code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
73
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" _UpperCAmelCase : Dict = model(a_ )["""last_hidden_state"""] _UpperCAmelCase : Dict = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape ,a_ ) # compare the actual values for a slice. _UpperCAmelCase : Tuple = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
215
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase : Any = """http://www.mocksite.com/file1.txt""" UpperCAmelCase : Union[str, Any] = """\"text\": [\"foo\", \"foo\"]""" UpperCAmelCase : Dict = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __lowerCAmelCase : _lowercase : List[Any] = 200 _lowercase : str = {"Content-Length": "100"} _lowercase : Optional[Any] = {} def _lowercase ( self , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return [bytes(_UpperCAmelCase , "utf-8" )] def _A ( *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : str ): """simple docstring""" return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): """simple docstring""" import requests monkeypatch.setattr(__UpperCAmelCase , "request" , __UpperCAmelCase ) a__ : Union[str, Any] =URL if issubclass(__UpperCAmelCase , __UpperCAmelCase ): a__ : Union[str, Any] =url elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): a__ : List[str] =[url] elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): a__ : Tuple ={'''train''': url} a__ : Union[str, Any] ='''dummy''' a__ : List[Any] ='''downloads''' a__ : Tuple =tmp_path a__ : Any =DownloadConfig( cache_dir=os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , use_etag=__UpperCAmelCase , ) a__ : Any =DownloadManager(dataset_name=__UpperCAmelCase , download_config=__UpperCAmelCase ) a__ : str =dl_manager.download(__UpperCAmelCase ) a__ : Dict =urls for downloaded_paths in [downloaded_paths]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): a__ : Dict =[downloaded_paths] a__ : Tuple =[urls] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): assert "train" in downloaded_paths.keys() a__ : Optional[Any] =downloaded_paths.values() a__ : Any =urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__UpperCAmelCase , __UpperCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] a__ : Optional[Any] =Path(__UpperCAmelCase ) a__ : int =downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() a__ : Tuple =downloaded_path.read_text() assert content == CONTENT a__ : Dict =downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() a__ : Optional[Any] =json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def _A ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" a__ : List[Any] =str(__UpperCAmelCase ) if issubclass(__UpperCAmelCase , __UpperCAmelCase ): a__ : int =filename elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): a__ : str =[filename] elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): a__ : Dict ={'''train''': filename} a__ : int ='''dummy''' a__ : Optional[int] =xz_file.parent a__ : Dict ='''extracted''' a__ : Dict =DownloadConfig( cache_dir=__UpperCAmelCase , use_etag=__UpperCAmelCase , ) a__ : int =DownloadManager(dataset_name=__UpperCAmelCase , download_config=__UpperCAmelCase ) a__ : Any =dl_manager.extract(__UpperCAmelCase ) a__ : Dict =paths for extracted_paths in [extracted_paths]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): a__ : Optional[Any] =[extracted_paths] a__ : Union[str, Any] =[paths] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): assert "train" in extracted_paths.keys() a__ : Tuple =extracted_paths.values() a__ : List[Any] =paths.values() assert extracted_paths for extracted_path, input_path in zip(__UpperCAmelCase , __UpperCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] a__ : Dict =Path(__UpperCAmelCase ) a__ : Any =extracted_path.parts assert parts[-1] == hash_url_to_filename(__UpperCAmelCase , etag=__UpperCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() a__ : Optional[Any] =extracted_path.read_text() a__ : Any =text_file.read_text() assert extracted_file_content == expected_file_content def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ): """simple docstring""" assert path.endswith(".jsonl" ) for num_items, line in enumerate(__UpperCAmelCase , start=1 ): a__ : Dict =json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" a__ : List[Any] =request.getfixturevalue(__UpperCAmelCase ) a__ : Optional[int] =DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__UpperCAmelCase ) , start=1 ): _test_jsonl(__UpperCAmelCase , __UpperCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" a__ : Optional[Any] =request.getfixturevalue(__UpperCAmelCase ) a__ : List[Any] =DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__UpperCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__UpperCAmelCase ) , start=1 ): _test_jsonl(__UpperCAmelCase , __UpperCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : List[Any] =DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__UpperCAmelCase ) , start=1 ): assert os.path.basename(__UpperCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
352
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase : Union[str, Any] = 1.054571817E-34 # unit of ℏ : J * s UpperCAmelCase : Union[str, Any] = 3E8 # unit of c : m * s^-1 def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: a__ : Tuple =(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: a__ : Any =(240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a__ : List[str] =( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
148
0
"""simple docstring""" def _lowerCAmelCase ( ): UpperCAmelCase = [] UpperCAmelCase = 1 while len(lowercase_ ) < 1e6: constant.append(str(lowercase_ ) ) i += 1 UpperCAmelCase = ''.join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
78
import os def a ( A__ : str = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as input_file: _lowercase =[ [int(A__ ) for element in line.split(',' )] for line in input_file.readlines() ] _lowercase =len(A__ ) _lowercase =len(matrix[0] ) _lowercase =[[-1 for _ in range(A__ )] for _ in range(A__ )] for i in range(A__ ): _lowercase =matrix[i][0] for j in range(1 , A__ ): for i in range(A__ ): _lowercase =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A__ ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
205
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE = frozenset([] ) def UpperCamelCase ( self ): torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=9,out_channels=4,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''),up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''),cross_attention_dim=32,attention_head_dim=(2, 4),use_linear_projection=__lowerCamelCase,) A__ = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='''gelu''',projection_dim=512,) A__ = CLIPTextModel(__lowerCamelCase ) A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched A__ = floats_tensor((1, 3, 32, 32),rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) A__ = image.cpu().permute(0,2,3,1 )[0] A__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) A__ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(__lowerCamelCase ).startswith('''mps''' ): A__ = torch.manual_seed(__lowerCamelCase ) else: A__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) A__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self ): A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInpaintPipeline(**__lowerCamelCase ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = self.get_dummy_inputs(__lowerCamelCase ) A__ = sd_pipe(**__lowerCamelCase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) A__ = '''stabilityai/stable-diffusion-2-inpainting''' A__ = StableDiffusionInpaintPipeline.from_pretrained(__lowerCamelCase,safety_checker=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() A__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,image=__lowerCamelCase,mask_image=__lowerCamelCase,generator=__lowerCamelCase,output_type='''np''',) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase ( self ): A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) A__ = '''stabilityai/stable-diffusion-2-inpainting''' A__ = StableDiffusionInpaintPipeline.from_pretrained( __lowerCamelCase,torch_dtype=torch.floataa,safety_checker=__lowerCamelCase,) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() A__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,image=__lowerCamelCase,mask_image=__lowerCamelCase,generator=__lowerCamelCase,output_type='''np''',) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A__ = '''stabilityai/stable-diffusion-2-inpainting''' A__ = PNDMScheduler.from_pretrained(__lowerCamelCase,subfolder='''scheduler''' ) A__ = StableDiffusionInpaintPipeline.from_pretrained( __lowerCamelCase,safety_checker=__lowerCamelCase,scheduler=__lowerCamelCase,torch_dtype=torch.floataa,) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,image=__lowerCamelCase,mask_image=__lowerCamelCase,generator=__lowerCamelCase,num_inference_steps=2,output_type='''np''',) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
39
def UpperCamelCase__( UpperCamelCase__ : int = 1_00 )->int: A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"{solution() = }")
39
1
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
91
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=1_3 , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=9_9 , SCREAMING_SNAKE_CASE__ : str=2_4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_7 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=1_0_0_0 , ) -> str: a_ : Optional[Any] = parent a_ : List[str] = batch_size a_ : List[str] = seq_length a_ : str = is_training a_ : str = use_input_mask a_ : int = use_token_type_ids a_ : List[str] = use_labels a_ : Optional[int] = vocab_size a_ : Any = hidden_size a_ : int = num_hidden_layers a_ : List[str] = num_attention_heads a_ : str = intermediate_size a_ : Union[str, Any] = hidden_act a_ : List[str] = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : int = max_position_embeddings a_ : Tuple = type_vocab_size a_ : Optional[Any] = type_sequence_label_size a_ : Tuple = initializer_range a_ : Dict = num_labels a_ : str = scope a_ : Optional[int] = range_bbox def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a_ : int = bbox[i, j, 3] a_ : str = bbox[i, j, 1] a_ : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ : Tuple = bbox[i, j, 2] a_ : List[str] = bbox[i, j, 0] a_ : Union[str, Any] = t a_ : List[Any] = None if self.use_input_mask: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) a_ : List[Any] = None if self.use_token_type_ids: a_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : int = None a_ : Tuple = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> str: a_ : Any = LiltModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Any = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> int: a_ : Any = self.num_labels a_ : str = LiltForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> str: a_ : Union[str, Any] = LiltForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : List[str] = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : int = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : List[Any] = config_and_inputs a_ : Optional[int] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : str = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : str = False def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: return True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : str = LiltModelTester(self ) a_ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ : List[str] = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = LiltModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : List[str] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(SCREAMING_SNAKE_CASE__ ) a_ : str = torch.tensor([[1, 2]] , device=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): a_ : str = model(input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = torch.Size([1, 2, 7_6_8] ) a_ : int = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
32
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowercase : Tuple = logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( __lowercase ): a__ : Dict = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : int , **_lowercase : str ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __UpperCAmelCase = deprecated_arg[3:] __UpperCAmelCase = not kwargs.pop(_a ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) __UpperCAmelCase = kwargs.pop('''tpu_name''' , self.tpu_name ) __UpperCAmelCase = kwargs.pop('''device_idx''' , self.device_idx ) __UpperCAmelCase = kwargs.pop('''eager_mode''' , self.eager_mode ) __UpperCAmelCase = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**_a ) a__ : str = field( default=__lowercase , metadata={"help": "Name of TPU"} , ) a__ : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) a__ : bool = field(default=__lowercase , metadata={"help": "Benchmark models in eager model."} ) a__ : bool = field( default=__lowercase , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def a ( self : Tuple ): requires_backends(self , ['''tf'''] ) __UpperCAmelCase = None if self.tpu: try: if self.tpu_name: __UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __UpperCAmelCase = None return tpu @cached_property def a ( self : List[str] ): requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __UpperCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) __UpperCAmelCase = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU __UpperCAmelCase = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def a ( self : Tuple ): requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def a ( self : Dict ): requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def a ( self : List[Any] ): requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def a ( self : Union[str, Any] ): requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def a ( self : Dict ): return self.n_gpu > 0
365
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : int = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "bloom" a__ : List[Any] = ["past_key_values"] a__ : Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , _lowercase : Dict=25_08_80 , _lowercase : str=64 , _lowercase : int=2 , _lowercase : Union[str, Any]=8 , _lowercase : Optional[Any]=1E-5 , _lowercase : Dict=0.02 , _lowercase : Optional[int]=True , _lowercase : Any=1 , _lowercase : Dict=2 , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=0.0 , _lowercase : str=0.0 , _lowercase : str=1 , _lowercase : int=False , **_lowercase : List[str] , ): __UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __UpperCAmelCase = kwargs.pop('''n_embed''' , _lowercase ) __UpperCAmelCase = hidden_size if n_embed is None else n_embed __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = pretraining_tp __UpperCAmelCase = apply_residual_connection_post_layernorm __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id __UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = version.parse("1.12" ) def __init__( self : Optional[int] , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[int] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_lowercase , direction='''inputs''' , inverted_values_shape=_lowercase ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Any ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head @property def a ( self : Dict ): return 1E-3 def a ( self : List[str] , _lowercase : "PreTrainedTokenizer" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional["TensorType"] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = self._config.hidden_size // self.num_attention_heads __UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
86
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCamelCase (lowercase_: float , lowercase_: float , lowercase_: bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(lowercase_ ), magnitude * sin(lowercase_ )] return [magnitude * cos(radians(lowercase_ ) ), magnitude * sin(radians(lowercase_ ) )] def UpperCamelCase (lowercase_: NDArray[floataa] , lowercase_: NDArray[floataa] , lowercase_: float = 10**-1 ) -> bool: A__ : NDArray[floataa] = cross(lowercase_ , lowercase_ ) A__ : float = sum(lowercase_ ) return abs(lowercase_ ) < eps if __name__ == "__main__": # Test to check if it works A_ : Optional[int] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) A_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A_ : Optional[int] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) A_ : Union[str, Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A_ : List[Any] = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) A_ : Tuple = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
192
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A_ : Any = pytest.mark.integration @require_faiss class _a (__magic_name__ ): '''simple docstring''' def __A ( self ): A__ : Tuple = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(A__ ) for x in np.arange(30 ).tolist()]} ) return dset def __A ( self ): import faiss A__ : Dataset = self._create_dummy_dataset() A__ : Union[str, Any] = dset.map( lambda A__ , A__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A__ , keep_in_memory=A__ ) A__ : int = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) A__ , A__ : Optional[Any] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def __A ( self ): import faiss A__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) A__ , A__ : str = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def __A ( self ): import faiss A__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__ ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) A__ , A__ : Tuple = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def __A ( self ): A__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(A__ , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def __A ( self ): from elasticsearch import Elasticsearch A__ : Dataset = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: A__ : List[Any] = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) A__ : List[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} A__ : Any = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=A__ ) A__ , A__ : Any = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class _a (__magic_name__ ): '''simple docstring''' def __A ( self ): import faiss A__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query A__ : Any = np.zeros(5 , dtype=np.floataa ) A__ : str = 1 A__ , A__ : Optional[Any] = index.search(A__ ) self.assertRaises(A__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries A__ : Optional[int] = np.eye(5 , dtype=np.floataa )[::-1] A__ , A__ : str = index.search_batch(A__ ) self.assertRaises(A__ , index.search_batch , queries[0] ) A__ : str = [scores[0] for scores in total_scores] A__ : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A__ ) def __A ( self ): import faiss A__ : Dict = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) A__ : Dict = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A__ ): A__ : List[Any] = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def __A ( self ): import faiss A__ : List[Any] = faiss.IndexFlat(5 ) A__ : Union[str, Any] = FaissIndex(custom_index=A__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __A ( self ): import faiss A__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__ ) as tmp_file: index.save(tmp_file.name ) A__ : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) A__ : Optional[Any] = np.zeros(5 , dtype=np.floataa ) A__ : Optional[int] = 1 A__ , A__ : List[Any] = index.search(A__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCamelCase (lowercase_: Dict ) -> Optional[Any]: import faiss A__ : Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) A__ : Optional[Any] = """index.faiss""" A__ : Any = f"""mock://{index_name}""" index.save(lowercase_ , storage_options=mockfs.storage_options ) A__ : str = FaissIndex.load(lowercase_ , storage_options=mockfs.storage_options ) A__ : int = np.zeros(5 , dtype=np.floataa ) A__ : Union[str, Any] = 1 A__ , A__ : Any = index.search(lowercase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _a (__magic_name__ ): '''simple docstring''' def __A ( self ): from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: A__ : List[str] = Elasticsearch() A__ : List[Any] = {"""acknowledged""": True} A__ : int = ElasticSearchIndex(es_client=A__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query A__ : Dict = """foo""" A__ : Tuple = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} A__ , A__ : Tuple = index.search(A__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout A__ : List[str] = """foo""" A__ : str = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} A__ , A__ : Dict = index.search(A__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries A__ : Union[str, Any] = ["""foo""", """bar""", """foobar"""] A__ : Tuple = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} A__ , A__ : Dict = index.search_batch(A__ ) A__ : Tuple = [scores[0] for scores in total_scores] A__ : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) , 0 ) self.assertListEqual([1, 1, 1] , A__ ) # batched queries with timeout A__ : int = ["""foo""", """bar""", """foobar"""] A__ : List[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} A__ , A__ : Tuple = index.search_batch(A__ , request_timeout=30 ) A__ : List[Any] = [scores[0] for scores in total_scores] A__ : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__ ) , 0 ) self.assertListEqual([1, 1, 1] , A__ )
192
1
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort snake_case__ : Optional[int] = '''1''' snake_case__ : str = '''0''' snake_case__ : List[str] = '''1''' snake_case__ : List[str] = ort.SessionOptions() snake_case__ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') snake_case__ : Dict = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] snake_case__ : Dict = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) snake_case__ : str = ort.RunOptions() snake_case__ : List[Any] = 128 snake_case__ : Union[str, Any] = 1 snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') snake_case__ : Union[str, Any] = time.time() snake_case__ : str = 2000 snake_case__ : Tuple = {} for iter in range(max_iters): snake_case__ : str = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
353
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A = spec.loader.load_module() __A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def UpperCamelCase__ ( ): snake_case : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case : Tuple = False # source code of `config_class` snake_case : Tuple = inspect.getsource(lowercase__ ) snake_case : Optional[int] = _re_checkpoint.findall(lowercase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case , snake_case : str = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case : Optional[int] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case : Any = True break snake_case : Optional[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowercase__ ) if len(lowercase__ ) > 0: snake_case : Optional[Any] = "\n".join(sorted(lowercase__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
148
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) self.check_model_type(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case , snake_case : Optional[Any] = {}, {} if padding is not None: snake_case : Optional[Any] = padding if truncation is not None: snake_case : Union[str, Any] = truncation if top_k is not None: snake_case : str = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : Tuple = {"image": image, "question": question} else: snake_case : List[str] = image snake_case : Optional[int] = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return results def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): """simple docstring""" snake_case : List[Any] = load_image(inputs["image"] ) snake_case : Tuple = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(SCREAMING_SNAKE_CASE ) return model_inputs def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ): """simple docstring""" if top_k > self.model.config.num_labels: snake_case : List[Any] = self.model.config.num_labels if self.framework == "pt": snake_case : Optional[int] = model_outputs.logits.sigmoid()[0] snake_case , snake_case : Any = probs.topk(SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case : Optional[Any] = scores.tolist() snake_case : List[Any] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
148
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowercase = logging.get_logger(__name__) lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } lowercase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } lowercase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowercase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowercase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __lowercase ( A ): '''simple docstring''' _A : Dict = VOCAB_FILES_NAMES _A : Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __lowercase ( A ): '''simple docstring''' _A : int = VOCAB_FILES_NAMES _A : Optional[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : int = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowercase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowercase = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(A ) class __lowercase : '''simple docstring''' def __call__( self : Optional[int] , _a : Any , _a : Optional[str] = None , _a : Optional[str] = None , _a : Union[bool, str] = False , _a : Union[bool, str] = False , _a : Optional[int] = None , _a : Optional[Union[str, TensorType]] = None , _a : Optional[bool] = None , **_a : List[Any] , ): if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: UpperCamelCase__ = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) UpperCamelCase__ = titles if not isinstance(_a , _a ) else [titles] UpperCamelCase__ = texts if not isinstance(_a , _a ) else [texts] UpperCamelCase__ = len(_a ) UpperCamelCase__ = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F"""There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.""" ) UpperCamelCase__ = super().__call__(_a , _a , padding=_a , truncation=_a )['''input_ids'''] UpperCamelCase__ = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )['''input_ids'''] UpperCamelCase__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: UpperCamelCase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCamelCase__ = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def A_ ( self : Union[str, Any] , _a : BatchEncoding , _a : DPRReaderOutput , _a : int = 16 , _a : int = 64 , _a : int = 4 , ): UpperCamelCase__ = reader_input['''input_ids'''] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = reader_output[:3] UpperCamelCase__ = len(_a ) UpperCamelCase__ = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) UpperCamelCase__ = [] for doc_id in sorted_docs: UpperCamelCase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCamelCase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCamelCase__ = sequence_ids.index(self.pad_token_id ) else: UpperCamelCase__ = len(_a ) UpperCamelCase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def A_ ( self : Optional[int] , _a : List[int] , _a : List[int] , _a : int , _a : int , ): UpperCamelCase__ = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCamelCase__ = sorted(_a , key=lambda _a : x[1] , reverse=_a ) UpperCamelCase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) UpperCamelCase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A ) class __lowercase ( A, A ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : int = READER_PRETRAINED_VOCAB_FILES_MAP _A : Optional[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = READER_PRETRAINED_INIT_CONFIGURATION _A : Union[str, Any] = ['''input_ids''', '''attention_mask''']
35
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowercase = get_logger(__name__) class __lowercase : '''simple docstring''' def __init__( self : Dict , _a : Optional[str] = None ): UpperCamelCase__ = ( os.path.join(_a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase__ = Extractor def A_ ( self : str , _a : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase__ = os.path.abspath(_a ) return os.path.join(self.extract_dir , hash_url_to_filename(_a ) ) def A_ ( self : Optional[Any] , _a : str , _a : bool ): return force_extract or ( not os.path.isfile(_a ) and not (os.path.isdir(_a ) and os.listdir(_a )) ) def A_ ( self : int , _a : str , _a : bool = False ): UpperCamelCase__ = self.extractor.infer_extractor_format(_a ) if not extractor_format: return input_path UpperCamelCase__ = self._get_output_path(_a ) if self._do_extract(_a , _a ): self.extractor.extract(_a , _a , _a ) return output_path class __lowercase ( A ): '''simple docstring''' @classmethod @abstractmethod def A_ ( cls : List[Any] , _a : Union[Path, str] , **_a : List[str] ): ... @staticmethod @abstractmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): ... class __lowercase ( A, A ): '''simple docstring''' _A : List[bytes] = [] @staticmethod def A_ ( _a : Union[Path, str] , _a : int ): with open(_a , '''rb''' ) as f: return f.read(_a ) @classmethod def A_ ( cls : str , _a : Union[Path, str] , _a : bytes = b"" ): if not magic_number: UpperCamelCase__ = max(len(_a ) for cls_magic_number in cls.magic_numbers ) try: UpperCamelCase__ = cls.read_magic_number(_a , _a ) except OSError: return False return any(magic_number.startswith(_a ) for cls_magic_number in cls.magic_numbers ) class __lowercase ( A ): '''simple docstring''' @classmethod def A_ ( cls : Union[str, Any] , _a : Union[Path, str] , **_a : Any ): return tarfile.is_tarfile(_a ) @staticmethod def A_ ( _a : int , _a : List[str] ): def resolved(_a : str ) -> str: return os.path.realpath(os.path.abspath(_a ) ) def badpath(_a : str , _a : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_a , _a ) ).startswith(_a ) def badlink(_a : Tuple , _a : str ) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase__ = resolved(os.path.join(_a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_a ) UpperCamelCase__ = resolved(_a ) for finfo in members: if badpath(finfo.name , _a ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(_a , _a ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(_a , _a ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): os.makedirs(_a , exist_ok=_a ) UpperCamelCase__ = tarfile.open(_a ) tar_file.extractall(_a , members=TarExtractor.safemembers(_a , _a ) ) tar_file.close() class __lowercase ( A ): '''simple docstring''' _A : int = [b'''\x1F\x8B'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with gzip.open(_a , '''rb''' ) as gzip_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : int = [ b'''PK\x03\x04''', b'''PK\x05\x06''', # empty archive b'''PK\x07\x08''', # spanned archive ] @classmethod def A_ ( cls : Dict , _a : Union[Path, str] , _a : bytes = b"" ): if super().is_extractable(_a , magic_number=_a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_a , '''rb''' ) as fp: UpperCamelCase__ = _EndRecData(_a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase__ = fp.read(_a ) # CD is where we expect it to be if len(_a ) == sizeCentralDir: UpperCamelCase__ = struct.unpack(_a , _a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): os.makedirs(_a , exist_ok=_a ) with zipfile.ZipFile(_a , '''r''' ) as zip_file: zip_file.extractall(_a ) zip_file.close() class __lowercase ( A ): '''simple docstring''' _A : Tuple = [b'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with lzma.open(_a ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Union[str, Any] = [b'''Rar!\x1a\x07\x00''', b'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_a , exist_ok=_a ) UpperCamelCase__ = rarfile.RarFile(_a ) rf.extractall(_a ) rf.close() class __lowercase ( A ): '''simple docstring''' _A : Optional[Any] = [b'''\x28\xb5\x2F\xFD'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd UpperCamelCase__ = zstd.ZstdDecompressor() with open(_a , '''rb''' ) as ifh, open(_a , '''wb''' ) as ofh: dctx.copy_stream(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Any = [b'''\x42\x5A\x68'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): with bza.open(_a , '''rb''' ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase ( A ): '''simple docstring''' _A : Optional[int] = [b'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_a , exist_ok=_a ) with pyazr.SevenZipFile(_a , '''r''' ) as archive: archive.extractall(_a ) class __lowercase ( A ): '''simple docstring''' _A : Union[str, Any] = [b'''\x04\x22\x4D\x18'''] @staticmethod def A_ ( _a : Union[Path, str] , _a : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_a , '''rb''' ) as compressed_file: with open(_a , '''wb''' ) as extracted_file: shutil.copyfileobj(_a , _a ) class __lowercase : '''simple docstring''' _A : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def A_ ( cls : Dict ): return max( len(_a ) for extractor in cls.extractors.values() if issubclass(_a , _a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def A_ ( _a : Union[Path, str] , _a : int ): try: return MagicNumberBaseExtractor.read_magic_number(_a , magic_number_length=_a ) except OSError: return b"" @classmethod def A_ ( cls : Optional[Any] , _a : Union[Path, str] , _a : bool = False ): warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_a , ) UpperCamelCase__ = cls.infer_extractor_format(_a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def A_ ( cls : str , _a : Union[Path, str] ): # <Added version="2.4.0"/> UpperCamelCase__ = cls._get_magic_number_max_length() UpperCamelCase__ = cls._read_magic_number(_a , _a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_a , magic_number=_a ): return extractor_format @classmethod def A_ ( cls : List[Any] , _a : Union[Path, str] , _a : Union[Path, str] , _a : Optional[str] = None , _a : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(_a ) , exist_ok=_a ) # Prevent parallel extractions UpperCamelCase__ = str(Path(_a ).with_suffix('''.lock''' ) ) with FileLock(_a ): shutil.rmtree(_a , ignore_errors=_a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_a , _a ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_a , ) UpperCamelCase__ = extractor if extractor != '''deprecated''' else extractor_format else: UpperCamelCase__ = cls.extractors[extractor_format] return extractor.extract(_a , _a ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_a ): return extractor.extract(_a , _a )
35
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a = logging.get_logger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ): """simple docstring""" if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(UpperCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , 'v2' ) , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _UpperCAmelCase = os.path.join(UpperCAmelCase , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase = None , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase = np.load(UpperCAmelCase ) return voice_preset_dict def UpperCamelCase ( self , UpperCAmelCase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): """simple docstring""" if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _UpperCAmelCase = voice_preset + '.npz' _UpperCAmelCase = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _UpperCAmelCase = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
39
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :List[Any] = logging.get_logger(__name__) lowerCamelCase :Dict = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = 'git_vision_model' def __init__(self , lowercase=768 , lowercase=3072 , lowercase=12 , lowercase=12 , lowercase=3 , lowercase=224 , lowercase=16 , lowercase="quick_gelu" , lowercase=1E-5 , lowercase=0.0 , lowercase=0.02 , **lowercase , ): super().__init__(**lowercase ) A_ : int = hidden_size A_ : str = intermediate_size A_ : int = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : Any = num_channels A_ : List[Any] = patch_size A_ : List[Any] = image_size A_ : List[str] = initializer_range A_ : List[str] = attention_dropout A_ : int = layer_norm_eps A_ : str = hidden_act @classmethod def _a (cls , lowercase , **lowercase ): cls._set_token_in_kwargs(lowercase ) A_ : Dict = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": A_ : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowercase , **lowercase ) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = 'git' def __init__(self , lowercase=None , lowercase=30522 , lowercase=768 , lowercase=6 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1024 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="absolute" , lowercase=True , lowercase=False , lowercase=101 , lowercase=102 , lowercase=None , **lowercase , ): super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , pad_token_id=lowercase , **lowercase ) if vision_config is None: A_ : Optional[Any] = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) A_ : List[str] = GitVisionConfig(**lowercase ) A_ : str = vocab_size A_ : Dict = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Dict = hidden_act A_ : List[str] = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Tuple = max_position_embeddings A_ : List[Any] = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : List[str] = position_embedding_type A_ : int = use_cache A_ : int = tie_word_embeddings A_ : List[str] = num_image_with_embedding A_ : Tuple = bos_token_id A_ : Tuple = eos_token_id def _a (self ): A_ : Tuple = copy.deepcopy(self.__dict__ ) A_ : Tuple = self.vision_config.to_dict() A_ : Dict = self.__class__.model_type return output
352
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=None , lowercase=2 , ): A_ : List[str] = parent A_ : str = batch_size A_ : Optional[Any] = image_size A_ : List[str] = patch_size A_ : List[str] = num_channels A_ : List[str] = is_training A_ : str = use_labels A_ : List[str] = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[int] = type_sequence_label_size A_ : Any = initializer_range A_ : int = scope A_ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Dict = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def _a (self ): A_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[Any] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _a (self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[str] = ViTModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[str] = ViTForMaskedImageModeling(config=lowercase ) model.to(lowercase ) model.eval() A_ : Tuple = model(lowercase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : Any = ViTForMaskedImageModeling(lowercase ) model.to(lowercase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[int] = model(lowercase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a (self , lowercase , lowercase , lowercase ): A_ : Dict = self.type_sequence_label_size A_ : str = ViTForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Any = 1 A_ : str = ViTForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Union[str, Any] = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): A_ : str = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ) : Optional[int] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = True __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[int] = False def _a (self ): A_ : Any = ViTModelTester(self ) A_ : str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_, A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _a (self ): A_, A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(lowercase ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase ) def _a (self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _a (self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = ViTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def a ( ): '''simple docstring''' A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def _a (self ): A_ : Optional[int] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(lowercase ) A_ : List[str] = self.default_image_processor A_ : Tuple = prepare_img() A_ : int = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): A_ : str = model(**lowercase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) ) @slow def _a (self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. A_ : Optional[int] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(lowercase ) A_ : List[Any] = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) A_ : Dict = prepare_img() A_ : str = image_processor(images=lowercase , return_tensors="""pt""" ) A_ : int = inputs.pixel_values.to(lowercase ) # forward pass with torch.no_grad(): A_ : int = model(lowercase , interpolate_pos_encoding=lowercase ) # verify the logits A_ : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase ) A_ : List[Any] = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _a (self ): A_ : List[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : Any = prepare_img() A_ : List[str] = image_processor(images=lowercase , return_tensors="""pt""" ) A_ : Any = inputs.pixel_values.to(lowercase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : Optional[Any] = model(lowercase )
135
0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCAmelCase : Optional[int] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
13
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Union[str, Any] = BarthezTokenizer A_ : Tuple = BarthezTokenizerFast A_ : Dict = True A_ : List[str] = True def __lowerCamelCase ( self ): super().setUp() __lowerCAmelCase : str = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = tokenizer def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = '<pad>' __lowerCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 10_11_22 ) def __lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCAmelCase : Optional[Any] = [0, 57, 30_18, 7_03_07, 91, 2] __lowerCAmelCase : Optional[int] = self.tokenizer( _SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __lowerCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __lowerCAmelCase : Tuple = self.get_tokenizer() __lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() __lowerCAmelCase : List[str] = 'I was born in 92000, and this is falsé.' __lowerCAmelCase : Optional[int] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # fmt: off __lowerCAmelCase : str = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __lowerCAmelCase : Union[str, Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_SCREAMING_SNAKE_CASE , )
86
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def lowercase_ ( ): """simple docstring""" print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def UpperCAmelCase_ ( *__snake_case ) -> Tuple: """simple docstring""" with open(__a , '''r''' ) as fh: fcntl.flock(__a , fcntl.LOCK_EX ) try: print(*__a ) finally: fcntl.flock(__a , fcntl.LOCK_UN ) UpperCAmelCase__ = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) UpperCAmelCase__ = torch.device('''cuda''', local_rank) UpperCAmelCase__ = socket.gethostname() UpperCAmelCase__ = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ = dist.get_rank() UpperCAmelCase__ = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
5
from math import ceil def __lowerCamelCase ( __a :int = 1_0_0_1 ) -> int: """simple docstring""" A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
274
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase = 3 , UpperCamelCase = 7 , UpperCamelCase = 1000000 ) -> int: lowerCamelCase__ : Dict = 0 lowerCamelCase__ : int = 1 for current_denominator in range(1 , limit + 1 ): lowerCamelCase__ : Union[str, Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCamelCase__ : Any = current_numerator lowerCamelCase__ : str = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
129
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _A : Optional[int] =pd.read_csv('''sample_data.csv''', header=None) _A : Any =df.shape[:1][0] # If you're using some other dataset input the target column _A : List[str] =df.iloc[:, 1:2] _A : int =actual_data.values.reshape(len_data, 1) _A : Union[str, Any] =MinMaxScaler().fit_transform(actual_data) _A : Optional[int] =10 _A : Union[str, Any] =5 _A : Union[str, Any] =20 _A : str =len_data - periods * look_back _A : List[Any] =actual_data[:division] _A : Optional[Any] =actual_data[division - look_back :] _A , _A : Tuple =[], [] _A , _A : List[str] =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _A : List[Any] =np.array(train_x) _A : str =np.array(test_x) _A : List[Any] =np.array([list(i.ravel()) for i in train_y]) _A : Any =np.array([list(i.ravel()) for i in test_y]) _A : Optional[Any] =Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _A : Dict =model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _A : List[str] =model.predict(x_test)
129
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __a = datasets.utils.logging.get_logger(__name__) class UpperCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" lowercase = None lowercase = None class UpperCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" lowercase = datasets.Audio() lowercase = "audio" lowercase = AudioFolderConfig lowercase = 42 # definition at the bottom of the script lowercase = AudioClassification(audio_column="audio" , label_column="label" ) __a = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __a = AUDIO_EXTENSIONS
35
'''simple docstring''' import numpy as np from transformers import Pipeline def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) snake_case__ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] , **snake_case_ : int ): snake_case__ : Optional[int] = {} if "second_text" in kwargs: snake_case__ : Union[str, Any] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any]=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCamelCase ( self : List[Any] , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = model_outputs.logits[0].numpy() snake_case__ : List[str] = softmax(snake_case_ ) snake_case__ : List[str] = np.argmax(snake_case_ ) snake_case__ : List[str] = self.model.config.idalabel[best_class] snake_case__ : Optional[int] = probabilities[best_class].item() snake_case__ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
35
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __A : a__ : str = BlenderbotSmallConfig a__ : Optional[Any] = {} a__ : Optional[int] = """gelu""" def __init__(self : List[str] , __a : Optional[Any] , __a : Union[str, Any]=13 , __a : Dict=7 , __a : Tuple=True , __a : Union[str, Any]=False , __a : Optional[Any]=99 , __a : List[str]=32 , __a : Tuple=2 , __a : Dict=4 , __a : Any=37 , __a : Any=0.1 , __a : Tuple=0.1 , __a : Any=20 , __a : Tuple=2 , __a : Any=1 , __a : Optional[Any]=0 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ = prepare_blenderbot_small_inputs_dict(__a , __a , __a ) return config, inputs_dict def _lowercase (self : Any , __a : int , __a : List[str] ): UpperCAmelCase_ = TFBlenderbotSmallModel(config=__a ).get_decoder() UpperCAmelCase_ = inputs_dict['input_ids'] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict['attention_mask'][:1, :] UpperCAmelCase_ = inputs_dict['head_mask'] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ = model(__a , attention_mask=__a )[0] UpperCAmelCase_ = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , snake_case_ : Tuple=None , snake_case_ : Optional[int]=None , snake_case_ : Tuple=None , ) -> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a__ : str = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) a__ : Tuple = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () a__ : Dict = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) a__ : Tuple = True a__ : Union[str, Any] = False a__ : Dict = False def _lowercase (self : Any ): UpperCAmelCase_ = TFBlenderbotSmallModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_tokenizers @require_tf class __A ( unittest.TestCase ): a__ : Tuple = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i\'m going to throw up.\nand why is that?""" ] a__ : Any = """facebook/blenderbot_small-90M""" @cached_property def _lowercase (self : int ): return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.tokenizer(self.src_text , return_tensors="tf" ) UpperCAmelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__a , ) UpperCAmelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__a )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
350
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = MobileBertTokenizer a__ : str = MobileBertTokenizerFast a__ : List[str] = True a__ : Dict = True a__ : Optional[int] = filter_non_english a__ : int = """google/mobilebert-uncased""" def _lowercase (self : List[str] ): super().setUp() UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowercase (self : Tuple , __a : str ): UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = "unwanted, running" return input_text, output_text def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def _lowercase (self : Dict ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing UpperCAmelCase_ = self.get_tokenizer(do_lower_case=__a ) UpperCAmelCase_ = self.get_rust_tokenizer(do_lower_case=__a ) UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Dict ): UpperCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Any ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase (self : Tuple ): UpperCAmelCase_ = BasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowercase (self : Any ): UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ = {} for i, token in enumerate(__a ): UpperCAmelCase_ = i UpperCAmelCase_ = WordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowercase (self : Optional[int] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowercase (self : str ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowercase (self : Any ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowercase (self : Any ): UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _lowercase (self : Dict ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowercase (self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) UpperCAmelCase_ = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False UpperCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = ["的", "人", "有"] UpperCAmelCase_ = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = False UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase_ = tokenizer_r.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_p.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(__a ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
106
0
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( a_: Optional[int] ): return getitem, k def __UpperCAmelCase ( a_: str, a_: Dict ): return setitem, k, v def __UpperCAmelCase ( a_: List[Any] ): return delitem, k def __UpperCAmelCase ( a_: List[Any], a_: int, *a_: int ): try: return fun(_lowerCamelCase, *_lowerCamelCase ), None except Exception as e: return None, e __a = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) __a = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] __a = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] __a = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] __a = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __a = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations", ( pytest.param(_add_items, id="add items" ), pytest.param(_overwrite_items, id="overwrite items" ), pytest.param(_delete_items, id="delete items" ), pytest.param(_access_absent_items, id="access absent items" ), pytest.param(_add_with_resize_up, id="add with resize up" ), pytest.param(_add_with_resize_down, id="add with resize down" ), ), ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Any = HashMap(initial_block_size=4 ) _UpperCAmelCase : int = {} for _, (fun, *args) in enumerate(_lowerCamelCase ): _UpperCAmelCase : List[Any] = _run_operation(_lowerCamelCase, _lowerCamelCase, *_lowerCamelCase ) _UpperCAmelCase : Dict = _run_operation(_lowerCamelCase, _lowerCamelCase, *_lowerCamelCase ) assert my_res == py_res assert str(_lowerCamelCase ) == str(_lowerCamelCase ) assert set(_lowerCamelCase ) == set(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ): def is_public(a_: str ) -> bool: return not name.startswith("_" ) _UpperCAmelCase : Optional[Any] = {name for name in dir({} ) if is_public(_lowerCamelCase )} _UpperCAmelCase : int = {name for name in dir(HashMap() ) if is_public(_lowerCamelCase )} assert dict_public_names > hash_public_names
145
"""simple docstring""" def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> List[str]: '''simple docstring''' assert x is not None assert y is not None __lowerCamelCase : Optional[int] = len(_lowerCamelCase ) __lowerCamelCase : Optional[int] = len(_lowerCamelCase ) # declaring the array for storing the dp values __lowerCamelCase : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowerCamelCase : Dict = 1 if x[i - 1] == y[j - 1] else 0 __lowerCamelCase : List[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowerCamelCase : int = "" __lowerCamelCase , __lowerCamelCase : int = m, n while i > 0 and j > 0: __lowerCamelCase : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCamelCase : Any = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = '''AGGTAB''' __A = '''GXTXAYB''' __A = 4 __A = '''GTAB''' __A, __A = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
135
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> None: """simple docstring""" UpperCamelCase :Optional[int] = generate_pascal_triangle(__magic_name__ ) for row_idx in range(__magic_name__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> list[list[int]]: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) UpperCamelCase :list[list[int]] = [] for current_row_idx in range(__magic_name__ ): UpperCamelCase :Optional[Any] = populate_current_row(__magic_name__ , __magic_name__ ) triangle.append(__magic_name__ ) return triangle def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> list[int]: """simple docstring""" UpperCamelCase :str = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCamelCase , UpperCamelCase :Tuple = 1, 1 for current_col_idx in range(1 , __magic_name__ ): calculate_current_element( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return current_row def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : int , ) -> None: """simple docstring""" UpperCamelCase :Dict = triangle[current_row_idx - 1][current_col_idx - 1] UpperCamelCase :Tuple = triangle[current_row_idx - 1][current_col_idx] UpperCamelCase :Optional[Any] = above_to_left_elt + above_to_right_elt def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> list[list[int]]: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) UpperCamelCase :list[list[int]] = [[1]] for row_index in range(1 , __magic_name__ ): UpperCamelCase :Union[str, Any] = [0] + result[-1] + [0] UpperCamelCase :Any = row_index + 1 # Calculate the number of distinct elements in a row UpperCamelCase :Tuple = sum(divmod(__magic_name__ , 2 ) ) UpperCamelCase :Optional[Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCamelCase :str = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCamelCase :Dict = row_first_half + row_second_half result.append(__magic_name__ ) return result def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ : Callable , __magic_name__ : int ) -> None: UpperCamelCase :int = f"""{func.__name__}({value})""" UpperCamelCase :Union[str, Any] = timeit(f"""__main__.{call}""" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
62
from string import ascii_lowercase, ascii_uppercase def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> str: """simple docstring""" if not sentence: return "" UpperCamelCase :str = dict(zip(__magic_name__ , __magic_name__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
62
1
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase = logging.getLogger(__name__) __lowercase = tf.data.AUTOTUNE def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=a__ , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=a__ , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=a__ , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=a__ , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=a__ , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=a__ , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=a__ , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=a__ , default=2**1_8 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=a__ , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=a__ , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=a__ , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=a__ , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=a__ , default=5_1_2 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=a__ , default=0.1_5 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=a__ , required=a__ , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=a__ , help='''Model ID to upload to on the Hugging Face Hub.''' ) __UpperCamelCase =parser.parse_args() return args def lowerCAmelCase (__UpperCamelCase : List[Any] ): """simple docstring""" try: if args.tpu_name: __UpperCamelCase =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: __UpperCamelCase =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(a__ ) tf.tpu.experimental.initialize_tpu_system(a__ ) return tpu def lowerCAmelCase (__UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase =0 for file in file_list: __UpperCamelCase =file.split('''/''' )[-1] __UpperCamelCase =re.search(r'''-\d+-(\d+)\.tfrecord''' , a__ ).group(1 ) __UpperCamelCase =int(a__ ) num_samples += sample_count return num_samples def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=None ): """simple docstring""" __UpperCamelCase =count_samples(a__ ) __UpperCamelCase =tf.data.Dataset.from_tensor_slices(a__ ) if shuffle: __UpperCamelCase =dataset.shuffle(len(a__ ) ) __UpperCamelCase =tf.data.TFRecordDataset(a__ , num_parallel_reads=a__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __UpperCamelCase =dataset.apply(tf.data.experimental.assert_cardinality(a__ ) ) __UpperCamelCase =dataset.map(a__ , num_parallel_calls=a__ ) if shuffle: assert shuffle_buffer_size is not None __UpperCamelCase =dataset.shuffle(args.shuffle_buffer_size ) __UpperCamelCase =dataset.batch(a__ , drop_remainder=a__ ) __UpperCamelCase =dataset.map(a__ , num_parallel_calls=a__ ) __UpperCamelCase =dataset.prefetch(a__ ) return dataset def lowerCAmelCase (__UpperCamelCase : List[Any] ): """simple docstring""" if not args.no_tpu: __UpperCamelCase =initialize_tpu(a__ ) __UpperCamelCase =tf.distribute.TPUStrategy(a__ ) else: __UpperCamelCase =tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) __UpperCamelCase =AutoTokenizer.from_pretrained(args.tokenizer ) __UpperCamelCase =AutoConfig.from_pretrained(args.pretrained_model_config ) __UpperCamelCase =tokenizer.vocab_size __UpperCamelCase =tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(F"""No .tfrecord files found in {args.train_dataset}.""" ) __UpperCamelCase =tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(F"""No .tfrecord files found in {args.eval_dataset}.""" ) __UpperCamelCase =count_samples(a__ ) __UpperCamelCase =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __UpperCamelCase =steps_per_epoch * args.num_epochs with strategy.scope(): __UpperCamelCase =TFAutoModelForMaskedLM.from_config(a__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __UpperCamelCase , __UpperCamelCase =create_optimizer( num_train_steps=a__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=a__ , metrics=['''accuracy'''] ) def decode_fn(__UpperCamelCase : str ): __UpperCamelCase ={ '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(a__ , a__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __UpperCamelCase =DataCollatorForLanguageModeling( tokenizer=a__ , mlm_probability=args.mlm_probability , mlm=a__ , return_tensors='''tf''' ) def mask_with_collator(__UpperCamelCase : List[str] ): # TF really needs an isin() function __UpperCamelCase =( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) __UpperCamelCase , __UpperCamelCase =data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(a__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=a__ , ) return batch __UpperCamelCase =args.per_replica_batch_size * strategy.num_replicas_in_sync __UpperCamelCase =prepare_dataset( a__ , decode_fn=a__ , mask_fn=a__ , batch_size=a__ , shuffle=a__ , shuffle_buffer_size=args.shuffle_buffer_size , ) __UpperCamelCase =prepare_dataset( a__ , decode_fn=a__ , mask_fn=a__ , batch_size=a__ , shuffle=a__ , ) __UpperCamelCase =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=a__ ) ) model.fit( a__ , validation_data=a__ , epochs=args.num_epochs , callbacks=a__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase = parse_args() main(args)
369
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase (__UpperCamelCase : Tuple ): """simple docstring""" __UpperCamelCase =SwinConfig() __UpperCamelCase =swin_name.split('''_''' ) __UpperCamelCase =name_split[1] __UpperCamelCase =int(name_split[4] ) __UpperCamelCase =int(name_split[3][-1] ) if model_size == "tiny": __UpperCamelCase =9_6 __UpperCamelCase =(2, 2, 6, 2) __UpperCamelCase =(3, 6, 1_2, 2_4) elif model_size == "small": __UpperCamelCase =9_6 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(3, 6, 1_2, 2_4) elif model_size == "base": __UpperCamelCase =1_2_8 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(4, 8, 1_6, 3_2) else: __UpperCamelCase =1_9_2 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(6, 1_2, 2_4, 4_8) if "in22k" in swin_name: __UpperCamelCase =2_1_8_4_1 else: __UpperCamelCase =1_0_0_0 __UpperCamelCase ='''huggingface/label-files''' __UpperCamelCase ='''imagenet-1k-id2label.json''' __UpperCamelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =img_size __UpperCamelCase =num_classes __UpperCamelCase =embed_dim __UpperCamelCase =depths __UpperCamelCase =num_heads __UpperCamelCase =window_size return config def lowerCAmelCase (__UpperCamelCase : Optional[int] ): """simple docstring""" if "patch_embed.proj" in name: __UpperCamelCase =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCamelCase =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __UpperCamelCase ='''encoder.''' + name if "attn.proj" in name: __UpperCamelCase =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __UpperCamelCase =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCamelCase =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCamelCase =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCamelCase =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCamelCase =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": __UpperCamelCase ='''layernorm.weight''' if name == "norm.bias": __UpperCamelCase ='''layernorm.bias''' if "head" in name: __UpperCamelCase =name.replace('''head''' , '''classifier''' ) else: __UpperCamelCase ='''swin.''' + name return name def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase =orig_state_dict.pop(__UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: __UpperCamelCase =key.split('''.''' ) __UpperCamelCase =int(key_split[1] ) __UpperCamelCase =int(key_split[3] ) __UpperCamelCase =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase =val[:dim, :] __UpperCamelCase =val[ dim : dim * 2, : ] __UpperCamelCase =val[-dim:, :] else: __UpperCamelCase =val[ :dim ] __UpperCamelCase =val[ dim : dim * 2 ] __UpperCamelCase =val[ -dim: ] else: __UpperCamelCase =val return orig_state_dict def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Any ): """simple docstring""" __UpperCamelCase =timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() __UpperCamelCase =get_swin_config(__UpperCamelCase ) __UpperCamelCase =SwinForImageClassification(__UpperCamelCase ) model.eval() __UpperCamelCase =convert_state_dict(timm_model.state_dict() , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) __UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCamelCase =AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) __UpperCamelCase =Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) __UpperCamelCase =image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) __UpperCamelCase =timm_model(inputs['''pixel_values'''] ) __UpperCamelCase =model(**__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
85
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""naver-clova-ix/donut-base-finetuned-docvqa""" snake_case_ =( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) snake_case_ ="""document_qa""" snake_case_ =AutoProcessor snake_case_ =VisionEncoderDecoderModel snake_case_ =["""image""", """text"""] snake_case_ =["""text"""] def __init__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Dict: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : int = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowerCAmelCase__ : List[str] = task_prompt.replace('''{user_input}''' ,__lowerCamelCase ) lowerCAmelCase__ : Tuple = self.pre_processor.tokenizer( __lowerCamelCase ,add_special_tokens=__lowerCamelCase ,return_tensors='''pt''' ).input_ids lowerCAmelCase__ : Optional[Any] = self.pre_processor(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) ,decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) ,max_length=self.model.decoder.config.max_position_embeddings ,early_stopping=__lowerCamelCase ,pad_token_id=self.pre_processor.tokenizer.pad_token_id ,eos_token_id=self.pre_processor.tokenizer.eos_token_id ,use_cache=__lowerCamelCase ,num_beams=1 ,bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] ,return_dict_in_generate=__lowerCamelCase ,).sequences def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Dict = self.pre_processor.batch_decode(__lowerCamelCase )[0] lowerCAmelCase__ : Any = sequence.replace(self.pre_processor.tokenizer.eos_token ,'''''' ) lowerCAmelCase__ : Any = sequence.replace(self.pre_processor.tokenizer.pad_token ,'''''' ) lowerCAmelCase__ : Tuple = re.sub(R'''<.*?>''' ,'''''' ,__lowerCamelCase ,count=1 ).strip() # remove first task start token lowerCAmelCase__ : Optional[Any] = self.pre_processor.tokenajson(__lowerCamelCase ) return sequence["answer"]
129
# Function to print upper half of diamond (pyramid) def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' for i in range(0 ,lowerCamelCase_): for _ in range(0 ,n - i - 1): # printing spaces print(''' ''' ,end='''''') for _ in range(0 ,i + 1): # printing stars print('''* ''' ,end='''''') print() def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' for i in range(lowerCamelCase_ ,0 ,-1): for _ in range(lowerCamelCase_ ,0 ,-1): # printing stars print('''* ''' ,end='''''') print() for _ in range(n - i + 1 ,0 ,-1): # printing spaces print(''' ''' ,end='''''') def lowerCAmelCase__ ( lowerCamelCase_ : Tuple): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''') return floyd(lowerCamelCase_) # upper half reverse_floyd(lowerCamelCase_) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') __snake_case : int =1 while K: __snake_case : Optional[int] =int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __snake_case : str =int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
129
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=2, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=36, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=6, lowerCAmelCase=6, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=None, lowerCAmelCase=1_000, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =patch_size lowerCamelCase_ =text_seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =coordinate_size lowerCamelCase_ =shape_size lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =scope lowerCamelCase_ =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase_ =text_seq_length lowerCamelCase_ =(image_size // patch_size) ** 2 + 1 lowerCamelCase_ =self.text_seq_length + self.image_seq_length def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase_ =bbox[i, j, 3] lowerCamelCase_ =bbox[i, j, 1] lowerCamelCase_ =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase_ =bbox[i, j, 2] lowerCamelCase_ =bbox[i, j, 0] lowerCamelCase_ =t lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) lowerCamelCase_ =LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =LayoutLMvaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # text + image lowerCamelCase_ =model(snake_case__, pixel_values=snake_case__ ) lowerCamelCase_ =model( snake_case__, bbox=snake_case__, pixel_values=snake_case__, attention_mask=snake_case__, token_type_ids=snake_case__ ) lowerCamelCase_ =model(snake_case__, bbox=snake_case__, pixel_values=snake_case__, token_type_ids=snake_case__ ) lowerCamelCase_ =model(snake_case__, bbox=snake_case__, pixel_values=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase_ =model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase_ =model(pixel_values=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =LayoutLMvaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ =model( snake_case__, bbox=snake_case__, pixel_values=snake_case__, attention_mask=snake_case__, token_type_ids=snake_case__, labels=snake_case__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =LayoutLMvaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ =model( snake_case__, bbox=snake_case__, pixel_values=snake_case__, attention_mask=snake_case__, token_type_ids=snake_case__, labels=snake_case__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =LayoutLMvaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ =model( snake_case__, bbox=snake_case__, pixel_values=snake_case__, attention_mask=snake_case__, token_type_ids=snake_case__, start_positions=snake_case__, end_positions=snake_case__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( lowerCamelCase_ ) =config_and_inputs lowerCamelCase_ ={ "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A_ , A_ , unittest.TestCase ): lowercase : str =False lowercase : Any =False lowercase : List[Any] =False lowercase : int =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase : Dict =( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" return True def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =LayoutLMvaModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=snake_case__, hidden_size=37 ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): lowerCamelCase_ ={ k: v.unsqueeze(1 ).expand(-1, self.model_tester.num_choices, -1 ).contiguous() if isinstance(snake_case__, torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): lowerCamelCase_ =torch.ones(self.model_tester.batch_size, dtype=torch.long, device=snake_case__ ) elif model_class in get_values(snake_case__ ): lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=snake_case__ ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: lowerCamelCase_ =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=snake_case__, ) return inputs_dict def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ =type self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =LayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a_ ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(snake_case__ ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=snake_case__, return_tensors='''pt''' ).pixel_values.to(snake_case__ ) lowerCamelCase_ =torch.tensor([[1, 2]] ) lowerCamelCase_ =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCamelCase_ =model( input_ids=input_ids.to(snake_case__ ), bbox=bbox.to(snake_case__ ), pixel_values=pixel_values.to(snake_case__ ), ) # verify the logits lowerCamelCase_ =torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape, snake_case__ ) lowerCamelCase_ =torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], snake_case__, atol=1e-4 ) )
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = '''Hello world! cécé herlolip''' def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = FairseqRobertaModel.from_pretrained(A_ ) roberta.eval() # disable dropout lowerCAmelCase__ : str = roberta.model.encoder.sentence_encoder lowerCAmelCase__ : Tuple = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: lowerCAmelCase__ : Optional[Any] = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , A_ ) lowerCAmelCase__ : Optional[int] = XLMRobertaXLForSequenceClassification(A_ ) if classification_head else XLMRobertaXLForMaskedLM(A_ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase__ : Union[str, Any] = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase__ : Dict = roberta_sent_encoder.embed_positions.weight lowerCAmelCase__ : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase__ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight lowerCAmelCase__ : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase__ : BertLayer = model.roberta.encoder.layer[i] lowerCAmelCase__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCAmelCase__ : RobertaAttention = layer.attention lowerCAmelCase__ : Tuple = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase__ : int = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase__ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase__ : List[str] = roberta_layer.self_attn.q_proj.weight lowerCAmelCase__ : int = roberta_layer.self_attn.q_proj.bias lowerCAmelCase__ : Union[str, Any] = roberta_layer.self_attn.k_proj.weight lowerCAmelCase__ : Tuple = roberta_layer.self_attn.k_proj.bias lowerCAmelCase__ : Optional[Any] = roberta_layer.self_attn.v_proj.weight lowerCAmelCase__ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase__ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase__ : List[Any] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase__ : Dict = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase__ : Any = roberta_layer.final_layer_norm.weight lowerCAmelCase__ : str = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase__ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase__ : Dict = roberta_layer.fca.weight lowerCAmelCase__ : List[Any] = roberta_layer.fca.bias # output lowerCAmelCase__ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase__ : Any = roberta_layer.fca.weight lowerCAmelCase__ : List[Any] = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase__ : Dict = roberta.model.classification_heads['''mnli'''].dense.weight lowerCAmelCase__ : Union[str, Any] = roberta.model.classification_heads['''mnli'''].dense.bias lowerCAmelCase__ : Any = roberta.model.classification_heads['''mnli'''].out_proj.weight lowerCAmelCase__ : Optional[Any] = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCAmelCase__ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase__ : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase__ : List[str] = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase__ : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase__ : int = roberta.model.encoder.lm_head.weight lowerCAmelCase__ : Optional[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase__ : torch.Tensor = roberta.encode(A_ ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase__ : str = model(A_ )[0] if classification_head: lowerCAmelCase__ : Optional[int] = roberta.model.classification_heads['''mnli'''](roberta.extract_features(A_ ) ) else: lowerCAmelCase__ : Dict = roberta.model(A_ )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase__ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 lowerCAmelCase__ : int = torch.allclose(A_ , A_ , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(A_ ).mkdir(parents=A_ , exist_ok=A_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(A_ ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __UpperCamelCase : int = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
106
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = ["pixel_values"] def __init__( self : str ,lowercase_ : bool = True ,lowercase_ : Dict[str, int] = None ,lowercase_ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase_ : bool = True ,lowercase_ : Dict[str, int] = None ,lowercase_ : bool = True ,lowercase_ : Union[int, float] = 1 / 2_5_5 ,lowercase_ : bool = True ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : bool = True ,**lowercase_ : Optional[Any] ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : List[str] = size if size is not None else {'''shortest_edge''': 2_2_4} lowerCAmelCase__ : Tuple = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) lowerCAmelCase__ : Optional[int] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase__ : Optional[Any] = get_size_dict(lowercase_ ,default_to_square=lowercase_ ,param_name='''crop_size''' ) lowerCAmelCase__ : Dict = do_resize lowerCAmelCase__ : Optional[int] = size lowerCAmelCase__ : Dict = resample lowerCAmelCase__ : Optional[Any] = do_center_crop lowerCAmelCase__ : Dict = crop_size lowerCAmelCase__ : Tuple = do_rescale lowerCAmelCase__ : str = rescale_factor lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ : Optional[Any] = do_convert_rgb def __lowerCAmelCase ( self : Dict ,lowercase_ : np.ndarray ,lowercase_ : Dict[str, int] ,lowercase_ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Optional[Any] ,): lowerCAmelCase__ : Dict = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase__ : Optional[Any] = get_resize_output_image_size(lowercase_ ,size=size['''shortest_edge'''] ,default_to_square=lowercase_ ) return resize(lowercase_ ,size=lowercase_ ,resample=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : np.ndarray ,lowercase_ : Dict[str, int] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : str ,): lowerCAmelCase__ : List[str] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowercase_ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : np.ndarray ,lowercase_ : Union[int, float] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Union[str, Any] ,): return rescale(lowercase_ ,scale=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : np.ndarray ,lowercase_ : Union[float, List[float]] ,lowercase_ : Union[float, List[float]] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : int ,): return normalize(lowercase_ ,mean=lowercase_ ,std=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : ImageInput ,lowercase_ : bool = None ,lowercase_ : Dict[str, int] = None ,lowercase_ : PILImageResampling = None ,lowercase_ : bool = None ,lowercase_ : int = None ,lowercase_ : bool = None ,lowercase_ : float = None ,lowercase_ : bool = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : bool = None ,lowercase_ : Optional[Union[str, TensorType]] = None ,lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST ,**lowercase_ : List[Any] ,): lowerCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Optional[int] = size if size is not None else self.size lowerCAmelCase__ : Union[str, Any] = get_size_dict(lowercase_ ,param_name='''size''' ,default_to_square=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : Dict = get_size_dict(lowercase_ ,param_name='''crop_size''' ,default_to_square=lowercase_ ) lowerCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : str = image_std if image_std is not None else self.image_std lowerCAmelCase__ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ : Any = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ : Tuple = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ : Optional[int] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase__ : Optional[int] = [self.resize(image=lowercase_ ,size=lowercase_ ,resample=lowercase_ ) for image in images] if do_center_crop: lowerCAmelCase__ : Tuple = [self.center_crop(image=lowercase_ ,size=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase__ : Tuple = [self.rescale(image=lowercase_ ,scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase__ : Union[str, Any] = [self.normalize(image=lowercase_ ,mean=lowercase_ ,std=lowercase_ ) for image in images] lowerCAmelCase__ : Optional[Any] = [to_channel_dimension_format(lowercase_ ,lowercase_ ) for image in images] lowerCAmelCase__ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=lowercase_ ,tensor_type=lowercase_ )
106
1
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = row, column SCREAMING_SNAKE_CASE : Optional[int] = [[default_value for c in range(UpperCAmelCase_ )] for r in range(UpperCAmelCase_ )] def __str__( self : int ): SCREAMING_SNAKE_CASE : List[Any] = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier SCREAMING_SNAKE_CASE : int = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE : str = max(UpperCAmelCase_ , len(str(UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE : Any = f'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase_ : list[float] ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE : Optional[Any] = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_ ) for row_vector in self.array ) return s def __repr__( self : str ): return str(self ) def _A ( self : Dict , UpperCAmelCase_ : tuple[int, int] ): if not (isinstance(UpperCAmelCase_ , (list, tuple) ) and len(UpperCAmelCase_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : List[str] , UpperCAmelCase_ : tuple[int, int] ): assert self.validate_indicies(UpperCAmelCase_ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Tuple , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float ): assert self.validate_indicies(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = value def __add__( self : Dict , UpperCAmelCase_ : Matrix ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : Optional[int] = self[r, c] + another[r, c] return result def __neg__( self : Dict ): SCREAMING_SNAKE_CASE : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : Tuple = -self[r, c] return result def __sub__( self : Dict , UpperCAmelCase_ : Matrix ): return self + (-another) def __mul__( self : List[str] , UpperCAmelCase_ : int | float | Matrix ): if isinstance(UpperCAmelCase_ , (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : int = self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE : List[Any] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE : Union[str, Any] = f'''Unsupported type given for another ({type(UpperCAmelCase_ )})''' raise TypeError(UpperCAmelCase_ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : List[str] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : str = self[r, c] return result def _A ( self : Any , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE : Union[str, Any] = v.transpose() SCREAMING_SNAKE_CASE : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE : int = 1 print(F'''a^(-1) is {ainv}''' ) # u, v SCREAMING_SNAKE_CASE : str = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = 1, 2, -3 SCREAMING_SNAKE_CASE : str = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase , lowercase )}''' ) def lowerCamelCase__ ( ): """simple docstring""" import doctest doctest.testmod() testa()
319
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "mvp" UpperCAmelCase__ : Tuple = ["past_key_values"] UpperCAmelCase__ : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , A_=50267 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , A_=False , A_=100 , A_=800 , **A_ , ) -> Union[str, Any]: __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =d_model __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =decoder_layers __UpperCamelCase =decoder_attention_heads __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =encoder_layerdrop __UpperCamelCase =decoder_layerdrop __UpperCamelCase =classifier_dropout __UpperCamelCase =use_cache __UpperCamelCase =encoder_layers __UpperCamelCase =scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase =use_prompt __UpperCamelCase =prompt_length __UpperCamelCase =prompt_mid_dim super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , A_ ): __UpperCamelCase =self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
62
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _A = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ["pixel_values"] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , A_ = True , **A_ , ) -> None: super().__init__(**A_ ) __UpperCamelCase =size if size is not None else {'shortest_edge': 224} __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) __UpperCamelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ , param_name='crop_size' ) __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =resample __UpperCamelCase =do_center_crop __UpperCamelCase =crop_size __UpperCamelCase =do_rescale __UpperCamelCase =rescale_factor __UpperCamelCase =do_normalize __UpperCamelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase =image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase =do_convert_rgb def _a ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) -> np.ndarray: __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCamelCase =get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: __UpperCamelCase =get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> Union[str, Any]: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image: __UpperCamelCase =do_resize if do_resize is not None else self.do_resize __UpperCamelCase =size if size is not None else self.size __UpperCamelCase =get_size_dict(A_ , param_name='size' , default_to_square=A_ ) __UpperCamelCase =resample if resample is not None else self.resample __UpperCamelCase =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase =crop_size if crop_size is not None else self.crop_size __UpperCamelCase =get_size_dict(A_ , param_name='crop_size' , default_to_square=A_ ) __UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase =do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase =image_mean if image_mean is not None else self.image_mean __UpperCamelCase =image_std if image_std is not None else self.image_std __UpperCamelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase =make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase =[convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. __UpperCamelCase =[to_numpy_array(A_ ) for image in images] if do_resize: __UpperCamelCase =[self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: __UpperCamelCase =[self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: __UpperCamelCase =[self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: __UpperCamelCase =[self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] __UpperCamelCase =[to_channel_dimension_format(A_ , A_ ) for image in images] __UpperCamelCase ={'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
62
1
"""simple docstring""" import functools def _a ( _snake_case , _snake_case ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or not all(isinstance(_snake_case , _snake_case ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(_snake_case ) != 3 or not all(isinstance(_snake_case , _snake_case ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(_snake_case ) == 0: return 0 if min(_snake_case ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(_snake_case ) >= 366: raise ValueError("""All days elements should be less than 366""" ) UpperCAmelCase = set(_snake_case ) @functools.cache def dynamic_programming(_snake_case ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
234
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : @staticmethod def _UpperCamelCase ( *A ,**A ): pass def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = np.array(_snake_case ) UpperCAmelCase = npimg.shape return {"hash": hashimage(_snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = MaskGenerationPipeline(model=A ,image_processor=A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self ,A ,A ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def _UpperCamelCase ( self ): pass @slow @require_torch def _UpperCamelCase ( self ): UpperCAmelCase = pipeline("""mask-generation""" ,model="""facebook/sam-vit-huge""" ) UpperCAmelCase = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A ,decimals=4 ) ,[ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] ,) # fmt: on @require_torch @slow def _UpperCamelCase ( self ): UpperCAmelCase = """facebook/sam-vit-huge""" UpperCAmelCase = pipeline("""mask-generation""" ,model=A ) UpperCAmelCase = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" ,pred_iou_thresh=1 ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A ,decimals=4 ) ,[ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] ,)
234
1
"""simple docstring""" import requests _a = '' # <-- Put your OpenWeatherMap appid here! _a = 'https://api.openweathermap.org/data/2.5/' def __a ( __lowerCamelCase = "Chicago", __lowerCamelCase = APPID ): return requests.get(URL_BASE + "weather", params=locals() ).json() def __a ( __lowerCamelCase = "Kolkata, India", __lowerCamelCase = APPID ): return requests.get(URL_BASE + "forecast", params=locals() ).json() def __a ( __lowerCamelCase = 55.68, __lowerCamelCase = 12.57, __lowerCamelCase = APPID ): return requests.get(URL_BASE + "onecall", params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _a = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
61
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Dict = "bridgetower_vision_model" def __init__( self , a__=768 , a__=12 , a__=3 , a__=16 , a__=288 , a__=1 , a__=1e-05 , a__=False , a__=True , a__=False , **a__ , ) -> int: '''simple docstring''' super().__init__(**a__ ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_channels snake_case_ = patch_size snake_case_ = image_size snake_case_ = initializer_factor snake_case_ = layer_norm_eps snake_case_ = stop_gradient snake_case_ = share_layernorm snake_case_ = remove_last_layer @classmethod def lowerCAmelCase__ ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' snake_case_ , snake_case_ = cls.get_config_dict(a__ , **a__ ) if config_dict.get("model_type" ) == "bridgetower": snake_case_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a__ , **a__ ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Any = "bridgetower_text_model" def __init__( self , a__=50_265 , a__=768 , a__=12 , a__=12 , a__=1 , a__=3_072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=514 , a__=1 , a__=1e-05 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , **a__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = initializer_factor snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id @classmethod def lowerCAmelCase__ ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' snake_case_ , snake_case_ = cls.get_config_dict(a__ , **a__ ) if config_dict.get("model_type" ) == "bridgetower": snake_case_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a__ , **a__ ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "bridgetower" def __init__( self , a__=True , a__="gelu" , a__=768 , a__=1 , a__=1e-05 , a__=False , a__="add" , a__=12 , a__=6 , a__=False , a__=False , a__=None , a__=None , **a__ , ) -> int: '''simple docstring''' snake_case_ = kwargs.pop("text_config_dict" , a__ ) snake_case_ = kwargs.pop("vision_config_dict" , a__ ) super().__init__(**a__ ) snake_case_ = share_cross_modal_transformer_layers snake_case_ = hidden_act snake_case_ = hidden_size snake_case_ = initializer_factor snake_case_ = layer_norm_eps snake_case_ = share_link_tower_layers snake_case_ = link_tower_type snake_case_ = num_attention_heads snake_case_ = num_hidden_layers snake_case_ = tie_word_embeddings snake_case_ = init_layernorm_from_vision_encoder if text_config is None: snake_case_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: snake_case_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) snake_case_ = BridgeTowerTextConfig(**a__ ) snake_case_ = BridgeTowerVisionConfig(**a__ ) @classmethod def lowerCAmelCase__ ( cls , a__ , a__ , **a__ ) -> List[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a__ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.text_config.to_dict() snake_case_ = self.vision_config.to_dict() snake_case_ = self.__class__.model_type return output
85
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=1_6 , _lowerCamelCase=3_6 , _lowerCamelCase=6 , _lowerCamelCase=6 , _lowerCamelCase=6 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): UpperCamelCase_: Any = parent UpperCamelCase_: List[str] = batch_size UpperCamelCase_: Optional[Any] = seq_length UpperCamelCase_: Any = is_training UpperCamelCase_: Union[str, Any] = use_input_mask UpperCamelCase_: List[Any] = use_token_type_ids UpperCamelCase_: Union[str, Any] = use_labels UpperCamelCase_: int = vocab_size UpperCamelCase_: Optional[int] = embedding_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Optional[Any] = num_hidden_layers UpperCamelCase_: int = num_hidden_groups UpperCamelCase_: Tuple = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: Tuple = hidden_act UpperCamelCase_: Tuple = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Optional[Any] = max_position_embeddings UpperCamelCase_: Any = type_vocab_size UpperCamelCase_: int = type_sequence_label_size UpperCamelCase_: Tuple = initializer_range UpperCamelCase_: List[str] = num_labels UpperCamelCase_: List[Any] = num_choices UpperCamelCase_: List[str] = scope def _a ( self ): UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Dict = None if self.use_input_mask: UpperCamelCase_: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: Optional[int] = None if self.use_token_type_ids: UpperCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: Dict = None UpperCamelCase_: Optional[int] = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_: Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = AlbertModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) UpperCamelCase_: str = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) UpperCamelCase_: str = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = AlbertForPreTraining(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Tuple = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , sentence_order_label=_lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = AlbertForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = AlbertForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Union[str, Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = self.num_labels UpperCamelCase_: Dict = AlbertForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: int = self.num_labels UpperCamelCase_: Optional[Any] = AlbertForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = self.num_choices UpperCamelCase_: int = AlbertForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: Dict = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ): UpperCamelCase_: List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): List[str] = config_and_inputs UpperCamelCase_: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) a : int =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) a : Any =True def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): UpperCamelCase_: List[str] = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class in get_values(_lowerCamelCase ): UpperCamelCase_: Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCamelCase ) UpperCamelCase_: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def _a ( self ): UpperCamelCase_: Tuple = AlbertModelTester(self ) UpperCamelCase_: int = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=3_7 ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_: List[Any] = type self.model_tester.create_and_check_model(*_lowerCamelCase ) @slow def _a ( self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Union[str, Any] = AlbertModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: int = AlbertModel.from_pretrained('albert-base-v2' ) UpperCamelCase_: Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase_: List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase_: Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
292
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py A_ : List[str] = '.' if __name__ == "__main__": A_ : Dict = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') A_ : Dict = [] A_ : Optional[Any] = [] with open(doctest_file_path) as fp: for line in fp: A_ : Tuple = line.strip() A_ : Any = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: A_ : str = '\n'.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
292
1
from __future__ import annotations from collections.abc import Iterator class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : int) ->None: '''simple docstring''' lowerCamelCase__: int =value lowerCamelCase__: Node | None =None lowerCamelCase__: Node | None =None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : Node) ->None: '''simple docstring''' lowerCamelCase__: Union[str, Any] =tree def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Node | None) ->int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__(self : int) ->Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
__magic_name__: int = {str(digit): digit**5 for digit in range(10)} def UpperCamelCase ( _A ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def UpperCamelCase ( ): """simple docstring""" return sum( number for number in range(1000, 1000000 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
360
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case__ ( _lowerCAmelCase ): lowercase__ : torch.FloatTensor lowercase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Optional[Any] = [] for i in range(_A ): __magic_name__ : Dict = i / num_diffusion_timesteps __magic_name__ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ), _A ) ) return torch.tensor(_A, dtype=torch.floataa ) class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = "fixed_small_log" , lowerCAmelCase__ = True , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Tuple = betas_for_alpha_bar(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = 1.0 - self.betas __magic_name__ : str = torch.cumprod(self.alphas , dim=0 ) __magic_name__ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Tuple = 1.0 # setable values __magic_name__ : List[Any] = None __magic_name__ : int = torch.from_numpy(np.arange(0 , lowerCAmelCase__ )[::-1].copy() ) __magic_name__ : List[Any] = variance_type def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : List[Any] = num_inference_steps __magic_name__ : Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : List[Any] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: if prev_timestep is None: __magic_name__ : int = t - 1 __magic_name__ : Optional[Any] = self.alphas_cumprod[t] __magic_name__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Tuple = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[str] = self.betas[t] else: __magic_name__ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : str = torch.log(torch.clamp(lowerCAmelCase__ , min=1e-2_0 ) ) __magic_name__ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : List[str] = variance.log() __magic_name__ : Optional[int] = beta.log() __magic_name__ : Any = (predicted_variance + 1) / 2 __magic_name__ : Any = frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __magic_name__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ ,__magic_name__ : List[Any] = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 ) else: __magic_name__ : List[str] = None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Union[str, Any] = t - 1 __magic_name__ : List[str] = self.alphas_cumprod[t] __magic_name__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Any = 1 - alpha_prod_t __magic_name__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] = self.betas[t] __magic_name__ : int = self.alphas[t] else: __magic_name__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : Tuple = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Tuple = torch.clamp( lowerCAmelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Tuple = 0 if t > 0: __magic_name__ : Any = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ , device=model_output.device ) __magic_name__ : Tuple = self._get_variance( lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , ) if self.variance_type == "fixed_small_log": __magic_name__ : Tuple = variance elif self.variance_type == "learned_range": __magic_name__ : int = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __magic_name__ : Tuple = variance * variance_noise __magic_name__ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __magic_name__ : List[str] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Any = timesteps.to(original_samples.device ) __magic_name__ : int = alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Union[str, Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : int = sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
138
0
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE( __lowercase = "" ) -> dict[str, float]: A: Tuple = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A: List[Any] = BeautifulSoup(requests.get(__lowercase ).text , '''html.parser''' ) A: int = soup.find_all('''td''' , attrs='''titleColumn''' ) A: List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowercase , __lowercase ) } def SCREAMING_SNAKE_CASE( __lowercase = "IMDb_Top_250_Movies.csv" ) -> None: A: Dict = get_imdb_top_aaa_movies() with open(__lowercase , '''w''' , newline='''''' ) as out_file: A: Dict = csv.writer(__lowercase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
319
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]: A: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: for i in range(config.num_hidden_layers ): A: Tuple = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A: Dict = in_proj_weight[ : config.hidden_size, : ] A: int = in_proj_bias[: config.hidden_size] A: Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] A: Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: List[Any] = dct.pop(__lowercase ) A: int = val @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase ) A: Tuple = False A: str = False A: List[Any] = False A: Optional[int] = False if "vqa" in checkpoint_url: A: Union[str, Any] = True A: Union[str, Any] = 3_1_2_9 A: List[Any] = '''huggingface/label-files''' A: Any = '''vqa2-id2label.json''' A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} A: Any = idalabel A: Optional[Any] = {v: k for k, v in idalabel.items()} A: List[str] = ViltForQuestionAnswering(__lowercase ) elif "nlvr" in checkpoint_url: A: Dict = True A: str = 2 A: Union[str, Any] = {0: '''False''', 1: '''True'''} A: Any = {v: k for k, v in config.idalabel.items()} A: Optional[Any] = 3 A: Any = ViltForImagesAndTextClassification(__lowercase ) elif "irtr" in checkpoint_url: A: Tuple = True A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase ) elif "mlm_itm" in checkpoint_url: A: Tuple = True A: Optional[int] = ViltForMaskedLM(__lowercase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) if mlm_model or irtr_model: A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowercase ) # Define processor A: Optional[Any] = ViltImageProcessor(size=3_8_4 ) A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A: Optional[int] = ViltProcessor(__lowercase , __lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw ) if mlm_model: A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].''' else: A: Optional[int] = '''How many cats are there?''' A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: Any = model(**__lowercase ) # Verify outputs if mlm_model: A: Any = torch.Size([1, 1_1, 3_0_5_2_2] ) A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A: Any = torch.Size([1, 3_1_2_9] ) A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify vqa prediction equals "2" A: Dict = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A: Union[str, Any] = torch.Size([1, 2] ) A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
319
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : Optional[int] ): UpperCamelCase_ : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): UpperCamelCase_ : Tuple = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): UpperCamelCase_ : List[Any] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase_ : Optional[Any] = key[key.find('patch_embed' ) + len('patch_embed' )] UpperCamelCase_ : List[str] = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(lowerCamelCase )-1}" ) if "norm" in key: UpperCamelCase_ : int = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase_ : int = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] UpperCamelCase_ : int = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(lowerCamelCase )-1}" ) if "layer_norm1" in key: UpperCamelCase_ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: UpperCamelCase_ : str = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase_ : Union[str, Any] = key[key.find('block' ) + len('block' )] UpperCamelCase_ : Dict = key.replace(F"block{idx}" , F"block.{int(lowerCamelCase )-1}" ) if "attn.q" in key: UpperCamelCase_ : Optional[Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: UpperCamelCase_ : Any = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: UpperCamelCase_ : Optional[int] = key.replace('attn' , 'attention.self' ) if "fc1" in key: UpperCamelCase_ : int = key.replace('fc1' , 'dense1' ) if "fc2" in key: UpperCamelCase_ : Optional[int] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: UpperCamelCase_ : Tuple = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: UpperCamelCase_ : Union[str, Any] = key.replace('linear_fuse.conv' , 'linear_fuse' ) UpperCamelCase_ : Tuple = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase_ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] UpperCamelCase_ : List[str] = key.replace(F"linear_c{idx}" , F"linear_c.{int(lowerCamelCase )-1}" ) if "bot_conv" in key: UpperCamelCase_ : Union[str, Any] = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: UpperCamelCase_ : Optional[int] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: UpperCamelCase_ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: UpperCamelCase_ : Tuple = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: UpperCamelCase_ : Any = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: UpperCamelCase_ : int = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: UpperCamelCase_ : Optional[Any] = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): UpperCamelCase_ : str = key.replace('module.last_layer_depth' , 'head.head' ) UpperCamelCase_ : Optional[Any] = value return new_state_dict def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase_ : Union[str, Any] = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) UpperCamelCase_ : int = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict UpperCamelCase_ : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase_ : int = kv_bias[: config.hidden_sizes[i]] UpperCamelCase_ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase_ : Optional[int] = kv_bias[config.hidden_sizes[i] :] def __lowercase ( ): UpperCamelCase_ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ : Optional[Any] = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]=None ): UpperCamelCase_ : List[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCamelCase_ : Tuple = GLPNImageProcessor() # prepare image UpperCamelCase_ : List[Any] = prepare_img() UpperCamelCase_ : str = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict UpperCamelCase_ : Any = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys UpperCamelCase_ : str = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict UpperCamelCase_ : Dict = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass UpperCamelCase_ : Optional[Any] = model(lowerCamelCase ) UpperCamelCase_ : str = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase_ : Tuple = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: UpperCamelCase_ : Any = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"Unknown model name: {model_name}" ) UpperCamelCase_ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) a_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCamelCase__ = TypeVar('T') class lowerCAmelCase__ ( Generic[T] ): lowerCAmelCase : deque[T] # Cache store of keys lowerCAmelCase : set[T] # References of the keys in cache lowerCAmelCase : int = 10 # Maximum capacity of cache def __init__( self : int , lowerCamelCase__ : int ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = deque() _UpperCAmelCase : Optional[Any] = set() if not n: _UpperCAmelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _UpperCAmelCase : int = n def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : T ) ->None: '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _UpperCAmelCase : str = self.dq_store.pop() self.key_reference.remove(lowerCamelCase__ ) else: self.dq_store.remove(lowerCamelCase__ ) self.dq_store.appendleft(lowerCamelCase__ ) self.key_reference.add(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->None: '''simple docstring''' for k in self.dq_store: print(lowerCamelCase__ ) def __repr__( self : int ) ->str: '''simple docstring''' return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
234
'''simple docstring''' def __lowerCAmelCase (): return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCAmelCase (__lowerCAmelCase ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCAmelCase : Union[str, Any] = (left + right) // 2 _UpperCAmelCase : List[str] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCAmelCase : Tuple = mid + 1 else: _UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : Dict = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def __lowerCAmelCase (__lowerCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def __lowerCAmelCase (): from timeit import timeit print("Running benchmarks" ) _UpperCAmelCase : Tuple = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCAmelCase : str = timeit(F"""{func}(grid=grid)""" , setup=__lowerCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
234
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: UpperCamelCase_ = TOKENIZER_CLASSES else: UpperCamelCase_ = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE_ , tokenizer_name + "Fast" )} logger.info(f"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: UpperCamelCase_ = TOKENIZER_CLASSES[tokenizer_name] UpperCamelCase_ = True if checkpoint_name is None: UpperCamelCase_ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCamelCase_ = [checkpoint_name] logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer UpperCamelCase_ = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ ) # Save fast tokenizer logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: UpperCamelCase_ , UpperCamelCase_ = checkpoint.split("/" ) UpperCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif add_prefix: UpperCamelCase_ = checkpoint UpperCamelCase_ = dump_path else: UpperCamelCase_ = None UpperCamelCase_ = dump_path logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCamelCase_ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCamelCase_ = file_path.split(SCREAMING_SNAKE_CASE_ )[-1][0] if next_char == "/": UpperCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = None logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) UpperCamelCase_ = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ , filename_prefix=SCREAMING_SNAKE_CASE_ ) logger.info(f"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(SCREAMING_SNAKE_CASE_ ) logger.info(f"=> removing {file_name}" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
60
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :int = KandinskyVaaImgaImgPipeline UpperCamelCase_ :Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image"""] UpperCamelCase_ :Dict = [ """image_embeds""", """negative_image_embeds""", """image""", ] UpperCamelCase_ :Tuple = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase_ :int = False @property def UpperCAmelCase_ ( self )-> List[str]: return 32 @property def UpperCAmelCase_ ( self )-> List[Any]: return 32 @property def UpperCAmelCase_ ( self )-> Tuple: return self.time_input_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self )-> Any: return 100 @property def UpperCAmelCase_ ( self )-> Tuple: torch.manual_seed(0 ) UpperCamelCase_ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase_ = UNetaDConditionModel(**_lowercase ) return model @property def UpperCAmelCase_ ( self )-> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self )-> Any: torch.manual_seed(0 ) UpperCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self.dummy_unet UpperCamelCase_ = self.dummy_movq UpperCamelCase_ = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCamelCase_ = DDIMScheduler(**_lowercase ) UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Tuple: UpperCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_ = Image.fromarray(np.uinta(_lowercase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowercase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_lowercase ) UpperCamelCase_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = pipe(**self.get_dummy_inputs(_lowercase ) ) UpperCamelCase_ = output.images UpperCamelCase_ = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase_ = "A red cartoon frog, 4k" UpperCamelCase_ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) UpperCamelCase_ = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase_ , UpperCamelCase_ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase_ = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
60
1
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def A__ ( UpperCamelCase ): A, A = analyze_text(UpperCamelCase ) A = list(" " + ascii_lowercase ) # what is our total sum of probabilities. A = sum(single_char_strings.values() ) # one length string A = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: A = single_char_strings[ch] A = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string A = sum(two_char_strings.values() ) A = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: A = cha + cha if sequence in two_char_strings: A = two_char_strings[sequence] A = int(UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def A__ ( UpperCamelCase ): A = Counter() # type: ignore A = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def A__ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
292
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : int = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''marian''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self :int , __UpperCamelCase :Any=5_81_01 , __UpperCamelCase :int=None , __UpperCamelCase :Union[str, Any]=10_24 , __UpperCamelCase :Union[str, Any]=12 , __UpperCamelCase :str=40_96 , __UpperCamelCase :int=16 , __UpperCamelCase :int=12 , __UpperCamelCase :Optional[Any]=40_96 , __UpperCamelCase :Optional[Any]=16 , __UpperCamelCase :Dict=0.0 , __UpperCamelCase :Dict=0.0 , __UpperCamelCase :str=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :Any="gelu" , __UpperCamelCase :Any=10_24 , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Optional[Any]=0.0 , __UpperCamelCase :Union[str, Any]=0.0 , __UpperCamelCase :Tuple=0.02 , __UpperCamelCase :List[str]=5_81_00 , __UpperCamelCase :str=False , __UpperCamelCase :Optional[int]=5_81_00 , __UpperCamelCase :List[Any]=0 , __UpperCamelCase :List[str]=0 , __UpperCamelCase :Dict=True , **__UpperCamelCase :Tuple , ): A = vocab_size A = decoder_vocab_size or vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = share_encoder_decoder_embeddings super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) class _UpperCAmelCase ( lowercase_ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase ( self :List[str] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: A = {0: "batch"} A = {0: "batch", 1: "past_decoder_sequence + sequence"} else: A = {0: "batch", 1: "decoder_sequence"} A = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: A, A = self.num_layers for i in range(__UpperCamelCase ): A = {0: "batch", 2: "past_sequence + sequence"} A = {0: "batch", 2: "past_sequence + sequence"} else: A = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase ( self :List[str] ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(__UpperCamelCase , self ).outputs if self.use_past: A, A = self.num_layers for i in range(__UpperCamelCase ): A = {0: "batch", 2: "past_sequence + sequence"} A = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :PreTrainedTokenizer , __UpperCamelCase :int = -1 , __UpperCamelCase :int = -1 , __UpperCamelCase :bool = False , __UpperCamelCase :Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} A = dict(**__UpperCamelCase , **__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A, A = common_inputs["input_ids"].shape A = common_inputs["decoder_input_ids"].shape[1] A, A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A, A = self.num_layers A = min(__UpperCamelCase , __UpperCamelCase ) A = max(__UpperCamelCase , __UpperCamelCase ) - min_num_layers A = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCamelCase , __UpperCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) ) return common_inputs def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :PreTrainedTokenizer , __UpperCamelCase :int = -1 , __UpperCamelCase :int = -1 , __UpperCamelCase :bool = False , __UpperCamelCase :Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A, A = common_inputs["input_ids"].shape # Not using the same length for past_key_values A = seqlen + 2 A, A = self.num_layers A, A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs["attention_mask"].dtype A = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) A = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase ) ] return common_inputs def lowerCamelCase ( self :Tuple , __UpperCamelCase :PreTrainedTokenizer , __UpperCamelCase :int = -1 , __UpperCamelCase :int = -1 , __UpperCamelCase :bool = False , __UpperCamelCase :Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(__UpperCamelCase ) A = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence A = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase ) ) return common_inputs def lowerCamelCase ( self :List[Any] , __UpperCamelCase :PreTrainedTokenizer , __UpperCamelCase :int = -1 , __UpperCamelCase :int = -1 , __UpperCamelCase :bool = False , __UpperCamelCase :Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) else: A = self._generate_dummy_inputs_for_causal_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) return common_inputs def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :List[str] , __UpperCamelCase :str , __UpperCamelCase :str ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A = super(__UpperCamelCase , self )._flatten_past_key_values_( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @property def lowerCamelCase ( self :List[str] ): return 1e-4
292
1
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def snake_case ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): """simple docstring""" if tokenize_kwargs is None: snake_case = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case = truncation snake_case = tokenize_kwargs snake_case = {} if return_tensors is not None: snake_case = return_tensors return preprocess_params, {}, postprocess_params def snake_case ( self , lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" snake_case = self.framework snake_case = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) return model_inputs def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.model(**lowerCAmelCase ) return model_outputs def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase )
149
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : int = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = 5_02_57 , lowerCAmelCase = 10_24 , lowerCAmelCase = 7_68 , lowerCAmelCase = 12 , lowerCAmelCase = 12 , lowerCAmelCase = None , lowerCAmelCase = "gelu_new" , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 0.02 , lowerCAmelCase = True , lowerCAmelCase = True , lowerCAmelCase = False , lowerCAmelCase = False , ): """simple docstring""" super().__init__() snake_case = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) snake_case = prefix_inner_dim snake_case = prefix_hidden_dim snake_case = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case = GPTaConfig( vocab_size=lowerCAmelCase , n_positions=lowerCAmelCase , n_embd=lowerCAmelCase , n_layer=lowerCAmelCase , n_head=lowerCAmelCase , n_inner=lowerCAmelCase , activation_function=lowerCAmelCase , resid_pdrop=lowerCAmelCase , embd_pdrop=lowerCAmelCase , attn_pdrop=lowerCAmelCase , layer_norm_epsilon=lowerCAmelCase , initializer_range=lowerCAmelCase , scale_attn_weights=lowerCAmelCase , use_cache=lowerCAmelCase , scale_attn_by_inverse_layer_idx=lowerCAmelCase , reorder_and_upcast_attn=lowerCAmelCase , ) snake_case = GPTaLMHeadModel(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" snake_case = self.transformer.transformer.wte(lowerCAmelCase ) snake_case = self.encode_prefix(lowerCAmelCase ) snake_case = self.decode_prefix(lowerCAmelCase ) snake_case = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case = self.transformer(inputs_embeds=lowerCAmelCase , labels=lowerCAmelCase , attention_mask=lowerCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return torch.zeros(lowerCAmelCase , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encode_prefix(lowerCAmelCase ) @torch.no_grad() def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = torch.split(lowerCAmelCase , 1 , dim=0 ) snake_case = [] snake_case = [] for feature in features: snake_case = self.decode_prefix(feature.to(lowerCAmelCase ) ) # back to the clip feature # Only support beam search for now snake_case ,snake_case = self.generate_beam( input_embeds=lowerCAmelCase , device=lowerCAmelCase , eos_token_id=lowerCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case = torch.stack(lowerCAmelCase ) snake_case = torch.stack(lowerCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = 5 , lowerCAmelCase = 67 , lowerCAmelCase = 1.0 , lowerCAmelCase = None , ): """simple docstring""" snake_case = eos_token_id snake_case = None snake_case = None snake_case = torch.ones(lowerCAmelCase , device=lowerCAmelCase , dtype=torch.int ) snake_case = torch.zeros(lowerCAmelCase , device=lowerCAmelCase , dtype=torch.bool ) if input_embeds is not None: snake_case = input_embeds else: snake_case = self.transformer.transformer.wte(lowerCAmelCase ) for i in range(lowerCAmelCase ): snake_case = self.transformer(inputs_embeds=lowerCAmelCase ) snake_case = outputs.logits snake_case = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case = logits.softmax(-1 ).log() if scores is None: snake_case ,snake_case = logits.topk(lowerCAmelCase , -1 ) snake_case = generated.expand(lowerCAmelCase , *generated.shape[1:] ) snake_case ,snake_case = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case = next_tokens else: snake_case = tokens.expand(lowerCAmelCase , *tokens.shape[1:] ) snake_case = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case = -float(np.inf ) snake_case = 0 snake_case = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case = scores_sum / seq_lengths[:, None] snake_case ,snake_case = scores_sum_average.view(-1 ).topk(lowerCAmelCase , -1 ) snake_case = next_tokens // scores_sum.shape[1] snake_case = seq_lengths[next_tokens_source] snake_case = next_tokens % scores_sum.shape[1] snake_case = next_tokens.unsqueeze(1 ) snake_case = tokens[next_tokens_source] snake_case = torch.cat((tokens, next_tokens) , dim=1 ) snake_case = generated[next_tokens_source] snake_case = scores_sum_average * seq_lengths snake_case = is_stopped[next_tokens_source] snake_case = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case = torch.cat((generated, next_token_embed) , dim=1 ) snake_case = is_stopped + next_tokens.eq(lowerCAmelCase ).squeeze() if is_stopped.all(): break snake_case = scores / seq_lengths snake_case = scores.argsort(descending=lowerCAmelCase ) # tokens tensors are already padded to max_seq_length snake_case = [tokens[i] for i in order] snake_case = torch.stack(lowerCAmelCase , dim=0 ) snake_case = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
149
1
from collections import namedtuple a =namedtuple("""from_to""", """from_ to""") a ={ """cubicmeter""": from_to(1, 1), """litre""": from_to(0.0_01, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_04_54, 2_64.1_72), """cubicyard""": from_to(0.7_64_55, 1.3_07_95), """cubicfoot""": from_to(0.0_28, 35.31_47), """cup""": from_to(0.0_00_23_65_88, 42_26.75), } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ', '.join(lowerCamelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ', '.join(lowerCamelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
73
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b, 2 ) for a, b in zip(_UpperCAmelCase, _UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: lowerCAmelCase : List[Any] = ( 'Wrong input data\'s dimensions... ' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(_UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase : Dict = ( 'Wrong input data\'s shape... ' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(_UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: lowerCAmelCase : Any = ( 'Input data have different datatype... ' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(_UpperCAmelCase ) lowerCAmelCase : int = [] for value in value_array: lowerCAmelCase : Tuple = euclidean(_UpperCAmelCase, dataset[0] ) lowerCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase : Dict = euclidean(_UpperCAmelCase, _UpperCAmelCase ) if dist > temp_dist: lowerCAmelCase : Tuple = temp_dist lowerCAmelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return np.dot(_UpperCAmelCase, _UpperCAmelCase ) / (norm(_UpperCAmelCase ) * norm(_UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
138
0
import os from datetime import datetime as dt from github import Github __A = [ 'good first issue', 'feature request', 'wip', ] def _lowerCamelCase() -> List[str]: _lowerCAmelCase =Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase =g.get_repo("""huggingface/accelerate""" ) _lowerCAmelCase =repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase =sorted([comment for comment in issue.get_comments()] , key=lambda __UpperCamelCase : i.created_at , reverse=a__ ) _lowerCAmelCase =comments[0] if len(a__ ) > 0 else None _lowerCAmelCase =dt.utcnow() _lowerCAmelCase =(current_time - issue.updated_at).days _lowerCAmelCase =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
369
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int]]: _a : list[list[int]] = [] _a : list[int] = [] _a : List[str] = 0 _a : List[str] = sum(lowerCAmelCase_ ) create_state_space_tree(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return result def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> None: if sum(lowerCAmelCase_ ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase_ )) < max_sum: return if sum(lowerCAmelCase_ ) == max_sum: result.append(lowerCAmelCase_ ) return for index in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): create_state_space_tree( lowerCAmelCase_ , lowerCAmelCase_ , index + 1 , [*path, nums[index]] , lowerCAmelCase_ , remaining_nums_sum - nums[index] , ) __lowerCAmelCase = [3, 34, 4, 12, 5, 2] __lowerCAmelCase = 9 __lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
89
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A_ : Optional[Any] = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a__ ) class a_ ( a__ ): '''simple docstring''' lowerCamelCase__ : int = "rag" lowerCamelCase__ : List[Any] = True def __init__(self, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=" / ", lowerCamelCase_=" // ", lowerCamelCase_=5, lowerCamelCase_=3_0_0, lowerCamelCase_=7_6_8, lowerCamelCase_=8, lowerCamelCase_="wiki_dpr", lowerCamelCase_="train", lowerCamelCase_="compressed", lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=0.0, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_, pad_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, decoder_start_token_id=SCREAMING_SNAKE_CASE_, forced_eos_token_id=SCREAMING_SNAKE_CASE_, is_encoder_decoder=SCREAMING_SNAKE_CASE_, prefix=SCREAMING_SNAKE_CASE_, vocab_size=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase__ : Union[str, Any] = kwargs.pop('question_encoder' ) lowerCamelCase__ : str = question_encoder_config.pop('model_type' ) lowerCamelCase__ : Optional[Any] = kwargs.pop('generator' ) lowerCamelCase__ : List[Any] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase__ : str = AutoConfig.for_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = AutoConfig.for_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[Any] = reduce_loss lowerCamelCase__ : Optional[Any] = label_smoothing lowerCamelCase__ : int = exclude_bos_score lowerCamelCase__ : Tuple = do_marginalize lowerCamelCase__ : Optional[Any] = title_sep lowerCamelCase__ : Any = doc_sep lowerCamelCase__ : List[str] = n_docs lowerCamelCase__ : Optional[int] = max_combined_length lowerCamelCase__ : List[Any] = dataset lowerCamelCase__ : Union[str, Any] = dataset_split lowerCamelCase__ : str = index_name lowerCamelCase__ : List[str] = retrieval_vector_size lowerCamelCase__ : Any = retrieval_batch_size lowerCamelCase__ : Optional[Any] = passages_path lowerCamelCase__ : Dict = index_path lowerCamelCase__ : Optional[Any] = use_dummy_dataset lowerCamelCase__ : Any = output_retrieved lowerCamelCase__ : Optional[int] = do_deduplication lowerCamelCase__ : List[str] = use_cache if self.forced_eos_token_id is None: lowerCamelCase__ : int = getattr(self.generator, 'forced_eos_token_id', SCREAMING_SNAKE_CASE_ ) @classmethod def a__ (cls, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **SCREAMING_SNAKE_CASE_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : str = self.question_encoder.to_dict() lowerCamelCase__ : Union[str, Any] = self.generator.to_dict() lowerCamelCase__ : Optional[Any] = self.__class__.model_type return output
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Tuple , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : str , ): lowerCAmelCase : Dict = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCamelCase_ , ) lowerCAmelCase : int = image.to(self.device ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : int = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : List[Any] = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample lowerCAmelCase : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Union[str, Any] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=UpperCamelCase_ ), "This is a local test"
60
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) lowerCAmelCase : Optional[int] = '''A painting of a squirrel eating a burger''' lowerCAmelCase : List[str] = jax.device_count() lowerCAmelCase : Optional[int] = num_samples * [prompt] lowerCAmelCase : Any = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = replicate(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = shard(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = jax.random.PRNGKey(0 ) lowerCAmelCase : Optional[Any] = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowerCAmelCase : str = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=2_5 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase : List[str] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = '''stabilityai/stable-diffusion-2''' lowerCAmelCase, lowerCAmelCase : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) lowerCAmelCase, lowerCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase_ , scheduler=UpperCamelCase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) lowerCAmelCase : List[Any] = scheduler_params lowerCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' lowerCAmelCase : Any = jax.device_count() lowerCAmelCase : int = num_samples * [prompt] lowerCAmelCase : int = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowerCAmelCase : Dict = replicate(UpperCamelCase_ ) lowerCAmelCase : Tuple = shard(UpperCamelCase_ ) lowerCAmelCase : int = jax.random.PRNGKey(0 ) lowerCAmelCase : Optional[int] = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowerCAmelCase : Tuple = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=2_5 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase : str = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase : Tuple = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
60
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __snake_case ( datasets.BuilderConfig): """simple docstring""" lowercase = None class __snake_case ( datasets.ArrowBasedBuilder): """simple docstring""" lowercase = PandasConfig def __lowercase ( self : List[Any] ) -> int: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self : Any , lowerCamelCase : int ) -> List[str]: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCAmelCase_ : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase__ , (str, list, tuple) ): lowerCAmelCase_ : Optional[Any] = data_files if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCAmelCase_ : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase_ : int = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowerCAmelCase_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCAmelCase_ : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase_ : int = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase__ , gen_kwargs={"""files""": files} ) ) return splits def __lowercase ( self : Optional[int] , lowerCamelCase : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase_ : Dict = table_cast(UpperCamelCase__ , self.config.features.arrow_schema ) return pa_table def __lowercase ( self : Optional[int] , lowerCamelCase : Tuple ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__ ) ): with open(UpperCamelCase__ , """rb""" ) as f: lowerCAmelCase_ : str = pa.Table.from_pandas(pd.read_pickle(UpperCamelCase__ ) ) yield i, self._cast_table(UpperCamelCase__ )
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( A_ = ""): UpperCamelCase__: Optional[int] = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" UpperCamelCase__: str = BeautifulSoup(requests.get(A_).text ,"html.parser") UpperCamelCase__: List[str] = soup.find_all("td" ,attrs="titleColumn") UpperCamelCase__: Any = soup.find_all("td" ,class_="ratingColumn imdbRating") return { title.a.text: float(rating.strong.text) for title, rating in zip(A_ ,A_) } def lowerCAmelCase_ ( A_ = "IMDb_Top_250_Movies.csv"): UpperCamelCase__: Dict = get_imdb_top_aaa_movies() with open(A_ ,"w" ,newline="") as out_file: UpperCamelCase__: str = csv.writer(A_) writer.writerow(["Movie title", "IMDb rating"]) for title, rating in movies.items(): writer.writerow([title, rating]) if __name__ == "__main__": write_movies()
149
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = (DDIMParallelScheduler,) UpperCamelCase__ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Any = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: str = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase__: List[str] = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: int = 10, 0.0 UpperCamelCase__: List[Any] = self.dummy_model() UpperCamelCase__: Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: UpperCamelCase__: Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) UpperCamelCase__: Tuple = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Any = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config() UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.scheduler_classes[0] UpperCamelCase__: Union[str, Any] = self.get_scheduler_config() UpperCamelCase__: Any = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) UpperCamelCase__: Tuple = self.dummy_model() UpperCamelCase__: Union[str, Any] = self.dummy_sample_deter UpperCamelCase__: Dict = self.dummy_sample_deter + 0.1 UpperCamelCase__: Dict = self.dummy_sample_deter - 0.1 UpperCamelCase__: int = samplea.shape[0] UpperCamelCase__: List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__: Union[str, Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) UpperCamelCase__: str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__: Optional[int] = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase ) UpperCamelCase__: Dict = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = self.full_loop() UpperCamelCase__: List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__: List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[int] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
149
1
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __lowerCAmelCase = getLogger(__name__) def UpperCAmelCase_ (__a : List[str] , __a : str , __a : str , __a : int = 8 , __a : int = 1_0_2_4 , __a : Optional[Any]="val" , __a : str=None , __a : int=False , __a : int="summarization" , __a : str=None , __a : str=1 , __a : Dict = None , __a : Union[str, Any]="" , **__a : List[Any] , ): """simple docstring""" _a : Union[str, Any] = str(__a ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=__a ) _a : List[Any] = Path(__a ) _a : Optional[Any] = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(__a ) _a : int = AutoModelForSeqaSeqLM.from_pretrained(__a ).cuda() if fpaa: _a : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(__a , __a ) # update config with task specific params _a : str = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _a : Optional[Any] = num_return_sequences _a : int = AutoTokenizer.from_pretrained(__a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: _a : Dict = tokenizer.model_max_length if prefix is None: _a : Any = prefix or getattr(model.config , 'prefix' , '' ) or '' _a : List[str] = SeqaSeqDataset( __a , __a , __a , max_target_length=1_0_2_4 , type_path=__a , n_obs=__a , prefix=__a , **__a , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _a : List[str] = ds.make_sortish_sampler(__a , distributed=__a , add_extra_examples=__a , shuffle=__a ) _a : List[Any] = DataLoader(__a , sampler=__a , batch_size=__a , collate_fn=ds.collate_fn ) _a : Optional[Any] = [] for batch in tqdm(__a ): _a : List[str] = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=__a , num_beams=__a , **__a , ) _a : Dict = tokenizer.batch_decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) _a : Any = batch['ids'] if num_return_sequences > 1: _a : Tuple = chunks(__a , __a ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__a ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(__a , __a ) return results, sampler.num_replicas def UpperCAmelCase_ (): """simple docstring""" _a : Tuple = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=__a , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=__a , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=__a , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=__a , default=__a ) parser.add_argument( '--type_path' , type=__a , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=__a , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=__a , default=8 , required=__a , help='batch size' ) parser.add_argument( '--local_rank' , type=__a , default=-1 , required=__a , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=__a , default=__a , required=__a , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=__a , default=1 , required=__a , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=__a , default=6_0_0 , required=__a , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=__a , default=__a , required=__a ) parser.add_argument('--tgt_lang' , type=__a , default=__a , required=__a ) parser.add_argument( '--prefix' , type=__a , required=__a , default=__a , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) _a : Any = time.time() _a, _a : Optional[int] = parser.parse_known_args() _a : List[Any] = parse_numeric_n_bool_cl_kwargs(__a ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) _a : int = Path(args.save_dir + '_tmp' ) Path(__a ).mkdir(exist_ok=__a ) # this handles locking. _a : List[Any] = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _a : Optional[Any] = {} if args.src_lang is not None: _a : Any = args.src_lang if args.tgt_lang is not None: _a : Optional[int] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__a ) _a, _a : Optional[Any] = eval_data_dir( args.data_dir , __a , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__a , **__a , ) if args.local_rank <= 0: _a : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=__a ) _a : Optional[int] = gather_results_from_each_node(__a , __a , args.sync_timeout ) _a : Optional[int] = combine_partial_results(__a ) if args.num_return_sequences > 1: _a : List[Any] = save_dir.joinpath('pseudolabel_results.json' ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(__a , __a ) return _a : List[str] = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(__a ) as f: _a : List[Any] = [x.rstrip() for x in f.readlines()][: len(__a )] # Calculate metrics, save metrics, and save _generations.txt _a : List[str] = 'translation' in args.task _a : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge _a : Dict = 'bleu' if calc_bleu else 'rouge' _a : Dict = score_fn(__a , __a ) _a : str = len(__a ) _a : Tuple = time.time() - start_time _a : List[str] = round(runtime / metrics['n_obs'] , 4 ) _a : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics _a : Optional[Any] = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(__a , __a , indent=__a ) print(__a ) write_txt_file(__a , save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(__a , save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(__a ) def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" _a : int = [] for partial_result in partial_results: records.extend(__a ) _a : Optional[int] = sorted(__a , key=lambda __a : x["id"] ) _a : Any = [x['pred'] for x in records] return preds def UpperCAmelCase_ (__a : int , __a : Optional[int] , __a : Any ): """simple docstring""" _a : List[Any] = time.time() logger.info('waiting for all nodes to finish' ) _a : List[Any] = None while (time.time() - start_wait) < timeout: _a : Optional[int] = list(save_dir.glob('rank_*.json' ) ) if len(__a ) < num_replicas: continue try: # make sure all json files are fully saved _a : Optional[int] = lmap(__a , __a ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
5
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Dict ) -> Any: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : int = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any ) -> Any: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Optional[int] ) -> Union[str, Any]: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Tuple=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : int , __a : List[Any] , __a : Union[str, Any] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : int ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
63
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
0
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase__ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] = None , SCREAMING_SNAKE_CASE_ : Dict = None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : int=None ): if not conversation_id: lowerCAmelCase_ : Union[str, Any] = uuid.uuida() if past_user_inputs is None: lowerCAmelCase_ : List[Any] = [] if generated_responses is None: lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : uuid.UUID = conversation_id lowerCAmelCase_ : List[str] = past_user_inputs lowerCAmelCase_ : List[str] = generated_responses lowerCAmelCase_ : Optional[str] = text def __eq__( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any = False ): if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) lowerCAmelCase_ : Tuple = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: lowerCAmelCase_ : Any = text def SCREAMING_SNAKE_CASE__ ( self : str ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase_ : List[str] = None def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ): self.generated_responses.append(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[Any] ): lowerCAmelCase_ : Dict = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): lowerCAmelCase_ : List[Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( _lowerCAmelCase, r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """, ) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Any ): super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.tokenizer.pad_token_id is None: lowerCAmelCase_ : List[str] = self.tokenizer.eos_token def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : str = {} if min_length_for_response is not None: lowerCAmelCase_ : Optional[Any] = min_length_for_response if minimum_tokens is not None: lowerCAmelCase_ : Dict = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase_ : List[str] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase_ : Optional[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE_ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=0 , **SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Tuple = super().__call__(SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1: return outputs[0] return outputs def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any]=3_2 ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCAmelCase_ : Optional[Any] = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase_ : Any = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE_ ) if self.framework == "pt": lowerCAmelCase_ : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase_ : List[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any]=1_0 , **SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : Any = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCAmelCase_ : Optional[int] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) lowerCAmelCase_ : Tuple = max_length - minimum_tokens lowerCAmelCase_ : Union[str, Any] = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase_ : List[Any] = model_inputs["""attention_mask"""][:, -trim:] lowerCAmelCase_ : str = model_inputs.pop('conversation' ) lowerCAmelCase_ : int = max_length lowerCAmelCase_ : List[Any] = self.model.generate(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.model.config.is_encoder_decoder: lowerCAmelCase_ : Any = 1 else: lowerCAmelCase_ : Optional[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str=True ): lowerCAmelCase_ : Optional[Any] = model_outputs["""output_ids"""] lowerCAmelCase_ : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : str = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE_ ) return conversation def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : List[str] = self.tokenizer.eos_token_id lowerCAmelCase_ : str = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > self.tokenizer.model_max_length: lowerCAmelCase_ : Optional[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
366
"""simple docstring""" import re def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> bool: """simple docstring""" lowerCAmelCase_ : str = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": lowercase__ : Optional[int] = """0094702343221""" print(is_sri_lankan_phone_number(phone))
289
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( UpperCamelCase__): _lowercase : int = 0 _lowercase : bool = False _lowercase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCAmelCase__ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def _lowercase ( self ) -> str: '''simple docstring''' a__ : int =GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() a__ : List[str] =Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) a__ : Optional[Any] =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , lowerCAmelCase__ ) @require_multi_gpu def _lowercase ( self ) -> str: '''simple docstring''' a__ : List[Any] =["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase : str = torch.nn.Linear(100, 200) UpperCAmelCase : Dict = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase : int = """""" UpperCAmelCase : Union[str, Any] = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
95
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class A ( unittest.TestCase ): def lowercase_ (self : Optional[int] , __UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): UpperCAmelCase__ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def lowercase_ (self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "sgugger/tiny-distilbert-classification" UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , torchscript=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def lowercase_ (self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , fpaa=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ (self : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" UpperCAmelCase__ = AutoConfig.from_pretrained(__UpperCAmelCase ) # set architectures equal to `None` UpperCAmelCase__ = None UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ (self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def lowercase_ (self : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ (self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" UpperCAmelCase__ = AutoConfig.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ (self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = "sshleifer/tinier_bart" UpperCAmelCase__ = AutoConfig.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ (self : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" UpperCAmelCase__ = AutoConfig.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ (self : int ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = "sshleifer/tinier_bart" UpperCAmelCase__ = AutoConfig.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(__UpperCAmelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(__UpperCAmelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(__UpperCAmelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(__UpperCAmelCase , "env.csv" ) , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "env.csv" ) ).exists() ) def lowercase_ (self : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCAmelCase : List[str] ): self.assertTrue(hasattr(__UpperCAmelCase , "sequential" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "cumulative" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "current" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , "log.txt" ) , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) UpperCAmelCase__ = PyTorchBenchmark(__UpperCAmelCase ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "log.txt" ) ).exists() )
350
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = 'facebook/bart-large-mnli' __UpperCAmelCase : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __UpperCAmelCase : Optional[int] = 'text_classifier' __UpperCAmelCase : int = AutoTokenizer __UpperCAmelCase : Dict = AutoModelForSequenceClassification __UpperCAmelCase : int = ['text', ['text']] __UpperCAmelCase : Optional[int] = ['text'] def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" super().setup() UpperCAmelCase__ = self.model.config UpperCAmelCase__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCAmelCase__ = int(__UpperCAmelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = labels return self.pre_processor( [text] * len(__UpperCAmelCase ) , [f"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
143
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __UpperCamelCase : Tuple = TypeVar('''T''') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" lowercase__ = 42 # Cache store of keys lowercase__ = 42 # References of the keys in cache lowercase__ = 10 # Maximum capacity of cache def __init__( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : str = deque() lowerCAmelCase__ : Any = set() if not n: lowerCAmelCase__ : Optional[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase__ : int = n def __lowerCAmelCase ( self : str ,lowercase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __lowerCAmelCase ( self : int ): for k in self.dq_store: print(lowercase_ ) def __repr__( self : Tuple ): return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
106
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str | Literal[False]: _a : Optional[int] = list(lowerCAmelCase_ ) _a : Optional[Any] = list(lowerCAmelCase_ ) _a : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 _a : Optional[int] = '_' if count > 1: return False else: return "".join(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ ) -> list[str]: _a : Optional[int] = [] while True: _a : Any = ['$'] * len(lowerCAmelCase_ ) _a : List[str] = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): _a : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: _a : Optional[Any] = '*' _a : Optional[Any] = '*' temp.append('X' ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi _a : Any = list(set(lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : int = [] for minterm in minterms: _a : Optional[int] = '' for _ in range(lowerCAmelCase_ ): _a : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: _a : int = list(lowerCAmelCase_ ) _a : Union[str, Any] = list(lowerCAmelCase_ ) _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : List[Any] = [] _a : Optional[Any] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): _a : Union[str, Any] = 0 _a : int = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 _a : int = j if count == 1: _a : List[Any] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): _a : Any = 0 temp.append(prime_implicants[i] ) while True: _a : Union[str, Any] = 0 _a : List[Any] = -1 _a : str = 0 for i in range(len(lowerCAmelCase_ ) ): _a : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _a : Any = count_n _a : int = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): _a : List[str] = 0 def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int]]: _a : int = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): _a : str = prime_implicants[i].count('_' ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): _a : Optional[Any] = 1 return chart def __lowerCamelCase ( ) -> None: _a : Optional[int] = int(input('Enter the no. of variables\n' ) ) _a : List[Any] = [ float(lowerCAmelCase_ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _a : List[str] = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Dict = check(lowerCAmelCase_ ) print('Prime Implicants are:' ) print(lowerCAmelCase_ ) _a : List[Any] = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) _a : int = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print('Essential Prime Implicants are:' ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
89
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'openai-gpt' __SCREAMING_SNAKE_CASE = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _snake_case=4_0478 , _snake_case=512 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=1e-5 , _snake_case=0.02 , _snake_case="cls_index" , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=0.1 , **_snake_case , ) -> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = afn UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = summary_type UpperCAmelCase = summary_use_proj UpperCAmelCase = summary_activation UpperCAmelCase = summary_first_dropout UpperCAmelCase = summary_proj_to_labels super().__init__(**_UpperCAmelCase )
369
# Function to print upper half of diamond (pyramid) def _lowerCAmelCase ( A__: str ): '''simple docstring''' for i in range(0 , A__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def _lowerCAmelCase ( A__: Optional[int] ): '''simple docstring''' for i in range(A__ , 0 , -1 ): for _ in range(A__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def _lowerCAmelCase ( A__: str ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(A__ ) # upper half reverse_floyd(A__ ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") __magic_name__ = 1 while K: __magic_name__ = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __magic_name__ = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
152
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase__ = getLogger(__name__) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = 8 , __snake_case = 1024 , __snake_case="val" , __snake_case=None , __snake_case=False , __snake_case="summarization" , __snake_case=None , __snake_case=1 , __snake_case = None , __snake_case="" , **__snake_case , ) -> Dict: """simple docstring""" _lowercase =str(__snake_case ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=__snake_case ) _lowercase =Path(__snake_case ) _lowercase =save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(__snake_case ) _lowercase =AutoModelForSeqaSeqLM.from_pretrained(__snake_case ).cuda() if fpaa: _lowercase =model.half() # determine if we need to increase num_beams use_task_specific_params(__snake_case , __snake_case ) # update config with task specific params _lowercase =generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _lowercase =num_return_sequences _lowercase =AutoTokenizer.from_pretrained(__snake_case ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: _lowercase =tokenizer.model_max_length if prefix is None: _lowercase =prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' _lowercase =SeqaSeqDataset( __snake_case , __snake_case , __snake_case , max_target_length=1024 , type_path=__snake_case , n_obs=__snake_case , prefix=__snake_case , **__snake_case , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _lowercase =ds.make_sortish_sampler(__snake_case , distributed=__snake_case , add_extra_examples=__snake_case , shuffle=__snake_case ) _lowercase =DataLoader(__snake_case , sampler=__snake_case , batch_size=__snake_case , collate_fn=ds.collate_fn ) _lowercase =[] for batch in tqdm(__snake_case ): _lowercase =model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=__snake_case , num_beams=__snake_case , **__snake_case , ) _lowercase =tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) _lowercase =batch['''ids'''] if num_return_sequences > 1: _lowercase =chunks(__snake_case , __snake_case ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__snake_case ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(__snake_case , __snake_case ) return results, sampler.num_replicas def UpperCAmelCase_ ( ) -> Dict: """simple docstring""" _lowercase =argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=__snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=__snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=__snake_case , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=__snake_case , default=__snake_case ) parser.add_argument( '''--type_path''' , type=__snake_case , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=__snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=__snake_case , default=8 , required=__snake_case , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=__snake_case , default=-1 , required=__snake_case , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=__snake_case , default=__snake_case , required=__snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=__snake_case , default=1 , required=__snake_case , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=__snake_case , default=600 , required=__snake_case , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=__snake_case , default=__snake_case , required=__snake_case ) parser.add_argument('''--tgt_lang''' , type=__snake_case , default=__snake_case , required=__snake_case ) parser.add_argument( '''--prefix''' , type=__snake_case , required=__snake_case , default=__snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) _lowercase =time.time() _lowercase , _lowercase =parser.parse_known_args() _lowercase =parse_numeric_n_bool_cl_kwargs(__snake_case ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) _lowercase =Path(args.save_dir + '''_tmp''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) # this handles locking. _lowercase =list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _lowercase ={} if args.src_lang is not None: _lowercase =args.src_lang if args.tgt_lang is not None: _lowercase =args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__snake_case ) _lowercase , _lowercase =eval_data_dir( args.data_dir , __snake_case , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__snake_case , **__snake_case , ) if args.local_rank <= 0: _lowercase =Path(args.save_dir ) save_dir.mkdir(exist_ok=__snake_case ) _lowercase =gather_results_from_each_node(__snake_case , __snake_case , args.sync_timeout ) _lowercase =combine_partial_results(__snake_case ) if args.num_return_sequences > 1: _lowercase =save_dir.joinpath('''pseudolabel_results.json''' ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(__snake_case , __snake_case ) return _lowercase =Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(__snake_case ) as f: _lowercase =[x.rstrip() for x in f.readlines()][: len(__snake_case )] # Calculate metrics, save metrics, and save _generations.txt _lowercase ='''translation''' in args.task _lowercase =calculate_bleu if calc_bleu else calculate_rouge _lowercase ='''bleu''' if calc_bleu else '''rouge''' _lowercase =score_fn(__snake_case , __snake_case ) _lowercase =len(__snake_case ) _lowercase =time.time() - start_time _lowercase =round(runtime / metrics['''n_obs'''] , 4 ) _lowercase =num_replicas # TODO(@stas00): add whatever metadata to metrics _lowercase =save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(__snake_case , __snake_case , indent=__snake_case ) print(__snake_case ) write_txt_file(__snake_case , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(__snake_case , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(__snake_case ) def UpperCAmelCase_ ( __snake_case ) -> List: """simple docstring""" _lowercase =[] for partial_result in partial_results: records.extend(__snake_case ) _lowercase =sorted(__snake_case , key=lambda __snake_case : x["id"] ) _lowercase =[x['''pred'''] for x in records] return preds def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[Dict[str, List]]: """simple docstring""" _lowercase =time.time() logger.info('''waiting for all nodes to finish''' ) _lowercase =None while (time.time() - start_wait) < timeout: _lowercase =list(save_dir.glob('''rank_*.json''' ) ) if len(__snake_case ) < num_replicas: continue try: # make sure all json files are fully saved _lowercase =lmap(__snake_case , __snake_case ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
5
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
1
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 3_2 def __UpperCAmelCase ( lowercase ,lowercase = 16 ): """simple docstring""" _UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( lowercase ,padding="""longest""" ,max_length=lowercase ,pad_to_multiple_of=lowercase ,return_tensors="""pt""" ,) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) _UpperCAmelCase = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,lowercase ) == "1": _UpperCAmelCase = 2 # Initialize accelerator _UpperCAmelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config["""lr"""] _UpperCAmelCase = int(config["""num_epochs"""] ) _UpperCAmelCase = int(config["""seed"""] ) _UpperCAmelCase = int(config["""batch_size"""] ) _UpperCAmelCase = evaluate.load("""glue""" ,"""mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() ,lr=lowercase ) _UpperCAmelCase , _UpperCAmelCase = get_dataloaders(lowercase ,lowercase ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=1_00 ,num_training_steps=(len(lowercase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase ,references=lowercase ,) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' ,lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=lowercase ,default=lowercase ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
30
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase, '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase, '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase, '''num_attention_heads''' ) ) class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=3, lowerCAmelCase=640, lowerCAmelCase=4, lowerCAmelCase="silu", lowerCAmelCase=3, lowerCAmelCase=32, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.0_2, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=10, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =image_size lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =last_hidden_size lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =conv_kernel_size lowerCamelCase_ =output_stride lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =classifier_dropout_prob lowerCamelCase_ =use_labels lowerCamelCase_ =is_training lowerCamelCase_ =num_labels lowerCamelCase_ =initializer_range lowerCamelCase_ =scope def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowerCamelCase_ =self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self ): """simple docstring""" return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =MobileViTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =MobileViTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =MobileViTForSemanticSegmentation(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) lowerCamelCase_ =model(lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs lowerCamelCase_ ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : List[Any] =( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowercase : List[str] =( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase : int =False lowercase : str =False lowercase : Optional[Any] =False lowercase : Union[str, Any] =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =MobileViTModelTester(self ) lowerCamelCase_ =MobileViTConfigTester(self, config_class=lowerCAmelCase, has_text_modality=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ =[*signature.parameters.keys()] lowerCamelCase_ =['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ =model(**self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) lowerCamelCase_ =outputs.hidden_states lowerCamelCase_ =5 self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase_ =2 for i in range(len(lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =True check_hidden_states_output(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ =True check_hidden_states_output(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =MobileViTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def a_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase_ =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self ): """simple docstring""" return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(lowerCAmelCase ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=lowerCAmelCase, return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase_ =model(**lowerCAmelCase ) # verify the logits lowerCamelCase_ =torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCAmelCase, atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) lowerCamelCase_ =model.to(lowerCAmelCase ) lowerCamelCase_ =MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=lowerCAmelCase, return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase_ =model(**lowerCAmelCase ) lowerCamelCase_ =outputs.logits # verify the logits lowerCamelCase_ =torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ], device=lowerCAmelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCAmelCase, atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) lowerCamelCase_ =model.to(lowerCAmelCase ) lowerCamelCase_ =MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=lowerCAmelCase, return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase_ =model(**lowerCAmelCase ) lowerCamelCase_ =outputs.logits.detach().cpu() lowerCamelCase_ =image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase, target_sizes=[(50, 60)] ) lowerCamelCase_ =torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, lowerCAmelCase ) lowerCamelCase_ =image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase ) lowerCamelCase_ =torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, lowerCAmelCase )
75
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _UpperCAmelCase = TapasConfig.from_json_file(lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_46_94 _UpperCAmelCase = 0.20_79_51 _UpperCAmelCase = 0.12_11_94 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.0_35_25_13 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.45_19 _UpperCAmelCase = 0.90_34_21 _UpperCAmelCase = 2_22.0_88 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_31_41 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=lowercase ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase ,lowercase ,lowercase ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" ,model_max_length=5_12 ) tokenizer.save_pretrained(lowercase ) print("""Used relative position embeddings:""" ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
289
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = split_dict._to_yaml_list() assert len(UpperCAmelCase ) == len(UpperCAmelCase ) snake_case_ = SplitDict._from_yaml_list(UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case_ = None # the split name of split_dict takes over the name of the split info object snake_case_ = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def UpperCAmelCase ( UpperCAmelCase ) -> str: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files snake_case_ = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
312
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case__ (_UpperCamelCase ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ) -> str: a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "depth_multiplier" ) ) class snake_case__ : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=13 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : str=0.25 , __lowerCamelCase : Union[str, Any]=8 , __lowerCamelCase : Dict=8 , __lowerCamelCase : str=6 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]="relu6" , __lowerCamelCase : int=12_80 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=10 , __lowerCamelCase : List[Any]=None , ) -> str: a = parent a = batch_size a = num_channels a = image_size a = depth_multiplier a = depth_divisible_by a = min_depth a = expand_ratio a = tf_padding a = output_stride a = first_layer_is_expansion a = finegrained_output a = hidden_act a = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) a = classifier_dropout_prob a = use_labels a = is_training a = num_labels a = initializer_range a = scope def __UpperCAmelCase ( self : str ) -> Tuple: a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ) -> int: a = MobileNetVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Dict ) -> int: a = self.num_labels a = MobileNetVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : str ) -> int: a = self.num_labels a = MobileNetVaForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[int] = False def __UpperCAmelCase ( self : Dict ) -> Dict: a = MobileNetVaModelTester(self ) a = MobileNetVaConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def __UpperCAmelCase ( self : str ) -> Dict: pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def __UpperCAmelCase ( self : int ) -> Optional[Any]: pass def __UpperCAmelCase ( self : Tuple ) -> int: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ): a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.hidden_states a = 16 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Tuple: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = MobileNetVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __magic_name__ ( ): '''simple docstring''' a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : List[Any] ) -> int: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: a = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(__lowerCamelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) # verify the logits a = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) a = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow def __UpperCAmelCase ( self : Any ) -> Tuple: a = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) a = model.to(__lowerCamelCase ) a = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) a = prepare_img() a = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) a = outputs.logits # verify the logits a = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __lowerCamelCase ) a = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=__lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
107
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = KandinskyVaaControlnetPipeline __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase = False @property def __a ( self ) -> List[Any]: '''simple docstring''' return 32 @property def __a ( self ) -> int: '''simple docstring''' return 32 @property def __a ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def __a ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self ) -> List[Any]: '''simple docstring''' return 100 @property def __a ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Tuple = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __a ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __a ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : int = self.dummy_unet snake_case__ : Tuple = self.dummy_movq snake_case__ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__UpperCamelCase , ) snake_case__ : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> int: '''simple docstring''' snake_case__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) # create hint snake_case__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : Any = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : str = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : int = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = 'cpu' snake_case__ : Any = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__UpperCamelCase ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) snake_case__ : Dict = output.images snake_case__ : Any = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : str = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) snake_case__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) snake_case__ : List[str] = torch.from_numpy(np.array(__UpperCamelCase ) ).float() / 2_5_5.0 snake_case__ : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case__ : int = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) snake_case__ : int = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) snake_case__ : List[Any] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[int] = 'A robot, 4k photo' snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ , snake_case__ : Tuple = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ : Dict = pipeline( image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , hint=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , output_type='np' , ) snake_case__ : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
143
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class lowercase_ (_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 'blip_2_vision_model' def __init__( self : List[str] ,lowercase__ : int=1_4_0_8 ,lowercase__ : str=6_1_4_4 ,lowercase__ : str=3_9 ,lowercase__ : List[str]=1_6 ,lowercase__ : List[str]=2_2_4 ,lowercase__ : List[Any]=1_4 ,lowercase__ : Dict="gelu" ,lowercase__ : int=0.0_0_0_0_1 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Optional[int]=1e-1_0 ,lowercase__ : Dict=True ,**lowercase__ : Optional[Any] ,): super().__init__(**lowercase__ ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act __lowercase = qkv_bias @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple ,lowercase__ : Union[str, os.PathLike] ,**lowercase__ : Union[str, Any] ): cls._set_token_in_kwargs(lowercase__ ) __lowercase = cls.get_config_dict(lowercase__ ,**lowercase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __lowercase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase__ ,**lowercase__ ) class lowercase_ (_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 'blip_2_qformer' def __init__( self : Optional[Any] ,lowercase__ : Optional[Any]=3_0_5_2_2 ,lowercase__ : List[Any]=7_6_8 ,lowercase__ : Optional[int]=1_2 ,lowercase__ : Tuple=1_2 ,lowercase__ : Union[str, Any]=3_0_7_2 ,lowercase__ : List[str]="gelu" ,lowercase__ : Tuple=0.1 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Any=5_1_2 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1e-1_2 ,lowercase__ : Tuple=0 ,lowercase__ : Dict="absolute" ,lowercase__ : List[Any]=2 ,lowercase__ : List[Any]=1_4_0_8 ,**lowercase__ : str ,): super().__init__(pad_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = cross_attention_frequency __lowercase = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict ,lowercase__ : Union[str, os.PathLike] ,**lowercase__ : Any ): cls._set_token_in_kwargs(lowercase__ ) __lowercase = cls.get_config_dict(lowercase__ ,**lowercase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __lowercase = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase__ ,**lowercase__ ) class lowercase_ (_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 'blip-2' SCREAMING_SNAKE_CASE : Dict = True def __init__( self : Union[str, Any] ,lowercase__ : Any=None ,lowercase__ : List[str]=None ,lowercase__ : List[Any]=None ,lowercase__ : Dict=3_2 ,**lowercase__ : List[str] ): super().__init__(**lowercase__ ) if vision_config is None: __lowercase = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __lowercase = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __lowercase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __lowercase = BlipaVisionConfig(**lowercase__ ) __lowercase = BlipaQFormerConfig(**lowercase__ ) __lowercase = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __lowercase = CONFIG_MAPPING[text_model_type](**lowercase__ ) __lowercase = self.text_config.tie_word_embeddings __lowercase = self.text_config.is_encoder_decoder __lowercase = num_query_tokens __lowercase = self.vision_config.hidden_size __lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowercase = 1.0 __lowercase = 0.0_2 @classmethod def SCREAMING_SNAKE_CASE ( cls : int ,lowercase__ : BlipaVisionConfig ,lowercase__ : BlipaQFormerConfig ,lowercase__ : PretrainedConfig ,**lowercase__ : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.qformer_config.to_dict() __lowercase = self.text_config.to_dict() __lowercase = self.__class__.model_type return output
350
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Tuple=0 ): __lowercase = np.random.RandomState(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs['''prompt''']] # forward __lowercase = pipe(**lowercase__ ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop('''prompt''' )] __lowercase = pipe.tokenizer( lowercase__ ,padding='''max_length''' ,max_length=pipe.tokenizer.model_max_length ,truncation=lowercase__ ,return_tensors='''np''' ,) __lowercase = text_inputs['''input_ids'''] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**lowercase__ ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ['''this is a negative prompt'''] __lowercase = negative_prompt __lowercase = 3 * [inputs['''prompt''']] # forward __lowercase = pipe(**lowercase__ ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop('''prompt''' )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( lowercase__ ,padding='''max_length''' ,max_length=pipe.tokenizer.model_max_length ,truncation=lowercase__ ,return_tensors='''np''' ,) __lowercase = text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**lowercase__ ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ort.SessionOptions() __lowercase = False return options def SCREAMING_SNAKE_CASE ( self : str ): # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''onnx''' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''A painting of a squirrel eating a burger''' np.random.seed(0 ) __lowercase = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=1_0 ,output_type='''np''' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,subfolder='''scheduler''' ,revision='''onnx''' ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,revision='''onnx''' ,scheduler=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''open neural network exchange''' __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=1_0 ,generator=lowercase__ ,output_type='''np''' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,subfolder='''scheduler''' ,revision='''onnx''' ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,revision='''onnx''' ,scheduler=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''open neural network exchange''' __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=1_0 ,generator=lowercase__ ,output_type='''np''' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = 0 def test_callback_fn(lowercase__ : int ,lowercase__ : int ,lowercase__ : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 6_4, 6_4) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 6_4, 6_4) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,revision='''onnx''' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''Andromeda galaxy in a bottle''' __lowercase = np.random.RandomState(0 ) pipe( prompt=lowercase__ ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=lowercase__ ,callback=lowercase__ ,callback_steps=1 ,) assert test_callback_fn.has_been_called assert number_of_steps == 6 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,revision='''onnx''' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) assert isinstance(lowercase__ ,lowercase__ ) assert pipe.safety_checker is None __lowercase = pipe('''example prompt''' ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase__ ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(lowercase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe('''example prompt''' ,num_inference_steps=2 ).images[0] assert image is not None
104
'''simple docstring''' def _a( UpperCamelCase__ : int = 1_0_0_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =2**power SCREAMING_SNAKE_CASE__ : Optional[Any] =0 while n: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
152
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ) -> List[Any]: snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'transformer.blocks.{i}.norm1.weight', f'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm1.bias', f'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.weight', f'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.bias', f'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.norm2.weight', f'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm2.bias', f'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'transformer.blocks.{i}.mlp.fc1.weight', f'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc1.bias', f'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.weight', f'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.bias', f'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: for i in range(config.num_hidden_layers ): snake_case_ = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.weight' ) snake_case_ = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: snake_case_ = dct.pop(lowerCAmelCase__ ) snake_case_ = val @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowerCAmelCase__ ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False if "vqa" in checkpoint_url: snake_case_ = True snake_case_ = 3129 snake_case_ = """huggingface/label-files""" snake_case_ = """vqa2-id2label.json""" snake_case_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = ViltForQuestionAnswering(lowerCAmelCase__ ) elif "nlvr" in checkpoint_url: snake_case_ = True snake_case_ = 2 snake_case_ = {0: """False""", 1: """True"""} snake_case_ = {v: k for k, v in config.idalabel.items()} snake_case_ = 3 snake_case_ = ViltForImagesAndTextClassification(lowerCAmelCase__ ) elif "irtr" in checkpoint_url: snake_case_ = True snake_case_ = ViltForImageAndTextRetrieval(lowerCAmelCase__ ) elif "mlm_itm" in checkpoint_url: snake_case_ = True snake_case_ = ViltForMaskedLM(lowerCAmelCase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys snake_case_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' )["""state_dict"""] snake_case_ = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) if mlm_model or irtr_model: snake_case_ = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: snake_case_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCAmelCase__ ) # Define processor snake_case_ = ViltImageProcessor(size=384 ) snake_case_ = BertTokenizer.from_pretrained('bert-base-uncased' ) snake_case_ = ViltProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) # Forward pass on example inputs (image + text) if nlvr_model: snake_case_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowerCAmelCase__ ).raw ) snake_case_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowerCAmelCase__ ).raw ) snake_case_ = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) snake_case_ = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) snake_case_ = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) snake_case_ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: snake_case_ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowerCAmelCase__ ).raw ) if mlm_model: snake_case_ = """a bunch of [MASK] laying on a [MASK].""" else: snake_case_ = """How many cats are there?""" snake_case_ = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) snake_case_ = model(**lowerCAmelCase__ ) # Verify outputs if mlm_model: snake_case_ = torch.Size([1, 11, 30522] ) snake_case_ = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) # verify masked token prediction equals "cats" snake_case_ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: snake_case_ = torch.Size([1, 3129] ) snake_case_ = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) # verify vqa prediction equals "2" snake_case_ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: snake_case_ = torch.Size([1, 2] ) snake_case_ = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
def a ( snake_case__: str ): '''simple docstring''' lowercase_ = [0] * len(snake_case__ ) for i in range(1 , len(snake_case__ ) ): # use last results for better performance - dynamic programming lowercase_ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase_ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase_ = j return prefix_result def a ( snake_case__: str ): '''simple docstring''' return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
30
from __future__ import annotations def a ( snake_case__: list[int] , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowercase_ , lowercase_ = array[indexa], array[indexa] def a ( snake_case__: list[int] , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' if length > 1: lowercase_ = int(length / 2 ) for i in range(snake_case__ , low + middle ): comp_and_swap(snake_case__ , snake_case__ , i + middle , snake_case__ ) bitonic_merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) bitonic_merge(snake_case__ , low + middle , snake_case__ , snake_case__ ) def a ( snake_case__: list[int] , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' if length > 1: lowercase_ = int(length / 2 ) bitonic_sort(snake_case__ , snake_case__ , snake_case__ , 1 ) bitonic_sort(snake_case__ , low + middle , snake_case__ , 0 ) bitonic_merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
30
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,) -> List[Any]: super().__init__() self.register_modules(transformer=lowerCamelCase_ ,vae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) # create a imagenet -> id dictionary for easier use A = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): A = int(lowerCamelCase_ ) A = dict(sorted(self.labels.items() ) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[int]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ): A = list(lowerCamelCase_ ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ = 4.0 ,lowerCamelCase_ = None ,lowerCamelCase_ = 5_0 ,lowerCamelCase_ = "pil" ,lowerCamelCase_ = True ,) -> Union[ImagePipelineOutput, Tuple]: A = len(lowerCamelCase_ ) A = self.transformer.config.sample_size A = self.transformer.config.in_channels A = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) ,generator=lowerCamelCase_ ,device=self.device ,dtype=self.transformer.dtype ,) A = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents A = torch.tensor(lowerCamelCase_ ,device=self.device ).reshape(-1 ) A = torch.tensor([1_0_0_0] * batch_size ,device=self.device ) A = torch.cat([class_labels, class_null] ,0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: A = latent_model_input[: len(lowerCamelCase_ ) // 2] A = torch.cat([half, half] ,dim=0 ) A = self.scheduler.scale_model_input(lowerCamelCase_ ,lowerCamelCase_ ) A = t if not torch.is_tensor(lowerCamelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) A = latent_model_input.device.type == """mps""" if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): A = torch.floataa if is_mps else torch.floataa else: A = torch.intaa if is_mps else torch.intaa A = torch.tensor([timesteps] ,dtype=lowerCamelCase_ ,device=latent_model_input.device ) elif len(timesteps.shape ) == 0: A = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output A = self.transformer( lowerCamelCase_ ,timestep=lowerCamelCase_ ,class_labels=lowerCamelCase_ ).sample # perform guidance if guidance_scale > 1: A , A = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] A , A = torch.split(lowerCamelCase_ ,len(lowerCamelCase_ ) // 2 ,dim=0 ) A = uncond_eps + guidance_scale * (cond_eps - uncond_eps) A = torch.cat([half_eps, half_eps] ,dim=0 ) A = torch.cat([eps, rest] ,dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: A , A = torch.split(lowerCamelCase_ ,lowerCamelCase_ ,dim=1 ) else: A = noise_pred # compute previous image: x_t -> x_t-1 A = self.scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ).prev_sample if guidance_scale > 1: A , A = latent_model_input.chunk(2 ,dim=0 ) else: A = latent_model_input A = 1 / self.vae.config.scaling_factor * latents A = self.vae.decode(lowerCamelCase_ ).sample A = (samples / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A = samples.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": A = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCamelCase_ )
77
"""simple docstring""" from collections.abc import Callable import numpy as np def _A ( _a : Callable , _a : float , _a : float , _a : float , _a : float ): """simple docstring""" A = int(np.ceil((x_end - xa) / step_size ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(_a ): A = y[k] + step_size * ode_func(_a , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
77
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __a :Optional[int] = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[Any] = ['DPTFeatureExtractor'] __a :int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[Any] = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __a :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A ( __UpperCAmelCase ): __snake_case = 'trocr' __snake_case = ['past_key_values'] __snake_case = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self, UpperCamelCase__=5_0265, UpperCamelCase__=1024, UpperCamelCase__=12, UpperCamelCase__=16, UpperCamelCase__=4096, UpperCamelCase__="gelu", UpperCamelCase__=512, UpperCamelCase__=0.1, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=0.0, UpperCamelCase__=True, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=1, UpperCamelCase__=0, UpperCamelCase__=2, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = vocab_size lowerCAmelCase_ = d_model lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = activation_function lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = init_std lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = use_cache lowerCAmelCase_ = scale_embedding lowerCAmelCase_ = use_learned_position_embeddings lowerCAmelCase_ = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, decoder_start_token_id=UpperCamelCase__, **UpperCamelCase__, )
365
def __UpperCamelCase ( _A ): lowerCAmelCase_ = [int(_A ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_A ) == 4 and all(0 <= int(_A ) <= 254 for octet in octets ) if __name__ == "__main__": _A = input().strip() _A = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f"{ip} is a {valid_or_invalid} IP v4 address.")
167
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class snake_case_ ( __A ): def __init__( self : List[Any] , **lowercase_ : Union[str, Any] ) -> Tuple: super().__init__(**lowercase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , lowercase_ : Union[str, List[str], "Image", List["Image"]] , **lowercase_ : str ) -> Optional[int]: return super().__call__(lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Any , **lowercase_ : Tuple ) -> Optional[Any]: lowercase__ : List[Any] = {} if "candidate_labels" in kwargs: lowercase__ : int = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowercase__ : Dict = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __UpperCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None , lowercase_ : List[str]="This is a photo of {}." ) -> Tuple: lowercase__ : str = load_image(lowercase_ ) lowercase__ : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__ : Optional[int] = candidate_labels lowercase__ : Optional[Any] = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] lowercase__ : Union[str, Any] = self.tokenizer(lowercase_ , return_tensors=self.framework , padding=lowercase_ ) lowercase__ : int = [text_inputs] return inputs def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Optional[int]: lowercase__ : Tuple = model_inputs.pop("candidate_labels" ) lowercase__ : List[Any] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , lowercase_ ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : Any = text_inputs[0][0] lowercase__ : List[str] = self.model(**lowercase_ , **lowercase_ ) lowercase__ : str = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __UpperCamelCase ( self : str , lowercase_ : int ) -> List[Any]: lowercase__ : Any = model_outputs.pop("candidate_labels" ) lowercase__ : Tuple = model_outputs["logits"][0] if self.framework == "pt": lowercase__ : List[str] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : str = probs.tolist() if not isinstance(lowercase_ , lowercase_ ): lowercase__ : Union[str, Any] = [scores] elif self.framework == "tf": lowercase__ : Optional[Any] = stable_softmax(lowercase_ , axis=-1 ) lowercase__ : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowercase__ : Optional[Any] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(lowercase_ , lowercase_ ) , key=lambda lowercase_ : -x[0] ) ] return result
87
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=24 , A_=2 , A_=6 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=None , A_=1000 , ): '''simple docstring''' UpperCamelCase : Union[str, Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : Dict = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : Optional[Any] = use_labels UpperCamelCase : str = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : str = type_vocab_size UpperCamelCase : Optional[int] = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : int = num_labels UpperCamelCase : Optional[int] = scope UpperCamelCase : int = range_bbox def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase : Union[str, Any] = bbox[i, j, 3] UpperCamelCase : int = bbox[i, j, 1] UpperCamelCase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase : List[str] = bbox[i, j, 2] UpperCamelCase : Optional[int] = bbox[i, j, 0] UpperCamelCase : Optional[Any] = t UpperCamelCase : Dict = None if self.use_input_mask: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase : str = None if self.use_token_type_ids: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Dict = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase( self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = LiltModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : str = model(A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ ) UpperCamelCase : Optional[int] = model(A_ , bbox=A_ , token_type_ids=A_ ) UpperCamelCase : Any = model(A_ , bbox=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = self.num_labels UpperCamelCase : Dict = LiltForTokenClassification(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Dict = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Dict = LiltForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : List[str] = model( A_ , bbox=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Tuple = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Dict = False _UpperCAmelCase :Union[str, Any] = False def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' return True def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = LiltModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Dict = LiltModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @slow class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(A_ ) UpperCamelCase : Tuple = torch.tensor([[1, 2]] , device=A_ ) UpperCamelCase : List[str] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A_ ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[int] = model(input_ids=A_ , bbox=A_ ) UpperCamelCase : List[str] = torch.Size([1, 2, 768] ) UpperCamelCase : Any = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=A_ , ) self.assertTrue(outputs.last_hidden_state.shape , A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A_ , atol=1e-3 ) )
52
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="lxmert" UpperCAmelCase_ ={} def __init__( self , _A=30522 , _A=768 , _A=12 , _A=9500 , _A=1600 , _A=400 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=2 , _A=0.02 , _A=1E-12 , _A=9 , _A=5 , _A=5 , _A=2048 , _A=4 , _A=6.67 , _A=True , _A=True , _A=True , _A=True , _A=True , _A=True , _A=True , **_A , ) -> Tuple: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = num_qa_labels SCREAMING_SNAKE_CASE_ = num_object_labels SCREAMING_SNAKE_CASE_ = num_attr_labels SCREAMING_SNAKE_CASE_ = l_layers SCREAMING_SNAKE_CASE_ = x_layers SCREAMING_SNAKE_CASE_ = r_layers SCREAMING_SNAKE_CASE_ = visual_feat_dim SCREAMING_SNAKE_CASE_ = visual_pos_dim SCREAMING_SNAKE_CASE_ = visual_loss_normalizer SCREAMING_SNAKE_CASE_ = task_matched SCREAMING_SNAKE_CASE_ = task_mask_lm SCREAMING_SNAKE_CASE_ = task_obj_predict SCREAMING_SNAKE_CASE_ = task_qa SCREAMING_SNAKE_CASE_ = visual_obj_loss SCREAMING_SNAKE_CASE_ = visual_attr_loss SCREAMING_SNAKE_CASE_ = visual_feat_loss SCREAMING_SNAKE_CASE_ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**_A )
362
def A__ ( __lowerCamelCase ): return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") __UpperCAmelCase = int(input("Enter number: ").strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
257
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase_ = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } lowerCAmelCase_ = { '''169M''': 7_68, '''430M''': 10_24, '''1B5''': 20_48, '''3B''': 25_60, '''7B''': 40_96, '''14B''': 51_20, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = list(state_dict.keys() ) for name in state_dict_keys: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) # emb -> embedding if name.startswith('''emb.''' ): snake_case_ = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): snake_case_ = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention snake_case_ = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , SCREAMING_SNAKE_CASE__ ) # ffn -> feed_forward snake_case_ = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , SCREAMING_SNAKE_CASE__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): snake_case_ = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): snake_case_ = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): snake_case_ = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": snake_case_ = '''rwkv.''' + name snake_case_ = weight return state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) snake_case_ = 50277 snake_case_ = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: snake_case_ = PreTrainedTokenizerFast(tokenizer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = len(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 2. Build the config snake_case_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case_ = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) snake_case_ = RwkvConfig( vocab_size=SCREAMING_SNAKE_CASE__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 3. Download model file then convert state_dict snake_case_ = hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) snake_case_ = convert_state_dict(SCREAMING_SNAKE_CASE__ ) # 4. Split in shards and save snake_case_, snake_case_ = shard_checkpoint(SCREAMING_SNAKE_CASE__ ) for shard_file, shard in shards.items(): torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if index is not None: snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save the index as well with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ ) + '''\n''' f.write(SCREAMING_SNAKE_CASE__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) snake_case_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case_ = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) snake_case_ = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) lowerCAmelCase_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
8
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __a :Optional[Any] = logging.get_logger(__name__) __a :Dict[Optional[str], Type[Formatter]] = {} __a :Dict[Optional[str], str] = {} __a :Dict[Optional[str], Exception] = {} def __snake_case ( __UpperCamelCase : type ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ,): """simple docstring""" A_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) A_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) A_ = format_type def __snake_case ( __UpperCamelCase : Exception ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ): """simple docstring""" A_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: __a :List[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: __a :List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: __a :Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __snake_case ( __UpperCamelCase : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( __UpperCamelCase : Optional[str] ,**__UpperCamelCase : List[Any] ): """simple docstring""" A_ = get_format_type_from_alias(__UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
312
0
def _lowerCamelCase ( lowercase : float , lowercase : int ) -> float: if digit_amount > 0: return round(number - int(lowercase ) , lowercase ) return number - int(lowercase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
368
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_ : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _lowerCamelCase ( lowercase : str ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def _lowerCamelCase ( lowercase : Dict ) -> str: from transformers.testing_utils import pytest_terminal_summary_main _a = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase )
346
0
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' if len(_lowerCAmelCase ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] lowercase__ : int = (left + right) >> 1 # the middle lowercase__ : Dict = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] lowercase__ : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
77
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(_a) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> Union[str, Any]: super().__init__(*a , **a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _UpperCAmelCase ( self , a=None ) -> Dict: lowercase__ : Any = {} if top_k is not None: lowercase__ : List[str] = top_k return {}, {}, postprocess_params def __call__( self , a , **a ) -> Tuple: return super().__call__(a , **a ) def _UpperCAmelCase ( self , a ) -> Dict: lowercase__ : List[Any] = load_image(a ) lowercase__ : Union[str, Any] = self.image_processor(images=a , return_tensors=self.framework ) return model_inputs def _UpperCAmelCase ( self , a ) -> List[str]: lowercase__ : Dict = self.model(**a ) return model_outputs def _UpperCAmelCase ( self , a , a=5 ) -> Dict: if top_k > self.model.config.num_labels: lowercase__ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase__ : Tuple = model_outputs.logits.softmax(-1 )[0] lowercase__ , lowercase__ : Optional[Any] = probs.topk(a ) elif self.framework == "tf": lowercase__ : Union[str, Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase__ : str = tf.math.top_k(a , k=a ) lowercase__ , lowercase__ : Dict = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Dict = scores.tolist() lowercase__ : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a , a )]
77
1
from collections.abc import Sequence def _a ( SCREAMING_SNAKE_CASE_ : Sequence[float] , SCREAMING_SNAKE_CASE_ : bool = False ): if not arr: return 0 __lowerCAmelCase = 0 if allow_empty_subarrays else float("-inf" ) __lowerCAmelCase = 0.0 for num in arr: __lowerCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowerCAmelCase = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
355
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.dummy_uncond_unet __lowerCAmelCase = ScoreSdeVeScheduler() __lowerCAmelCase = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=_A ).images __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=_A , return_dict=_A )[ 0 ] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "google/ncsnpp-church-256" __lowerCAmelCase = UNetaDModel.from_pretrained(_A ) __lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(_A ) __lowerCAmelCase = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=1_0 , output_type="numpy" , generator=_A ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
102
0
from pathlib import Path import numpy as np from PIL import Image def a ( _UpperCAmelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def a ( _UpperCAmelCase : List[Any] ): '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def a ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ): '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros_like(_UpperCAmelCase ) __UpperCAmelCase : Tuple = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __UpperCAmelCase : Tuple = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __UpperCAmelCase : int = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __UpperCAmelCase : List[str] = int(summation > 0 ) return output if __name__ == "__main__": # read original image __A =Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' __A =np.array(Image.open(lena_path)) # kernel to be applied __A =np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __A =dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __A =Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
226
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : int = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Union[str, Any] = """transfo-xl""" __lowerCAmelCase : Optional[Any] = ["""mems"""] __lowerCAmelCase : List[str] = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , _lowerCamelCase : List[Any]=26_77_35 , _lowerCamelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _lowerCamelCase : str=10_24 , _lowerCamelCase : Union[str, Any]=10_24 , _lowerCamelCase : Union[str, Any]=16 , _lowerCamelCase : int=64 , _lowerCamelCase : Optional[int]=40_96 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : str=False , _lowerCamelCase : Union[str, Any]=18 , _lowerCamelCase : Optional[Any]=16_00 , _lowerCamelCase : Optional[int]=10_00 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=0 , _lowerCamelCase : List[Any]=-1 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : List[str]="normal" , _lowerCamelCase : int=0.01 , _lowerCamelCase : List[str]=0.01 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=1E-5 , _lowerCamelCase : int=0 , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[Any] = vocab_size A_ : str = [] self.cutoffs.extend(_lowerCamelCase ) if proj_share_all_but_first: A_ : str = [False] + [True] * len(self.cutoffs ) else: A_ : str = [False] + [False] * len(self.cutoffs ) A_ : Optional[Any] = d_model A_ : Dict = d_embed A_ : List[str] = d_head A_ : List[Any] = d_inner A_ : Dict = div_val A_ : int = pre_lnorm A_ : Optional[Any] = n_layer A_ : List[Any] = n_head A_ : List[Any] = mem_len A_ : Dict = same_length A_ : Optional[Any] = attn_type A_ : Any = clamp_len A_ : Dict = sample_softmax A_ : List[Any] = adaptive A_ : Union[str, Any] = dropout A_ : List[Any] = dropatt A_ : Any = untie_r A_ : Optional[int] = init A_ : int = init_range A_ : List[Any] = proj_init_std A_ : Union[str, Any] = init_std A_ : List[Any] = layer_norm_epsilon super().__init__(eos_token_id=_lowerCamelCase , **_lowerCamelCase ) @property def a_ ( self : Union[str, Any] ): """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a_ ( self : Any , _lowerCamelCase : int ): """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
167
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __lowerCAmelCase = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 10_00, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 10_00, "block_out_channels": [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase = { "sample_size": 2_56, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase = { "num_train_timesteps": 1_51, "sigma_min": 0.002, "sigma_max": 80.0, } def snake_case_ ( snake_case ) -> List[str]: if isinstance(A__ , A__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case=False ) -> Tuple: lowercase__: Dict = checkpoint[f'{old_prefix}.in_layers.0.weight'] lowercase__: Any = checkpoint[f'{old_prefix}.in_layers.0.bias'] lowercase__: Tuple = checkpoint[f'{old_prefix}.in_layers.2.weight'] lowercase__: Optional[int] = checkpoint[f'{old_prefix}.in_layers.2.bias'] lowercase__: Optional[int] = checkpoint[f'{old_prefix}.emb_layers.1.weight'] lowercase__: List[Any] = checkpoint[f'{old_prefix}.emb_layers.1.bias'] lowercase__: Tuple = checkpoint[f'{old_prefix}.out_layers.0.weight'] lowercase__: Optional[Any] = checkpoint[f'{old_prefix}.out_layers.0.bias'] lowercase__: Union[str, Any] = checkpoint[f'{old_prefix}.out_layers.3.weight'] lowercase__: Optional[Any] = checkpoint[f'{old_prefix}.out_layers.3.bias'] if has_skip: lowercase__: Any = checkpoint[f'{old_prefix}.skip_connection.weight'] lowercase__: Union[str, Any] = checkpoint[f'{old_prefix}.skip_connection.bias'] return new_checkpoint def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case=None ) -> Union[str, Any]: lowercase__: str = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) lowercase__: List[str] = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) lowercase__: Any = checkpoint[f'{old_prefix}.norm.weight'] lowercase__: Union[str, Any] = checkpoint[f'{old_prefix}.norm.bias'] lowercase__: Any = weight_q.squeeze(-1 ).squeeze(-1 ) lowercase__: Tuple = bias_q.squeeze(-1 ).squeeze(-1 ) lowercase__: Any = weight_k.squeeze(-1 ).squeeze(-1 ) lowercase__: Optional[int] = bias_k.squeeze(-1 ).squeeze(-1 ) lowercase__: Dict = weight_v.squeeze(-1 ).squeeze(-1 ) lowercase__: int = bias_v.squeeze(-1 ).squeeze(-1 ) lowercase__: List[Any] = ( checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) lowercase__: Dict = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def snake_case_ ( snake_case , snake_case ) -> Tuple: lowercase__: Optional[Any] = torch.load(A__ , map_location='cpu' ) lowercase__: Tuple = {} lowercase__: Optional[Any] = checkpoint["""time_embed.0.weight"""] lowercase__: List[str] = checkpoint["""time_embed.0.bias"""] lowercase__: Union[str, Any] = checkpoint["""time_embed.2.weight"""] lowercase__: Dict = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowercase__: List[Any] = checkpoint["""label_emb.weight"""] lowercase__: List[str] = checkpoint["""input_blocks.0.0.weight"""] lowercase__: Any = checkpoint["""input_blocks.0.0.bias"""] lowercase__: int = unet_config["""down_block_types"""] lowercase__: List[Any] = unet_config["""layers_per_block"""] lowercase__: int = unet_config["""attention_head_dim"""] lowercase__: Dict = unet_config["""block_out_channels"""] lowercase__: Optional[Any] = 1 lowercase__: Tuple = channels_list[0] for i, layer_type in enumerate(A__ ): lowercase__: Optional[int] = channels_list[i] lowercase__: Union[str, Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A__ ): lowercase__: List[Any] = f'down_blocks.{i}.resnets.{j}' lowercase__: Union[str, Any] = f'input_blocks.{current_layer}.0' lowercase__: Union[str, Any] = True if j == 0 and downsample_block_has_skip else False lowercase__: Dict = convert_resnet(A__ , A__ , A__ , A__ , has_skip=A__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A__ ): lowercase__: Dict = f'down_blocks.{i}.resnets.{j}' lowercase__: Tuple = f'input_blocks.{current_layer}.0' lowercase__: str = True if j == 0 and downsample_block_has_skip else False lowercase__: List[str] = convert_resnet(A__ , A__ , A__ , A__ , has_skip=A__ ) lowercase__: Union[str, Any] = f'down_blocks.{i}.attentions.{j}' lowercase__: List[str] = f'input_blocks.{current_layer}.1' lowercase__: Optional[int] = convert_attention( A__ , A__ , A__ , A__ , A__ ) current_layer += 1 if i != len(A__ ) - 1: lowercase__: Union[str, Any] = f'down_blocks.{i}.downsamplers.0' lowercase__: str = f'input_blocks.{current_layer}.0' lowercase__: Optional[int] = convert_resnet(A__ , A__ , A__ , A__ ) current_layer += 1 lowercase__: List[str] = current_channels # hardcoded the mid-block for now lowercase__: str = """mid_block.resnets.0""" lowercase__: Optional[Any] = """middle_block.0""" lowercase__: int = convert_resnet(A__ , A__ , A__ , A__ ) lowercase__: Dict = """mid_block.attentions.0""" lowercase__: str = """middle_block.1""" lowercase__: List[Any] = convert_attention(A__ , A__ , A__ , A__ , A__ ) lowercase__: Optional[int] = """mid_block.resnets.1""" lowercase__: Tuple = """middle_block.2""" lowercase__: Tuple = convert_resnet(A__ , A__ , A__ , A__ ) lowercase__: Any = 0 lowercase__: Tuple = unet_config["""up_block_types"""] for i, layer_type in enumerate(A__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowercase__: Optional[Any] = f'up_blocks.{i}.resnets.{j}' lowercase__: str = f'output_blocks.{current_layer}.0' lowercase__: Dict = convert_resnet(A__ , A__ , A__ , A__ , has_skip=A__ ) current_layer += 1 if i != len(A__ ) - 1: lowercase__: Any = f'up_blocks.{i}.upsamplers.0' lowercase__: Dict = f'output_blocks.{current_layer-1}.1' lowercase__: List[Any] = convert_resnet(A__ , A__ , A__ , A__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowercase__: str = f'up_blocks.{i}.resnets.{j}' lowercase__: Optional[int] = f'output_blocks.{current_layer}.0' lowercase__: Any = convert_resnet(A__ , A__ , A__ , A__ , has_skip=A__ ) lowercase__: Tuple = f'up_blocks.{i}.attentions.{j}' lowercase__: Dict = f'output_blocks.{current_layer}.1' lowercase__: Union[str, Any] = convert_attention( A__ , A__ , A__ , A__ , A__ ) current_layer += 1 if i != len(A__ ) - 1: lowercase__: Optional[int] = f'up_blocks.{i}.upsamplers.0' lowercase__: Tuple = f'output_blocks.{current_layer-1}.2' lowercase__: str = convert_resnet(A__ , A__ , A__ , A__ ) lowercase__: Union[str, Any] = checkpoint["""out.0.weight"""] lowercase__: Any = checkpoint["""out.0.bias"""] lowercase__: str = checkpoint["""out.2.weight"""] lowercase__: List[Any] = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = strabool(args.class_cond) __lowerCAmelCase = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: __lowerCAmelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __lowerCAmelCase = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: __lowerCAmelCase = None __lowerCAmelCase = con_pt_to_diffuser(args.unet_path, unet_config) __lowerCAmelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __lowerCAmelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __lowerCAmelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') __lowerCAmelCase = CMStochasticIterativeScheduler(**scheduler_config) __lowerCAmelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
351
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=128 , lowerCAmelCase__=32 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = parent lowercase__: str = batch_size lowercase__: Dict = seq_length lowercase__: str = is_training lowercase__: List[str] = use_input_mask lowercase__: str = use_token_type_ids lowercase__: Tuple = use_labels lowercase__: int = vocab_size lowercase__: Dict = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[str] = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Dict = max_position_embeddings lowercase__: Optional[Any] = type_vocab_size lowercase__: List[str] = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Optional[int] = num_labels lowercase__: Union[str, Any] = num_choices lowercase__: int = scope def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[str] = None if self.use_input_mask: lowercase__: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Optional[int] = None if self.use_token_type_ids: lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Tuple = None lowercase__: Optional[Any] = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): Tuple = self.prepare_config_and_inputs() lowercase__: Optional[int] = True lowercase__: Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: List[Any] = NezhaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) lowercase__: Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) lowercase__: str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' lowercase__: Dict = True lowercase__: Optional[Any] = NezhaModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) lowercase__: str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = NezhaForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Any = NezhaForNextSentencePrediction(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Union[str, Any] = NezhaForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = NezhaForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = self.num_labels lowercase__: List[Any] = NezhaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = self.num_labels lowercase__: Dict = NezhaForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: List[str] = self.num_choices lowercase__: str = NezhaForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): str = config_and_inputs lowercase__: Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : List[Any] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowercase : Any = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Dict = True def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[Any]: '''simple docstring''' lowercase__: Any = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): lowercase__: int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: List[Any] = NezhaModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__: str = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[str] = NezhaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ , lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase__: Optional[int] = True lowercase__: Optional[int] = model_class(config=lowerCAmelCase__ ) lowercase__: Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'bert.pt' ) ) lowercase__: List[str] = torch.jit.load(os.path.join(lowerCAmelCase__ , 'bert.pt' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase__ ) , inputs_dict['attention_mask'].to(lowerCAmelCase__ ) ) @require_torch class __a ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowercase__: Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Dict = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowercase__: Optional[Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: int = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowercase__: Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase__: Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowercase__: int = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__: Union[str, Any] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
288
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase_ : str = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ : Optional[int] = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCAmelCase_ : str = spec.loader.load_module() UpperCAmelCase_ : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCAmelCase_ : Optional[Any] = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") UpperCAmelCase_ : List[Any] = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def _A () -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): SCREAMING_SNAKE_CASE_ : Dict = False # source code of `config_class` SCREAMING_SNAKE_CASE_ : str = inspect.getsource(a__ ) SCREAMING_SNAKE_CASE_ : str = _re_checkpoint.findall(a__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = checkpoint # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE_ : List[Any] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE_ : Optional[int] = True break SCREAMING_SNAKE_CASE_ : List[str] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(a__ ) if len(a__ ) > 0: SCREAMING_SNAKE_CASE_ : int = '''\n'''.join(sorted(a__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
91
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase__ : List[Any] =input('''Enter image url: ''').strip() print(F'''Downloading image from {url} ...''') lowerCAmelCase__ : int =BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase__ : Union[str, Any] =soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] lowerCAmelCase__ : int =requests.get(image_url).content lowerCAmelCase__ : Optional[int] =F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
257
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10_00 ): __UpperCamelCase =3 __UpperCamelCase =0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
117
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 3.0 class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def _a ( self ) -> Union[str, Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase =Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def _a ( self ) -> Optional[int]: __UpperCamelCase =['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": _A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _A = Accelerator(kwargs_handlers=[ddp_scaler]) _A = torch.nn.Linear(100, 200) _A = accelerator.prepare(model) # Check the values changed in kwargs _A = '' _A = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
117
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=[] ): __UpperCamelCase =size[0] - overlap_pixels * 2 __UpperCamelCase =size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __UpperCamelCase =np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __UpperCamelCase =np.pad(SCREAMING_SNAKE_CASE__ , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE__ , end_values=0 ) if "l" in remove_borders: __UpperCamelCase =mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __UpperCamelCase =mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __UpperCamelCase =mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __UpperCamelCase =mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): return max(SCREAMING_SNAKE_CASE__ , min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : [int] ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : [int] ): __UpperCamelCase =list(SCREAMING_SNAKE_CASE__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __UpperCamelCase =clamp_rect(SCREAMING_SNAKE_CASE__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE__ , (original_slice, 0) ) return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =(original_image_slice * 4, 0, tile.size[0], tile.size[1]) __UpperCamelCase =tile.crop(SCREAMING_SNAKE_CASE__ ) return tile def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =n % d return n - divisor class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ = 350 , ) -> Union[str, Any]: super().__init__( vae=A_ , text_encoder=A_ , tokenizer=A_ , unet=A_ , low_res_scheduler=A_ , scheduler=A_ , max_noise_level=A_ , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , **A_ ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase =( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __UpperCamelCase =add_overlap_rect(A_ , A_ , image.size ) __UpperCamelCase =image.crop(A_ ) __UpperCamelCase =((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __UpperCamelCase =translated_slice_x - (original_image_slice / 2) __UpperCamelCase =max(0 , A_ ) __UpperCamelCase =squeeze_tile(A_ , A_ , A_ , A_ ) __UpperCamelCase =to_input.size __UpperCamelCase =to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __UpperCamelCase =super(A_ , self ).__call__(image=A_ , **A_ ).images[0] __UpperCamelCase =upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __UpperCamelCase =unsqueeze_tile(A_ , A_ ) __UpperCamelCase =upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __UpperCamelCase =[] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __UpperCamelCase =Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=A_ ) , mode='L' , ) final_image.paste( A_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , A_ ) @torch.no_grad() def __call__( self , A_ , A_ , A_ = 75 , A_ = 9.0 , A_ = 50 , A_ = None , A_ = 1 , A_ = 0.0 , A_ = None , A_ = None , A_ = None , A_ = 1 , A_ = 128 , A_ = 32 , A_ = 32 , ) -> Tuple: __UpperCamelCase =Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __UpperCamelCase =math.ceil(image.size[0] / tile_size ) __UpperCamelCase =math.ceil(image.size[1] / tile_size ) __UpperCamelCase =tcx * tcy __UpperCamelCase =0 for y in range(A_ ): for x in range(A_ ): self._process_tile( A_ , A_ , A_ , A_ , A_ , A_ , A_ , prompt=A_ , num_inference_steps=A_ , guidance_scale=A_ , noise_level=A_ , negative_prompt=A_ , num_images_per_prompt=A_ , eta=A_ , generator=A_ , latents=A_ , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _UpperCAmelCase ( ): # Run a demo __UpperCamelCase ='stabilityai/stable-diffusion-x4-upscaler' __UpperCamelCase =StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='fp16' , torch_dtype=torch.floataa ) __UpperCamelCase =pipe.to('cuda' ) __UpperCamelCase =Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE__ : List[str] ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save('diffusers_library_progress.jpg' ) __UpperCamelCase =pipe(image=SCREAMING_SNAKE_CASE__ , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE__ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
62
'''simple docstring''' import string from math import logaa def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" ) UpperCAmelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return round(tf * idf , 3 )
346
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __magic_name__ ( __a : int , __a : str , __a : Dict , __a : str , __a : int ): '''simple docstring''' with open(__a ) as metadata_file: UpperCamelCase__ = json.load(__a ) UpperCamelCase__ = LukeConfig(use_entity_aware_attention=__a , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path UpperCamelCase__ = torch.load(__a , map_location="""cpu""" )["""module"""] # Load the entity vocab file UpperCamelCase__ = load_original_entity_vocab(__a ) # add an entry for [MASK2] UpperCamelCase__ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase__ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase__ = AddedToken("""<ent>""" , lstrip=__a , rstrip=__a ) UpperCamelCase__ = AddedToken("""<ent2>""" , lstrip=__a , rstrip=__a ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a , """tokenizer_config.json""" ) , """r""" ) as f: UpperCamelCase__ = json.load(__a ) UpperCamelCase__ = """MLukeTokenizer""" with open(os.path.join(__a , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(__a , __a ) with open(os.path.join(__a , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(__a , __a ) UpperCamelCase__ = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens UpperCamelCase__ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] UpperCamelCase__ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] UpperCamelCase__ = state_dict["""embeddings.word_embeddings.weight"""] UpperCamelCase__ = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase__ = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase__ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase__ = state_dict[bias_name] UpperCamelCase__ = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase__ = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase__ = f"encoder.layer.{layer_index}.attention.self." UpperCamelCase__ = state_dict[prefix + matrix_name] UpperCamelCase__ = state_dict[prefix + matrix_name] UpperCamelCase__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase__ = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCamelCase__ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCamelCase__ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase__ = state_dict["""entity_predictions.bias"""] UpperCamelCase__ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCamelCase__ = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase__ = LukeForMaskedLM(config=__a ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) UpperCamelCase__ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): UpperCamelCase__ = state_dict[key] else: UpperCamelCase__ = state_dict[key] UpperCamelCase__ , UpperCamelCase__ = model.load_state_dict(__a , strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase__ = MLukeTokenizer.from_pretrained(__a , task="""entity_classification""" ) UpperCamelCase__ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" UpperCamelCase__ = (0, 9) UpperCamelCase__ = tokenizer(__a , entity_spans=[span] , return_tensors="""pt""" ) UpperCamelCase__ = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase__ = torch.Size((1, 33, 768) ) UpperCamelCase__ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase__ = torch.Size((1, 1, 768) ) UpperCamelCase__ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __a , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase__ = MLukeTokenizer.from_pretrained(__a ) UpperCamelCase__ = """Tokyo is the capital of <mask>.""" UpperCamelCase__ = (24, 30) UpperCamelCase__ = tokenizer(__a , entity_spans=[span] , return_tensors="""pt""" ) UpperCamelCase__ = model(**__a ) UpperCamelCase__ = encoding["""input_ids"""][0].tolist() UpperCamelCase__ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) UpperCamelCase__ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) UpperCamelCase__ = outputs.entity_logits[0][0].argmax().item() UpperCamelCase__ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__a ) ) model.save_pretrained(__a ) def __magic_name__ ( __a : Dict ): '''simple docstring''' UpperCamelCase__ = ["""[MASK]""", """[PAD]""", """[UNK]"""] UpperCamelCase__ = [json.loads(__a ) for line in open(__a )] UpperCamelCase__ = {} for entry in data: UpperCamelCase__ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase__ = entity_id break UpperCamelCase__ = f"{language}:{entity_name}" UpperCamelCase__ = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) lowerCamelCase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
178
from __future__ import annotations def __magic_name__ ( __a : list[list[int]] ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__a ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__a ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
178
1
"""simple docstring""" __UpperCamelCase = 9.80665 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = g ) -> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
69
"""simple docstring""" import math def lowercase ( _snake_case : int ) ->bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( _snake_case : float = 0.1 ) ->int: """simple docstring""" __snake_case : Tuple = 3 __snake_case : Any = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
102
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> List[str]: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE :Tuple = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class __magic_name__ ( snake_case ): @staticmethod def UpperCAmelCase_ ( _lowercase )-> Optional[int]: UpperCamelCase_ = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_lowercase , required=_lowercase , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=_lowercase , required=_lowercase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=_lowercase , required=_lowercase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=_lowercase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=_lowercase , default=_lowercase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_lowercase ) def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase , )-> Union[str, Any]: UpperCamelCase_ = logging.get_logger("transformers-cli/converting" ) self._logger.info(F"Loading model {model_type}" ) UpperCamelCase_ = model_type UpperCamelCase_ = tf_checkpoint UpperCamelCase_ = pytorch_dump_output UpperCamelCase_ = config UpperCamelCase_ = finetuning_task_name def UpperCAmelCase_ ( self )-> Optional[int]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase_ = self._tf_checkpoint UpperCamelCase_ = "" else: UpperCamelCase_ = self._tf_checkpoint UpperCamelCase_ = "" convert_transfo_xl_checkpoint_to_pytorch( _lowercase , self._config , self._pytorch_dump_output , _lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
351
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def UpperCAmelCase_ ( *_lowercase , **_lowercase )-> Optional[int]: pass @is_pipeline_test @require_vision class __magic_name__ ( unittest.TestCase ): @require_torch def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowercase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(_lowercase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], ] , ) @slow @require_torch def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
60
0
import math import tensorflow as tf from packaging import version def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(math.pi , x.dtype ) _lowerCAmelCase = tf.cast(0.044_715 , x.dtype ) _lowerCAmelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(snake_case , 3 )) )) return x * cdf def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) return x * tf.tanh(tf.math.softplus(snake_case ) ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(0.044_715 , x.dtype ) _lowerCAmelCase = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return tf.clip_by_value(_gelu(snake_case ) , -10 , 10 ) def _UpperCAmelCase ( snake_case , snake_case=-1 ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = tf.split(snake_case , 2 , axis=snake_case ) return a * tf.math.sigmoid(snake_case ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def _UpperCAmelCase ( snake_case ): """simple docstring""" return tf.keras.activations.gelu(snake_case , approximate=snake_case ) A__ = tf.keras.activations.gelu A__ = approximate_gelu_wrap else: A__ = _gelu A__ = _gelu_new A__ = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def _UpperCAmelCase ( snake_case ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
82
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase__ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase__ = model.state_dict() UpperCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"cls.predictions.transform.dense.{w}"] UpperCAmelCase__ = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
288
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( A__ , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : str =GPTSanJapaneseTokenizer UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Optional[int] ={"do_clean_text": False, "add_prefix_space": False} def __lowercase ( self ): """simple docstring""" super().setUp() # fmt: off __UpperCamelCase : Dict =["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __UpperCamelCase : List[str] ={"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 __UpperCamelCase : int ={"""unk_token""": """<unk>"""} __UpperCamelCase : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(__A ) ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__A ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] ="""こんにちは、世界。 \nこんばんは、㔺界。😀""" __UpperCamelCase : Optional[int] ="""こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Tuple =self.get_input_output_texts(__A ) __UpperCamelCase : List[str] =tokenizer.encode(__A , add_special_tokens=__A ) __UpperCamelCase : str =tokenizer.decode(__A , clean_up_tokenization_spaces=__A ) return text, ids def __lowercase ( self ): """simple docstring""" pass # TODO add if relevant def __lowercase ( self ): """simple docstring""" pass # TODO add if relevant def __lowercase ( self ): """simple docstring""" pass # TODO add if relevant def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.get_tokenizer() # Testing tokenization __UpperCamelCase : Optional[int] ="""こんにちは、世界。 こんばんは、㔺界。""" __UpperCamelCase : Any =["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] __UpperCamelCase : Tuple =tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids without special tokens __UpperCamelCase : List[Any] =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __UpperCamelCase : List[str] =tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids with special tokens __UpperCamelCase : Any =tokens + [tokenizer.unk_token] __UpperCamelCase : Union[str, Any] =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __UpperCamelCase : Union[str, Any] =tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =self.get_tokenizer() # Testing tokenization __UpperCamelCase : Optional[int] ="""こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" __UpperCamelCase : str ="""こんにちは、、、、世界。こんばんは、、、、世界。""" __UpperCamelCase : str =tokenizer.encode(__A ) __UpperCamelCase : Dict =tokenizer.decode(__A ) self.assertEqual(__A , __A ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __UpperCamelCase : Optional[Any] ="""こんにちは、世界。""" __UpperCamelCase : Any ="""こんばんは、㔺界。😀""" __UpperCamelCase : Optional[Any] ="""こんにちは、世界。こんばんは、世界。😀""" __UpperCamelCase : List[Any] =tokenizer.encode(prefix_text + input_text ) __UpperCamelCase : List[str] =tokenizer.encode('' , prefix_text=prefix_text + input_text ) __UpperCamelCase : int =tokenizer.encode(__A , prefix_text=__A ) __UpperCamelCase : int =tokenizer.decode(__A ) __UpperCamelCase : Dict =tokenizer.decode(__A ) __UpperCamelCase : Tuple =tokenizer.decode(__A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __UpperCamelCase : List[Any] ="""こんにちは、世界。""" __UpperCamelCase : Optional[int] ="""こんばんは、㔺界。😀""" __UpperCamelCase : List[str] =len(tokenizer.encode(__A ) ) - 2 __UpperCamelCase : Dict =len(tokenizer.encode(__A ) ) - 2 __UpperCamelCase : int =[1] + [0] * (len_prefix + len_text + 1) __UpperCamelCase : List[Any] =[1] * (len_prefix + len_text + 1) + [0] __UpperCamelCase : Dict =[1] + [1] * (len_prefix) + [0] * (len_text + 1) __UpperCamelCase : List[Any] =tokenizer(prefix_text + input_text ).token_type_ids __UpperCamelCase : List[str] =tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids __UpperCamelCase : List[Any] =tokenizer(__A , prefix_text=__A ).token_type_ids self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __UpperCamelCase : int =tokenizer.encode('あンいワ' ) __UpperCamelCase : Optional[Any] =tokenizer.encode('' , prefix_text='あンいワ' ) __UpperCamelCase : int =tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertNotEqual(__A , __A ) self.assertNotEqual(__A , __A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __UpperCamelCase : int =[["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] __UpperCamelCase : Dict =tokenizer(__A , padding=__A ) __UpperCamelCase : Any =tokenizer.batch_encode_plus(__A , padding=__A ) # fmt: off __UpperCamelCase : int =[[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] __UpperCamelCase : List[str] =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __UpperCamelCase : int =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __A ) self.assertListEqual(x_token.token_type_ids , __A ) self.assertListEqual(x_token.attention_mask , __A ) self.assertListEqual(x_token_a.input_ids , __A ) self.assertListEqual(x_token_a.token_type_ids , __A ) self.assertListEqual(x_token_a.attention_mask , __A ) def __lowercase ( self ): """simple docstring""" pass def __lowercase ( self ): """simple docstring""" pass
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ :Union[str, Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[int] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
245
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """hf-legacy""" # "hf://"" is reserved for hffs def __init__(self :List[Any] , _UpperCamelCase :Optional[DatasetInfo] = None , _UpperCamelCase :Optional[str] = None , **_UpperCamelCase :Any , )-> str: super().__init__(self , **_UpperCamelCase ) __A = repo_info __A = token __A = None def _lowerCAmelCase (self :Any )-> Dict: if self.dir_cache is None: __A = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __A = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_UpperCamelCase ): {'''name''': str(_UpperCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str , _UpperCamelCase :str = "rb" , **_UpperCamelCase :Tuple , )-> Optional[Any]: if not isinstance(self.repo_info , _UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __A = hf_hub_url(self.repo_info.id , _UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( _UpperCamelCase , mode=_UpperCamelCase , headers=get_authentication_headers_for_url(_UpperCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Optional[Any] , **_UpperCamelCase :List[str] )-> Any: self._get_dirs() __A = self._strip_protocol(_UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_UpperCamelCase ) def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :Any , _UpperCamelCase :List[str]=False , **_UpperCamelCase :Optional[int] )-> str: self._get_dirs() __A = PurePosixPath(path.strip('''/''' ) ) __A = {} for p, f in self.dir_cache.items(): __A = PurePosixPath(p.strip('''/''' ) ) __A = p.parent if root == path: __A = f __A = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
117
from __future__ import annotations def _a ( lowerCamelCase: list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(lowerCamelCase , [] , 0 , [0 for i in range(len(lowerCamelCase ) )] ) def _a ( lowerCamelCase: list[int | str] , lowerCamelCase: list[int | str] , lowerCamelCase: int , lowerCamelCase: list[int] , ) -> None: '''simple docstring''' if index == len(lowerCamelCase ): print(lowerCamelCase ) return for i in range(len(lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __A = True create_state_space_tree(lowerCamelCase , lowerCamelCase , index + 1 , lowerCamelCase ) current_sequence.pop() __A = False snake_case__ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) snake_case__ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
117
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( __UpperCAmelCase ): __A : Dict = (PNDMScheduler,) __A : Union[str, Any] = (("num_inference_steps", 50),) def __snake_case ( self : Union[str, Any] , **snake_case__ : Dict ): '''simple docstring''' lowercase :Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def __snake_case ( self : int , snake_case__ : Optional[int]=0 , **snake_case__ : Tuple ): '''simple docstring''' lowercase :Optional[Any] = dict(self.forward_default_kwargs ) lowercase :int = kwargs.pop('''num_inference_steps''' , snake_case__ ) lowercase :Optional[Any] = self.dummy_sample lowercase :Optional[Any] = 0.1 * sample lowercase :Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase :Union[str, Any] = self.get_scheduler_config(**snake_case__ ) lowercase :Dict = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowercase :Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowercase :Dict = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowercase :List[Any] = dummy_past_residuals[:] lowercase :Dict = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowercase :str = new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase :List[Any] = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowercase :int = new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self : List[Any] ): '''simple docstring''' pass def __snake_case ( self : int , snake_case__ : Tuple=0 , **snake_case__ : Optional[int] ): '''simple docstring''' lowercase :Union[str, Any] = dict(self.forward_default_kwargs ) lowercase :Union[str, Any] = kwargs.pop('''num_inference_steps''' , snake_case__ ) lowercase :int = self.dummy_sample lowercase :Dict = 0.1 * sample lowercase :str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase :List[Any] = self.get_scheduler_config() lowercase :Dict = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowercase :int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowercase :Dict = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowercase :Any = dummy_past_residuals[:] lowercase :List[str] = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowercase :int = new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase :List[Any] = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowercase :Optional[Any] = new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self : Union[str, Any] , **snake_case__ : List[str] ): '''simple docstring''' lowercase :Tuple = self.scheduler_classes[0] lowercase :List[Any] = self.get_scheduler_config(**snake_case__ ) lowercase :List[str] = scheduler_class(**snake_case__ ) lowercase :Optional[int] = 1_0 lowercase :List[str] = self.dummy_model() lowercase :Tuple = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase :int = model(snake_case__ , snake_case__ ) lowercase :str = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase :Optional[int] = model(snake_case__ , snake_case__ ) lowercase :List[str] = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Dict = dict(self.forward_default_kwargs ) lowercase :Union[str, Any] = kwargs.pop('''num_inference_steps''' , snake_case__ ) for scheduler_class in self.scheduler_classes: lowercase :Any = self.get_scheduler_config() lowercase :Union[str, Any] = scheduler_class(**snake_case__ ) lowercase :Union[str, Any] = self.dummy_sample lowercase :Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , '''set_timesteps''' ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , '''set_timesteps''' ): lowercase :Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase :List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase :Tuple = dummy_past_residuals[:] lowercase :List[str] = scheduler.step_prk(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample lowercase :Any = scheduler.step_prk(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase :Tuple = scheduler.step_plms(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample lowercase :Dict = scheduler.step_plms(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case ( self : List[str] ): '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case__ ) def __snake_case ( self : Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case__ ) lowercase :Union[str, Any] = self.scheduler_classes[0] lowercase :List[str] = self.get_scheduler_config(steps_offset=1 ) lowercase :Union[str, Any] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def __snake_case ( self : List[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' for t in [1, 5, 1_0]: self.check_over_forward(time_step=snake_case__ ) def __snake_case ( self : Tuple ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=snake_case__ ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :List[Any] = 2_7 for scheduler_class in self.scheduler_classes: lowercase :Optional[Any] = self.dummy_sample lowercase :Optional[int] = 0.1 * sample lowercase :int = self.get_scheduler_config() lowercase :str = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase :Optional[int] = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample def __snake_case ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(snake_case__ ): lowercase :List[Any] = self.scheduler_classes[0] lowercase :str = self.get_scheduler_config() lowercase :List[str] = scheduler_class(**snake_case__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :Optional[int] = self.full_loop() lowercase :Optional[int] = torch.sum(torch.abs(snake_case__ ) ) lowercase :Tuple = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2 assert abs(result_mean.item() - 0.25_80 ) < 1e-3 def __snake_case ( self : int ): '''simple docstring''' lowercase :List[Any] = self.full_loop(prediction_type='''v_prediction''' ) lowercase :Any = torch.sum(torch.abs(snake_case__ ) ) lowercase :Any = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1e-2 assert abs(result_mean.item() - 0.08_78 ) < 1e-3 def __snake_case ( self : str ): '''simple docstring''' lowercase :int = self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 ) lowercase :Optional[int] = torch.sum(torch.abs(snake_case__ ) ) lowercase :Optional[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2 assert abs(result_mean.item() - 0.29_95 ) < 1e-3 def __snake_case ( self : Any ): '''simple docstring''' lowercase :int = self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 ) lowercase :Any = torch.sum(torch.abs(snake_case__ ) ) lowercase :Tuple = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2 assert abs(result_mean.item() - 0.24_34 ) < 1e-3
172
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __magic_name__ ( __UpperCAmelCase ): __A : List[Any] = "retribert" def __init__( self : Dict , snake_case__ : Union[str, Any]=3_0_5_2_2 , snake_case__ : Union[str, Any]=7_6_8 , snake_case__ : Optional[Any]=8 , snake_case__ : int=1_2 , snake_case__ : Optional[int]=3_0_7_2 , snake_case__ : Any="gelu" , snake_case__ : str=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=0.02 , snake_case__ : Tuple=1e-1_2 , snake_case__ : Any=True , snake_case__ : Tuple=1_2_8 , snake_case__ : Optional[int]=0 , **snake_case__ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowercase :Any = vocab_size lowercase :Optional[Any] = hidden_size lowercase :str = num_hidden_layers lowercase :List[str] = num_attention_heads lowercase :Union[str, Any] = hidden_act lowercase :Any = intermediate_size lowercase :str = hidden_dropout_prob lowercase :str = attention_probs_dropout_prob lowercase :Optional[Any] = max_position_embeddings lowercase :Union[str, Any] = type_vocab_size lowercase :Any = initializer_range lowercase :int = layer_norm_eps lowercase :List[str] = share_encoders lowercase :Union[str, Any] = projection_dim
172
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( _UpperCAmelCase , unittest.TestCase): '''simple docstring''' _A = BlenderbotSmallTokenizer _A = False def _lowerCamelCase ( self :Dict ) -> int: super().setUp() __UpperCamelCase : int = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] __UpperCamelCase : List[Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __UpperCamelCase : List[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] __UpperCamelCase : List[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} __UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCAmelCase ) ) def _lowerCamelCase ( self :Union[str, Any] , **a :List[str] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self :Union[str, Any] , a :str ) -> Any: __UpperCamelCase : List[str] = '''adapt act apte''' __UpperCamelCase : Any = '''adapt act apte''' return input_text, output_text def _lowerCamelCase ( self :List[str] ) -> Optional[int]: __UpperCamelCase : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase : Optional[int] = '''adapt act apte''' __UpperCamelCase : Tuple = ['''adapt''', '''act''', '''ap@@''', '''te'''] __UpperCamelCase : Tuple = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCamelCase : Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self :int ) -> List[Any]: __UpperCamelCase : Optional[int] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] __UpperCamelCase : Dict = '''I am a small frog.''' __UpperCamelCase : Any = tok([src_text] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )['''input_ids'''] __UpperCamelCase : Optional[int] = tok.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __UpperCamelCase : Dict = '''I am a small frog .''' __UpperCamelCase : Tuple = '''.''' __UpperCamelCase : List[Any] = tok(_UpperCAmelCase )['''input_ids'''] __UpperCamelCase : Union[str, Any] = tok(_UpperCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
232
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A = "UperNetConfig" class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0 , _UpperCAmelCase = False , _UpperCAmelCase = 1 , ): super().__init__() lowercase__: List[Any] = nn.Convad( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , bias=_UpperCAmelCase , dilation=_UpperCAmelCase , ) lowercase__: List[Any] = nn.BatchNormad(_UpperCAmelCase ) lowercase__: int = nn.ReLU() def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = self.conv(_UpperCAmelCase ) lowercase__: Optional[int] = self.batch_norm(_UpperCAmelCase ) lowercase__: List[Any] = self.activation(_UpperCAmelCase ) return output class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: int = [ nn.AdaptiveAvgPoolad(_UpperCAmelCase ), UperNetConvModule(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Any = input for layer in self.layers: lowercase__: Any = layer(_UpperCAmelCase ) return hidden_state class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: int = pool_scales lowercase__: Optional[Any] = align_corners lowercase__: Optional[int] = in_channels lowercase__: Optional[Any] = channels lowercase__: List[Any] = [] for i, pool_scale in enumerate(_UpperCAmelCase ): lowercase__: Optional[int] = UperNetPyramidPoolingBlock(pool_scale=_UpperCAmelCase , in_channels=_UpperCAmelCase , channels=_UpperCAmelCase ) self.blocks.append(_UpperCAmelCase ) self.add_module(str(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Union[str, Any] = [] for ppm in self.blocks: lowercase__: Tuple = ppm(_UpperCAmelCase ) lowercase__: Any = nn.functional.interpolate( _UpperCAmelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_UpperCAmelCase ) return ppm_outs class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: Optional[int] = config lowercase__: int = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__: Optional[int] = in_channels lowercase__: List[str] = config.hidden_size lowercase__: List[str] = False lowercase__: List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowercase__: Dict = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowercase__: int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowercase__: List[Any] = nn.ModuleList() lowercase__: Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__: int = UperNetConvModule(_UpperCAmelCase , self.channels , kernel_size=1 ) lowercase__: Dict = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_UpperCAmelCase ) self.fpn_convs.append(_UpperCAmelCase ) lowercase__: Any = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _snake_case ( self ): self.apply(self._init_weights ) def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = inputs[-1] lowercase__: str = [x] psp_outs.extend(self.psp_modules(_UpperCAmelCase ) ) lowercase__: Dict = torch.cat(_UpperCAmelCase , dim=1 ) lowercase__: Tuple = self.bottleneck(_UpperCAmelCase ) return output def _snake_case ( self , _UpperCAmelCase ): # build laterals lowercase__: Dict = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_UpperCAmelCase ) ) # build top-down path lowercase__: int = len(_UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase__: str = laterals[i - 1].shape[2:] lowercase__: Optional[int] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_UpperCAmelCase , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs lowercase__: str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase__: Any = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) lowercase__: int = torch.cat(_UpperCAmelCase , dim=1 ) lowercase__: Tuple = self.fpn_bottleneck(_UpperCAmelCase ) lowercase__: Dict = self.classifier(_UpperCAmelCase ) return output class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 ): super().__init__() lowercase__: Optional[Any] = config lowercase__: Optional[Any] = config.auxiliary_in_channels lowercase__: List[Any] = config.auxiliary_channels lowercase__: Tuple = config.auxiliary_num_convs lowercase__: Any = config.auxiliary_concat_input lowercase__: Optional[int] = in_index lowercase__: Tuple = (kernel_size // 2) * dilation lowercase__: Tuple = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , dilation=_UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , dilation=_UpperCAmelCase ) ) if self.num_convs == 0: lowercase__: List[Any] = nn.Identity() else: lowercase__: Union[str, Any] = nn.Sequential(*_UpperCAmelCase ) if self.concat_input: lowercase__: Dict = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_UpperCAmelCase , padding=kernel_size // 2 ) lowercase__: Union[str, Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _snake_case ( self ): self.apply(self._init_weights ) def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _snake_case ( self , _UpperCAmelCase ): # just take the relevant feature maps lowercase__: Dict = encoder_hidden_states[self.in_index] lowercase__: Optional[int] = self.convs(_UpperCAmelCase ) if self.concat_input: lowercase__: Optional[int] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowercase__: Dict = self.classifier(_UpperCAmelCase ) return output class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = UperNetConfig _UpperCAmelCase :int = "pixel_values" _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _snake_case ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = value __A = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,_UpperCAmelCase ,) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) lowercase__: Optional[int] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__: Any = UperNetHead(_UpperCAmelCase , in_channels=self.backbone.channels ) lowercase__: Tuple = UperNetFCNHead(_UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def _snake_case ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowercase__: Tuple = return_dict if return_dict is not None else self.config.use_return_dict lowercase__: Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__: str = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__: List[str] = self.backbone.forward_with_filtered_kwargs( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , output_attentions=_UpperCAmelCase ) lowercase__: Tuple = outputs.feature_maps lowercase__: Union[str, Any] = self.decode_head(_UpperCAmelCase ) lowercase__: str = nn.functional.interpolate(_UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_UpperCAmelCase ) lowercase__: Any = None if self.auxiliary_head is not None: lowercase__: Union[str, Any] = self.auxiliary_head(_UpperCAmelCase ) lowercase__: Tuple = nn.functional.interpolate( _UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_UpperCAmelCase ) lowercase__: List[Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__: List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__: Optional[Any] = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__: Tuple = (logits,) + outputs[1:] else: lowercase__: Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
177
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _lowerCamelCase : str = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) _lowerCamelCase : Optional[int] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _lowerCamelCase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : Tuple = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : int = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _lowerCamelCase : Optional[int] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) _lowerCamelCase : Optional[int] = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : List[Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) _lowerCamelCase : List[Any] = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : str = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' _lowerCamelCase : Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' _lowerCamelCase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' _lowerCamelCase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' _lowerCamelCase : Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' _lowerCamelCase : Any = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' _lowerCamelCase : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' _lowerCamelCase : Tuple = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' _lowerCamelCase : Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' _lowerCamelCase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' _lowerCamelCase : Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' _lowerCamelCase : str = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : Dict = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' _lowerCamelCase : Any = '''''' _lowerCamelCase : Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' _lowerCamelCase : Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase : Tuple = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def a_ ( __lowercase : Union[str, Any] , __lowercase : str ) -> str: assert ReadMe.from_string(__lowercase , __lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def a_ ( __lowercase : Any , __lowercase : Tuple ) -> int: with pytest.raises(__lowercase , match=re.escape(expected_error.format(path='root' ) ) ): _snake_case = ReadMe.from_string(__lowercase , __lowercase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def a_ ( __lowercase : List[Any] , __lowercase : int ) -> List[Any]: with pytest.raises(__lowercase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(__lowercase , __lowercase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def a_ ( __lowercase : Optional[int] ) -> Optional[Any]: ReadMe.from_string(__lowercase , __lowercase , suppress_parsing_errors=__lowercase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def a_ ( __lowercase : Any , __lowercase : Optional[int] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = Path(__lowercase ) / 'README.md' with open(__lowercase , 'w+' ) as readme_file: readme_file.write(__lowercase ) _snake_case = ReadMe.from_readme(__lowercase , __lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def a_ ( __lowercase : str , __lowercase : Dict ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = Path(__lowercase ) / 'README.md' with open(__lowercase , 'w+' ) as readme_file: readme_file.write(__lowercase ) _snake_case = expected_error.format(path=__lowercase ) with pytest.raises(__lowercase , match=re.escape(__lowercase ) ): _snake_case = ReadMe.from_readme(__lowercase , __lowercase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def a_ ( __lowercase : Dict , __lowercase : List[Any] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = Path(__lowercase ) / 'README.md' with open(__lowercase , 'w+' ) as readme_file: readme_file.write(__lowercase ) _snake_case = expected_error.format(path=__lowercase ) with pytest.raises(__lowercase , match=re.escape(__lowercase ) ): ReadMe.from_readme(__lowercase , __lowercase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def a_ ( __lowercase : Dict ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = Path(__lowercase ) / 'README.md' with open(__lowercase , 'w+' ) as readme_file: readme_file.write(__lowercase ) ReadMe.from_readme(__lowercase , __lowercase , suppress_parsing_errors=__lowercase )
130
from functools import lru_cache @lru_cache def a_ ( __lowercase : int ) -> int: if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
130
1
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase = logging.getLogger(__name__) def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_snake_case , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_snake_case , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_snake_case , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_snake_case , default=1000 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_snake_case , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_snake_case , type=_snake_case , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_snake_case , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_snake_case , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowercase = parser.parse_args() return args def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): def fn(__SCREAMING_SNAKE_CASE ): return tokenizer(examples['text'] ) return fn def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [] for i in range(len(tokenized_data['input_ids'] ) ): lowercase = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowercase = tf.train.Features(feature=_snake_case ) lowercase = tf.train.Example(features=_snake_case ) lowercase = example.SerializeToString() records.append(_snake_case ) return records def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowercase = min(len(_snake_case ) , args.limit ) lowercase = dataset.select(range(_snake_case ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowercase = os.path.join(args.output_dir , args.split ) if not os.path.exists(_snake_case ): os.makedirs(_snake_case ) else: lowercase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowercase = tokenize_function(_snake_case ) lowercase = dataset.map(_snake_case , batched=_snake_case , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__SCREAMING_SNAKE_CASE ): # Concatenate all texts. lowercase = {k: sum(examples[k] , [] ) for k in examples.keys()} lowercase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowercase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowercase = { k: [t[i : i + args.max_length] for i in range(0 , _snake_case , args.max_length )] for k, t in concatenated_examples.items() } return result lowercase = dataset_tokenized.map(_snake_case , batched=_snake_case , batch_size=1000 , num_proc=4 ) lowercase = 0 lowercase = 0 for shard in range(0 , len(_snake_case ) , args.shard_size ): lowercase = grouped_dataset[shard : shard + args.shard_size] lowercase = len(dataset_snapshot['input_ids'] ) lowercase = os.path.join(_snake_case , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) lowercase = get_serialized_examples(_snake_case ) with tf.io.TFRecordWriter(_snake_case ) as out_file: for i in range(len(_snake_case ) ): lowercase = serialized_examples[i] out_file.write(_snake_case ) print('Wrote file {} containing {} records'.format(_snake_case , _snake_case ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=_snake_case ) if __name__ == "__main__": UpperCAmelCase = parse_args() main(args)
195
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: snake_case__ : str = None snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Optional[int] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Dict = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } snake_case__ : Any = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } snake_case__ : Dict = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''token_type_ids'''] __UpperCamelCase = FNetTokenizer def __init__( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Tuple="<unk>" , UpperCamelCase_ : List[str]="[SEP]" , UpperCamelCase_ : List[Any]="<pad>" , UpperCamelCase_ : Union[str, Any]="[CLS]" , UpperCamelCase_ : int="[MASK]" , **UpperCamelCase_ : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase : int = ( AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ , normalized=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token ) super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = do_lower_case lowerCAmelCase : str = remove_space lowerCAmelCase : Any = keep_accents lowerCAmelCase : int = vocab_file lowerCAmelCase : List[str] = False if not self.vocab_file else True def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[int] = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : List[str] = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : str = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
60
0
"""simple docstring""" import torch from torch import nn class snake_case ( nn.Module): def __init__( self : Tuple , a__ : Optional[int] , a__ : str , a__ : Dict , a__ : Union[str, Any] , a__ : Optional[Any]=1 , a__ : Any=False ) -> int: '''simple docstring''' super().__init__() _A = n_token _A = d_embed _A = d_proj _A = cutoffs + [n_token] _A = [0] + self.cutoffs _A = div_val _A = self.cutoffs[0] _A = len(self.cutoffs ) - 1 _A = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _A = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _A = nn.Parameter(torch.zeros(self.n_clusters ) ) _A = nn.ModuleList() _A = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a__ , a__ ) ) ) else: self.out_projs.append(a__ ) self.out_layers.append(nn.Linear(a__ , a__ ) ) else: for i in range(len(self.cutoffs ) ): _A , _A = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a__ , a__ ) ) ) self.out_layers.append(nn.Linear(a__ , r_idx - l_idx ) ) _A = keep_order def a_ ( self : Union[str, Any] , a__ : List[str] , a__ : Any , a__ : List[Any] , a__ : Optional[Any] ) -> List[Any]: '''simple docstring''' if proj is None: _A = nn.functional.linear(a__ , a__ , bias=a__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _A = nn.functional.linear(a__ , proj.t().contiguous() ) _A = nn.functional.linear(a__ , a__ , bias=a__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def a_ ( self : Dict , a__ : Optional[int] , a__ : Dict=None , a__ : List[Any]=False ) -> Optional[Any]: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n _A = hidden[..., :-1, :].contiguous() _A = labels[..., 1:].contiguous() _A = hidden.view(-1 , hidden.size(-1 ) ) _A = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: _A = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _A = self._compute_logit(a__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _A = labels != -1_00 _A = torch.zeros_like(a__ , dtype=hidden.dtype , device=hidden.device ) _A = ( -nn.functional.log_softmax(a__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _A = nn.functional.log_softmax(a__ , dim=-1 ) else: # construct weights and biases _A , _A = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _A , _A = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A = self.out_layers[0].weight[l_idx:r_idx] _A = self.out_layers[0].bias[l_idx:r_idx] else: _A = self.out_layers[i].weight _A = self.out_layers[i].bias if i == 0: _A = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _A = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a__ ) biases.append(a__ ) _A , _A , _A = weights[0], biases[0], self.out_projs[0] _A = self._compute_logit(a__ , a__ , a__ , a__ ) _A = nn.functional.log_softmax(a__ , dim=1 ) if labels is None: _A = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _A = torch.zeros_like(a__ , dtype=hidden.dtype , device=hidden.device ) _A = 0 _A = [0] + self.cutoffs for i in range(len(a__ ) - 1 ): _A , _A = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _A = (labels >= l_idx) & (labels < r_idx) _A = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _A = labels.index_select(0 , a__ ) - l_idx _A = head_logprob.index_select(0 , a__ ) _A = hidden.index_select(0 , a__ ) else: _A = hidden if i == 0: if labels is not None: _A = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _A = head_logprob[:, : self.cutoffs[0]] else: _A , _A , _A = weights[i], biases[i], self.out_projs[i] _A = self._compute_logit(a__ , a__ , a__ , a__ ) _A = nn.functional.log_softmax(a__ , dim=1 ) _A = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _A = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _A = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _A = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , a__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def a_ ( self : Any , a__ : Optional[Any] ) -> Any: '''simple docstring''' if self.n_clusters == 0: _A = self._compute_logit(a__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a__ , dim=-1 ) else: # construct weights and biases _A , _A = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _A , _A = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A = self.out_layers[0].weight[l_idx:r_idx] _A = self.out_layers[0].bias[l_idx:r_idx] else: _A = self.out_layers[i].weight _A = self.out_layers[i].bias if i == 0: _A = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _A = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a__ ) biases.append(a__ ) _A , _A , _A = weights[0], biases[0], self.out_projs[0] _A = self._compute_logit(a__ , a__ , a__ , a__ ) _A = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _A = nn.functional.log_softmax(a__ , dim=1 ) _A = [0] + self.cutoffs for i in range(len(a__ ) - 1 ): _A , _A = cutoff_values[i], cutoff_values[i + 1] if i == 0: _A = head_logprob[:, : self.cutoffs[0]] else: _A , _A , _A = weights[i], biases[i], self.out_projs[i] _A = self._compute_logit(a__ , a__ , a__ , a__ ) _A = nn.functional.log_softmax(a__ , dim=1 ) _A = head_logprob[:, -i] + tail_logprob_i _A = logprob_i return out
163
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def a__ ( __lowercase ) -> Any: random.seed(__lowercase ) np.random.seed(__lowercase ) torch.manual_seed(__lowercase ) torch.cuda.manual_seed_all(__lowercase ) # ^^ safe to call this function even if cuda is not available class snake_case : def __init__( self : str , a__ : Iterable[torch.nn.Parameter] , a__ : float = 0.9_9_9_9 , a__ : float = 0.0 , a__ : int = 0 , a__ : bool = False , a__ : Union[float, int] = 1.0 , a__ : Union[float, int] = 2 / 3 , a__ : Optional[Any] = None , a__ : Dict[str, Any] = None , **a__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' if isinstance(a__ , torch.nn.Module ): _A = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , a__ , standard_warn=a__ , ) _A = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _A = True if kwargs.get("max_value" , a__ ) is not None: _A = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , a__ , standard_warn=a__ ) _A = kwargs["max_value"] if kwargs.get("min_value" , a__ ) is not None: _A = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , a__ , standard_warn=a__ ) _A = kwargs["min_value"] _A = list(a__ ) _A = [p.clone().detach() for p in parameters] if kwargs.get("device" , a__ ) is not None: _A = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , a__ , standard_warn=a__ ) self.to(device=kwargs["device"] ) _A = None _A = decay _A = min_decay _A = update_after_step _A = use_ema_warmup _A = inv_gamma _A = power _A = 0 _A = None # set in `step()` _A = model_cls _A = model_config @classmethod def a_ ( cls : Dict , a__ : str , a__ : str ) -> "EMAModel": '''simple docstring''' _A , _A = model_cls.load_config(a__ , return_unused_kwargs=a__ ) _A = model_cls.from_pretrained(a__ ) _A = cls(model.parameters() , model_cls=a__ , model_config=model.config ) ema_model.load_state_dict(a__ ) return ema_model def a_ ( self : List[Any] , a__ : List[str] ) -> int: '''simple docstring''' if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _A = self.model_cls.from_config(self.model_config ) _A = self.state_dict() state_dict.pop("shadow_params" , a__ ) model.register_to_config(**a__ ) self.copy_to(model.parameters() ) model.save_pretrained(a__ ) def a_ ( self : str , a__ : int ) -> float: '''simple docstring''' _A = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _A = 1 - (1 + step / self.inv_gamma) ** -self.power else: _A = (1 + step) / (10 + step) _A = min(a__ , self.decay ) # make sure decay is not smaller than min_decay _A = max(a__ , self.min_decay ) return cur_decay_value @torch.no_grad() def a_ ( self : List[Any] , a__ : Iterable[torch.nn.Parameter] ) -> Optional[int]: '''simple docstring''' if isinstance(a__ , torch.nn.Module ): _A = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , a__ , standard_warn=a__ , ) _A = parameters.parameters() _A = list(a__ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _A = self.get_decay(self.optimization_step ) _A = decay _A = 1 - decay _A = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , a__ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _A = deepspeed.zero.GatheredParameters(a__ , modifier_rank=a__ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(a__ ) def a_ ( self : Dict , a__ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' _A = list(a__ ) for s_param, param in zip(self.shadow_params , a__ ): param.data.copy_(s_param.to(param.device ).data ) def a_ ( self : List[str] , a__ : int=None , a__ : List[Any]=None ) -> None: '''simple docstring''' _A = [ p.to(device=a__ , dtype=a__ ) if p.is_floating_point() else p.to(device=a__ ) for p in self.shadow_params ] def a_ ( self : Tuple ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def a_ ( self : Union[str, Any] , a__ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' _A = [param.detach().cpu().clone() for param in parameters] def a_ ( self : Union[str, Any] , a__ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , a__ ): param.data.copy_(c_param.data ) # Better memory-wise. _A = None def a_ ( self : Optional[Any] , a__ : dict ) -> None: '''simple docstring''' _A = copy.deepcopy(a__ ) _A = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _A = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , a__ ): raise ValueError("Invalid min_decay" ) _A = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , a__ ): raise ValueError("Invalid optimization_step" ) _A = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , a__ ): raise ValueError("Invalid update_after_step" ) _A = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , a__ ): raise ValueError("Invalid use_ema_warmup" ) _A = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) _A = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) _A = state_dict.get("shadow_params" , a__ ) if shadow_params is not None: _A = shadow_params if not isinstance(self.shadow_params , a__ ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(a__ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
163
1
import math def __lowercase ( _A , _A ) -> int: SCREAMING_SNAKE_CASE : Dict = len(_A ) SCREAMING_SNAKE_CASE : int = int(math.floor(math.sqrt(_A ) ) ) SCREAMING_SNAKE_CASE : str = 0 while arr[min(_A , _A ) - 1] < x: SCREAMING_SNAKE_CASE : Optional[int] = step step += int(math.floor(math.sqrt(_A ) ) ) if prev >= n: return -1 while arr[prev] < x: SCREAMING_SNAKE_CASE : Optional[Any] = prev + 1 if prev == min(_A , _A ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase__ : Tuple = [int(item) for item in user_input.split(""",""")] UpperCAmelCase__ : Dict = int(input("""Enter the number to be searched:\n""")) UpperCAmelCase__ : Optional[int] = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F"""Number {x} is at index {res}""")
245
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE : Dict = tf_top_k_top_p_filtering(UpperCAmelCase__ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) SCREAMING_SNAKE_CASE : str = output[output != -float("""inf""" )] SCREAMING_SNAKE_CASE : Optional[int] = tf.cast( tf.where(tf.not_equal(UpperCAmelCase__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1e-12 ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @require_tf class a__ ( unittest.TestCase , UpperCAmelCase ): """simple docstring""" if is_tf_available(): UpperCAmelCase__ : Optional[Any] ={ """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def _lowercase ( self : int ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Tuple = 2 class a__ ( tf.Module ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : Optional[int] ) ->str: """simple docstring""" super(UpperCAmelCase__ , self ).__init__() SCREAMING_SNAKE_CASE : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCAmelCase__ , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model.generate( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : Any = [[2, 0], [1_0_2, 1_0_3]] SCREAMING_SNAKE_CASE : Tuple = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE : Dict = DummyModel(model=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"""serving_default""": dummy_model.serving} ) SCREAMING_SNAKE_CASE : Optional[int] = tf.saved_model.load(UpperCAmelCase__ ).signatures["""serving_default"""] for batch_size in range(1 , len(UpperCAmelCase__ ) + 1 ): SCREAMING_SNAKE_CASE : int = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } SCREAMING_SNAKE_CASE : Tuple = serving_func(**UpperCAmelCase__ )["""sequences"""] SCREAMING_SNAKE_CASE : List[str] = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : int = 2 class a__ ( tf.Module ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] ) ->Optional[int]: """simple docstring""" super(UpperCAmelCase__ , self ).__init__() SCREAMING_SNAKE_CASE : List[str] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCAmelCase__ , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model.generate( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : List[Any] = [[2], [1_0_2, 1_0_3]] SCREAMING_SNAKE_CASE : List[Any] = [[1], [1, 1]] SCREAMING_SNAKE_CASE : Union[str, Any] = DummyModel(model=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"""serving_default""": dummy_model.serving} ) SCREAMING_SNAKE_CASE : int = tf.saved_model.load(UpperCAmelCase__ ).signatures["""serving_default"""] for input_row in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE : str = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } SCREAMING_SNAKE_CASE : List[str] = serving_func(**UpperCAmelCase__ )["""sequences"""] SCREAMING_SNAKE_CASE : List[Any] = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @slow @require_tensorflow_text def _lowercase ( self : Optional[Any] ) ->Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=UpperCAmelCase__ ) class a__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[Any] ) ->List[str]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase__ , """spiece.model""" ) , """rb""" ).read() ) SCREAMING_SNAKE_CASE : Dict = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def _lowercase ( self : int , UpperCAmelCase__ : Any , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : str ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.tokenize(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = text.pad_model_inputs( UpperCAmelCase__ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.model.generate(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) return self.tokenizer.detokenize(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) SCREAMING_SNAKE_CASE : str = complete_model(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.keras.Model(UpperCAmelCase__ , UpperCAmelCase__ ) keras_model.save(UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 1_0, """temperature""": 0.7, } SCREAMING_SNAKE_CASE : Tuple = 1_4 SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE : List[Any] = """Hello, my dog is cute and""" SCREAMING_SNAKE_CASE : Tuple = tokenizer(UpperCAmelCase__ , return_tensors="""tf""" ) SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE : Dict = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : int = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) SCREAMING_SNAKE_CASE : Dict = [6_3_8, 1_9_8] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : Dict = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _lowercase ( self : str ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) SCREAMING_SNAKE_CASE : List[Any] = """Hugging Face is a technology company based in New York and Paris.""" SCREAMING_SNAKE_CASE : Optional[int] = bart_tokenizer(UpperCAmelCase__ , return_tensors="""tf""" ).input_ids SCREAMING_SNAKE_CASE : int = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) SCREAMING_SNAKE_CASE : Optional[int] = bart_model.generate(UpperCAmelCase__ ).numpy() class a__ ( UpperCAmelCase ): """simple docstring""" def _lowercase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Dict ) ->List[str]: """simple docstring""" return super().call(UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) SCREAMING_SNAKE_CASE : Optional[int] = bart_model.generate(UpperCAmelCase__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(UpperCAmelCase__ , UpperCAmelCase__ ) ) class a__ ( bart_model.model.encoder.__class__ ): """simple docstring""" def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[int] ) ->Union[str, Any]: """simple docstring""" return super().call(UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) SCREAMING_SNAKE_CASE : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE : Tuple = bart_model.generate(UpperCAmelCase__ ).numpy() with self.assertRaises(UpperCAmelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCAmelCase__ , foo="""bar""" )
245
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = list(lowerCAmelCase_ ) __lowercase : str = list(lowerCAmelCase_ ) __lowercase : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 __lowercase : Dict = """_""" if count > 1: return False else: return "".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : list[str] ): __lowercase : Tuple = [] while True: __lowercase : Union[str, Any] = ["""$"""] * len(lowerCAmelCase_ ) __lowercase : int = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): __lowercase : int = compare_string(binary[i] , binary[j] ) if k is False: __lowercase : Union[str, Any] = """*""" __lowercase : Tuple = """*""" temp.append("""X""" ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi __lowercase : Union[str, Any] = list(set(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Sequence[float] ): __lowercase : List[Any] = [] for minterm in minterms: __lowercase : Any = """""" for _ in range(lowerCAmelCase_ ): __lowercase : int = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = list(lowerCAmelCase_ ) __lowercase : List[str] = list(lowerCAmelCase_ ) __lowercase : Dict = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def snake_case_ ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : list[str] ): __lowercase : Dict = [] __lowercase : List[str] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): __lowercase : Optional[int] = 0 __lowercase : Union[str, Any] = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 __lowercase : Optional[Any] = j if count == 1: __lowercase : Optional[int] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): __lowercase : Tuple = 0 temp.append(prime_implicants[i] ) while True: __lowercase : Dict = 0 __lowercase : List[str] = -1 __lowercase : Any = 0 for i in range(len(lowerCAmelCase_ ) ): __lowercase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: __lowercase : List[Any] = count_n __lowercase : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): __lowercase : List[str] = 0 def snake_case_ ( lowerCAmelCase_ : list[str] , lowerCAmelCase_ : list[str] ): __lowercase : Optional[Any] = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): __lowercase : Dict = prime_implicants[i].count("""_""" ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): __lowercase : Union[str, Any] = 1 return chart def snake_case_ ( ): __lowercase : List[str] = int(input("""Enter the no. of variables\n""" ) ) __lowercase : Any = [ float(lowerCAmelCase_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __lowercase : Dict = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Union[str, Any] = check(lowerCAmelCase_ ) print("""Prime Implicants are:""" ) print(lowerCAmelCase_ ) __lowercase : Any = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print("""Essential Prime Implicants are:""" ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _a : Dict= TypeVar("T") def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' return (position - 1) // 2 def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' return (2 * position) + 1 def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' return (2 * position) + 2 class UpperCamelCase ( Generic[T] ): def __init__(self : Any) -> None: __snake_case : list[tuple[T, int]] = [] __snake_case : dict[T, int] = {} __snake_case : int = 0 def __len__(self : List[str]) -> int: return self.elements def __repr__(self : Any) -> str: return str(self.heap) def _lowercase (self : Optional[int]) -> bool: # Check if the priority queue is empty return self.elements == 0 def _lowercase (self : Dict , _A : T , _A : int) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight)) __snake_case : List[Any] = self.elements self.elements += 1 self._bubble_up(_A) def _lowercase (self : Optional[Any]) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1) __snake_case , __snake_case : str = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __snake_case , __snake_case : Optional[int] = self.heap[0] self._bubble_down(_A) return elem def _lowercase (self : Union[str, Any] , _A : T , _A : int) -> None: # Update the weight of the given key __snake_case : Optional[Any] = self.position_map[elem] __snake_case : List[Any] = (elem, weight) if position > 0: __snake_case : Optional[int] = get_parent_position(_A) __snake_case , __snake_case : Dict = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_A) else: self._bubble_down(_A) else: self._bubble_down(_A) def _lowercase (self : int , _A : T) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] __snake_case : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None __snake_case : List[str] = get_parent_position(_A) __snake_case , __snake_case : Any = self.heap[curr_pos] __snake_case , __snake_case : Optional[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_A , _A) return self._bubble_up(_A) return None def _lowercase (self : List[Any] , _A : T) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] __snake_case : Any = self.position_map[elem] __snake_case , __snake_case : Any = self.heap[curr_pos] __snake_case : Dict = get_child_left_position(_A) __snake_case : Union[str, Any] = get_child_right_position(_A) if child_left_position < self.elements and child_right_position < self.elements: __snake_case , __snake_case : Tuple = self.heap[child_left_position] __snake_case , __snake_case : Optional[int] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_A , _A) return self._bubble_down(_A) if child_left_position < self.elements: __snake_case , __snake_case : Optional[int] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_A , _A) return self._bubble_down(_A) else: return None if child_right_position < self.elements: __snake_case , __snake_case : Tuple = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_A , _A) return self._bubble_down(_A) return None def _lowercase (self : Optional[int] , _A : int , _A : int) -> None: # Swap the nodes at the given positions __snake_case : Any = self.heap[nodea_pos][0] __snake_case : Tuple = self.heap[nodea_pos][0] __snake_case , __snake_case : List[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __snake_case : Union[str, Any] = nodea_pos __snake_case : List[Any] = nodea_pos class UpperCamelCase ( Generic[T] ): def __init__(self : Optional[Any]) -> None: __snake_case : dict[T, dict[T, int]] = {} __snake_case : int = 0 def __repr__(self : Tuple) -> str: return str(self.connections) def __len__(self : int) -> int: return self.nodes def _lowercase (self : Union[str, Any] , _A : T) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: __snake_case : List[str] = {} self.nodes += 1 def _lowercase (self : Tuple , _A : T , _A : T , _A : int) -> None: # Add an edge between 2 nodes in the graph self.add_node(_A) self.add_node(_A) __snake_case : Union[str, Any] = weight __snake_case : Dict = weight def __UpperCAmelCase ( UpperCAmelCase_ : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' __snake_case : dict[T, int] = {node: maxsize for node in graph.connections} __snake_case : dict[T, T | None] = {node: None for node in graph.connections} __snake_case : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(UpperCAmelCase_ , UpperCAmelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization __snake_case : Optional[int] = priority_queue.extract_min() __snake_case : Optional[int] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __snake_case : List[str] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCAmelCase_ , dist[neighbour] ) __snake_case : Union[str, Any] = node # running prim's algorithm while not priority_queue.is_empty(): __snake_case : Optional[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __snake_case : Optional[int] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCAmelCase_ , dist[neighbour] ) __snake_case : Tuple = node return dist, parent
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any]= logging.get_logger(__name__) _a : str= { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = """mgp-str""" def __init__(self : List[Any] , _A : Dict=[32, 1_28] , _A : Any=4 , _A : int=3 , _A : Any=27 , _A : List[str]=38 , _A : str=5_02_57 , _A : Optional[int]=3_05_22 , _A : Union[str, Any]=7_68 , _A : Tuple=12 , _A : List[str]=12 , _A : List[str]=4.0 , _A : Optional[int]=True , _A : Optional[Any]=False , _A : Dict=1E-5 , _A : Optional[int]=0.0 , _A : str=0.0 , _A : int=0.0 , _A : str=False , _A : List[Any]=0.02 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(**_A) __snake_case : Union[str, Any] = image_size __snake_case : Optional[int] = patch_size __snake_case : int = num_channels __snake_case : int = max_token_length __snake_case : List[Any] = num_character_labels __snake_case : Optional[int] = num_bpe_labels __snake_case : Optional[Any] = num_wordpiece_labels __snake_case : int = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Any = mlp_ratio __snake_case : List[str] = distilled __snake_case : List[Any] = layer_norm_eps __snake_case : List[Any] = drop_rate __snake_case : Optional[int] = qkv_bias __snake_case : Optional[int] = attn_drop_rate __snake_case : int = drop_path_rate __snake_case : List[str] = output_aa_attentions __snake_case : Optional[Any] = initializer_range
172
1
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ReformerTokenizer lowercase_ = ReformerTokenizerFast lowercase_ = True lowercase_ = False lowercase_ = True def snake_case ( self : Dict ): super().setUp() lowercase__ : Tuple = ReformerTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : Dict ): lowercase__ : str = "<s>" lowercase__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1_000 ) def snake_case ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return lowercase__ : List[str] = self.get_tokenizer() lowercase__ : int = self.get_rust_tokenizer() lowercase__ : Dict = "I was born in 92000, and this is falsé." lowercase__ : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Any = self.get_rust_tokenizer() lowercase__ : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = rust_tokenizer.encode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : List[Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input lowercase__ : str = "This is a simple input" lowercase__ : str = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : Any = ("This is a simple input", "This is a pair") lowercase__ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , ) def snake_case ( self : Optional[int] ): pass def snake_case ( self : Optional[int] ): lowercase__ : Optional[Any] = ReformerTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) lowercase__ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase__ : int = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def snake_case ( self : Any ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def snake_case ( self : Any ): lowercase__ : Any = "Hello World!" lowercase__ : str = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE ) ) @slow def snake_case ( self : Optional[Any] ): lowercase__ : Tuple = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowercase__ : Dict = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE ) ) @require_torch @slow def snake_case ( self : Any ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase__ : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase__ : Dict = " ".join(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowercase__ : Tuple = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) lowercase__ : Any = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase__ : Any = encoded_sequence["input_ids"].shape lowercase__ : Optional[int] = ReformerModel(SCREAMING_SNAKE_CASE ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE ) model(**SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : Union[str, Any] ): # fmt: off lowercase__ : Tuple = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase__ : List[str] = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=SCREAMING_SNAKE_CASE , sequences=SCREAMING_SNAKE_CASE , )
130
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase__ = '''path-to-your-trained-model''' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase__ = pipe.to(device) # to channels last lowerCAmelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase__ = torch.randn(2, 4, 6_4, 6_4) lowerCAmelCase__ = torch.rand(1) * 9_9_9 lowerCAmelCase__ = torch.randn(2, 7_7, 7_6_8) lowerCAmelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase__ = 6_6_6 lowerCAmelCase__ = torch.Generator(device).manual_seed(seed) lowerCAmelCase__ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
130
1
"""simple docstring""" def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Dict = len(lowerCamelCase__ ) while cur > 1: # Find the maximum number in arr lowercase__ : Optional[int] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowercase__ : Tuple = arr[mi::-1] + arr[mi + 1 : len(lowerCamelCase__ )] # Reverse whole list lowercase__ : List[str] = arr[cur - 1 :: -1] + arr[cur : len(lowerCamelCase__ )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
354
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class snake_case__(Generic[KEY, VAL] ): """simple docstring""" lowercase_ = 42 lowercase_ = 42 class snake_case__(_Item ): """simple docstring""" def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __bool__( self : Tuple ): return False lowerCAmelCase__ = _DeletedItem() class snake_case__(MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : int = 8 , SCREAMING_SNAKE_CASE : float = 0.75 ): lowercase__ : Any = initial_block_size lowercase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase__ : Dict = capacity_factor lowercase__ : Optional[int] = 0 def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : KEY ): return hash(SCREAMING_SNAKE_CASE ) % len(self._buckets ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): return (ind + 1) % len(self._buckets ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): lowercase__ : Tuple = self._buckets[ind] if not stored: lowercase__ : int = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self._len += 1 return True elif stored.key == key: lowercase__ : str = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return True else: return False def snake_case ( self : str ): lowercase__ : str = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): if len(self._buckets ) <= self._initial_block_size: return False lowercase__ : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int ): lowercase__ : Tuple = self._buckets lowercase__ : Optional[int] = [None] * new_size lowercase__ : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case ( self : int ): self._resize(len(self._buckets ) * 2 ) def snake_case ( self : Optional[Any] ): self._resize(len(self._buckets ) // 2 ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : KEY ): lowercase__ : Tuple = self._get_bucket_index(SCREAMING_SNAKE_CASE ) for _ in range(len(self._buckets ) ): yield ind lowercase__ : Union[str, Any] = self._get_next_ind(SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): if self._try_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): break def __setitem__( self : List[str] , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __delitem__( self : int , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Union[str, Any] = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE ) if item is _deleted: continue if item.key == key: lowercase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE ) def __len__( self : Optional[Any] ): return self._len def __iter__( self : List[str] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowercase__ : int = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
121
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __A =False class _snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): def snake_case__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): UpperCAmelCase__ : List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa) pipe.to(_lowerCamelCase) pipe.set_progress_bar_config(disable=_lowerCamelCase) UpperCAmelCase__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""") UpperCAmelCase__ : List[Any] = torch.manual_seed(0) UpperCAmelCase__ : int = pipe.dual_guided( prompt="""first prompt""" , image=_lowerCamelCase , text_to_image_strength=0.75 , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(_lowerCamelCase , torch_dtype=torch.floataa) pipe.to(_lowerCamelCase) pipe.set_progress_bar_config(disable=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = generator.manual_seed(0) UpperCAmelCase__ : Dict = pipe.dual_guided( prompt="""first prompt""" , image=_lowerCamelCase , text_to_image_strength=0.75 , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa) pipe.to(_lowerCamelCase) pipe.set_progress_bar_config(disable=_lowerCamelCase) UpperCAmelCase__ : List[Any] = """cyberpunk 2077""" UpperCAmelCase__ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""") UpperCAmelCase__ : Any = torch.manual_seed(0) UpperCAmelCase__ : Optional[Any] = pipe.dual_guided( prompt=_lowerCamelCase , image=_lowerCamelCase , text_to_image_strength=0.75 , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase__ : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : str = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 UpperCAmelCase__ : List[str] = """A painting of a squirrel eating a burger """ UpperCAmelCase__ : int = torch.manual_seed(0) UpperCAmelCase__ : List[str] = pipe.text_to_image( prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""").images UpperCAmelCase__ : Any = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : List[str] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 UpperCAmelCase__ : List[str] = pipe.image_variation(_lowerCamelCase , generator=_lowerCamelCase , output_type="""numpy""").images UpperCAmelCase__ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Dict = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
163
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=2 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=2 , ): UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : Optional[int] = max_length UpperCAmelCase__ : int = num_mel_bins UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : List[Any] = scope UpperCAmelCase__ : str = frequency_stride UpperCAmelCase__ : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase__ : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase__ : Optional[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase__ : Dict = frequency_out_dimension * time_out_dimension UpperCAmelCase__ : Dict = num_patches + 2 def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Dict = self.get_config() return config, input_values, labels def snake_case__ ( self): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Dict = ASTModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self): UpperCAmelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Any = {"""input_values""": input_values} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase :List[str] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowerCAmelCase :List[Any] = False lowerCAmelCase :Any = False lowerCAmelCase :Optional[int] = False lowerCAmelCase :int = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = ASTModelTester(self) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""") def snake_case__ ( self): pass def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear)) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_lowerCamelCase) UpperCAmelCase__ : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""input_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase) @slow def snake_case__ ( self): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = ASTModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) def _UpperCamelCase ( ): UpperCAmelCase__ : Dict = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCAmelCase__ , UpperCAmelCase__ : int = torchaudio.load(UpperCamelCase__ ) return audio, sampling_rate @require_torch @require_torchaudio class _snake_case ( unittest.TestCase ): @cached_property def snake_case__ ( self): return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""") if is_torchaudio_available() else None ) @slow def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = self.default_feature_extractor UpperCAmelCase__ : List[str] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""").to(_lowerCamelCase) UpperCAmelCase__ : str = self.default_feature_extractor UpperCAmelCase__ , UpperCAmelCase__ : Dict = prepare_audio() UpperCAmelCase__ : Dict = audio.squeeze().numpy() UpperCAmelCase__ : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors="""pt""").to(_lowerCamelCase) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_lowerCamelCase) # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape , _lowerCamelCase) UpperCAmelCase__ : Tuple = torch.tensor([-0.8760, -7.0042, -8.6602]).to(_lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4))
163
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" _a = 42 _a = 42 class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = [[] for _ in range(a__ )] UpperCamelCase__ :List[str] = size def __getitem__( self , UpperCamelCase_ ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self._size def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(a__ , a__ ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Dict = deque([start_vertex] ) UpperCamelCase__ :Optional[Any] = [None] * self.size UpperCamelCase__ :List[Any] = 0 while queue: UpperCamelCase__ :Tuple = queue.popleft() UpperCamelCase__ :List[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCamelCase__ :str = current_distance + edge.weight UpperCamelCase__ :Tuple = distances[edge.destination_vertex] if ( isinstance(a__ , a__ ) and new_distance >= dest_vertex_distance ): continue UpperCamelCase__ :Any = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __snake_case = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def a ( __a ) -> Optional[int]: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def a ( __a ) -> str: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase__ :Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
219
0
def __lowerCamelCase ( snake_case__ = 60_08_51_47_51_43 ) -> int: """simple docstring""" try: _SCREAMING_SNAKE_CASE = int(snake_case__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 2 while i * i <= n: while n % i == 0: _SCREAMING_SNAKE_CASE = i n //= i i += 1 if n > 1: _SCREAMING_SNAKE_CASE = n return int(snake_case__ ) if __name__ == "__main__": print(f"{solution() = }")
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : Tuple=None ): """simple docstring""" if attention_mask is None: _a = tf.cast(tf.math.not_equal(_lowerCAmelCase, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __lowerCamelCase : '''simple docstring''' A_ : Optional[int] = OPTConfig A_ : Union[str, Any] = {} A_ : List[Any] = 'gelu' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=16 , __UpperCAmelCase=16 , ) -> int: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = eos_token_id _a = pad_token_id _a = bos_token_id _a = embed_dim _a = word_embed_proj_dim _a = False def _UpperCAmelCase ( self ) -> Optional[Any]: _a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _a = tf.concat([input_ids, eos_tensor] , axis=1 ) _a = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__UpperCAmelCase , **self.config_updates , ) _a = prepare_opt_inputs_dict(__UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = TFOPTModel(config=__UpperCAmelCase ) _a = inputs_dict['''input_ids'''] _a = input_ids[:1, :] _a = inputs_dict['''attention_mask'''][:1, :] _a = 1 # first forward pass _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _a = tf.concat([input_ids, next_tokens] , axis=-1 ) _a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _a = output_from_no_past[:, -3:, random_slice_idx] _a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 ) @require_tf class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Any = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A_ : Optional[int] = (TFOPTForCausalLM,) if is_tf_available() else () A_ : List[str] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) A_ : Union[str, Any] = False A_ : List[Any] = False A_ : int = False A_ : Any = 10 def _UpperCAmelCase ( self ) -> str: _a = TFOPTModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__UpperCAmelCase , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _a = model_class(config=__UpperCAmelCase ) _a = _get_word_embedding_weight(__UpperCAmelCase , model.get_input_embeddings() ) _a = _get_word_embedding_weight(__UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__UpperCAmelCase ) _a = _get_word_embedding_weight(__UpperCAmelCase , model.get_input_embeddings() ) _a = _get_word_embedding_weight(__UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _a = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __UpperCAmelCase ) # check that weights remain the same after resizing _a = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _a = False self.assertTrue(__UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __UpperCAmelCase ) _a = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _a = False self.assertTrue(__UpperCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" return tf.constant(_lowerCAmelCase, dtype=tf.intaa ) @require_tf class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : List[str] = 99 def _UpperCAmelCase ( self ) -> str: _a = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _a = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _a = input_ids.shape[0] _a = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> int: _a = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) _a = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _a = tf.not_equal(__UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): _a = model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase ).last_hidden_state _a = (1, 11, 512) self.assertEqual(output.shape , __UpperCAmelCase ) _a = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=4e-3 ) ) _a = tf.function(__UpperCAmelCase , jit_compile=__UpperCAmelCase ) _a = xla_generate(__UpperCAmelCase , __UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=4e-2 ) ) @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Optional[int]: super().setUp() _a = '''facebook/opt-350m''' def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = TFOPTForCausalLM.from_pretrained(self.path_model ) _a = GPTaTokenizer.from_pretrained(self.path_model ) _a = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _a = tokenizer(__UpperCAmelCase , return_tensors='''tf''' , padding=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _a = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _a = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-4 ) ) _a = tf.function(__UpperCAmelCase , jit_compile=__UpperCAmelCase ) _a = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-4 ) ) @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> str: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _UpperCAmelCase ( self ) -> Optional[int]: _a = '''facebook/opt-125m''' _a = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _a = [] _a = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) _a = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) for prompt in self.prompts: _a = tokenizer(__UpperCAmelCase , return_tensors='''tf''' ).input_ids _a = model.generate(__UpperCAmelCase , max_length=10 ) _a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: _a = '''facebook/opt-350m''' _a = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) _a = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) _a = '''left''' # use different length sentences to test batching _a = [ '''Hello, my dog is a little''', '''Today, I''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''tf''' , padding=__UpperCAmelCase ) _a = inputs['''input_ids'''] _a = model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs['''attention_mask'''] ) _a = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids _a = model.generate(input_ids=__UpperCAmelCase ) _a = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) _a = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids _a = model.generate(input_ids=__UpperCAmelCase , max_length=model.config.max_length - num_paddings ) _a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) _a = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) _a = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def _UpperCAmelCase ( self ) -> Tuple: _a = '''facebook/opt-350m''' _a = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _a = [] _a = GPTaTokenizer.from_pretrained(__UpperCAmelCase ) _a = TFOPTForCausalLM.from_pretrained(__UpperCAmelCase ) for prompt in self.prompts: _a = tokenizer(__UpperCAmelCase , return_tensors='''tf''' ).input_ids _a = model.generate(__UpperCAmelCase , max_length=10 ) _a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
153
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
153
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase : Optional[Any] = None UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Tuple = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } UpperCamelCase : str = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off UpperCamelCase : Dict = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["input_ids", "attention_mask"] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True __UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __UpperCamelCase = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCamelCase = src_lang if src_lang is not None else 'en_XX' __UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) __UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase = src_lang __UpperCamelCase = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = self.convert_tokens_to_ids(__UpperCAmelCase ) __UpperCamelCase = tgt_lang_id return inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "en_XX" , __UpperCAmelCase = None , __UpperCAmelCase = "ro_RO" , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.convert_tokens_to_ids(__UpperCAmelCase ) __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code] __UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.convert_tokens_to_ids(__UpperCAmelCase ) __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code] __UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
316
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase_ : def __init__( self : str ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int]=3 ,__lowerCamelCase : List[str]=32 ,__lowerCamelCase : Tuple=3 ,__lowerCamelCase : List[Any]=10 ,__lowerCamelCase : Optional[int]=[8, 16, 32, 64] ,__lowerCamelCase : List[Any]=[1, 1, 2, 1] ,__lowerCamelCase : Any=True ,__lowerCamelCase : int=True ,__lowerCamelCase : int="relu" ,__lowerCamelCase : Tuple=3 ,__lowerCamelCase : Union[str, Any]=None ,__lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"] ,__lowerCamelCase : Any=[2, 3, 4] ,__lowerCamelCase : List[Any]=1 ,): '''simple docstring''' a = parent a = batch_size a = image_size a = num_channels a = embeddings_size a = hidden_sizes a = depths a = is_training a = use_labels a = hidden_act a = num_labels a = scope a = len(__lowerCamelCase ) a = out_features a = out_indices a = num_groups def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] ,self.num_labels ) a = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : str ,__lowerCamelCase : Dict ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = BitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = self.num_labels a = BitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : int ): '''simple docstring''' a = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None a = None a = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = BitModelTester(self ) a = ConfigTester(self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(config=__lowerCamelCase ) for name, module in model.named_modules(): if isinstance(__lowerCamelCase ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : Any ): a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) ) a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: a = layer_type a = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = BitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> int: """simple docstring""" a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__lowerCamelCase ,return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) # verify the logits a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__lowerCamelCase ) a = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) ) @require_torch class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (BitBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = BitConfig SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = BitModelTester(self )
330
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE_ = Features({} ) SCREAMING_SNAKE_CASE_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return {self.text_column: "text"}
330
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int , snake_case_ : int = 0 , snake_case_ : int = 0 ) -> int: '''simple docstring''' UpperCAmelCase_ = right or len(snake_case_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case_ , snake_case_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ : Any = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = '''maskformer-swin''' __UpperCamelCase : Any = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : int=2_2_4 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Dict=9_6 , lowerCAmelCase_ : Union[str, Any]=[2, 2, 6, 2] , lowerCAmelCase_ : Optional[Any]=[3, 6, 1_2, 2_4] , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Optional[Any]=4.0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : str=1e-5 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[Any] = image_size _A: Optional[int] = patch_size _A: Optional[Any] = num_channels _A: str = embed_dim _A: Any = depths _A: str = len(lowerCAmelCase_ ) _A: Any = num_heads _A: int = window_size _A: Dict = mlp_ratio _A: str = qkv_bias _A: List[str] = hidden_dropout_prob _A: List[Any] = attention_probs_dropout_prob _A: Dict = drop_path_rate _A: List[Any] = hidden_act _A: Optional[int] = use_absolute_embeddings _A: Tuple = layer_norm_eps _A: Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A: Any = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) ) _A: Tuple = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] _A , _A: str = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
121
0
def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __lowercase : Tuple = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0