ : int=" " ) ->List[str]: '''simple docstring''' __A : Dict = text.split(snake_case_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 ,len(snake_case_ ) ,snake_case_ )] def __lowercase ( snake_case_ : dict ) ->dict: '''simple docstring''' __A , __A : Optional[int] = [], [] for title, text in zip(documents['''title'''] ,documents['''text'''] ): if text is not None: for passage in split_text(snake_case_ ): titles.append(title if title is not None else '''''' ) texts.append(snake_case_ ) return {"title": titles, "text": texts} def __lowercase ( snake_case_ : dict ,snake_case_ : DPRContextEncoder ,snake_case_ : DPRContextEncoderTokenizerFast ) ->dict: '''simple docstring''' __A : Tuple = ctx_tokenizer( documents['''title'''] ,documents['''text'''] ,truncation=snake_case_ ,padding='''longest''' ,return_tensors='''pt''' )['''input_ids'''] __A : int = ctx_encoder(input_ids.to(device=snake_case_ ) ,return_dict=snake_case_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowercase ( snake_case_ : "RagExampleArguments" ,snake_case_ : "ProcessingArguments" ,snake_case_ : "IndexHnswArguments" ,) ->Tuple: '''simple docstring''' logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __A : Optional[Any] = load_dataset( '''csv''' ,data_files=[rag_example_args.csv_path] ,split='''train''' ,delimiter='''\t''' ,column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __A : str = dataset.map(snake_case_ ,batched=snake_case_ ,num_proc=processing_args.num_proc ) # And compute the embeddings __A : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=snake_case_ ) __A : str = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __A : Optional[int] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space __A : List[Any] = dataset.map( partial(snake_case_ ,ctx_encoder=snake_case_ ,ctx_tokenizer=snake_case_ ) ,batched=snake_case_ ,batch_size=processing_args.batch_size ,features=snake_case_ ,) # And finally save your dataset __A : int = os.path.join(rag_example_args.output_dir ,'''my_knowledge_dataset''' ) dataset.save_to_disk(snake_case_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __A : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d ,index_hnsw_args.m ,faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' ,custom_index=snake_case_ ) # And save the index __A : List[str] = os.path.join(rag_example_args.output_dir ,'''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(snake_case_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = field( default=str(Path(SCREAMING_SNAKE_CASE__ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) _lowerCamelCase = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) _lowerCamelCase = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) _lowerCamelCase = field( default=str(Path(SCREAMING_SNAKE_CASE__ ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) _lowerCamelCase = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) _lowerCamelCase = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a_ , a_ , a_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
179
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ :Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__ :Dict = '''▁''' lowerCAmelCase__ :Dict = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ :Dict = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } lowerCAmelCase__ :int = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } lowerCAmelCase__ :Optional[int] = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } lowerCAmelCase__ :Any = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __a ( UpperCAmelCase ): _a : List[str] = ["input_ids"] _a : List[str] = VOCAB_FILES_NAMES _a : str = PRETRAINED_INIT_CONFIGURATION _a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Any = PRETRAINED_VOCAB_FILES_MAP _a : Tuple = RESOURCE_FILES_NAMES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="utf8" , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , vocab_file=_SCREAMING_SNAKE_CASE , encoding=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = sentencepiece_model_ckpt _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _UpperCAmelCase = self.load_vocab(filepath=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = {self.sp_model.id_to_piece(_SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} _UpperCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if text is None: return None _UpperCAmelCase = self.tokenize(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = '', [] for i, ch in enumerate(_SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: _UpperCAmelCase = self.SP_CHAR_MAPPING.get(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = unicodedata.normalize('NFKC' , _SCREAMING_SNAKE_CASE ) if self.is_whitespace(_SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = normalized_text, [], 0 if self.do_lower_case: _UpperCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": _UpperCAmelCase = token[1:] _UpperCAmelCase = text[offset:].index(_SCREAMING_SNAKE_CASE ) + offset _UpperCAmelCase = start + len(_SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _UpperCAmelCase = end return token_mapping @property def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c in text) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=0.1 ) -> str: """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: _UpperCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: _UpperCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: _UpperCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: _UpperCAmelCase = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = self.sp_model.SampleEncodeAsPieces(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [] for pi, piece in enumerate(_SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(_SCREAMING_SNAKE_CASE ) continue else: continue _UpperCAmelCase = 0 for i, chunk in enumerate(_SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_SCREAMING_SNAKE_CASE ) or self.is_punct(_SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _UpperCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _UpperCAmelCase = i if len(_SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ' ' ).strip() return out_string def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ' ' ).strip() return out_string def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.vocab.get(_SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return self.reverse_vocab.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(_SCREAMING_SNAKE_CASE ) + 3) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_SCREAMING_SNAKE_CASE ) == 1: _UpperCAmelCase = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = {} with io.open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = line.rstrip('\n' ) _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return token_to_idx def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = 0 if os.path.isdir(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: _UpperCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) _UpperCAmelCase = token_index writer.write(token + '\n' ) index += 1 _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , 'sentencepiece.bpe.model' ) with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (vocab_file,)
355
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCAmelCase__ ( a__: Sequence[float] , a__: int , a__: int ) -> tuple[int | None, int | None, float]: '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] _UpperCAmelCase = (low + high) // 2 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_subarray(a__ , a__ , a__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_subarray(a__ , mid + 1 , a__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCAmelCase__ ( a__: Sequence[float] , a__: int , a__: int , a__: int ) -> tuple[int, int, float]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = float('-inf' ), -1 _UpperCAmelCase , _UpperCAmelCase = float('-inf' ), -1 _UpperCAmelCase = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _UpperCAmelCase = summ _UpperCAmelCase = i _UpperCAmelCase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _UpperCAmelCase = summ _UpperCAmelCase = i return max_left, max_right, (left_sum + right_sum) def lowerCAmelCase__ ( a__: int ) -> float: '''simple docstring''' _UpperCAmelCase = [randint(1 , a__ ) for _ in range(a__ )] _UpperCAmelCase = time.time() max_subarray(a__ , 0 , input_size - 1 ) _UpperCAmelCase = time.time() return end - start def lowerCAmelCase__ ( ) -> None: '''simple docstring''' _UpperCAmelCase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] _UpperCAmelCase = [time_max_subarray(a__ ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '\t\t' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
185
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : int = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'mgp-str' def __init__( self , SCREAMING_SNAKE_CASE_=[32, 128] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=27 , SCREAMING_SNAKE_CASE_=38 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=30522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_2 , **SCREAMING_SNAKE_CASE_ , )-> Tuple: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = max_token_length __UpperCamelCase = num_character_labels __UpperCamelCase = num_bpe_labels __UpperCamelCase = num_wordpiece_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = mlp_ratio __UpperCamelCase = distilled __UpperCamelCase = layer_norm_eps __UpperCamelCase = drop_rate __UpperCamelCase = qkv_bias __UpperCamelCase = attn_drop_rate __UpperCamelCase = drop_path_rate __UpperCamelCase = output_aa_attentions __UpperCamelCase = initializer_range
328
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
1
"""simple docstring""" from importlib import import_module from .logging import get_logger UpperCamelCase_ =get_logger(__name__) class _a : def __init__( self : str, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[Any]=None ) -> Tuple: '''simple docstring''' _UpperCamelCase : Tuple = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self, lowerCAmelCase__, getattr(lowerCAmelCase__, lowerCAmelCase__ ) ) _UpperCamelCase : Tuple = module._original_module if isinstance(lowerCAmelCase__, _PatchedModuleObj ) else module class _a : UpperCamelCase = [] def __init__( self : List[Any], lowerCAmelCase__ : Dict, lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Union[str, Any]=None ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = obj _UpperCamelCase : str = target _UpperCamelCase : Optional[int] = new _UpperCamelCase : Tuple = target.split('''.''' )[0] _UpperCamelCase : Optional[int] = {} _UpperCamelCase : Union[str, Any] = attrs or [] def __enter__( self : str ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCamelCase : List[str] = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCamelCase : Optional[int] = getattr(self.obj, lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__, _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCamelCase : Optional[Any] = obj_attr # patch at top level setattr(self.obj, lowerCAmelCase__, _PatchedModuleObj(lowerCAmelCase__, attrs=self.attrs ) ) _UpperCamelCase : Optional[Any] = getattr(self.obj, lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__, lowerCAmelCase__, _PatchedModuleObj(getattr(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ), attrs=self.attrs ) ) _UpperCamelCase : List[Any] = getattr(lowerCAmelCase__, lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__, lowerCAmelCase__, self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCamelCase : List[Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ), lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj, lowerCAmelCase__ ) is attr_value: _UpperCamelCase : List[str] = getattr(self.obj, lowerCAmelCase__ ) setattr(self.obj, lowerCAmelCase__, self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCamelCase : Dict = globals()['__builtins__'][target_attr] setattr(self.obj, lowerCAmelCase__, self.new ) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : List[str], *lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for attr in list(self.original ): setattr(self.obj, lowerCAmelCase__, self.original.pop(lowerCAmelCase__ ) ) def a ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.__enter__() self._active_patches.append(self ) def a ( self : Any ) -> Tuple: '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
351
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ =0b1_0_1_1_0_0_1_1_1_1_1_0_1_1_0_0_1_0_0_1_0_0_0_0_0_1_1_1_1_0_1_1_1_0_1_1_0_0_0_1_1_0_0_1_1_1_1_0 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _a : def __init__( self : str ) -> str: '''simple docstring''' _UpperCamelCase : str = WATERMARK_BITS _UpperCamelCase : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''', self.watermark ) def snake_case ( self : Dict, lowerCAmelCase__ : torch.FloatTensor ) -> int: '''simple docstring''' if images.shape[-1] < 2_5_6: return images _UpperCamelCase : Union[str, Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1 ).float().numpy() _UpperCamelCase : List[str] = [self.encoder.encode(lowerCAmelCase__, '''dwtDct''' ) for image in images] _UpperCamelCase : Dict = torch.from_numpy(np.array(lowerCAmelCase__ ) ).permute(0, 3, 1, 2 ) _UpperCamelCase : Optional[int] = torch.clamp(2 * (images / 2_5_5 - 0.5), min=-1.0, max=1.0 ) return images
128
0
def __lowercase ( lowerCamelCase : int ): assert isinstance(lowerCamelCase , lowerCamelCase ), F"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: UpperCamelCase_ : int = F"The input value of [n={number}] has to be > 0" raise ValueError(lowerCamelCase ) else: UpperCamelCase_ : Optional[int] = sylvester(number - 1 ) UpperCamelCase_ : Union[str, Any] = num - 1 UpperCamelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
175
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : List[Any] = 'huggingface/label-files' UpperCamelCase_ : int = 'imagenet-1k-id2label.json' UpperCamelCase_ : int = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type='dataset' ) , 'r' ) ) UpperCamelCase_ : str = {int(lowerCamelCase ): v for k, v in idalabel.items()} UpperCamelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} UpperCamelCase_ : str = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCamelCase_ : int = BitConfig( conv_layer=lowerCamelCase , num_labels=1000 , idalabel=lowerCamelCase , labelaid=lowerCamelCase , ) return config def __lowercase ( lowerCamelCase : int ): if "stem.conv" in name: UpperCamelCase_ : str = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: UpperCamelCase_ : str = name.replace('blocks' , 'layers' ) if "head.fc" in name: UpperCamelCase_ : Dict = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): UpperCamelCase_ : List[str] = 'bit.' + name if "bit" not in name and "classifier" not in name: UpperCamelCase_ : int = 'bit.encoder.' + name return name def __lowercase ( ): UpperCamelCase_ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ : List[Any] = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def __lowercase ( lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : List[str]=False ): UpperCamelCase_ : Optional[Any] = get_config(lowerCamelCase ) # load original model from timm UpperCamelCase_ : Dict = create_model(lowerCamelCase , pretrained=lowerCamelCase ) timm_model.eval() # load state_dict of original model UpperCamelCase_ : str = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCamelCase_ : Tuple = state_dict.pop(lowerCamelCase ) UpperCamelCase_ : str = val.squeeze() if 'head' in key else val # load HuggingFace model UpperCamelCase_ : Dict = BitForImageClassification(lowerCamelCase ) model.eval() model.load_state_dict(lowerCamelCase ) # create image processor UpperCamelCase_ : int = create_transform(**resolve_data_config({} , model=lowerCamelCase ) ) UpperCamelCase_ : List[Any] = transform.transforms UpperCamelCase_ : str = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } UpperCamelCase_ : Tuple = BitImageProcessor( do_resize=lowerCamelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCamelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCamelCase_ : Dict = prepare_img() UpperCamelCase_ : Any = transform(lowerCamelCase ).unsqueeze(0 ) UpperCamelCase_ : Union[str, Any] = processor(lowerCamelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) # verify logits with torch.no_grad(): UpperCamelCase_ : Dict = model(lowerCamelCase ) UpperCamelCase_ : Tuple = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCamelCase_ : List[Any] = timm_model(lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: print(F"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(F"ybelkada/{model_name}" ) processor.push_to_hub(F"ybelkada/{model_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) a_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
175
1
"""simple docstring""" import heapq import sys import numpy as np __A = tuple[int, int] class UpperCAmelCase : """simple docstring""" def __init__( self ): lowercase__: Dict = [] lowercase__: List[str] = set() def _snake_case ( self ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _snake_case ( self ): return len(self.elements ) == 0 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCAmelCase ) else: # update # print("update", item) lowercase__: Tuple = [] (lowercase__): Dict = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (lowercase__): Optional[Any] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _snake_case ( self , _UpperCAmelCase ): if item in self.set: self.set.remove(_UpperCAmelCase ) lowercase__: List[Any] = [] (lowercase__): Dict = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (lowercase__): Optional[int] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _snake_case ( self ): return self.elements[0][1] def _snake_case ( self ): (lowercase__): Any = heapq.heappop(self.elements ) self.set.remove(_UpperCAmelCase ) return (priority, item) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: # euclidean distance lowercase__: Dict = np.array(__UpperCAmelCase ) lowercase__: List[Any] = np.array(__UpperCAmelCase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: # integer division by time variable return consistent_heuristic(__UpperCAmelCase , __UpperCAmelCase ) // t def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Optional[int] = g_function[start] + Wa * heuristics[i](__UpperCAmelCase , __UpperCAmelCase ) return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowercase__: Tuple = np.chararray((n, n) ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): lowercase__: Dict = '''*''' for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if (j, (n - 1) - i) in blocks: lowercase__: Dict = '''#''' lowercase__: Any = '''-''' lowercase__: Optional[Any] = back_pointer[goal] while x != start: (lowercase__): Optional[int] = x # print(x) lowercase__: Optional[Any] = '''-''' lowercase__: List[str] = back_pointer[x] lowercase__: List[Any] = '''-''' for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) lowercase__: List[str] = back_pointer[goal] while x != start: print(__UpperCAmelCase , end=''' ''' ) lowercase__: int = back_pointer[x] print(__UpperCAmelCase ) sys.exit() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: for itera in range(__UpperCAmelCase ): open_list[itera].remove_element(__UpperCAmelCase ) # print("s", s) # print("j", j) (lowercase__): Optional[Any] = s lowercase__: Any = (x - 1, y) lowercase__: int = (x + 1, y) lowercase__: Union[str, Any] = (x, y + 1) lowercase__: int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__UpperCAmelCase ) lowercase__: List[str] = -1 lowercase__: Any = float('''inf''' ) if valid(__UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: lowercase__: int = g_function[s] + 1 lowercase__: Union[str, Any] = s if neighbours not in close_list_anchor: open_list[0].put(__UpperCAmelCase , key(__UpperCAmelCase , 0 , __UpperCAmelCase , __UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __UpperCAmelCase ): if key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) <= Wa * key( __UpperCAmelCase , 0 , __UpperCAmelCase , __UpperCAmelCase ): open_list[j].put( __UpperCAmelCase , key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: lowercase__: Optional[Any] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __A = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __A = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] __A = make_common_ground() __A = blocks_blk # hyper parameters __A = 1 __A = 1 __A = 2_0 __A = 3 # one consistent and two other inconsistent # start and end destination __A = (0, 0) __A = (n - 1, n - 1) __A = 1 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowercase__: Any = {start: 0, goal: float('''inf''' )} lowercase__: int = {start: -1, goal: -1} lowercase__: Dict = [] lowercase__: Dict = set() for i in range(__UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__UpperCAmelCase , key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) lowercase__: list[int] = [] lowercase__: list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: lowercase__: Optional[Any] = open_list[i].top_show() visited.add(__UpperCAmelCase ) expand_state( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) close_list_inad.append(__UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: lowercase__: Optional[Any] = open_list[0].top_show() visited.add(__UpperCAmelCase ) expand_state( __UpperCAmelCase , 0 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) close_list_anchor.append(__UpperCAmelCase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__UpperCAmelCase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if collection == []: return [] # get some information about the collection snake_case = len(UpperCamelCase_ ) snake_case = max(UpperCamelCase_ ) snake_case = min(UpperCamelCase_ ) # create the counting array snake_case = coll_max + 1 - coll_min snake_case = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 ,UpperCamelCase_ ): snake_case = counting_arr[i] + counting_arr[i - 1] # create the output collection snake_case = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 ,UpperCamelCase_ ) ): snake_case = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" return "".join([chr(UpperCamelCase_ ) for i in counting_sort([ord(UpperCamelCase_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" _SCREAMING_SNAKE_CASE : int = input("Enter numbers separated by a comma:\n").strip() _SCREAMING_SNAKE_CASE : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
127
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" __magic_name__ = XGLMConfig __magic_name__ = {} __magic_name__ = 'gelu' def __init__( self , __snake_case , __snake_case=1_4 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=9_9 , __snake_case=3_2 , __snake_case=2 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=0.02 , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_labels snake_case = vocab_size snake_case = d_model snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = ffn_dim snake_case = activation_function snake_case = activation_dropout snake_case = attention_dropout snake_case = max_position_embeddings snake_case = initializer_range snake_case = None snake_case = 0 snake_case = 2 snake_case = 1 def a_ ( self ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def a_ ( self ): snake_case = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = self.get_config() snake_case = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def a_ ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__snake_case , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__snake_case , ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __magic_name__ = (TFXGLMForCausalLM,) if is_tf_available() else () __magic_name__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self ): snake_case = TFXGLMModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , n_embd=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() @slow def a_ ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = TFXGLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def a_ ( self ): super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def a_ ( self , __snake_case=True ): snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on snake_case = model.generate(__snake_case , do_sample=__snake_case , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __snake_case ) @slow def a_ ( self ): snake_case = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) snake_case = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) snake_case = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): snake_case = model.generate(__snake_case , do_sample=__snake_case , seed=[7, 0] ) snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=__snake_case ) snake_case = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__snake_case , __snake_case ) @slow def a_ ( self ): snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case = '''left''' # use different length sentences to test batching snake_case = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] snake_case = tokenizer(__snake_case , return_tensors='''tf''' , padding=__snake_case ) snake_case = inputs['''input_ids'''] snake_case = model.generate(input_ids=__snake_case , attention_mask=inputs['''attention_mask'''] , max_new_tokens=1_2 ) snake_case = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids snake_case = model.generate(input_ids=__snake_case , max_new_tokens=1_2 ) snake_case = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids snake_case = model.generate(input_ids=__snake_case , max_new_tokens=1_2 ) snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__snake_case ) snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=__snake_case ) snake_case = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , [non_padded_sentence, padded_sentence] )
127
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : int = MBartConfig __UpperCamelCase : int = {} __UpperCamelCase : Tuple = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=20 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def _lowercase ( self ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() UpperCamelCase = inputs_dict['''input_ids'''] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] UpperCamelCase = inputs_dict['''head_mask'''] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) UpperCamelCase = outputs.to_tuple() UpperCamelCase = past_key_values[1] def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , ): """simple docstring""" if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : Tuple = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Any = False __UpperCamelCase : str = False def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase ( self ): """simple docstring""" UpperCamelCase = TFMBartModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' __UpperCamelCase : int = [ " UN Chief Says There Is No Military Solution in Syria", ] __UpperCamelCase : Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __UpperCamelCase : Tuple = "facebook/mbart-large-en-ro" @cached_property def _lowercase ( self ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase ( self ): """simple docstring""" UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = self.translate_src_text(**__SCREAMING_SNAKE_CASE ) self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) return generated_words @slow def _lowercase ( self ): """simple docstring""" self._assert_generated_batch_equal_expected()
354
import qiskit def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCamelCase : Any = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCamelCase : Any = qiskit.execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : int = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
315
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase__ ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE : BigBirdConfig _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa _SCREAMING_SNAKE_CASE : bool = True def lowerCAmelCase (self : List[Any] ): super().setup() __a : str = nn.Dense(5 , dtype=self.dtype ) def __call__(self : Tuple , *snake_case_ : Optional[Any] , **snake_case_ : Any ): __a : Optional[int] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __a : str = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase__ ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ): def cross_entropy(lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=None ): __a : Union[str, Any] = logits.shape[-1] __a : Any = (labels[..., None] == jnp.arange(UpperCAmelCase_ )[None]).astype('''f4''' ) __a : Dict = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) __a : Optional[int] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __a : str = reduction(UpperCAmelCase_ ) return loss __a : List[str] = partial(UpperCAmelCase_ , reduction=jnp.mean ) __a : List[str] = cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) __a : str = cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) __a : Tuple = cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : str = "google/bigbird-roberta-base" _SCREAMING_SNAKE_CASE : int = 3_000 _SCREAMING_SNAKE_CASE : int = 10_500 _SCREAMING_SNAKE_CASE : int = 128 _SCREAMING_SNAKE_CASE : int = 3 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : int = 5 # tx_args _SCREAMING_SNAKE_CASE : float = 3e-5 _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : int = 20_000 _SCREAMING_SNAKE_CASE : float = 0.00_95 _SCREAMING_SNAKE_CASE : str = "bigbird-roberta-natural-questions" _SCREAMING_SNAKE_CASE : str = "training-expt" _SCREAMING_SNAKE_CASE : str = "data/nq-training.jsonl" _SCREAMING_SNAKE_CASE : str = "data/nq-validation.jsonl" def lowerCAmelCase (self : Optional[int] ): os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_ ) __a : Dict = os.path.join(self.base_dir , self.save_dir ) __a : Dict = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int = 4_096 # no dynamic padding on TPUs def __call__(self : Union[str, Any] , snake_case_ : Any ): __a : Any = self.collate_fn(SCREAMING_SNAKE_CASE_ ) __a : Dict = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return batch def lowerCAmelCase (self : Tuple , snake_case_ : Dict ): __a : List[str] = self.fetch_inputs(features['''input_ids'''] ) __a : Dict = { 'input_ids': jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ), 'attention_mask': jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ), 'start_labels': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowerCAmelCase (self : str , snake_case_ : str ): __a : Optional[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_ ) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : Union[str, Any] ): __a : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_ ) )] while len(SCREAMING_SNAKE_CASE_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str]=None ): if seed is not None: __a : Union[str, Any] = dataset.shuffle(seed=UpperCAmelCase_ ) for i in range(len(UpperCAmelCase_ ) // batch_size ): __a : List[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCAmelCase_ ) @partial(jax.pmap , axis_name='''batch''' ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : List[Any] ): def loss_fn(lowerCAmelCase__ : Any ): __a : Union[str, Any] = model_inputs.pop('''start_labels''' ) __a : int = model_inputs.pop('''end_labels''' ) __a : int = model_inputs.pop('''pooled_labels''' ) __a : int = state.apply_fn(**UpperCAmelCase_ , params=UpperCAmelCase_ , dropout_rng=UpperCAmelCase_ , train=UpperCAmelCase_ ) __a : Optional[Any] = outputs return state.loss_fn( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) __a : int = jax.random.split(UpperCAmelCase_ ) __a : List[Any] = jax.value_and_grad(UpperCAmelCase_ ) __a : Union[str, Any] = grad_fn(state.params ) __a : int = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) __a : Dict = jax.lax.pmean(UpperCAmelCase_ , '''batch''' ) __a : Optional[int] = state.apply_gradients(grads=UpperCAmelCase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __UpperCamelCase ( lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : int ): __a : Optional[int] = model_inputs.pop('''start_labels''' ) __a : List[Any] = model_inputs.pop('''end_labels''' ) __a : Optional[Any] = model_inputs.pop('''pooled_labels''' ) __a : int = state.apply_fn(**UpperCAmelCase_ , params=state.params , train=UpperCAmelCase_ ) __a : Optional[Any] = outputs __a : List[str] = state.loss_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __a : Optional[int] = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class UpperCamelCase__ ( train_state.TrainState ): _SCREAMING_SNAKE_CASE : Callable = struct.field(pytree_node=_UpperCAmelCase ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Args _SCREAMING_SNAKE_CASE : Callable _SCREAMING_SNAKE_CASE : Callable _SCREAMING_SNAKE_CASE : Callable _SCREAMING_SNAKE_CASE : Callable _SCREAMING_SNAKE_CASE : wandb _SCREAMING_SNAKE_CASE : Callable = None def lowerCAmelCase (self : int , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[int]=None ): __a : int = model.params __a : List[Any] = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: __a : Tuple = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __a : Dict = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } __a : Any = build_tx(**SCREAMING_SNAKE_CASE_ ) __a : Any = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) __a : str = args __a : Tuple = data_collator __a : int = lr __a : Optional[Any] = params __a : Optional[Any] = jax_utils.replicate(SCREAMING_SNAKE_CASE_ ) return state def lowerCAmelCase (self : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ): __a : List[Any] = self.args __a : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.batch_size __a : str = jax.random.PRNGKey(0 ) __a : Optional[Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() ) for epoch in range(args.max_epochs ): __a : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa ) __a : Optional[Any] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_ ) __a : List[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f"Running EPOCH-{epoch}" ): __a : List[Any] = self.data_collator(SCREAMING_SNAKE_CASE_ ) __a : str = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __a : Optional[int] = jax_utils.unreplicate(state.step ) __a : Tuple = running_loss.item() / i __a : int = self.scheduler_fn(state_step - 1 ) __a : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __a : Tuple = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_ ) ) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" , state=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase (self : List[Any] , snake_case_ : Dict , snake_case_ : str ): __a : List[Any] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size ) __a : int = len(SCREAMING_SNAKE_CASE_ ) // self.args.batch_size __a : Any = jnp.array(0 , dtype=jnp.floataa ) __a : Tuple = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc='''Evaluating ... ''' ): __a : Union[str, Any] = self.data_collator(SCREAMING_SNAKE_CASE_ ) __a : Any = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowerCAmelCase (self : Optional[Any] , snake_case_ : Tuple , snake_case_ : List[Any] ): __a : Dict = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_ ) print(f"SAVING CHECKPOINT IN {save_dir}" , end=''' ... ''' ) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , '''data_collator.joblib''' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , SCREAMING_SNAKE_CASE_ ) print('''DONE''' ) def __UpperCamelCase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ): print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=''' ... ''' ) with open(os.path.join(UpperCAmelCase_ , '''flax_model.msgpack''' ) , '''rb''' ) as f: __a : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCAmelCase_ , '''opt_state.msgpack''' ) , '''rb''' ) as f: __a : Optional[int] = from_bytes(state.opt_state , f.read() ) __a : int = joblib.load(os.path.join(UpperCAmelCase_ , '''args.joblib''' ) ) __a : Optional[Any] = joblib.load(os.path.join(UpperCAmelCase_ , '''data_collator.joblib''' ) ) with open(os.path.join(UpperCAmelCase_ , '''training_state.json''' ) , '''r''' ) as f: __a : Optional[Any] = json.load(UpperCAmelCase_ ) __a : Optional[Any] = training_state['step'] print('''DONE''' ) return params, opt_state, step, args, data_collator def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ): __a : List[Any] = num_train_steps - warmup_steps __a : Union[str, Any] = optax.linear_schedule(init_value=UpperCAmelCase_ , end_value=UpperCAmelCase_ , transition_steps=UpperCAmelCase_ ) __a : Dict = optax.linear_schedule(init_value=UpperCAmelCase_ , end_value=1e-7 , transition_steps=UpperCAmelCase_ ) __a : Optional[int] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ): def weight_decay_mask(lowerCAmelCase__ : List[Any] ): __a : List[str] = traverse_util.flatten_dict(UpperCAmelCase_ ) __a : List[Any] = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCAmelCase_ ) __a : List[Any] = scheduler_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __a : Optional[int] = optax.adamw(learning_rate=UpperCAmelCase_ , weight_decay=UpperCAmelCase_ , mask=UpperCAmelCase_ ) return tx, lr
216
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A__ : List[str] = get_logger(__name__) A__ : str = R""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class UpperCAmelCase_ : """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase_ : """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: for processor in self: __lowerCamelCase : str = inspect.signature(processor.__call__ ).parameters if len(SCREAMING_SNAKE_CASE_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) __lowerCamelCase : Tuple = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : int = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) __lowerCamelCase : Optional[int] = temperature def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : Dict = scores / self.temperature return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -float('Inf' ) , SCREAMING_SNAKE_CASE_ = 1 ) -> Union[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) __lowerCamelCase : str = top_p __lowerCamelCase : Tuple = filter_value __lowerCamelCase : Tuple = min_tokens_to_keep def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase , __lowerCamelCase : Any = lax.top_k(SCREAMING_SNAKE_CASE_ , scores.shape[-1] ) __lowerCamelCase : int = jnp.full_like(SCREAMING_SNAKE_CASE_ , self.filter_value ) __lowerCamelCase : Tuple = jax.nn.softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ).cumsum(axis=-1 ) __lowerCamelCase : List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __lowerCamelCase : Tuple = jnp.roll(SCREAMING_SNAKE_CASE_ , 1 ) score_mask |= score_mask.at[:, 0].set(SCREAMING_SNAKE_CASE_ ) # min tokens to keep __lowerCamelCase : Any = score_mask.at[:, : self.min_tokens_to_keep].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = jnp.where(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = jax.lax.sort_key_val(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[-1] return next_scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -float('Inf' ) , SCREAMING_SNAKE_CASE_ = 1 ) -> str: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) __lowerCamelCase : List[str] = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = filter_value def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase , __lowerCamelCase : List[Any] = scores.shape __lowerCamelCase : Tuple = jnp.full(batch_size * vocab_size , self.filter_value ) __lowerCamelCase : int = min(self.top_k , scores.shape[-1] ) # Safety check __lowerCamelCase , __lowerCamelCase : Tuple = lax.top_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = jnp.broadcast_to((jnp.arange(SCREAMING_SNAKE_CASE_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __lowerCamelCase : List[Any] = topk_scores.flatten() __lowerCamelCase : Union[str, Any] = topk_indices.flatten() + shift __lowerCamelCase : Tuple = next_scores_flat.at[topk_indices_flat].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = next_scores_flat.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return next_scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Any = bos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : Optional[Any] = jnp.full(scores.shape , -float('inf' ) ) __lowerCamelCase : Optional[Any] = 1 - jnp.bool_(cur_len - 1 ) __lowerCamelCase : List[Any] = jnp.where(SCREAMING_SNAKE_CASE_ , new_scores.at[:, self.bos_token_id].set(0 ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Tuple = max_length __lowerCamelCase : Any = eos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : List[str] = jnp.full(scores.shape , -float('inf' ) ) __lowerCamelCase : Any = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __lowerCamelCase : List[str] = jnp.where(SCREAMING_SNAKE_CASE_ , new_scores.at[:, self.eos_token_id].set(0 ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) __lowerCamelCase : str = min_length __lowerCamelCase : Optional[int] = eos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied __lowerCamelCase : Optional[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __lowerCamelCase : str = jnp.where(SCREAMING_SNAKE_CASE_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = begin_index def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : List[Any] = 1 - jnp.bool_(cur_len - self.begin_index ) __lowerCamelCase : str = jnp.where(SCREAMING_SNAKE_CASE_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Tuple = list(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : int = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = dict(SCREAMING_SNAKE_CASE_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __lowerCamelCase : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __lowerCamelCase : str = force_token_array.at[index].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = jnp.intaa(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: def _force_token(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : List[str] = scores.shape[0] __lowerCamelCase : Tuple = self.force_token_array[generation_idx] __lowerCamelCase : List[Any] = jnp.ones_like(SCREAMING_SNAKE_CASE_ , dtype=scores.dtype ) * -float('inf' ) __lowerCamelCase : Any = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __lowerCamelCase : str = lax.dynamic_update_slice(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (0, current_token) ) return new_scores __lowerCamelCase : int = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(SCREAMING_SNAKE_CASE_ ) , lambda: scores , ) , ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = generate_config.eos_token_id __lowerCamelCase : Dict = generate_config.no_timestamps_token_id __lowerCamelCase : Tuple = generate_config.no_timestamps_token_id + 1 __lowerCamelCase : List[str] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(SCREAMING_SNAKE_CASE_ , 'max_initial_timestamp_index' ): __lowerCamelCase : str = generate_config.max_initial_timestamp_index else: __lowerCamelCase : Optional[int] = model_config.vocab_size if self.max_initial_timestamp_index is None: __lowerCamelCase : Tuple = model_config.vocab_size def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: # suppress <|notimestamps|> which is handled by without_timestamps __lowerCamelCase : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = jnp.where((cur_len - self.begin_index) >= 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = jnp.where((cur_len - self.begin_index) < 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) return jnp.where( SCREAMING_SNAKE_CASE_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = jax.vmap(SCREAMING_SNAKE_CASE_ )(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = jnp.where(cur_len == self.begin_index , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = self.timestamp_begin + self.max_initial_timestamp_index __lowerCamelCase : str = jnp.where( SCREAMING_SNAKE_CASE_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ , ) # if sum of probability over timestamps is above any other token, sample timestamp __lowerCamelCase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) def handle_cumulative_probs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __lowerCamelCase : List[str] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Dict = jax.vmap(SCREAMING_SNAKE_CASE_ )(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return scores
185
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _lowerCamelCase : Any = '''base_with_context''' def lowerCamelCase__ ( __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Any: _snake_case = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowercase ) for lyr_num, lyr in enumerate(model.encoders ): _snake_case = weights[f'''layers_{lyr_num}'''] _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _snake_case = ly_weight['attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def lowerCamelCase__ ( __lowercase : Union[str, Any] , __lowercase : int ) -> List[Any]: _snake_case = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowercase ) for lyr_num, lyr in enumerate(model.encoders ): _snake_case = weights[f'''layers_{lyr_num}'''] _snake_case = ly_weight['attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def lowerCamelCase__ ( __lowercase : Dict , __lowercase : Tuple ) -> Dict: _snake_case = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowercase ) _snake_case = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _snake_case = weights[f'''layers_{lyr_num}'''] _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) _snake_case = ly_weight['self_attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = ly_weight['MultiHeadDotProductAttention_0'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def lowerCamelCase__ ( __lowercase : Union[str, Any] ) -> Tuple: _snake_case = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _snake_case = jnp.tree_util.tree_map(onp.array , __lowercase ) _snake_case = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] _snake_case = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) _snake_case = inference.parse_training_gin_file(__lowercase , __lowercase ) _snake_case = inference.InferenceModel(args.checkpoint_path , __lowercase ) _snake_case = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) _snake_case = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _snake_case = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _snake_case = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _snake_case = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __lowercase ) _snake_case = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __lowercase ) _snake_case = load_decoder(ta_checkpoint['target']['decoder'] , __lowercase ) _snake_case = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) _snake_case = SpectrogramDiffusionPipeline( notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'{MODEL}/checkpoint_500000', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) _lowerCamelCase : Dict = parser.parse_args() main(args)
356
from functools import lru_cache @lru_cache def a_ ( __lowercase : int ) -> int: if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
130
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
42
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): UpperCamelCase_ , UpperCamelCase_ = coefficient_matrix.shape UpperCamelCase_ , UpperCamelCase_ = constant_matrix.shape if rowsa != colsa: UpperCamelCase_ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase) if colsa != 1: UpperCamelCase_ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase) if rowsa != rowsa: UpperCamelCase_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase) if len(_lowerCAmelCase) != rowsa: UpperCamelCase_ = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(_lowerCAmelCase)} and {rowsa}""" ) raise ValueError(_lowerCAmelCase) if iterations <= 0: raise ValueError("Iterations must be at least 1") UpperCamelCase_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1) UpperCamelCase_ , UpperCamelCase_ = table.shape strictly_diagonally_dominant(_lowerCAmelCase) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase): UpperCamelCase_ = [] for row in range(_lowerCAmelCase): UpperCamelCase_ = 0 for col in range(_lowerCAmelCase): if col == row: UpperCamelCase_ = table[row][col] elif col == cols - 1: UpperCamelCase_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase_ = (temp + val) / denom new_val.append(_lowerCAmelCase) UpperCamelCase_ = new_val return [float(_lowerCAmelCase) for i in new_val] def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = table.shape UpperCamelCase_ = True for i in range(0 , _lowerCAmelCase): UpperCamelCase_ = 0 for j in range(0 , cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant") return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
128
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=4 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.1 , snake_case__=True , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : int = parent lowerCAmelCase : str = batch_size lowerCAmelCase : str = seq_length lowerCAmelCase : Tuple = is_training lowerCAmelCase : Optional[int] = use_input_mask lowerCAmelCase : int = use_token_type_ids lowerCAmelCase : Any = use_labels lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_multiple_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : List[str] = hidden_dropout lowerCAmelCase : Optional[Any] = attention_dropout lowerCAmelCase : List[str] = weight_tying lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : Any = num_choices lowerCAmelCase : Any = scope def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : int = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowercase__ ( self ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.prepare_config_and_inputs() lowerCAmelCase : Dict = True return config, input_ids, input_mask, token_labels def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = GPTNeoXJapaneseModel(config=_A ) model.to(_A ) model.eval() lowerCAmelCase : str = model(_A , attention_mask=_A ) lowerCAmelCase : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : int = GPTNeoXJapaneseModel(_A ) model.to(_A ) model.eval() lowerCAmelCase : Any = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = GPTNeoXJapaneseForCausalLM(config=_A ) model.to(_A ) model.eval() lowerCAmelCase : Optional[int] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = True lowerCAmelCase : str = GPTNeoXJapaneseForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass lowerCAmelCase : Tuple = model(_A , attention_mask=_A , use_cache=_A ) lowerCAmelCase : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : Optional[Any] = model(_A , attention_mask=_A , output_hidden_states=_A ) lowerCAmelCase : List[str] = output_from_no_past['hidden_states'][0] lowerCAmelCase : Union[str, Any] = model( _A , attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice lowerCAmelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.prepare_config_and_inputs() lowerCAmelCase : Dict = config_and_inputs lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () a : Tuple =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () a : int =( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) a : int =False a : str =False a : List[str] =False a : int =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = GPTNeoXJapaneseModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_A , _A , _A ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_A ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = 'abeja/gpt-neox-japanese-2.7b' lowerCAmelCase : Tuple = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] lowerCAmelCase : Optional[Any] = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] lowerCAmelCase : Union[str, Any] = GPTNeoXJapaneseTokenizer.from_pretrained(_A ) lowerCAmelCase : Dict = GPTNeoXJapaneseForCausalLM.from_pretrained(_A ) lowerCAmelCase : Dict = [] for prompt in prompts: lowerCAmelCase : List[Any] = tokenizer(_A , return_tensors="pt" ).input_ids lowerCAmelCase : List[str] = model.generate(_A , max_length=50 ) lowerCAmelCase : int = tokenizer.batch_decode(_A , skip_special_tokens=_A ) predicted_outputs += generated_string self.assertListEqual(_A , _A )
357
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Dict ="autoformer" a : Dict ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = [1, 2, 3, 4, 5, 6, 7] , snake_case__ = True , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = "gelu" , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__ = True , snake_case__=True , snake_case__ = 10 , snake_case__ = 25 , snake_case__ = 3 , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Any = prediction_length lowerCAmelCase : Dict = context_length if context_length is not None else prediction_length lowerCAmelCase : Tuple = distribution_output lowerCAmelCase : List[Any] = loss lowerCAmelCase : int = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : str = lags_sequence lowerCAmelCase : List[str] = scaling lowerCAmelCase : List[Any] = num_dynamic_real_features lowerCAmelCase : Tuple = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : Any = cardinality else: lowerCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : Tuple = embedding_dimension else: lowerCAmelCase : Any = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : Any = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : str = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : Any = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Optional[Any] = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : int = decoder_layers lowerCAmelCase : List[Any] = dropout lowerCAmelCase : Optional[int] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : Optional[int] = encoder_layerdrop lowerCAmelCase : Dict = decoder_layerdrop lowerCAmelCase : Tuple = activation_function lowerCAmelCase : Optional[Any] = init_std lowerCAmelCase : List[Any] = use_cache # Autoformer lowerCAmelCase : Any = label_length lowerCAmelCase : Any = moving_average lowerCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
133
0
"""simple docstring""" def lowercase ( _snake_case : int , _snake_case : Dict ) ->int: """simple docstring""" while second != 0: __snake_case : Any = first & second first ^= second __snake_case : str = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = int(input("""Enter the first number: """).strip()) SCREAMING_SNAKE_CASE : List[str] = int(input("""Enter the second number: """).strip()) print(F'{add(first, second) = }')
102
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
221
from math import pi, sqrt def _A ( lowerCAmelCase_ : float ): """simple docstring""" if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(lowerCAmelCase_ ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(lowerCAmelCase_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _A ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCAmelCase_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = 1.0 while num: UpperCamelCase = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
221
1
class A__ : def __init__( self ): '''simple docstring''' UpperCamelCase : Any = {} def __UpperCamelCase( self ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_UpperCAmelCase , " -> " , " -> ".join([str(_UpperCAmelCase ) for j in self.vertex[i]] ) ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCAmelCase ) else: # else make a new vertex UpperCamelCase : Union[str, Any] = [to_vertex] def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = True print(_UpperCAmelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
52
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __UpperCAmelCase : Any = random.Random() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None) -> Any: if rng is None: __snake_case: Dict = global_rng __snake_case: str = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : List[str] , A : List[Any]=7 , A : Optional[int]=400 , A : List[Any]=2_000 , A : Dict=2_048 , A : Tuple=128 , A : List[Any]=1 , A : Tuple=512 , A : str=30 , A : Optional[Any]=44_100 , ): __snake_case: Dict = parent __snake_case: Optional[Any] = batch_size __snake_case: Optional[int] = min_seq_length __snake_case: Optional[Any] = max_seq_length __snake_case: List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case: Any = spectrogram_length __snake_case: Any = feature_size __snake_case: Union[str, Any] = num_audio_channels __snake_case: Any = hop_length __snake_case: List[str] = chunk_length __snake_case: Any = sampling_rate def UpperCAmelCase__ ( self : List[Any] ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase__ ( self : List[str] , A : str=False , A : int=False ): def _flatten(A : Dict ): return list(itertools.chain(*A ) ) if equal_length: __snake_case: List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case: int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case: Tuple = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = TvltFeatureExtractor def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: str = TvltFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : int ): __snake_case: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A , """spectrogram_length""" ) ) self.assertTrue(hasattr(A , """feature_size""" ) ) self.assertTrue(hasattr(A , """num_audio_channels""" ) ) self.assertTrue(hasattr(A , """hop_length""" ) ) self.assertTrue(hasattr(A , """chunk_length""" ) ) self.assertTrue(hasattr(A , """sampling_rate""" ) ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: Tuple = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) __snake_case: int = self.feature_extraction_class.from_pretrained(A ) __snake_case: List[str] = feat_extract_first.to_dict() __snake_case: str = feat_extract_second.to_dict() __snake_case: List[Any] = dict_first.pop("""mel_filters""" ) __snake_case: str = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: str = os.path.join(A , """feat_extract.json""" ) feat_extract_first.to_json_file(A ) __snake_case: List[Any] = self.feature_extraction_class.from_json_file(A ) __snake_case: Dict = feat_extract_first.to_dict() __snake_case: Any = feat_extract_second.to_dict() __snake_case: int = dict_first.pop("""mel_filters""" ) __snake_case: int = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase__ ( self : Any ): # Initialize feature_extractor __snake_case: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __snake_case: Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: str = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input __snake_case: int = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __snake_case: Optional[int] = feature_extractor(A , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __snake_case: Union[str, Any] = feature_extractor( A , return_tensors="""np""" , sampling_rate=44_100 , mask_audio=A ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __snake_case: Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] __snake_case: Union[str, Any] = np.asarray(A ) __snake_case: List[Any] = feature_extractor(A , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCAmelCase__ ( self : Union[str, Any] , A : List[str] ): __snake_case: Tuple = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __snake_case: List[Any] = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Dict = self._load_datasamples(1 ) __snake_case: Optional[int] = TvltFeatureExtractor() __snake_case: Optional[Any] = feature_extractor(A , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __snake_case: str = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A , atol=1E-4 ) )
293
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : List[Any] , A : AutoencoderKL , A : CLIPTextModel , A : CLIPTokenizer , A : UNetaDConditionModel , A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , A : StableDiffusionSafetyChecker , A : CLIPImageProcessor , ): super().__init__() self.register_modules( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , ) def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case: Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCAmelCase__ ( self : str ): self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self : List[str] , A : Union[str, List[str]] , A : int = 512 , A : int = 512 , A : int = 50 , A : float = 7.5 , A : Optional[Union[str, List[str]]] = None , A : Optional[int] = 1 , A : float = 0.0 , A : Optional[torch.Generator] = None , A : Optional[torch.FloatTensor] = None , A : Optional[str] = "pil" , A : bool = True , A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A : int = 1 , A : Optional[torch.FloatTensor] = None , **A : Optional[Any] , ): if isinstance(A , A ): __snake_case: int = 1 elif isinstance(A , A ): __snake_case: Optional[Any] = len(A ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(A )}.''' ) # get prompt text embeddings __snake_case: Tuple = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case: Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case: List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case: Dict = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __snake_case: Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case: List[Any] = text_embeddings.shape __snake_case: Tuple = text_embeddings.repeat(1 , A , 1 ) __snake_case: Dict = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case: List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case: List[str] if negative_prompt is None: __snake_case: Any = [""""""] elif type(A ) is not type(A ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=''' f''' {type(A )}.''' ) elif isinstance(A , A ): __snake_case: List[str] = [negative_prompt] elif batch_size != len(A ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case: str = negative_prompt __snake_case: Any = text_input_ids.shape[-1] __snake_case: Dict = self.tokenizer( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""pt""" , ) __snake_case: Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case: Optional[Any] = uncond_embeddings.shape[1] __snake_case: str = uncond_embeddings.repeat(A , A , 1 ) __snake_case: List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case: Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case: Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case: List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __snake_case: Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case: Any = torch.randn( A , generator=A , device="""cpu""" , dtype=A ).to(self.device ) __snake_case: Tuple = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: __snake_case: Dict = torch.randn( A , generator=A , device=self.device , dtype=A ) __snake_case: Optional[int] = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case: Optional[int] = latents_reference.to(self.device ) __snake_case: List[str] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __snake_case: int = (latents_shape[3] - latents_shape_reference[3]) // 2 __snake_case: Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 __snake_case: int = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __snake_case: Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __snake_case: List[Any] = 0 if dx < 0 else dx __snake_case: Dict = 0 if dy < 0 else dy __snake_case: List[str] = max(-dx , 0 ) __snake_case: int = max(-dy , 0 ) # import pdb # pdb.set_trace() __snake_case: List[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case: str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case: Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case: Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case: int = {} if accepts_eta: __snake_case: Optional[Any] = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance __snake_case: str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case: Dict = self.scheduler.scale_model_input(A , A ) # predict the noise residual __snake_case: List[Any] = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case: Any = noise_pred.chunk(2 ) __snake_case: Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case: str = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) __snake_case: Optional[int] = 1 / 0.1_8215 * latents __snake_case: List[Any] = self.vae.decode(A ).sample __snake_case: str = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case: Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __snake_case: List[Any] = self.feature_extractor(self.numpy_to_pil(A ) , return_tensors="""pt""" ).to( self.device ) __snake_case , __snake_case: List[str] = self.safety_checker( images=A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __snake_case: Optional[int] = None if output_type == "pil": __snake_case: Tuple = self.numpy_to_pil(A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
293
1
'''simple docstring''' a : Union[str, Any] = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} UpperCAmelCase : int = 0 UpperCAmelCase : int = 0 while place < len(lowerCamelCase__ ): if (place + 1 < len(lowerCamelCase__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [] for arabic, roman in ROMAN: (UpperCAmelCase) : Optional[Any] = divmod(lowerCamelCase__ , lowerCamelCase__ ) result.append(roman * factor ) if number == 0: break return "".join(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
311
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase__ = '''path-to-your-trained-model''' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase__ = pipe.to(device) # to channels last lowerCAmelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase__ = torch.randn(2, 4, 6_4, 6_4) lowerCAmelCase__ = torch.rand(1) * 9_9_9 lowerCAmelCase__ = torch.randn(2, 7_7, 7_6_8) lowerCAmelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase__ = 6_6_6 lowerCAmelCase__ = torch.Generator(device).manual_seed(seed) lowerCAmelCase__ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
130
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
"""simple docstring""" def UpperCAmelCase ( ): '''simple docstring''' return 1 def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a_ ) def UpperCAmelCase ( a_ = 200 ): '''simple docstring''' return two_pound(a_ ) if __name__ == "__main__": print(solution(int(input().strip())))
205
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = torch.device("""cpu""") def _a ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im def _a ( SCREAMING_SNAKE_CASE_ : Any ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = val def _a ( SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase = [] for k in state_dict.keys(): __lowerCAmelCase = k if ".pwconv" in k: __lowerCAmelCase = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __lowerCAmelCase = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __lowerCAmelCase = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __lowerCAmelCase = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __lowerCAmelCase = k_new.split("." ) if ls[2].isdigit(): __lowerCAmelCase = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __lowerCAmelCase = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __lowerCAmelCase = 10_00 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __lowerCAmelCase = [3, 3, 6, 4] __lowerCAmelCase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": __lowerCAmelCase = [3, 3, 9, 6] __lowerCAmelCase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": __lowerCAmelCase = [4, 3, 10, 5] __lowerCAmelCase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": __lowerCAmelCase = [4, 4, 12, 6] __lowerCAmelCase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" , check_hash=SCREAMING_SNAKE_CASE_ ) else: __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) __lowerCAmelCase = checkpoint __lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model __lowerCAmelCase = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # prepare test inputs __lowerCAmelCase = prepare_img() __lowerCAmelCase = ViTImageProcessor.from_pretrained("preprocessor_config" ) __lowerCAmelCase = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) # compare outputs from both models __lowerCAmelCase = get_expected_output(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") UpperCamelCase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
92
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Dict = logging.get_logger(__name__) lowercase_ : Union[str, Any] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : int = "ctrl" snake_case_ : Optional[int] = ["past_key_values"] snake_case_ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , snake_case__ : List[str]=246_534 , snake_case__ : Optional[Any]=256 , snake_case__ : List[str]=1_280 , snake_case__ : Optional[int]=8_192 , snake_case__ : List[Any]=48 , snake_case__ : Dict=16 , snake_case__ : int=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=1e-6 , snake_case__ : Dict=0.02 , snake_case__ : List[Any]=True , **snake_case__ : List[str] , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**snake_case__ )
133
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class a__ : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=2 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.0_2 , _UpperCamelCase=None , _UpperCamelCase=2 , _UpperCamelCase=2 , ): """simple docstring""" _lowercase : Tuple = parent _lowercase : Union[str, Any] = batch_size _lowercase : Any = patch_size _lowercase : Dict = max_length _lowercase : List[Any] = num_mel_bins _lowercase : Any = is_training _lowercase : int = use_labels _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : int = intermediate_size _lowercase : List[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : List[Any] = type_sequence_label_size _lowercase : Optional[int] = initializer_range _lowercase : Any = scope _lowercase : str = frequency_stride _lowercase : List[Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowercase : List[str] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowercase : Dict = (self.max_length - self.patch_size) // self.time_stride + 1 _lowercase : int = frequency_out_dimension * time_out_dimension _lowercase : int = num_patches + 2 def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _lowercase : Optional[Any] = None if self.use_labels: _lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = self.get_config() return config, input_values, labels def _lowerCamelCase ( self ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[Any] = ASTModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Tuple = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[Any] = config_and_inputs _lowercase : str = {"input_values": input_values} return config, inputs_dict @require_torch class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : str = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = ASTModelTester(self ) _lowercase : int = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Union[str, Any] = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Dict = model_class(_UpperCamelCase ) _lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Optional[int] = [*signature.parameters.keys()] _lowercase : List[Any] = ["input_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Optional[Any] = ASTModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _A ( ) -> Any: _lowercase : Optional[Any] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) _lowercase , _lowercase : List[str] = torchaudio.load(snake_case ) return audio, sampling_rate @require_torch @require_torchaudio class a__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = self.default_feature_extractor _lowercase : Tuple = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(_UpperCamelCase ) _lowercase : str = self.default_feature_extractor _lowercase , _lowercase : List[Any] = prepare_audio() _lowercase : Optional[Any] = audio.squeeze().numpy() _lowercase : Optional[Any] = feature_extractor(_UpperCamelCase , sampling_rate=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _lowercase : Optional[int] = model(**_UpperCamelCase ) # verify the logits _lowercase : Tuple = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _lowercase : int = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) )
199
'''simple docstring''' from __future__ import annotations def _A ( snake_case , snake_case = None , snake_case = None ) -> None: if start is None: _lowercase : Dict = 0 if end is None: _lowercase : List[Any] = len(snake_case ) - 1 if start >= end: return _lowercase : int = (start + end) // 2 slowsort(snake_case , snake_case , snake_case ) slowsort(snake_case , mid + 1 , snake_case ) if sequence[end] < sequence[mid]: _lowercase , _lowercase : Any = sequence[mid], sequence[end] slowsort(snake_case , snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
199
1
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCamelCase__( nn.Module ): def __init__( self ) -> str: super().__init__() A__ = nn.Linear(3 ,4 ) A__ = nn.BatchNormad(4 ) A__ = nn.Linear(4 ,5 ) def snake_case__ ( self ,__UpperCAmelCase ) -> str: return self.lineara(self.batchnorm(self.lineara(__UpperCAmelCase ) ) ) class UpperCamelCase__( __A ): def snake_case__ ( self ,__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: return (args[0] + 1,) + args[1:], kwargs class UpperCamelCase__( __A ): def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: return output + 1 class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Optional[int]: A__ = ModelForTest() A__ = ModelHook() add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) self.assertEqual(test_model._hf_hook ,__UpperCAmelCase ) self.assertTrue(hasattr(__UpperCAmelCase ,'_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,['x'] ) remove_hook_from_module(__UpperCAmelCase ) self.assertFalse(hasattr(__UpperCAmelCase ,'_hf_hook' ) ) self.assertFalse(hasattr(__UpperCAmelCase ,'_old_forward' ) ) def snake_case__ ( self ) -> Optional[Any]: A__ = ModelForTest() A__ = ModelHook() add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ,append=__UpperCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook ,__UpperCAmelCase ) ,__UpperCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) ,2 ) self.assertTrue(hasattr(__UpperCAmelCase ,'_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,['x'] ) remove_hook_from_module(__UpperCAmelCase ) self.assertFalse(hasattr(__UpperCAmelCase ,'_hf_hook' ) ) self.assertFalse(hasattr(__UpperCAmelCase ,'_old_forward' ) ) def snake_case__ ( self ) -> Optional[Any]: A__ = ModelForTest() A__ = torch.randn(2 ,3 ) A__ = test_model(x + 1 ) A__ = test_model(x + 2 ) A__ = PreForwardHook() add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) A__ = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A__ = PreForwardHook() add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) A__ = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A__ = SequentialHook(PreForwardHook() ,PreForwardHook() ) add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) A__ = test_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) def snake_case__ ( self ) -> List[str]: A__ = ModelForTest() A__ = torch.randn(2 ,3 ) A__ = test_model(__UpperCAmelCase ) A__ = PostForwardHook() add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) A__ = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase ,output + 1 ,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A__ = PostForwardHook() add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) A__ = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase ,output + 1 ,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A__ = SequentialHook(PostForwardHook() ,PostForwardHook() ) add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) A__ = test_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase ,output + 2 ,atol=1e-5 ) def snake_case__ ( self ) -> List[Any]: A__ = ModelForTest() A__ = torch.randn(2 ,3 ) A__ = test_model(__UpperCAmelCase ) A__ = PostForwardHook() add_hook_to_module(__UpperCAmelCase ,__UpperCAmelCase ) A__ = test_model(__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase ,output + 1 ) ) self.assertTrue(outputa.requires_grad ) A__ = True A__ = test_model(__UpperCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def snake_case__ ( self ) -> List[str]: A__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device(0 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A__ = torch.randn(2 ,3 ) A__ = model(__UpperCAmelCase ) self.assertEqual(output.device ,torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__UpperCAmelCase ,AlignDevicesHook(io_same_device=__UpperCAmelCase ) ) A__ = torch.randn(2 ,3 ).to(0 ) A__ = model(__UpperCAmelCase ) self.assertEqual(output.device ,torch.device(0 ) ) def snake_case__ ( self ) -> str: A__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # This will move each submodule on different devices A__ = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara ,AlignDevicesHook(**__UpperCAmelCase ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**__UpperCAmelCase ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**__UpperCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device A__ = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device ,__UpperCAmelCase ) A__ = torch.randn(2 ,3 ) A__ = model(__UpperCAmelCase ) self.assertEqual(output.device ,__UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # Now test with buffers included in the offload A__ = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara ,AlignDevicesHook(**__UpperCAmelCase ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**__UpperCAmelCase ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**__UpperCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('meta' ) ) A__ = torch.randn(2 ,3 ) A__ = model(__UpperCAmelCase ) self.assertEqual(output.device ,__UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) def snake_case__ ( self ) -> str: A__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # This will move each submodule on different devices A__ = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(__UpperCAmelCase ,execution_device=__UpperCAmelCase ,offload=__UpperCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device A__ = torch.device(__UpperCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device ,__UpperCAmelCase ) A__ = torch.randn(2 ,3 ) A__ = model(__UpperCAmelCase ) self.assertEqual(output.device ,__UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCAmelCase ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(__UpperCAmelCase ,execution_device=__UpperCAmelCase ,offload=__UpperCAmelCase ,offload_buffers=__UpperCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('meta' ) ) A__ = torch.randn(2 ,3 ) A__ = model(__UpperCAmelCase ) self.assertEqual(output.device ,__UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCAmelCase ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) def snake_case__ ( self ) -> Optional[Any]: A__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # This will move each submodule on different devices A__ = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( __UpperCAmelCase ,execution_device=__UpperCAmelCase ,offload=__UpperCAmelCase ,weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device A__ = torch.device(__UpperCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device ,__UpperCAmelCase ) A__ = torch.randn(2 ,3 ) A__ = model(__UpperCAmelCase ) self.assertEqual(output.device ,__UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCAmelCase ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( __UpperCAmelCase ,execution_device=__UpperCAmelCase ,offload=__UpperCAmelCase ,weights_map=model.state_dict() ,offload_buffers=__UpperCAmelCase ,) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('meta' ) ) A__ = torch.randn(2 ,3 ) A__ = model(__UpperCAmelCase ) self.assertEqual(output.device ,__UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCAmelCase ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) )
221
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=64 ,__UpperCAmelCase=5 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,) -> List[Any]: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = vocab_size - 1 def snake_case__ ( self ) -> str: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A__ = self.get_config() return config, input_ids, input_mask, token_labels def snake_case__ ( self ) -> List[str]: return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCAmelCase ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def snake_case__ ( self ) -> List[str]: A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = True return config, input_ids, input_mask, token_labels def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: A__ = GPTNeoXModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: A__ = True A__ = GPTNeoXModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = GPTNeoXForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = self.num_labels A__ = GPTNeoXForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = self.num_labels A__ = GPTNeoXForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = self.num_labels A__ = GPTNeoXForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = True A__ = GPTNeoXForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,use_cache=__UpperCAmelCase ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) ,config.vocab_size ) A__ = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] ,dim=-1 ) A__ = torch.cat([input_mask, next_mask] ,dim=-1 ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) A__ = output_from_no_past['hidden_states'][0] A__ = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,past_key_values=__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,)['hidden_states'][0] # select random slice A__ = ids_tensor((1,) ,output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-3 ) ) def snake_case__ ( self ) -> Dict: A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__( __A , __A , __A , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ : List[Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : List[str] = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : str = False lowerCAmelCase__ : Any = False lowerCAmelCase__ : str = False def snake_case__ ( self ) -> Tuple: A__ = GPTNeoXModelTester(self ) A__ = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=64 ,num_attention_heads=8 ) def snake_case__ ( self ) -> str: self.config_tester.run_common_tests() def snake_case__ ( self ) -> List[str]: A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Dict: A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> str: A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def snake_case__ ( self ) -> Any: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def snake_case__ ( self ) -> str: pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case__ ( self ,__UpperCAmelCase ) -> Tuple: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ids_tensor([1, 10] ,config.vocab_size ) A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = GPTNeoXModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() A__ = original_model(__UpperCAmelCase ).last_hidden_state A__ = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = {'type': scaling_type, 'factor': 1_0.0} A__ = GPTNeoXModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() A__ = scaled_model(__UpperCAmelCase ).last_hidden_state A__ = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1e-5 ) ) @require_torch class UpperCamelCase__( unittest.TestCase ): @slow def snake_case__ ( self ) -> int: A__ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: A__ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__UpperCAmelCase ) A__ = tokenizer('My favorite food is' ,return_tensors='pt' ).to(__UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' A__ = model.generate(**__UpperCAmelCase ,do_sample=__UpperCAmelCase ,max_new_tokens=20 ) A__ = tokenizer.batch_decode(__UpperCAmelCase )[0] self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase )
221
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a__ : Optional[int] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') a__ : Optional[int] = f'''https://www.google.com/search?q={query}&num=100''' a__ : Union[str, Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: a__ : Optional[Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: a__ : Union[str, Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
243
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :str = (DDPMScheduler,) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**__UpperCAmelCase ) return config def snake_case ( self ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.check_over_configs(thresholding=__UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , ) def snake_case ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.scheduler_classes[0] lowerCAmelCase__ :Optional[int] = self.get_scheduler_config() lowerCAmelCase__ :List[Any] = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ :Optional[int] = self.get_scheduler_config() lowerCAmelCase__ :Optional[int] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ :str = len(__UpperCAmelCase ) lowerCAmelCase__ :str = self.dummy_model() lowerCAmelCase__ :Any = self.dummy_sample_deter lowerCAmelCase__ :int = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ :Optional[Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase__ :Optional[int] = pred_prev_sample lowerCAmelCase__ :Any = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ :Optional[int] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2 assert abs(result_mean.item() - 0.33_72 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.scheduler_classes[0] lowerCAmelCase__ :Tuple = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ :Tuple = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ :Dict = len(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.dummy_model() lowerCAmelCase__ :str = self.dummy_sample_deter lowerCAmelCase__ :Dict = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ :List[Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase__ :List[str] = pred_prev_sample lowerCAmelCase__ :Any = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ :Tuple = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2 assert abs(result_mean.item() - 0.26_31 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ :Tuple = self.get_scheduler_config() lowerCAmelCase__ :Union[str, Any] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=__UpperCAmelCase ) lowerCAmelCase__ :str = scheduler.timesteps for i, timestep in enumerate(__UpperCAmelCase ): if i == len(__UpperCAmelCase ) - 1: lowerCAmelCase__ :str = -1 else: lowerCAmelCase__ :Any = timesteps[i + 1] lowerCAmelCase__ :Optional[int] = scheduler.previous_timestep(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = prev_t.item() self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.scheduler_classes[0] lowerCAmelCase__ :Optional[int] = self.get_scheduler_config() lowerCAmelCase__ :Dict = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ :Dict = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(__UpperCAmelCase , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ :Any = self.get_scheduler_config() lowerCAmelCase__ :List[Any] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase__ :Optional[int] = len(__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=__UpperCAmelCase , timesteps=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.scheduler_classes[0] lowerCAmelCase__ :List[Any] = self.get_scheduler_config() lowerCAmelCase__ :Any = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ :List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCAmelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=__UpperCAmelCase )
293
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
293
1
"""simple docstring""" import requests from bsa import BeautifulSoup def _A ( lowercase = "https://www.worldometers.info/coronavirus" ): """simple docstring""" a =BeautifulSoup(requests.get(__lowerCAmelCase ).text , '''html.parser''' ) a =soup.findAll('''h1''' ) a =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F'{key}\n{value}\n')
362
"""simple docstring""" def _A ( lowercase = 2_00_00_00 ): """simple docstring""" a =[0 for i in range(n + 1 )] a =1 a =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): a =1 a =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'{solution() = }')
215
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowercase_ = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' lowercase_ = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' lowercase_ = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def A__ ( self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =0.0 for i, j in zip(lowerCAmelCase , lowerCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase , lowerCAmelCase ) else 0.0 _lowercase =n_correct / len(lowerCAmelCase ) return { "accuracy": accuracy, }
205
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
1
from __future__ import annotations import math _A = '2020.9.26' _A = 'xcodz-dot, cclaus, dhruvmanila' def UpperCAmelCase ( a_, a_, a_, a_, a_ ): '''simple docstring''' if not all(isinstance(lowerCAmelCase__, (float, int) ) for val in locals().values() ): lowerCamelCase : Any = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(lowerCAmelCase__ ) lowerCamelCase : Union[str, Any] = ((x * distance) / (z + distance)) * scale lowerCamelCase : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCAmelCase ( a_, a_, a_, a_, a_ ): '''simple docstring''' if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ): raise TypeError('Axis must be a str' ) lowerCamelCase : Tuple = locals() del input_variables["axis"] if not all(isinstance(lowerCAmelCase__, (float, int) ) for val in input_variables.values() ): lowerCamelCase : Dict = ( """Input values except axis must either be float or int: """ F"""{list(input_variables.values() )}""" ) raise TypeError(lowerCAmelCase__ ) lowerCamelCase : List[str] = (angle % 360) / 450 * 180 / math.pi if axis == "z": lowerCamelCase : List[Any] = x * math.cos(lowerCAmelCase__ ) - y * math.sin(lowerCAmelCase__ ) lowerCamelCase : Any = y * math.cos(lowerCAmelCase__ ) + x * math.sin(lowerCAmelCase__ ) lowerCamelCase : Any = z elif axis == "x": lowerCamelCase : Optional[int] = y * math.cos(lowerCAmelCase__ ) - z * math.sin(lowerCAmelCase__ ) lowerCamelCase : Dict = z * math.cos(lowerCAmelCase__ ) + y * math.sin(lowerCAmelCase__ ) lowerCamelCase : Tuple = x elif axis == "y": lowerCamelCase : int = x * math.cos(lowerCAmelCase__ ) - z * math.sin(lowerCAmelCase__ ) lowerCamelCase : Tuple = z * math.cos(lowerCAmelCase__ ) + x * math.sin(lowerCAmelCase__ ) lowerCamelCase : List[str] = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }""")
366
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _A = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') _A = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') _A = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') _A = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') _A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
205
0
def a_ ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' _lowerCamelCase : Dict =len(SCREAMING_SNAKE_CASE__ ) while cur > 1: # Find the maximum number in arr _lowerCamelCase : Tuple =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowerCamelCase : Any =arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE__ )] # Reverse whole list _lowerCamelCase : Any =arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE__ )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
199
def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' assert x is not None assert y is not None _lowerCamelCase : Dict =len(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ ) # declaring the array for storing the dp values _lowerCamelCase : Optional[int] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCamelCase : int =1 if x[i - 1] == y[j - 1] else 0 _lowerCamelCase : Union[str, Any] =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCamelCase : Optional[int] ='' _lowerCamelCase , _lowerCamelCase : Dict =m, n while i > 0 and j > 0: _lowerCamelCase : int =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCamelCase : Union[str, Any] =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase = 'AGGTAB' lowerCamelCase = 'GXTXAYB' lowerCamelCase = 4 lowerCamelCase = 'GTAB' lowerCamelCase , lowerCamelCase = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
199
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowercase_ ): snake_case__ : Optional[int] = ["keras_nlp"] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""keras_nlp"""] )
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): def __init__( self , **lowercase ) -> Optional[int]: super().__init__(**lowercase ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(lowercase ) def __call__( self , lowercase , lowercase = None , **lowercase , ) -> List[str]: if "text_queries" in kwargs: lowerCAmelCase = kwargs.pop("""text_queries""" ) if isinstance(lowercase , (str, Image.Image) ): lowerCAmelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: lowerCAmelCase = image lowerCAmelCase = super().__call__(lowercase , **lowercase ) return results def _snake_case ( self , **lowercase ) -> List[str]: lowerCAmelCase = {} if "threshold" in kwargs: lowerCAmelCase = kwargs["""threshold"""] if "top_k" in kwargs: lowerCAmelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def _snake_case ( self , lowercase ) -> List[str]: lowerCAmelCase = load_image(inputs["""image"""] ) lowerCAmelCase = inputs["""candidate_labels"""] if isinstance(lowercase , lowercase ): lowerCAmelCase = candidate_labels.split(""",""" ) lowerCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase ): lowerCAmelCase = self.tokenizer(lowercase , return_tensors=self.framework ) lowerCAmelCase = self.image_processor(lowercase , return_tensors=self.framework ) yield { "is_last": i == len(lowercase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _snake_case ( self , lowercase ) -> str: lowerCAmelCase = model_inputs.pop("""target_size""" ) lowerCAmelCase = model_inputs.pop("""candidate_label""" ) lowerCAmelCase = model_inputs.pop("""is_last""" ) lowerCAmelCase = self.model(**lowercase ) lowerCAmelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def _snake_case ( self , lowercase , lowercase=0.1 , lowercase=None ) -> List[str]: lowerCAmelCase = [] for model_output in model_outputs: lowerCAmelCase = model_output["""candidate_label"""] lowerCAmelCase = BaseModelOutput(lowercase ) lowerCAmelCase = self.image_processor.post_process_object_detection( outputs=lowercase , threshold=lowercase , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): lowerCAmelCase = outputs["""scores"""][index].item() lowerCAmelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) lowerCAmelCase = {"""score""": score, """label""": label, """box""": box} results.append(lowercase ) lowerCAmelCase = sorted(lowercase , key=lambda lowercase : x["score"] , reverse=lowercase ) if top_k: lowerCAmelCase = results[:top_k] return results def _snake_case ( self , lowercase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = box.int().tolist() lowerCAmelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
46
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" def is_in_circle(UpperCAmelCase , UpperCAmelCase ) -> bool: a_ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle a_ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCAmelCase ) ) # The ratio of the area for circle to square is pi/4. a_ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 , ) ->float: """simple docstring""" return mean( function_to_integrate(uniform(UpperCAmelCase , UpperCAmelCase ) ) for _ in range(UpperCAmelCase ) ) * (max_value - min_value) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 ) ->None: """simple docstring""" def identity_function(UpperCAmelCase ) -> float: return x a_ = area_under_curve_estimator( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" def function_to_integrate(UpperCAmelCase ) -> float: return sqrt(4.0 - x * x ) a_ = area_under_curve_estimator( UpperCAmelCase , UpperCAmelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
243
0
from __future__ import annotations import math def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__lowercase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : List[str] = str(__lowercase ) A_ : str = [n] for i in range(1 ,len(__lowercase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if len(str(__lowercase ) ) > 3: if not is_prime(int(str(__lowercase )[-3:] ) ) or not is_prime(int(str(__lowercase )[:3] ) ): return False return True def UpperCamelCase ( __lowercase : int = 11 ): '''simple docstring''' A_ : list[int] = [] A_ : Dict = 13 while len(__lowercase ) != count: if validate(__lowercase ): A_ : Tuple = list_truncated_nums(__lowercase ) if all(is_prime(__lowercase ) for i in list_nums ): list_truncated_primes.append(__lowercase ) num += 2 return list_truncated_primes def UpperCamelCase ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
192
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): """simple docstring""" super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) A_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): A_ : Dict = getattr(lowercase , normalizer_state.pop('type' ) ) A_ : Optional[int] = do_lower_case A_ : Optional[Any] = strip_accents A_ : str = tokenize_chinese_chars A_ : Any = normalizer_class(**lowercase ) A_ : Tuple = do_lower_case def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
192
1