code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[Any] = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __lowerCamelCase : Union[str, Any] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
219
0
"""simple docstring""" def UpperCAmelCase ( a_, a_, a_, a_ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCamelCase : List[Any] = mf_knapsack(i - 1, a_, a_, a_ ) else: lowerCamelCase : Tuple = max( mf_knapsack(i - 1, a_, a_, a_ ), mf_knapsack(i - 1, a_, a_, j - wt[i - 1] ) + val[i - 1], ) lowerCamelCase : Dict = val return f[i][j] def UpperCAmelCase ( a_, a_, a_, a_ ): '''simple docstring''' lowerCamelCase : Optional[int] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1, n + 1 ): for w_ in range(1, w + 1 ): if wt[i - 1] <= w_: lowerCamelCase : List[str] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] ) else: lowerCamelCase : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' if not (isinstance(a_, (list, tuple) ) and isinstance(a_, (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) lowerCamelCase : List[Any] = len(a_ ) if num_items != len(a_ ): lowerCamelCase : int = ( 'The number of weights must be the same as the number of values.\n' F"""But got {num_items} weights and {len(a_ )} values""" ) raise ValueError(a_ ) for i in range(a_ ): if not isinstance(wt[i], a_ ): lowerCamelCase : Union[str, Any] = ( 'All weights must be integers but got weight of ' F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(a_ ) lowerCamelCase , lowerCamelCase : Optional[Any] = knapsack(a_, a_, a_, a_ ) lowerCamelCase : set = set() _construct_solution(a_, a_, a_, a_, a_ ) return optimal_val, example_optional_set def UpperCAmelCase ( a_, a_, a_, a_, a_ ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(a_, a_, i - 1, a_, a_ ) else: optimal_set.add(a_ ) _construct_solution(a_, a_, i - 1, j - wt[i - 1], a_ ) if __name__ == "__main__": _A = [3, 2, 4, 4] _A = [4, 3, 2, 3] _A = 4 _A = 6 _A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _A , _A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _A , _A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
205
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'big_bird' def __init__( self , UpperCAmelCase_=50358 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_="gelu_new" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=4096 , UpperCAmelCase_=2 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-1_2 , UpperCAmelCase_=True , UpperCAmelCase_=0 , UpperCAmelCase_=1 , UpperCAmelCase_=2 , UpperCAmelCase_=66 , UpperCAmelCase_="block_sparse" , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_=64 , UpperCAmelCase_=3 , UpperCAmelCase_=None , **UpperCAmelCase_ , ) -> Union[str, Any]: super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , sep_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase : Tuple = vocab_size lowerCamelCase : str = max_position_embeddings lowerCamelCase : str = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : List[str] = intermediate_size lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : Optional[int] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : int = initializer_range lowerCamelCase : Union[str, Any] = type_vocab_size lowerCamelCase : Union[str, Any] = layer_norm_eps lowerCamelCase : int = use_cache lowerCamelCase : Tuple = rescale_embeddings lowerCamelCase : Dict = attention_type lowerCamelCase : Optional[int] = use_bias lowerCamelCase : Optional[int] = block_size lowerCamelCase : Tuple = num_random_blocks lowerCamelCase : List[Any] = classifier_dropout class _lowercase ( __UpperCAmelCase ): @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
205
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase : def __init__(self , __a , __a=2 , __a=3 , __a=4 , __a=2 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=36 , __a=3 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=6 , __a=6 , __a=3 , __a=4 , __a=None , __a=10_00 , ) -> Optional[int]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = text_seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = coordinate_size UpperCamelCase = shape_size UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope UpperCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase = text_seq_length UpperCamelCase = (image_size // patch_size) ** 2 + 1 UpperCamelCase = self.text_seq_length + self.image_seq_length def snake_case_ (self ) -> int: UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a , __a ) -> str: UpperCamelCase = LayoutLMvaModel(config=__a ) model.to(__a ) model.eval() # text + image UpperCamelCase = model(__a , pixel_values=__a ) UpperCamelCase = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a ) UpperCamelCase = model(__a , bbox=__a , pixel_values=__a , token_type_ids=__a ) UpperCamelCase = model(__a , bbox=__a , pixel_values=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase = model(pixel_values=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: UpperCamelCase = self.num_labels UpperCamelCase = LayoutLMvaForSequenceClassification(__a ) model.to(__a ) model.eval() UpperCamelCase = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a , __a ) -> Any: UpperCamelCase = self.num_labels UpperCamelCase = LayoutLMvaForTokenClassification(config=__a ) model.to(__a ) model.eval() UpperCamelCase = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: UpperCamelCase = LayoutLMvaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() UpperCamelCase = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ (self ) -> List[Any]: UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _lowerCamelCase ( _lowercase , _lowercase , unittest.TestCase ): UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def snake_case_ (self , __a , __a , __a , __a , __a ) -> Any: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = LayoutLMvaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37 ) def snake_case_ (self , __a , __a , __a=False ) -> int: UpperCamelCase = copy.deepcopy(__a ) if model_class in get_values(__a ): UpperCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__a , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): UpperCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in get_values(__a ): UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__a , ) return inputs_dict def snake_case_ (self ) -> Dict: self.config_tester.run_common_tests() def snake_case_ (self ) -> Any: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case_ (self ) -> int: UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*__a ) def snake_case_ (self ) -> Tuple: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def snake_case_ (self ) -> int: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def snake_case_ (self ) -> Optional[int]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @slow def snake_case_ (self ) -> Union[str, Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def a__ ( ): """simple docstring""" UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _lowerCamelCase ( unittest.TestCase ): @cached_property def snake_case_ (self ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__a ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=__a , return_tensors="pt" ).pixel_values.to(__a ) UpperCamelCase = torch.tensor([[1, 2]] ) UpperCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCamelCase = model( input_ids=input_ids.to(__a ) , bbox=bbox.to(__a ) , pixel_values=pixel_values.to(__a ) , ) # verify the logits UpperCamelCase = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) UpperCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) )
153
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings( _lowercase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _lowerCamelCase ( _lowercase ): def snake_case_ (self , __a ) -> np.ndarray: if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def snake_case_ (self , __a ) -> np.ndarray: UpperCamelCase = self.get_masked_index(__a ) UpperCamelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ (self , __a ) -> Any: if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def snake_case_ (self , __a , __a=None , **__a ) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCamelCase = self.framework UpperCamelCase = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def snake_case_ (self , __a ) -> Dict: UpperCamelCase = self.model(**__a ) UpperCamelCase = model_inputs["input_ids"] return model_outputs def snake_case_ (self , __a , __a=5 , __a=None ) -> Dict: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase = target_ids.shape[0] UpperCamelCase = model_outputs["input_ids"][0] UpperCamelCase = model_outputs["logits"] if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase = outputs.numpy() UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCamelCase = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase = tf.expand_dims(__a , 0 ) UpperCamelCase = tf.math.top_k(__a , k=__a ) UpperCamelCase , UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase = probs[..., target_ids] UpperCamelCase , UpperCamelCase = probs.topk(__a ) UpperCamelCase = [] UpperCamelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase = target_ids[p].tolist() UpperCamelCase = p # Filter padding out: UpperCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCamelCase = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def snake_case_ (self , __a , __a=None ) -> Any: if isinstance(__a , __a ): UpperCamelCase = [targets] try: UpperCamelCase = self.tokenizer.get_vocab() except Exception: UpperCamelCase = {} UpperCamelCase = [] for target in targets: UpperCamelCase = vocab.get(__a , __a ) if id_ is None: UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCamelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) UpperCamelCase = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCamelCase = np.array(__a ) return target_ids def snake_case_ (self , __a=None , __a=None ) -> int: UpperCamelCase = {} if targets is not None: UpperCamelCase = self.get_target_ids(__a , __a ) UpperCamelCase = target_ids if top_k is not None: UpperCamelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self , __a , *__a , **__a ) -> Tuple: UpperCamelCase = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
153
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _a ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('DownBlock2D', 'AttnDownBlock2D'), up_block_types=('AttnUpBlock2D', 'UpBlock2D'), ) return model def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Optional[int] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Dict = KarrasVePipeline(unet=A, scheduler=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=2, generator=A, output_type='numpy' ).images SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(num_inference_steps=2, generator=A, output_type='numpy', return_dict=A )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 'google/ncsnpp-celebahq-256' SCREAMING_SNAKE_CASE : Any = UNetaDModel.from_pretrained(A ) SCREAMING_SNAKE_CASE : Dict = KarrasVeScheduler() SCREAMING_SNAKE_CASE : List[str] = KarrasVePipeline(unet=A, scheduler=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = pipe(num_inference_steps=20, generator=A, output_type='numpy' ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
368
'''simple docstring''' def lowercase__( __UpperCamelCase: list[list[float]] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[list[float]] = [] for data in source_data: for i, el in enumerate(__UpperCamelCase ): if len(__UpperCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__UpperCamelCase ) ) return data_lists def lowercase__( __UpperCamelCase: list[list[float]] ,__UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[list[float]] = [] for dlist, weight in zip(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = min(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = max(__UpperCamelCase ) SCREAMING_SNAKE_CASE : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE : List[Any] = f"Invalid weight of {weight:f} provided" raise ValueError(__UpperCamelCase ) score_lists.append(__UpperCamelCase ) return score_lists def lowercase__( __UpperCamelCase: list[list[float]] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = final_scores[j] + ele return final_scores def lowercase__( __UpperCamelCase: list[list[float]] ,__UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_data(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = calculate_each_score(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = generate_final_scores(__UpperCamelCase ) # append scores to source data for i, ele in enumerate(__UpperCamelCase ): source_data[i].append(__UpperCamelCase ) return source_data
246
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[8, 16, 32, 64] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=1 , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(__UpperCAmelCase ) __lowerCamelCase = out_features __lowerCamelCase = out_indices __lowerCamelCase = num_groups def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = BitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = BitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = BitBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = BitBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='''Bit does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=__UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCamelCase = layer_type __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = BitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def a__ ( ): __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (BitBackbone,) if is_torch_available() else () lowerCAmelCase__ = BitConfig lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitModelTester(self )
330
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : List[str]=3_0 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Tuple=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Union[str, Any]=2 , ): """simple docstring""" _A: Tuple = parent _A: Any = batch_size _A: Optional[Any] = image_size _A: Any = patch_size _A: Any = num_channels _A: Dict = is_training _A: List[Any] = use_labels _A: int = hidden_size _A: Optional[int] = num_hidden_layers _A: Tuple = num_attention_heads _A: Optional[Any] = intermediate_size _A: List[Any] = hidden_act _A: Tuple = hidden_dropout_prob _A: Optional[int] = attention_probs_dropout_prob _A: str = type_sequence_label_size _A: List[Any] = initializer_range _A: int = scope _A: Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _A: str = (image_size // patch_size) ** 2 _A: str = num_patches + 2 def __magic_name__ ( self : Any ): """simple docstring""" _A: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Tuple = None if self.use_labels: _A: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: Union[str, Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Union[str, Any] = DeiTModel(config=__A ) model.to(__A ) model.eval() _A: Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[int] = DeiTForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _A: Optional[Any] = model(__A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _A: str = 1 _A: Union[str, Any] = DeiTForMaskedImageModeling(__A ) model.to(__A ) model.eval() _A: List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A: str = model(__A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: str = self.type_sequence_label_size _A: Tuple = DeiTForImageClassification(__A ) model.to(__A ) model.eval() _A: Any = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A: Optional[Any] = 1 _A: int = DeiTForImageClassification(__A ) model.to(__A ) model.eval() _A: int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A: Union[str, Any] = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = self.prepare_config_and_inputs() ( _A ): int = config_and_inputs _A: Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __UpperCamelCase : Dict = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Dict = False def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = DeiTModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __magic_name__ ( self : List[str] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: List[str] = model_class(__A ) _A: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Optional[int] = [*signature.parameters.keys()] _A: str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=False ): """simple docstring""" _A: Optional[Any] = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __magic_name__ ( self : List[Any] ): """simple docstring""" if not self.model_tester.is_training: return _A: int = self.model_tester.prepare_config_and_inputs_for_common() _A: int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _A: Tuple = model_class(__A ) model.to(__A ) model.train() _A: List[str] = self._prepare_for_class(__A , __A , return_labels=__A ) _A: Union[str, Any] = model(**__A ).loss loss.backward() def __magic_name__ ( self : Dict ): """simple docstring""" _A: Any = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A: List[str] = False _A: List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _A: Any = model_class(__A ) model.gradient_checkpointing_enable() model.to(__A ) model.train() _A: Dict = self._prepare_for_class(__A , __A , return_labels=__A ) _A: Tuple = model(**__A ).loss loss.backward() def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A: Tuple = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__A ), *get_values(__A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): _A: Optional[int] = problem_type['''title'''] _A: Union[str, Any] = problem_type['''num_labels'''] _A: Optional[Any] = model_class(__A ) model.to(__A ) model.train() _A: List[Any] = self._prepare_for_class(__A , __A , return_labels=__A ) if problem_type["num_labels"] > 1: _A: int = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _A: Optional[int] = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__A ) as warning_list: _A: List[Any] = model(**__A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __magic_name__ ( self : int ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Tuple = DeiTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( ) -> List[str]: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Tuple ): """simple docstring""" _A: List[Any] = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( __A ) _A: int = self.default_image_processor _A: List[Any] = prepare_img() _A: Any = image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): _A: List[Any] = model(**__A ) # verify the logits _A: Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __A ) _A: List[str] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __magic_name__ ( self : str ): """simple docstring""" _A: Dict = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) _A: Tuple = self.default_image_processor _A: Optional[Any] = prepare_img() _A: int = image_processor(images=__A , return_tensors='''pt''' ) _A: Dict = inputs.pixel_values.to(__A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _A: List[Any] = model(__A )
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
109
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _snake_case : Tuple = get_logger(__name__) class A : lowercase_ = 'dummy_data' lowercase_ = 'datasets' lowercase_ = False def __init__( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[Version, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[List[Callable]] = None , ) -> Optional[int]: """simple docstring""" _a = 0 _a = dataset_name _a = cache_dir _a = use_local_dummy_data _a = config # download_callbacks take a single url as input _a = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _a = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _a = str(__snake_case ) # to be downloaded _a = None _a = None @property def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" if self._dummy_file is None: _a = self.download_dummy_data() return self._dummy_file @property def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _a = cached_path( __snake_case , cache_dir=self.cache_dir , extract_compressed_file=__snake_case , force_extract=__snake_case ) return os.path.join(__snake_case , self.dummy_file_name ) @property def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: _a = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : str , *lowerCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested _a = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _a = self.dummy_file_name # special case when data_url is a dict if isinstance(__snake_case , __snake_case ): return self.create_dummy_data_dict(__snake_case , __snake_case ) elif isinstance(__snake_case , (list, tuple) ): return self.create_dummy_data_list(__snake_case , __snake_case ) else: return self.create_dummy_data_single(__snake_case , __snake_case ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : int , *lowerCAmelCase_ : int ) -> Dict: """simple docstring""" return self.download_and_extract(__snake_case ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.download_and_extract(__snake_case ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : int , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" return path def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return {} def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" _a = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__snake_case , __snake_case ): for single_url in single_urls: download_callback(__snake_case ) else: _a = single_urls download_callback(__snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__snake_case , __snake_case ): _a = [os.path.join(__snake_case , urllib.parse.quote_plus(Path(__snake_case ).name ) ) for x in single_urls] else: _a = single_urls _a = os.path.join(__snake_case , urllib.parse.quote_plus(Path(__snake_case ).name ) ) _a = value # make sure that values are unique if all(isinstance(__snake_case , __snake_case ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _a = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowerCAmelCase ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : str ) -> Union[str, Any]: """simple docstring""" _a = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _a = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , __snake_case ) ) for url in data_url ) _a = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _a = [data_url[0]] * len(__snake_case ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _a = os.path.join(__snake_case , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(__snake_case ) return dummy_data_list def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> int: """simple docstring""" for download_callback in self.download_callbacks: download_callback(__snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _a = os.path.join(__snake_case , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(__snake_case ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: """simple docstring""" def _iter_archive_members(lowerCAmelCase_ : int ): # this preserves the order of the members inside the ZIP archive _a = Path(self.dummy_file ).parent _a = path.relative_to(__snake_case ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _a = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__snake_case ) _a = Path(__snake_case ) _a = _iter_archive_members(__snake_case ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(__snake_case ).as_posix(), file_path.open('''rb''' ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> Any: """simple docstring""" if not isinstance(__snake_case , __snake_case ): _a = [paths] for path in paths: if os.path.isfile(__snake_case ): if os.path.basename(__snake_case ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(__snake_case ): if os.path.basename(__snake_case ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(__snake_case ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(__snake_case , __snake_case )
358
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case : int = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['YolosFeatureExtractor'] _snake_case : Optional[int] = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = KandinskyVaaControlnetPipeline _a = ["""image_embeds""", """negative_image_embeds""", """hint"""] _a = ["""image_embeds""", """negative_image_embeds""", """hint"""] _a = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _a = False @property def A__ ( self ) -> List[str]: '''simple docstring''' return 32 @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self ) -> Any: '''simple docstring''' return 100 @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) _lowercase ={ 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase =UNetaDConditionModel(**lowerCAmelCase ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) _lowercase =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =self.dummy_unet _lowercase =self.dummy_movq _lowercase =DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCAmelCase , ) _lowercase ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> Union[str, Any]: '''simple docstring''' _lowercase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) _lowercase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase ) # create hint _lowercase =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('mps' ): _lowercase =torch.manual_seed(lowerCAmelCase ) else: _lowercase =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) _lowercase ={ 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A__ ( self ) -> str: '''simple docstring''' _lowercase ='cpu' _lowercase =self.get_dummy_components() _lowercase =self.pipeline_class(**lowerCAmelCase ) _lowercase =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) _lowercase =output.images _lowercase =pipe( **self.get_dummy_inputs(lowerCAmelCase ) , return_dict=lowerCAmelCase , )[0] _lowercase =image[0, -3:, -3:, -1] _lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase =np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Any: '''simple docstring''' _lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) _lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _lowercase =torch.from_numpy(np.array(lowerCAmelCase ) ).float() / 255.0 _lowercase =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _lowercase =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase ) _lowercase =KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _lowercase =pipeline.to(lowerCAmelCase ) pipeline.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase ='A robot, 4k photo' _lowercase =torch.Generator(device='cuda' ).manual_seed(0 ) _lowercase , _lowercase =pipe_prior( lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowercase =torch.Generator(device='cuda' ).manual_seed(0 ) _lowercase =pipeline( image_embeds=lowerCAmelCase , negative_image_embeds=lowerCAmelCase , hint=lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=100 , output_type='np' , ) _lowercase =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase )
205
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase=16 , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=14 , lowerCAmelCase=10 , lowerCAmelCase=19 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=True , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=[1, 2, 3, 4, 5] , lowerCAmelCase=25 , lowerCAmelCase=5 , ) -> Optional[Any]: '''simple docstring''' _lowercase =d_model _lowercase =parent _lowercase =batch_size _lowercase =prediction_length _lowercase =context_length _lowercase =cardinality _lowercase =num_time_features _lowercase =lags_sequence _lowercase =embedding_dimension _lowercase =is_training _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =context_length _lowercase =prediction_length + label_length _lowercase =label_length _lowercase =moving_average _lowercase =autocorrelation_factor def A__ ( self ) -> Optional[Any]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , lowerCAmelCase ) -> Dict: '''simple docstring''' _lowercase =config.context_length + max(config.lags_sequence ) _lowercase =ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _lowercase =floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _lowercase =floats_tensor([self.batch_size, _past_length] ) _lowercase =floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _lowercase =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _lowercase =floats_tensor([self.batch_size, config.prediction_length] ) _lowercase ={ 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =self.get_config() _lowercase =self.prepare_autoformer_inputs_dict(lowerCAmelCase ) return config, inputs_dict def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase , _lowercase =self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =AutoformerModel(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() _lowercase =model(**lowerCAmelCase ) _lowercase =outputs.encoder_last_hidden_state _lowercase =outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =model.get_encoder() encoder.save_pretrained(lowerCAmelCase ) _lowercase =AutoformerEncoder.from_pretrained(lowerCAmelCase ).to(lowerCAmelCase ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =model.create_network_inputs(**lowerCAmelCase ) _lowercase , _lowercase =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _lowercase =torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _lowercase =encoder(inputs_embeds=lowerCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _lowercase =( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _lowercase =torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _lowercase =torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _lowercase =torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =model.get_decoder() decoder.save_pretrained(lowerCAmelCase ) _lowercase =AutoformerDecoder.from_pretrained(lowerCAmelCase ).to(lowerCAmelCase ) _lowercase =decoder( trend=lowerCAmelCase , inputs_embeds=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _a = (AutoformerForPrediction,) if is_torch_available() else () _a = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} _a = False _a = False _a = False _a = False _a = False _a = False def A__ ( self ) -> str: '''simple docstring''' _lowercase =AutoformerModelTester(self ) _lowercase =ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowercase =model_class(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase ) _lowercase , _lowercase =model_class.from_pretrained(lowerCAmelCase , output_loading_info=lowerCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase ) @unittest.skip(reason='Model has no tokens embeddings' ) def A__ ( self ) -> int: '''simple docstring''' pass def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =inspect.signature(getattr(lowerCAmelCase , 'forward' ) ) # The main input is the name of the argument after `self` _lowercase =list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(lowerCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =[ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(lowerCAmelCase )] , lowerCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =True _lowercase =getattr(self.model_tester , 'seq_length' , lowerCAmelCase ) _lowercase =getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase ) _lowercase =getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase ) _lowercase =getattr(self.model_tester , 'd_model' , lowerCAmelCase ) _lowercase =getattr(self.model_tester , 'num_attention_heads' , lowerCAmelCase ) _lowercase =d_model // num_attention_heads for model_class in self.all_model_classes: _lowercase =True _lowercase =False _lowercase =True _lowercase =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) _lowercase =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase =True _lowercase =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) _lowercase =outputs.encoder_attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _lowercase =len(lowerCAmelCase ) _lowercase =7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # decoder attentions _lowercase =outputs.decoder_attentions self.assertIsInstance(lowerCAmelCase , (list, tuple) ) self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _lowercase =outputs.cross_attentions self.assertIsInstance(lowerCAmelCase , (list, tuple) ) self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _lowercase =True _lowercase =True _lowercase =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(out_len + 2 , len(lowerCAmelCase ) ) _lowercase =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> Dict: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def a ( A__ : List[str]="train-batch.pt" ) -> str: """simple docstring""" _lowercase =hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=A__ , repo_type='dataset' ) _lowercase =torch.load(A__ , map_location=A__ ) return batch @require_torch @slow class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> int: '''simple docstring''' _lowercase =AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(lowerCAmelCase ) _lowercase =prepare_batch() with torch.no_grad(): _lowercase =model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] _lowercase =torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCAmelCase ) _lowercase =torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=lowerCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) def A__ ( self ) -> str: '''simple docstring''' _lowercase =AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(lowerCAmelCase ) _lowercase =prepare_batch('val-batch.pt' ) with torch.no_grad(): _lowercase =model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state _lowercase =torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCAmelCase ) _lowercase =torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=lowerCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(lowerCAmelCase ) _lowercase =prepare_batch('val-batch.pt' ) with torch.no_grad(): _lowercase =model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) _lowercase =torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCAmelCase ) _lowercase =torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=lowerCAmelCase ) _lowercase =outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCAmelCase , rtol=1e-1 ) )
205
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : int = IFInpaintingPipeline A_ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} A_ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : str = PipelineTesterMixin.required_optional_params - {'latents'} def a (self : Any ): """simple docstring""" return self._get_dummy_components() def a (self : str , a__ : Union[str, Any] , a__ : List[str]=0 ): """simple docstring""" if str(a__ ).startswith('''mps''' ): __snake_case = torch.manual_seed(a__ ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(a__ ) __snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a (self : List[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a (self : List[Any] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a (self : Any ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a (self : List[Any] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a (self : Any ): """simple docstring""" self._test_save_load_local() def a (self : Union[str, Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
238
from pathlib import Path import fire def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str , snake_case_ : int ) -> str: __snake_case = Path(snake_case_ ) __snake_case = Path(snake_case_ ) dest_dir.mkdir(exist_ok=snake_case_ ) for path in src_dir.iterdir(): __snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] __snake_case = dest_dir.joinpath(path.name ) print(snake_case_ ) dest_path.open('''w''' ).write('''\n'''.join(snake_case_ ) ) if __name__ == "__main__": fire.Fire(minify)
238
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class __lowerCAmelCase ( __a ): """simple docstring""" snake_case_ = """codegen""" snake_case_ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=50_400 , lowerCamelCase__=2_048 , lowerCamelCase__=2_048 , lowerCamelCase__=4_096 , lowerCamelCase__=28 , lowerCamelCase__=16 , lowerCamelCase__=64 , lowerCamelCase__=None , lowerCamelCase__="gelu_new" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=False , **lowerCamelCase__ , ) -> Any: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = n_ctx __lowerCamelCase = n_positions __lowerCamelCase = n_embd __lowerCamelCase = n_layer __lowerCamelCase = n_head __lowerCamelCase = n_inner __lowerCamelCase = rotary_dim __lowerCamelCase = activation_function __lowerCamelCase = resid_pdrop __lowerCamelCase = embd_pdrop __lowerCamelCase = attn_pdrop __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_range __lowerCamelCase = use_cache __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id super().__init__( bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A ) class __lowerCAmelCase ( __a ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ = "default" , lowerCamelCase__ = None , lowerCamelCase__ = False , ) -> str: '''simple docstring''' super().__init__(_A , task=_A , patching_specs=_A , use_past=_A ) if not getattr(self._config , 'pad_token_id' , _A ): # TODO: how to do that better? __lowerCamelCase = 0 @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction='inputs' ) __lowerCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase_ ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def lowercase_ ( self ) -> int: '''simple docstring''' return self._config.n_head def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() __lowerCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCamelCase = seqlen + 2 __lowerCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCamelCase = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] __lowerCamelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCamelCase = ordered_inputs["""attention_mask"""].dtype __lowerCamelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def lowercase_ ( self ) -> int: '''simple docstring''' return 13
90
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Tuple = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _UpperCAmelCase : List[str] = dict(zip(_A , range(len(_A ) ) ) ) _UpperCAmelCase : List[Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _UpperCAmelCase : Dict = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) # load decoder from hub _UpperCAmelCase : List[Any] = """hf-internal-testing/ngram-beam-search-decoder""" def __snake_case ( self , **_A ) -> Dict: '''simple docstring''' _UpperCAmelCase : str = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , **_A ) -> Tuple: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , **_A ) -> Union[str, Any]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_feature_extractor() _UpperCAmelCase : List[str] = self.get_decoder() _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_A , """include""" ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_decoder() _UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : List[Any] = floats_list((3, 10_00) ) _UpperCAmelCase : str = feature_extractor(_A , return_tensors="""np""" ) _UpperCAmelCase : int = processor(_A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Dict = self.get_decoder() _UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[Any] = """This is a test string""" _UpperCAmelCase : Optional[Any] = processor(text=_A ) _UpperCAmelCase : Dict = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self , _A=(2, 10, 16) , _A=77 ) -> Union[str, Any]: '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : str = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _UpperCAmelCase : Optional[int] = processor.decode(_A ) _UpperCAmelCase : str = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def __snake_case ( self , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : str = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Union[str, Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase : int = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: _UpperCAmelCase : Dict = processor.batch_decode(_A , _A ) _UpperCAmelCase : Tuple = list(_A ) with get_context("""fork""" ).Pool() as p: _UpperCAmelCase : Tuple = decoder.decode_beams_batch(_A , _A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_decoder() _UpperCAmelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[int] = self._get_dummy_logits() _UpperCAmelCase : List[str] = 15 _UpperCAmelCase : Dict = -20.0 _UpperCAmelCase : List[str] = -4.0 _UpperCAmelCase : Any = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) _UpperCAmelCase : Any = decoded_processor_out.text _UpperCAmelCase : Any = list(_A ) with get_context("""fork""" ).Pool() as pool: _UpperCAmelCase : str = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) _UpperCAmelCase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase : List[str] = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase : Tuple = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _A , atol=1e-3 ) ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[int] = self._get_dummy_logits() _UpperCAmelCase : Any = 2.0 _UpperCAmelCase : Union[str, Any] = 5.0 _UpperCAmelCase : List[Any] = -20.0 _UpperCAmelCase : str = True _UpperCAmelCase : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) _UpperCAmelCase : Tuple = decoded_processor_out.text _UpperCAmelCase : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context("""fork""" ).Pool() as pool: _UpperCAmelCase : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) _UpperCAmelCase : Optional[int] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _A ) _UpperCAmelCase : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _A ) def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Union[str, Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _UpperCAmelCase : Optional[Any] = os.listdir(_A ) _UpperCAmelCase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained(_A ) _UpperCAmelCase : Any = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Dict = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _UpperCAmelCase : Optional[Any] = os.listdir(_A ) _UpperCAmelCase : Union[str, Any] = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : List[Any] = floats_list((3, 10_00) ) _UpperCAmelCase : str = processor_wavaveca(_A , return_tensors="""np""" ) _UpperCAmelCase : Any = processor_auto(_A , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _UpperCAmelCase : Union[str, Any] = self._get_dummy_logits() _UpperCAmelCase : Dict = processor_wavaveca.batch_decode(_A ) _UpperCAmelCase : Optional[Any] = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def __snake_case ( _A , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Any = [d[key] for d in offsets] return retrieved_list def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : List[Any] = self._get_dummy_logits()[0] _UpperCAmelCase : Tuple = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Optional[Any] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_A , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __snake_case ( self ) -> str: '''simple docstring''' import torch _UpperCAmelCase : List[str] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_A ) _UpperCAmelCase : List[Any] = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _UpperCAmelCase : List[Any] = iter(_A ) _UpperCAmelCase : Optional[Any] = next(_A ) _UpperCAmelCase : Optional[int] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _UpperCAmelCase : Dict = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(_A ).logits.cpu().numpy() _UpperCAmelCase : Union[str, Any] = processor.decode(logits[0] , output_word_offsets=_A ) _UpperCAmelCase : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase : Optional[int] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _UpperCAmelCase : List[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_A , """word""" ) ) , _A ) self.assertEqual(""" """.join(self.get_from_offsets(_A , """word""" ) ) , output.text ) # output times _UpperCAmelCase : List[str] = torch.tensor(self.get_from_offsets(_A , """start_time""" ) ) _UpperCAmelCase : Any = torch.tensor(self.get_from_offsets(_A , """end_time""" ) ) # fmt: off _UpperCAmelCase : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _UpperCAmelCase : List[Any] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) )
246
0
from itertools import permutations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase__ : Dict = [7, 11, 13, 17] for i, test in enumerate(_UpperCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 10 ) -> int: return sum( int(''.join(map(_UpperCAmelCase , _UpperCAmelCase ) ) ) for num in permutations(range(_UpperCAmelCase ) ) if is_substring_divisible(_UpperCAmelCase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
360
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : int = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class a__ ( snake_case__ ): def __init__( self , _A , _A ): """simple docstring""" __lowerCAmelCase = params __lowerCAmelCase = np.array(_A ) __lowerCAmelCase = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _A ): """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self ): """simple docstring""" return len(self.lengths ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.params.max_model_input_size __lowerCAmelCase = self.lengths > max_len logger.info(f"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A , _A ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] __lowerCAmelCase = [] __lowerCAmelCase = [] if self.params.mlm: __lowerCAmelCase , __lowerCAmelCase = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: __lowerCAmelCase , __lowerCAmelCase = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __lowerCAmelCase = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __lowerCAmelCase = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: __lowerCAmelCase = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) __lowerCAmelCase = np.array(_A ) __lowerCAmelCase = np.array(_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = len(self ) __lowerCAmelCase = self.lengths > 1_1 __lowerCAmelCase = self.token_ids[indices] __lowerCAmelCase = self.lengths[indices] __lowerCAmelCase = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: __lowerCAmelCase = self.params.special_tok_ids["unk_token"] __lowerCAmelCase = len(self ) __lowerCAmelCase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __lowerCAmelCase = (unk_occs / self.lengths) < 0.5 __lowerCAmelCase = self.token_ids[indices] __lowerCAmelCase = self.lengths[indices] __lowerCAmelCase = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [t[0] for t in batch] __lowerCAmelCase = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings __lowerCAmelCase = max(_A ) # Pad token ids if self.params.mlm: __lowerCAmelCase = self.params.special_tok_ids["pad_token"] else: __lowerCAmelCase = self.params.special_tok_ids["unk_token"] __lowerCAmelCase = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) __lowerCAmelCase = torch.tensor(tk_ ) # (bs, max_seq_len_) __lowerCAmelCase = torch.tensor(_A ) # (bs) return tk_t, lg_t
92
"""simple docstring""" import os from distutils.util import strtobool def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for e in env_keys: __lowerCAmelCase = int(os.environ.get(_lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return strtobool(_lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase (_lowerCAmelCase , _lowerCAmelCase="no" ): __lowerCAmelCase = os.environ.get(_lowerCAmelCase , str(_lowerCAmelCase ) ) return value
301
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase (__lowerCAmelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase : Tuple = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : List[str] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , ): return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 ): def identity_function(__lowerCAmelCase ) -> float: return x _UpperCAmelCase : Tuple = area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Tuple = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __lowerCAmelCase (__lowerCAmelCase ): def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] ) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="test-config" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _UpperCAmelCase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="valid_org/test-config-org" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _UpperCAmelCase : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' CustomConfig.register_for_auto_class() _UpperCAmelCase : int = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _UpperCAmelCase : str = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase__ ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Tuple = not c.scale_attn_weights # bool _UpperCAmelCase : List[Any] = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowerCamelCase__ , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = PretrainedConfig() _UpperCAmelCase : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(lowerCamelCase__ )}.""" ) def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _UpperCAmelCase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = mock.Mock() _UpperCAmelCase : List[str] = 5_00 _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = AutoConfig.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Dict = ["config.42.0.0.json"] _UpperCAmelCase : Union[str, Any] = 7_68 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , "config.4.0.0.json" ) , os.path.join(lowerCamelCase__ , "config.42.0.0.json" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCAmelCase__ ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Any = "v4.0.0" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : List[Any] = "v3.0.0" _UpperCAmelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
322
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = filter(lambda SCREAMING_SNAKE_CASE_ : p.requires_grad , model.parameters() ) __lowerCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCamelCase__ = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ): if metric == "rouge2": __lowerCAmelCase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": __lowerCAmelCase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": __lowerCAmelCase = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) __lowerCAmelCase = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , monitor=F"""val_{metric}""" , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , ) class a__ ( pl.Callback ): def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A=True ): """simple docstring""" logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowerCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results __lowerCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCAmelCase = od / "test_results.txt" __lowerCAmelCase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCAmelCase = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowerCAmelCase = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , "a+" ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __lowerCAmelCase = metrics[key] if isinstance(_A , torch.Tensor ): __lowerCAmelCase = val.item() __lowerCAmelCase = f"""{key}: {val:.6f}\n""" writer.write(_A ) if not save_generations: return if "preds" in metrics: __lowerCAmelCase = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_A ) @rank_zero_only def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" try: __lowerCAmelCase = pl_module.model.model.num_parameters() except AttributeError: __lowerCAmelCase = pl_module.model.num_parameters() __lowerCAmelCase = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , "test" ) @rank_zero_only def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
92
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """microsoft/speecht5_tts""" _lowerCamelCase = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _lowerCamelCase = """text_reader""" _lowerCamelCase = SpeechTaProcessor _lowerCamelCase = SpeechTaForTextToSpeech _lowerCamelCase = SpeechTaHifiGan _lowerCamelCase = ["""text"""] _lowerCamelCase = ["""audio"""] def UpperCamelCase__( self ): '''simple docstring''' if self.post_processor is None: __A : List[str] = '''microsoft/speecht5_hifigan''' super().setup() def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : int = self.pre_processor(text=__lowerCamelCase , return_tensors='''pt''' , truncation=__lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) __A : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) __A : int = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' with torch.no_grad(): return self.post_processor(__lowerCamelCase ).cpu().detach()
179
0
def lowerCamelCase_ ( UpperCamelCase__ : int = 100_0000 ): '''simple docstring''' UpperCamelCase__ = limit + 1 UpperCamelCase__ = [0] * limit for first_term in range(1, UpperCamelCase__ ): for n in range(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): UpperCamelCase__ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCamelCase__ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
371
from __future__ import annotations from collections import Counter from random import random class __lowercase : '''simple docstring''' def __init__( self : List[Any] ): UpperCamelCase__ = {} def A_ ( self : List[Any] , _a : str ): UpperCamelCase__ = {} def A_ ( self : List[Any] , _a : str , _a : str , _a : float ): if nodea not in self.connections: self.add_node(_a ) if nodea not in self.connections: self.add_node(_a ) UpperCamelCase__ = probability def A_ ( self : Optional[Any] ): return list(self.connections ) def A_ ( self : Tuple , _a : str ): UpperCamelCase__ = 0 UpperCamelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : list[tuple[str, str, float]], UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = Counter(graph.get_nodes() ) UpperCamelCase__ = start for _ in range(UpperCamelCase__ ): UpperCamelCase__ = graph.transition(UpperCamelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
35
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): """simple docstring""" lowerCamelCase__ : str =XCLIPTextConfig() # derive patch size from model name lowerCamelCase__ : Union[str, Any] =model_name.find('''patch''' ) lowerCamelCase__ : Tuple =int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) lowerCamelCase__ : str =XCLIPVisionConfig(patch_size=__lowerCamelCase , num_frames=__lowerCamelCase ) if "large" in model_name: lowerCamelCase__ : str =768 lowerCamelCase__ : List[Any] =3072 lowerCamelCase__ : Union[str, Any] =12 lowerCamelCase__ : Optional[Any] =1024 lowerCamelCase__ : Union[str, Any] =4096 lowerCamelCase__ : Dict =16 lowerCamelCase__ : Any =24 lowerCamelCase__ : Dict =768 lowerCamelCase__ : Optional[Any] =3072 if model_name == "xclip-large-patch14-16-frames": lowerCamelCase__ : Any =336 lowerCamelCase__ : Optional[int] =XCLIPConfig.from_text_vision_configs(__lowerCamelCase , __lowerCamelCase ) if "large" in model_name: lowerCamelCase__ : Optional[int] =768 return config def snake_case__ ( __lowerCamelCase : Optional[int] ): """simple docstring""" # text encoder if name == "token_embedding.weight": lowerCamelCase__ : Optional[int] =name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": lowerCamelCase__ : Union[str, Any] =name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: lowerCamelCase__ : Optional[int] =name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: lowerCamelCase__ : Any =name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: lowerCamelCase__ : List[Any] =name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: lowerCamelCase__ : List[str] =name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): lowerCamelCase__ : List[str] =name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: lowerCamelCase__ : Union[str, Any] =name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: lowerCamelCase__ : List[Any] =name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": lowerCamelCase__ : Optional[int] =name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": lowerCamelCase__ : int =name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): lowerCamelCase__ : int =name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: lowerCamelCase__ : Dict =name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: lowerCamelCase__ : Any =name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: lowerCamelCase__ : Optional[Any] =name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: lowerCamelCase__ : str =name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: lowerCamelCase__ : Any =name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: lowerCamelCase__ : int =name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: lowerCamelCase__ : Union[str, Any] =name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": lowerCamelCase__ : str =name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): lowerCamelCase__ : Dict =name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): lowerCamelCase__ : List[Any] =name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Dict =orig_state_dict.pop(__lowerCamelCase ) if "attn.in_proj" in key: lowerCamelCase__ : Optional[int] =key.split('''.''' ) if key.startswith('''visual''' ): lowerCamelCase__ : Optional[Any] =key_split[3] lowerCamelCase__ : Optional[Any] =config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCamelCase__ : str =val[ :dim, : ] lowerCamelCase__ : Dict =val[ dim : dim * 2, : ] lowerCamelCase__ : Any =val[ -dim:, : ] else: lowerCamelCase__ : Dict =val[ :dim ] lowerCamelCase__ : List[Any] =val[ dim : dim * 2 ] lowerCamelCase__ : Union[str, Any] =val[ -dim: ] else: if "weight" in key: lowerCamelCase__ : Optional[int] =val[ :dim, : ] lowerCamelCase__ : List[Any] =val[ dim : dim * 2, : ] lowerCamelCase__ : List[Any] =val[ -dim:, : ] else: lowerCamelCase__ : str =val[:dim] lowerCamelCase__ : List[str] =val[ dim : dim * 2 ] lowerCamelCase__ : Optional[int] =val[-dim:] elif key.startswith('''mit''' ): lowerCamelCase__ : Optional[int] =key_split[2] lowerCamelCase__ : List[str] =config.vision_config.mit_hidden_size if "weight" in key: lowerCamelCase__ : List[Any] =val[:dim, :] lowerCamelCase__ : List[Any] =val[dim : dim * 2, :] lowerCamelCase__ : Any =val[-dim:, :] else: lowerCamelCase__ : str =val[:dim] lowerCamelCase__ : Any =val[dim : dim * 2] lowerCamelCase__ : Any =val[-dim:] else: lowerCamelCase__ : Dict =key_split[2] lowerCamelCase__ : Union[str, Any] =config.text_config.hidden_size if "weight" in key: lowerCamelCase__ : List[str] =val[:dim, :] lowerCamelCase__ : str =val[ dim : dim * 2, : ] lowerCamelCase__ : Dict =val[-dim:, :] else: lowerCamelCase__ : Optional[int] =val[:dim] lowerCamelCase__ : int =val[ dim : dim * 2 ] lowerCamelCase__ : Optional[int] =val[-dim:] else: lowerCamelCase__ : Union[str, Any] =rename_key(__lowerCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCamelCase__ : Optional[int] =val.T lowerCamelCase__ : Optional[Any] =val return orig_state_dict def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" if num_frames == 8: lowerCamelCase__ : List[Any] ='''eating_spaghetti_8_frames.npy''' elif num_frames == 16: lowerCamelCase__ : Optional[int] ='''eating_spaghetti.npy''' elif num_frames == 32: lowerCamelCase__ : Union[str, Any] ='''eating_spaghetti_32_frames.npy''' lowerCamelCase__ : Union[str, Any] =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=__lowerCamelCase , repo_type='''dataset''' , ) lowerCamelCase__ : Optional[int] =np.load(__lowerCamelCase ) return list(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[str]=False ): """simple docstring""" lowerCamelCase__ : Tuple ={ # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } lowerCamelCase__ : List[Any] =model_to_url[model_name] lowerCamelCase__ : Dict =8 if "16-frames" in model_name: lowerCamelCase__ : Dict =16 elif "shot" in model_name: lowerCamelCase__ : int =32 lowerCamelCase__ : List[str] =get_xclip_config(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[int] =XCLIPModel(__lowerCamelCase ) model.eval() if "drive" in checkpoint_url: lowerCamelCase__ : str ='''pytorch_model.bin''' gdown.cached_download(__lowerCamelCase , __lowerCamelCase , quiet=__lowerCamelCase ) lowerCamelCase__ : Optional[int] =torch.load(__lowerCamelCase , map_location='''cpu''' )['''model'''] else: lowerCamelCase__ : List[Any] =torch.hub.load_state_dict_from_url(__lowerCamelCase )['''model'''] lowerCamelCase__ : Dict =convert_state_dict(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[int] =XCLIPModel(__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCamelCase__ : Optional[int] =336 if model_name == '''xclip-large-patch14-16-frames''' else 224 lowerCamelCase__ : List[Any] =VideoMAEImageProcessor(size=__lowerCamelCase ) lowerCamelCase__ : Any =CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) lowerCamelCase__ : str =CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) lowerCamelCase__ : Union[str, Any] =XCLIPProcessor(image_processor=__lowerCamelCase , tokenizer=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =prepare_video(__lowerCamelCase ) lowerCamelCase__ : int =processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=__lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCamelCase__ : Union[str, Any] =model(**__lowerCamelCase ) # Verify outputs lowerCamelCase__ : List[str] =outputs.logits_per_video lowerCamelCase__ : Tuple =logits_per_video.softmax(dim=1 ) print('''Probs:''' , __lowerCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCamelCase__ : str =torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCamelCase__ : Union[str, Any] =torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": lowerCamelCase__ : List[str] =torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCamelCase__ : Any =torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": lowerCamelCase__ : Any =torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCamelCase__ : str =torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCamelCase__ : List[Any] =torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCamelCase__ : str =torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCamelCase__ : Union[str, Any] =torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCamelCase__ : Dict =torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCamelCase__ : List[Any] =torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCamelCase__ : Optional[int] =torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCamelCase__ : Tuple =torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCamelCase__ : int =torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCamelCase__ : Dict =torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCamelCase__ : List[str] =torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCamelCase__ : Tuple =torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCamelCase__ : Optional[int] =torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(__lowerCamelCase , organization='''nielsr''' ) processor.push_to_hub(__lowerCamelCase , organization='''nielsr''' ) slow_tokenizer.push_to_hub(__lowerCamelCase , organization='''nielsr''' ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase : Optional[int] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
238
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict="pt" ): """simple docstring""" lowerCamelCase__ : str ={'''add_prefix_space''': True} if isinstance(__lowerCamelCase , __lowerCamelCase ) and not line.startswith(''' ''' ) else {} lowerCamelCase__ : int =padding_side return tokenizer( [line] , max_length=__lowerCamelCase , padding='''max_length''' if pad_to_max_length else None , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , ): """simple docstring""" lowerCamelCase__ : Any =input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : str="train", lowerCamelCase : List[Any]=None, lowerCamelCase : Tuple=None, lowerCamelCase : List[str]=None, lowerCamelCase : int="", )-> List[Any]: super().__init__() lowerCamelCase__ : Tuple =Path(lowerCamelCase ).joinpath(type_path + '''.source''' ) lowerCamelCase__ : str =Path(lowerCamelCase ).joinpath(type_path + '''.target''' ) lowerCamelCase__ : Dict =self.get_char_lens(self.src_file ) lowerCamelCase__ : Tuple =max_source_length lowerCamelCase__ : Optional[int] =max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' lowerCamelCase__ : Dict =tokenizer lowerCamelCase__ : List[str] =prefix if n_obs is not None: lowerCamelCase__ : int =self.src_lens[:n_obs] lowerCamelCase__ : Dict =src_lang lowerCamelCase__ : Tuple =tgt_lang def __len__( self : Dict )-> Optional[int]: return len(self.src_lens ) def __getitem__( self : List[str], lowerCamelCase : Optional[int] )-> Dict[str, torch.Tensor]: lowerCamelCase__ : List[Any] =index + 1 # linecache starts at 1 lowerCamelCase__ : Optional[int] =self.prefix + linecache.getline(str(self.src_file ), lowerCamelCase ).rstrip('''\n''' ) lowerCamelCase__ : Optional[Any] =linecache.getline(str(self.tgt_file ), lowerCamelCase ).rstrip('''\n''' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer, lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCamelCase__ : Optional[int] =( self.tokenizer.question_encoder if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer ) lowerCamelCase__ : Tuple =self.tokenizer.generator if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer lowerCamelCase__ : Optional[int] =encode_line(lowerCamelCase, lowerCamelCase, self.max_source_length, '''right''' ) lowerCamelCase__ : str =encode_line(lowerCamelCase, lowerCamelCase, self.max_target_length, '''right''' ) lowerCamelCase__ : str =source_inputs['''input_ids'''].squeeze() lowerCamelCase__ : str =target_inputs['''input_ids'''].squeeze() lowerCamelCase__ : Union[str, Any] =source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case ( lowerCamelCase : Union[str, Any] )-> Optional[int]: return [len(lowerCamelCase ) for x in Path(lowerCamelCase ).open().readlines()] def snake_case ( self : str, lowerCamelCase : str )-> Dict[str, torch.Tensor]: lowerCamelCase__ : List[Any] =torch.stack([x['''input_ids'''] for x in batch] ) lowerCamelCase__ : int =torch.stack([x['''attention_mask'''] for x in batch] ) lowerCamelCase__ : Union[str, Any] =torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCamelCase__ : str =( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer.pad_token_id ) lowerCamelCase__ : List[str] =( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, lowerCamelCase ) else self.tokenizer.pad_token_id ) lowerCamelCase__ : Optional[int] =trim_batch(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Any =trim_batch(lowerCamelCase, lowerCamelCase, attention_mask=lowerCamelCase ) lowerCamelCase__ : List[str] ={ '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch _lowercase : Any = getLogger(__name__) def snake_case__ ( __lowerCamelCase : List[List] ): """simple docstring""" return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Dict =get_git_info() save_json(__lowerCamelCase , os.path.join(__lowerCamelCase , '''git_log.json''' ) ) def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=4 , **__lowerCamelCase : int ): """simple docstring""" with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase , **__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : List[Any] =git.Repo(search_parent_directories=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] ={ '''repo_id''': str(__lowerCamelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def snake_case__ ( __lowerCamelCase : Callable , __lowerCamelCase : Iterable ): """simple docstring""" return list(map(__lowerCamelCase , __lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): """simple docstring""" with open(__lowerCamelCase , '''wb''' ) as f: return pickle.dump(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" def remove_articles(__lowerCamelCase : List[Any] ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , __lowerCamelCase ) def white_space_fix(__lowerCamelCase : Any ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Optional[Any] ): lowerCamelCase__ : Tuple =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): """simple docstring""" lowerCamelCase__ : List[str] =normalize_answer(__lowerCamelCase ).split() lowerCamelCase__ : List[str] =normalize_answer(__lowerCamelCase ).split() lowerCamelCase__ : Optional[int] =Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =sum(common.values() ) if num_same == 0: return 0 lowerCamelCase__ : Dict =1.0 * num_same / len(__lowerCamelCase ) lowerCamelCase__ : List[str] =1.0 * num_same / len(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =(2 * precision * recall) / (precision + recall) return fa def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : int ): """simple docstring""" return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): """simple docstring""" assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowerCamelCase__ : Any =0 for hypo, pred in zip(__lowerCamelCase , __lowerCamelCase ): em += exact_match_score(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" return model_prefix.startswith('''rag''' ) def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Any ={p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCamelCase__ : Optional[int] ='''dropout_rate''' for p in extra_params: if getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if not hasattr(__lowerCamelCase , __lowerCamelCase ) and not hasattr(__lowerCamelCase , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(__lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) continue lowerCamelCase__ : List[Any] =p if hasattr(__lowerCamelCase , __lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase , __lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) return hparams, config
238
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def SCREAMING_SNAKE_CASE__( ) -> tuple[list[int], int]: '''simple docstring''' UpperCamelCase__ = [randint(-10_00 , 10_00 ) for i in range(10 )] UpperCamelCase__ = randint(-50_00 , 50_00 ) return (arr, r) __lowercase: List[str] = make_dataset() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(a_ , 3 ): if sum(a_ ) == target: return tuple(sorted(a_ ) ) return (0, 0, 0) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() UpperCamelCase__ = len(a_ ) for i in range(n - 1 ): UpperCamelCase__ , UpperCamelCase__ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def SCREAMING_SNAKE_CASE__( ) -> tuple[float, float]: '''simple docstring''' UpperCamelCase__ = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCamelCase__ = "\ntriplet_sum1(*dataset)\n" UpperCamelCase__ = "\ntriplet_sum2(*dataset)\n" UpperCamelCase__ = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_00_00 ) UpperCamelCase__ = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_00_00 ) return (min(a_ ), min(a_ )) if __name__ == "__main__": from doctest import testmod testmod() __lowercase: Optional[Any] = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
364
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE): snake_case__ = 'bloom' snake_case__ = ['past_key_values'] snake_case__ = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Tuple , __UpperCamelCase : Dict=25_0880 , __UpperCamelCase : List[Any]=64 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Union[str, Any]=8 , __UpperCamelCase : List[str]=1E-5 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Tuple=1 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : List[Any]=False , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : Union[str, Any]=False , **__UpperCamelCase : Optional[Any] , ) -> List[str]: _UpperCamelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCamelCase = kwargs.pop('''n_embed''' , _a ) _UpperCamelCase = hidden_size if n_embed is None else n_embed _UpperCamelCase = n_layer _UpperCamelCase = n_head _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_range _UpperCamelCase = use_cache _UpperCamelCase = pretraining_tp _UpperCamelCase = apply_residual_connection_post_layernorm _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = bos_token_id _UpperCamelCase = eos_token_id _UpperCamelCase = slow_but_exact super().__init__(bos_token_id=_a , eos_token_id=_a , **_a ) class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE): snake_case__ = version.parse('''1.12''') def __init__( self : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] = "default" , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Tuple = False , ) -> Union[str, Any]: super().__init__(_a , task=_a , patching_specs=_a , use_past=_a ) if not getattr(self._config , '''pad_token_id''' , _a ): # TODO: how to do that better? _UpperCamelCase = 0 @property def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: _UpperCamelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_a , direction='''inputs''' , inverted_values_shape=_a ) _UpperCamelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCamelCase ( self : Optional[int] ) -> Tuple: return self._config.n_layer @property def _UpperCamelCase ( self : int ) -> Optional[int]: return self._config.n_head @property def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: return 1E-3 def _UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Dict = -1 , __UpperCamelCase : List[Any] = -1 , __UpperCamelCase : Dict = False , __UpperCamelCase : List[Any] = None , ) -> Any: _UpperCamelCase = super(_a , self ).generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) # We need to order the input in the way they appears in the forward() _UpperCamelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _UpperCamelCase , _UpperCamelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _UpperCamelCase = seqlen + 2 _UpperCamelCase = self._config.hidden_size // self.num_attention_heads _UpperCamelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCamelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCamelCase = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] _UpperCamelCase = common_inputs['''attention_mask'''] if self.use_past: _UpperCamelCase = ordered_inputs['''attention_mask'''].dtype _UpperCamelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_a , _a , dtype=_a )] , dim=1 ) return ordered_inputs @property def _UpperCamelCase ( self : Any ) -> Tuple: return 13
256
"""simple docstring""" import numpy as np def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> np.ndarray: return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowerCAmelCase__ ( *_a : str ): if not isinstance(a_ , a_ ): snake_case_ : Optional[int] = list(a_ ) for i in range(len(a_ ) ): snake_case_ : str = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowerCAmelCase__ ( _a : Exception ): snake_case_ : List[Any] = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(a_ , a_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowerCAmelCase__ ( _a : callable = None , _a : int = 1_28 ): if function is None: return functools.partial(a_ , starting_batch_size=a_ ) snake_case_ : List[str] = starting_batch_size def decorator(*_a : Optional[int] , **_a : List[str] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ : str = list(inspect.signature(a_ ).parameters.keys() ) # Guard against user error if len(a_ ) < (len(a_ ) + 1): snake_case_ : str = ", ".join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(a_ , *a_ , **a_ ) except Exception as e: if should_reduce_batch_size(a_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
367
import numpy as np def lowerCAmelCase__ ( _a : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
36
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def _a ( ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: Dict = argparse.ArgumentParser() parser.add_argument('-f' ) __lowerCAmelCase: List[Any] = parser.parse_args() return args.f class A_ ( snake_case__ ): def UpperCAmelCase ( self : Any ) -> None: __lowerCAmelCase: Union[str, Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int ) -> Dict: __lowerCAmelCase: int = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(UpperCAmelCase , 'argv' , UpperCAmelCase ): __lowerCAmelCase: int = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCAmelCase , 0.666 ) @slow @require_torch_non_multi_gpu def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: List[Any] = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(UpperCAmelCase ) __lowerCAmelCase: List[Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(UpperCAmelCase ) __lowerCAmelCase: Any = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(UpperCAmelCase )
322
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _snake_case = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _snake_case = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) _snake_case = BeautifulSoup(res.text, """html.parser""") _snake_case = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get("href")}""")
201
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( __magic_name__ ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__magic_name__ , "_dynamo" ): return False return isinstance(__magic_name__ , torch._dynamo.eval_frame.OptimizedModule ) def _A ( __magic_name__ , __magic_name__ = True ): lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ = is_compiled_module(__magic_name__ ) if is_compiled: lowercase__ = model lowercase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__magic_name__ , __magic_name__ ): lowercase__ = model.module if not keep_fpaa_wrapper: lowercase__ = getattr(__magic_name__ , "forward" ) lowercase__ = model.__dict__.pop("_original_forward" , __magic_name__ ) if original_forward is not None: while hasattr(__magic_name__ , "__wrapped__" ): lowercase__ = forward.__wrapped__ if forward == original_forward: break lowercase__ = forward if getattr(__magic_name__ , "_converted_to_transformer_engine" , __magic_name__ ): convert_model(__magic_name__ , to_transformer_engine=__magic_name__ ) if is_compiled: lowercase__ = model lowercase__ = compiled_model return model def _A ( ): PartialState().wait_for_everyone() def _A ( __magic_name__ , __magic_name__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__magic_name__ , __magic_name__ ) elif PartialState().local_process_index == 0: torch.save(__magic_name__ , __magic_name__ ) @contextmanager def _A ( **__magic_name__ ): for key, value in kwargs.items(): lowercase__ = str(__magic_name__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( __magic_name__ ): if not hasattr(__magic_name__ , "__qualname__" ) and not hasattr(__magic_name__ , "__name__" ): lowercase__ = getattr(__magic_name__ , "__class__" , __magic_name__ ) if hasattr(__magic_name__ , "__qualname__" ): return obj.__qualname__ if hasattr(__magic_name__ , "__name__" ): return obj.__name__ return str(__magic_name__ ) def _A ( __magic_name__ , __magic_name__ ): for key, value in source.items(): if isinstance(__magic_name__ , __magic_name__ ): lowercase__ = destination.setdefault(__magic_name__ , {} ) merge_dicts(__magic_name__ , __magic_name__ ) else: lowercase__ = value return destination def _A ( __magic_name__ = None ): if port is None: lowercase__ = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
201
1
'''simple docstring''' from functools import reduce lowercase_ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase (__A = N): """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda __A , __A: str(int(_lowerCAmelCase) * int(_lowerCAmelCase)) , n[i : i + 13])) for i in range(len(_lowerCAmelCase) - 12)) if __name__ == "__main__": print(F"""{solution() = }""")
211
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"{test_file} instead." ) snake_case__ : Dict = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) snake_case__ : int = components[:-1] + [test_fn.replace(""".py""" , """""" )] snake_case__ : int = """.""".join(_lowerCAmelCase ) return test_module_path def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : str = get_module_path(_lowerCAmelCase ) snake_case__ : Union[str, Any] = importlib.import_module(_lowerCAmelCase ) return test_module def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[Any] = [] snake_case__ : Optional[int] = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[str] = [] snake_case__ : Any = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case__ : List[str] = getattr(_lowerCAmelCase , """all_model_classes""" , [] ) if len(_lowerCAmelCase ) > 0: test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Any = get_test_classes(_lowerCAmelCase ) snake_case__ : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Optional[int] = test_class() if hasattr(_lowerCAmelCase , """setUp""" ): test.setUp() snake_case__ : Any = None if hasattr(_lowerCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case__ : Tuple = test.model_tester.__class__ return model_tester def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[Any] = get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = [] for test_class in test_classes: snake_case__ : Tuple = get_model_tester_from_test_class(_lowerCAmelCase ) if tester_class is not None: tester_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(_lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Any = get_model_classes(_lowerCAmelCase ) snake_case__ : Any = { model_class: get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Union[str, Any] = get_model_classes(_lowerCAmelCase ) snake_case__ : str = { model_class: get_tester_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o.__name__ elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_json(_lowerCAmelCase ) for x in o] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {to_json(_lowerCAmelCase ): to_json(_lowerCAmelCase ) for k, v in o.items()} else: return o
35
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = '''detr''' __lowercase : List[str] = ['''past_key_values'''] __lowercase : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=3 ,__UpperCAmelCase=100 ,__UpperCAmelCase=6 ,__UpperCAmelCase=2048 ,__UpperCAmelCase=8 ,__UpperCAmelCase=6 ,__UpperCAmelCase=2048 ,__UpperCAmelCase=8 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=True ,__UpperCAmelCase="relu" ,__UpperCAmelCase=256 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1.0 ,__UpperCAmelCase=False ,__UpperCAmelCase="sine" ,__UpperCAmelCase="resnet50" ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=1 ,__UpperCAmelCase=5 ,__UpperCAmelCase=2 ,__UpperCAmelCase=1 ,__UpperCAmelCase=1 ,__UpperCAmelCase=5 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.1 ,**__UpperCAmelCase ,) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase__ : Tuple = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : int = backbone_config.get("""model_type""" ) lowerCAmelCase__ : Dict = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ : Tuple = config_class.from_dict(__UpperCAmelCase ) # set timm attributes to None lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = None, None, None lowerCAmelCase__ : Optional[Any] = use_timm_backbone lowerCAmelCase__ : Union[str, Any] = backbone_config lowerCAmelCase__ : List[Any] = num_channels lowerCAmelCase__ : List[str] = num_queries lowerCAmelCase__ : List[Any] = d_model lowerCAmelCase__ : Any = encoder_ffn_dim lowerCAmelCase__ : Any = encoder_layers lowerCAmelCase__ : List[str] = encoder_attention_heads lowerCAmelCase__ : List[Any] = decoder_ffn_dim lowerCAmelCase__ : List[str] = decoder_layers lowerCAmelCase__ : Tuple = decoder_attention_heads lowerCAmelCase__ : Union[str, Any] = dropout lowerCAmelCase__ : Dict = attention_dropout lowerCAmelCase__ : Union[str, Any] = activation_dropout lowerCAmelCase__ : Tuple = activation_function lowerCAmelCase__ : List[Any] = init_std lowerCAmelCase__ : int = init_xavier_std lowerCAmelCase__ : int = encoder_layerdrop lowerCAmelCase__ : Optional[int] = decoder_layerdrop lowerCAmelCase__ : str = encoder_layers lowerCAmelCase__ : List[Any] = auxiliary_loss lowerCAmelCase__ : Optional[Any] = position_embedding_type lowerCAmelCase__ : str = backbone lowerCAmelCase__ : Union[str, Any] = use_pretrained_backbone lowerCAmelCase__ : Any = dilation # Hungarian matcher lowerCAmelCase__ : Dict = class_cost lowerCAmelCase__ : List[Any] = bbox_cost lowerCAmelCase__ : Tuple = giou_cost # Loss coefficients lowerCAmelCase__ : Tuple = mask_loss_coefficient lowerCAmelCase__ : List[Any] = dice_loss_coefficient lowerCAmelCase__ : Optional[int] = bbox_loss_coefficient lowerCAmelCase__ : Dict = giou_loss_coefficient lowerCAmelCase__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCAmelCase ,**__UpperCAmelCase ) @property def UpperCAmelCase_ ( self ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase_ ( self ) -> int: return self.d_model @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: return cls(backbone_config=__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Dict[str, any]: lowerCAmelCase__ : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase__ : Any = self.backbone_config.to_dict() lowerCAmelCase__ : str = self.__class__.model_type return output class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1E-5 @property def UpperCAmelCase_ ( self ) -> int: return 12
184
'''simple docstring''' from PIL import Image def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = image.size lowerCAmelCase__ : int = 0 lowerCAmelCase__ : int = image.load() for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): lowerCAmelCase__ : int = pixels[j, i] mean += pixel mean //= width * height for j in range(UpperCamelCase ): for i in range(UpperCamelCase ): lowerCAmelCase__ : Dict = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _lowerCAmelCase = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
184
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Union[str, Any] = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE_: List[str] = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE_: List[Any] = tf_top_k_top_p_filtering(lowerCAmelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) SCREAMING_SNAKE_CASE_: List[str] = output[output != -float("inf")] SCREAMING_SNAKE_CASE_: Optional[Any] = tf.cast( tf.where(tf.not_equal(lowerCAmelCase__ , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-12) tf.debugging.assert_equal(lowerCAmelCase__ , lowerCAmelCase__) @require_tf class __lowercase ( unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" if is_tf_available(): _UpperCAmelCase : List[Any] = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # TF-only test: tf.saved_model export SCREAMING_SNAKE_CASE_: Any = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: Union[str, Any] = 2 SCREAMING_SNAKE_CASE_: int = 2 class __lowercase ( tf.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : str): super(lowerCAmelCase__ , self).__init__() SCREAMING_SNAKE_CASE_: Any = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"), ) , jit_compile=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Any = self.model.generate( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , max_new_tokens=lowerCAmelCase__ , return_dict_in_generate=lowerCAmelCase__ , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE_: Union[str, Any] = [[2, 0], [102, 103]] SCREAMING_SNAKE_CASE_: int = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE_: List[str] = DummyModel(model=lowerCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCAmelCase__ , lowerCAmelCase__ , signatures={"serving_default": dummy_model.serving}) SCREAMING_SNAKE_CASE_: Optional[Any] = tf.saved_model.load(lowerCAmelCase__).signatures["serving_default"] for batch_size in range(1 , len(lowerCAmelCase__) + 1): SCREAMING_SNAKE_CASE_: List[Any] = { "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } SCREAMING_SNAKE_CASE_: List[str] = serving_func(**lowerCAmelCase__)["sequences"] SCREAMING_SNAKE_CASE_: Optional[Any] = test_model.generate(**lowerCAmelCase__ , max_new_tokens=lowerCAmelCase__) tf.debugging.assert_equal(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): # TF-only test: tf.saved_model export SCREAMING_SNAKE_CASE_: Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: Any = 1 SCREAMING_SNAKE_CASE_: Optional[int] = 2 class __lowercase ( tf.Module ): """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Tuple): super(lowerCAmelCase__ , self).__init__() SCREAMING_SNAKE_CASE_: Optional[Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"), ) , jit_compile=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.model.generate( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , max_new_tokens=lowerCAmelCase__ , return_dict_in_generate=lowerCAmelCase__ , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE_: List[str] = [[2], [102, 103]] SCREAMING_SNAKE_CASE_: Dict = [[1], [1, 1]] SCREAMING_SNAKE_CASE_: Dict = DummyModel(model=lowerCAmelCase__) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCAmelCase__ , lowerCAmelCase__ , signatures={"serving_default": dummy_model.serving}) SCREAMING_SNAKE_CASE_: List[str] = tf.saved_model.load(lowerCAmelCase__).signatures["serving_default"] for input_row in range(len(lowerCAmelCase__)): SCREAMING_SNAKE_CASE_: Dict = { "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } SCREAMING_SNAKE_CASE_: Optional[int] = serving_func(**lowerCAmelCase__)["sequences"] SCREAMING_SNAKE_CASE_: Dict = test_model.generate(**lowerCAmelCase__ , max_new_tokens=lowerCAmelCase__) tf.debugging.assert_equal(lowerCAmelCase__ , lowerCAmelCase__) @slow @require_tensorflow_text def _SCREAMING_SNAKE_CASE ( self : Any): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=lowerCAmelCase__) class __lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[Any]): super().__init__() SCREAMING_SNAKE_CASE_: int = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(lowerCAmelCase__ , "spiece.model") , "rb").read()) SCREAMING_SNAKE_CASE_: int = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Tuple , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Tuple = self.tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = text.pad_model_inputs( lowerCAmelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id) SCREAMING_SNAKE_CASE_: Optional[int] = self.model.generate(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__) return self.tokenizer.detokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE_: Any = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs") SCREAMING_SNAKE_CASE_: Any = complete_model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = tf.keras.Model(lowerCAmelCase__ , lowerCAmelCase__) keras_model.save(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): # Has PT equivalent: this test relies on random sampling SCREAMING_SNAKE_CASE_: Tuple = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } SCREAMING_SNAKE_CASE_: List[str] = 14 SCREAMING_SNAKE_CASE_: Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: Optional[Any] = "Hello, my dog is cute and" SCREAMING_SNAKE_CASE_: Any = tokenizer(lowerCAmelCase__ , return_tensors="tf") SCREAMING_SNAKE_CASE_: Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: List[Any] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(**lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__) self.assertTrue(expectation == len(generated_tokens[0])) SCREAMING_SNAKE_CASE_: int = [638, 198] with tf.device(":/CPU:0"): tf.random.set_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(**lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__) self.assertTrue(expectation == len(generated_tokens[0])) def _SCREAMING_SNAKE_CASE ( self : Tuple): # Has PT equivalent: ample use of framework-specific code SCREAMING_SNAKE_CASE_: Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") SCREAMING_SNAKE_CASE_: Tuple = "Hugging Face is a technology company based in New York and Paris." SCREAMING_SNAKE_CASE_: Union[str, Any] = bart_tokenizer(lowerCAmelCase__ , return_tensors="tf").input_ids SCREAMING_SNAKE_CASE_: Any = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") SCREAMING_SNAKE_CASE_: List[Any] = bart_model.generate(lowerCAmelCase__).numpy() class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : List[Any]): return super().call(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") SCREAMING_SNAKE_CASE_: Dict = bart_model.generate(lowerCAmelCase__ , foo="bar").numpy() self.assertTrue(np.array_equal(lowerCAmelCase__ , lowerCAmelCase__)) class __lowercase ( bart_model.model.encoder.__class__ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Tuple): return super().call(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = FakeEncoder(bart_model.config , bart_model.model.shared) SCREAMING_SNAKE_CASE_: Dict = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE_: Optional[int] = bart_model.generate(lowerCAmelCase__).numpy() with self.assertRaises(lowerCAmelCase__): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(lowerCAmelCase__ , foo="bar")
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE : Dict = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE : Optional[Any] = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } __SCREAMING_SNAKE_CASE : List[Any] = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase: str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase: Any = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase: str = ["input_ids", "attention_mask"] __UpperCamelCase: List[str] = DistilBertTokenizer def __init__( self : str , A : int=None , A : Tuple=None , A : Tuple=True , A : Dict="[UNK]" , A : List[Any]="[SEP]" , A : Optional[Any]="[PAD]" , A : Dict="[CLS]" , A : Tuple="[MASK]" , A : str=True , A : Dict=None , **A : List[Any] , ): super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , A ) != do_lower_case or normalizer_state.get("strip_accents" , A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , A ) != tokenize_chinese_chars ): _UpperCAmelCase : Dict = getattr(A , normalizer_state.pop("type" ) ) _UpperCAmelCase : int = do_lower_case _UpperCAmelCase : Optional[int] = strip_accents _UpperCAmelCase : str = tokenize_chinese_chars _UpperCAmelCase : List[Any] = normalizer_class(**A ) _UpperCAmelCase : Dict = do_lower_case def _A ( self : List[Any] , A : Tuple , A : Any=None ): _UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A ( self : int , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : Dict , A : str , A : Optional[str] = None ): _UpperCAmelCase : Any = self._tokenizer.model.save(A , name=A ) return tuple(A )
31
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = '''PIL.Image.Image''' UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
369
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase ) -> List[List[ImageInput]]: if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : List[Any] ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : List[str] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : int = size if size is not None else {'''shortest_edge''': 256} lowercase__ : Union[str, Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[Any] = get_size_dict(_snake_case ,param_name='''crop_size''' ) lowercase__ : List[Any] = do_resize lowercase__ : Optional[int] = size lowercase__ : Union[str, Any] = do_center_crop lowercase__ : int = crop_size lowercase__ : List[str] = resample lowercase__ : int = do_rescale lowercase__ : Tuple = rescale_factor lowercase__ : List[Any] = offset lowercase__ : Optional[int] = do_normalize lowercase__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self : Optional[int] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[str] ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ) if "shortest_edge" in size: lowercase__ : Optional[int] = get_resize_output_image_size(_snake_case ,size['''shortest_edge'''] ,default_to_square=_snake_case ) elif "height" in size and "width" in size: lowercase__ : Optional[Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Union[str, Any] ,) -> np.ndarray: """simple docstring""" lowercase__ : Dict = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : bool = True ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> Any: """simple docstring""" lowercase__ : List[Any] = image.astype(np.floataa ) if offset: lowercase__ : List[str] = image - (scale / 2) return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : ImageInput ,_snake_case : bool = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : Dict[str, int] = None ,_snake_case : bool = None ,_snake_case : float = None ,_snake_case : bool = None ,_snake_case : bool = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST ,) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowercase__ : Dict = to_numpy_array(_snake_case ) if do_resize: lowercase__ : Union[str, Any] = self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) if do_center_crop: lowercase__ : Optional[Any] = self.center_crop(_snake_case ,size=_snake_case ) if do_rescale: lowercase__ : List[Any] = self.rescale(image=_snake_case ,scale=_snake_case ,offset=_snake_case ) if do_normalize: lowercase__ : List[Any] = self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) lowercase__ : List[str] = to_channel_dimension_format(_snake_case ,_snake_case ) return image def UpperCAmelCase ( self : List[Any] ,_snake_case : ImageInput ,_snake_case : bool = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : Dict[str, int] = None ,_snake_case : bool = None ,_snake_case : float = None ,_snake_case : bool = None ,_snake_case : bool = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : Dict ,) -> PIL.Image.Image: """simple docstring""" lowercase__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = resample if resample is not None else self.resample lowercase__ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : str = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Optional[Any] = offset if offset is not None else self.offset lowercase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Any = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Union[str, Any] = size if size is not None else self.size lowercase__ : Union[str, Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : Tuple = crop_size if crop_size is not None else self.crop_size lowercase__ : Union[str, Any] = get_size_dict(_snake_case ,param_name='''crop_size''' ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase__ : Any = make_batched(_snake_case ) lowercase__ : Optional[int] = [ [ self._preprocess_image( image=_snake_case ,do_resize=_snake_case ,size=_snake_case ,resample=_snake_case ,do_center_crop=_snake_case ,crop_size=_snake_case ,do_rescale=_snake_case ,rescale_factor=_snake_case ,offset=_snake_case ,do_normalize=_snake_case ,image_mean=_snake_case ,image_std=_snake_case ,data_format=_snake_case ,) for img in video ] for video in videos ] lowercase__ : Dict = {'''pixel_values''': videos} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
16
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def constraint_to_multiple_of(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=None ): _lowerCAmelCase : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCAmelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: _lowerCAmelCase : List[str] = math.ceil(val / multiple ) * multiple return x _lowerCAmelCase : Union[str, Any] = (output_size, output_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) else output_size _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = get_image_size(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = output_size # determine new height and width _lowerCAmelCase : List[Any] = output_height / input_height _lowerCAmelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCAmelCase : Union[str, Any] = scale_width else: # fit height _lowerCAmelCase : Union[str, Any] = scale_height _lowerCAmelCase : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowerCamelCase ) _lowerCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=_lowerCamelCase ) return (new_height, new_width) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = False, __a = 1, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = size if size is not None else {"height": 384, "width": 384} _lowerCAmelCase : Optional[int] = get_size_dict(__a) _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Any = keep_aspect_ratio _lowerCAmelCase : str = ensure_multiple_of _lowerCAmelCase : str = resample _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : Optional[int] = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, __a, __a, __a = False, __a = 1, __a = PILImageResampling.BICUBIC, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") _lowerCAmelCase : List[Any] = get_resize_output_image_size( __a, output_size=(size["height"], size["width"]), keep_aspect_ratio=__a, multiple=__a, ) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(__a, mean=__a, std=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : List[Any] = size if size is not None else self.size _lowerCAmelCase : str = get_size_dict(__a) _lowerCAmelCase : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCAmelCase : Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[Any] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : List[Any] = [to_numpy_array(__a) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=__a, size=__a, resample=__a) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(image=__a, scale=__a) for image in images] if do_normalize: _lowerCAmelCase : Dict = [self.normalize(image=__a, mean=__a, std=__a) for image in images] _lowerCAmelCase : List[str] = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__a, tensor_type=__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__a): _lowerCAmelCase : List[Any] = target_sizes.numpy() _lowerCAmelCase : Dict = [] for idx in range(len(__a)): _lowerCAmelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=__a) _lowerCAmelCase : int = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _lowerCAmelCase : Dict = logits.argmax(dim=1) _lowerCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
36
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Union[str, Any]=3 , _snake_case : str=32 , _snake_case : Any=3 , _snake_case : Optional[Any]=10 , _snake_case : Optional[int]=[8, 16, 32, 64] , _snake_case : Tuple=[1, 1, 2, 1] , _snake_case : List[str]=True , _snake_case : Union[str, Any]=True , _snake_case : Dict="relu" , _snake_case : Optional[Any]=3 , _snake_case : int=None , _snake_case : Tuple=["stage2", "stage3", "stage4"] , _snake_case : Optional[int]=[2, 3, 4] , _snake_case : Union[str, Any]=1 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) UpperCAmelCase_ = out_features UpperCAmelCase_ = out_indices UpperCAmelCase_ = num_groups def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Dict): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = BitModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = BitForImageClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = BitBackbone(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None UpperCAmelCase_ = None UpperCAmelCase_ = BitBackbone(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : Dict = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Any = False def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = BitModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : Dict): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''') def lowerCamelCase ( self : Dict): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''') def lowerCamelCase ( self : List[str]): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''') def lowerCamelCase ( self : int): """simple docstring""" pass def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=_snake_case) for name, module in model.named_modules(): if isinstance(_snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Any): UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ = layer_type UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) @unittest.skip(reason='''Bit does not use feedforward chunking''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = BitModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def A () -> List[Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : List[str]): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(_snake_case) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''pt''').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4)) @require_torch class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Dict = (BitBackbone,) if is_torch_available() else () UpperCAmelCase__ : List[str] = BitConfig UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BitModelTester(self)
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def __init__( self, *__magic_name__, **__magic_name__ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''', __magic_name__, ) super().__init__(*__magic_name__, **__magic_name__ )
201
from math import factorial def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__UpperCAmelCase ) // (factorial(__UpperCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', F'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
201
1
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCAmelCase_ : Optional[datasets.Features] = None def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : List[int] , ): '''simple docstring''' import pyspark def generate_fn(): UpperCAmelCase__ = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: UpperCAmelCase__ = df_with_partition_id.select("""*""" ).where(F'''part_id = {partition_id}''' ).drop("""part_id""" ) UpperCAmelCase__ = partition_df.collect() UpperCAmelCase__ = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class lowerCAmelCase_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : "pyspark.sql.DataFrame" , _UpperCAmelCase : List[Any]=None , ): """simple docstring""" UpperCAmelCase__ = df UpperCAmelCase__ = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCAmelCase__ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : str ): """simple docstring""" yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : np.random.Generator ): """simple docstring""" UpperCAmelCase__ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.split_shard_indices_by_worker(_UpperCAmelCase , _UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return len(self.partition_order ) class lowerCAmelCase_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCAmelCase_ : Dict = SparkConfig def __init__( self : Optional[Any] , _UpperCAmelCase : "pyspark.sql.DataFrame" , _UpperCAmelCase : str = None , _UpperCAmelCase : str = None , **_UpperCAmelCase : int , ): """simple docstring""" import pyspark UpperCAmelCase__ = pyspark.sql.SparkSession.builder.getOrCreate() UpperCAmelCase__ = df UpperCAmelCase__ = working_dir super().__init__( cache_dir=_UpperCAmelCase , config_name=str(self.df.semanticHash() ) , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" def create_cache_and_write_probe(_UpperCAmelCase : int ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_UpperCAmelCase ) UpperCAmelCase__ = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_UpperCAmelCase , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCAmelCase__ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_UpperCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ): """simple docstring""" import pyspark def get_arrow_batch_size(_UpperCAmelCase : List[str] ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) UpperCAmelCase__ = self.df.count() UpperCAmelCase__ = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCAmelCase__ = ( self.df.limit(_UpperCAmelCase ) .repartition(1 ) .mapInArrow(_UpperCAmelCase , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCAmelCase__ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCAmelCase__ = min(_UpperCAmelCase , int(approx_total_size / max_shard_size ) ) UpperCAmelCase__ = self.df.repartition(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int , ): """simple docstring""" import pyspark UpperCAmelCase__ = ParquetWriter if file_format == """parquet""" else ArrowWriter UpperCAmelCase__ = os.path.join(self._working_dir , os.path.basename(_UpperCAmelCase ) ) if self._working_dir else fpath UpperCAmelCase__ = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCAmelCase__ = self.config.features UpperCAmelCase__ = self._writer_batch_size UpperCAmelCase__ = self._fs.storage_options def write_arrow(_UpperCAmelCase : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCAmelCase__ = pyspark.TaskContext().taskAttemptId() UpperCAmelCase__ = next(_UpperCAmelCase , _UpperCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) UpperCAmelCase__ = 0 UpperCAmelCase__ = writer_class( features=_UpperCAmelCase , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=_UpperCAmelCase , storage_options=_UpperCAmelCase , embed_local_files=_UpperCAmelCase , ) UpperCAmelCase__ = pa.Table.from_batches([first_batch] ) writer.write_table(_UpperCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 UpperCAmelCase__ = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=_UpperCAmelCase , storage_options=_UpperCAmelCase , embed_local_files=_UpperCAmelCase , ) UpperCAmelCase__ = pa.Table.from_batches([batch] ) writer.write_table(_UpperCAmelCase ) if writer._num_bytes > 0: UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_UpperCAmelCase ) ): UpperCAmelCase__ = os.path.join(os.path.dirname(_UpperCAmelCase ) , os.path.basename(_UpperCAmelCase ) ) shutil.move(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = ( self.df.mapInArrow(_UpperCAmelCase , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : "datasets.SplitGenerator" , _UpperCAmelCase : str = "arrow" , _UpperCAmelCase : Optional[Union[str, int]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Any , ): """simple docstring""" self._validate_cache_dir() UpperCAmelCase__ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_UpperCAmelCase ) UpperCAmelCase__ = not is_remote_filesystem(self._fs ) UpperCAmelCase__ = os.path.join if is_local else posixpath.join UpperCAmelCase__ = """-TTTTT-SSSSS-of-NNNNN""" UpperCAmelCase__ = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' UpperCAmelCase__ = path_join(self._output_dir , _UpperCAmelCase ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = [] UpperCAmelCase__ = [] for task_id, content in self._prepare_split_single(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_UpperCAmelCase ) UpperCAmelCase__ = total_num_examples UpperCAmelCase__ = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: UpperCAmelCase__ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCAmelCase__ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , ): rename( _UpperCAmelCase , fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace("""TTTTT-SSSSS""" , f'''{global_shard_id:05d}''' ).replace("""NNNNN""" , f'''{total_shards:05d}''' ) , ) UpperCAmelCase__ = [] UpperCAmelCase__ = 0 for i in range(len(_UpperCAmelCase ) ): UpperCAmelCase__ , UpperCAmelCase__ = task_id_and_num_shards[i] for shard_id in range(_UpperCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_UpperCAmelCase , len(_UpperCAmelCase ) ).map(lambda _UpperCAmelCase : _rename_shard(*_UpperCAmelCase ) ).collect() else: # don't use any pattern UpperCAmelCase__ = 0 UpperCAmelCase__ = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace(_UpperCAmelCase , """""" ) , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
61
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
61
1
from __future__ import annotations def lowercase_ ( _A : str , _A : str ): """simple docstring""" lowerCamelCase__ : List[Any] = get_failure_array(_A ) # 2) Step through text searching for pattern lowerCamelCase__ , lowerCamelCase__ : int = 0, 0 # index into text, pattern while i < len(_A ): if pattern[j] == text[i]: if j == (len(_A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCamelCase__ : Tuple = failure[j - 1] continue i += 1 return False def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : str = [0] lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Tuple = 1 while j < len(_A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCamelCase__ : Dict = failure[i - 1] continue j += 1 failure.append(_A ) return failure if __name__ == "__main__": # Test 1) A : List[Any] = "abc1abc12" A : Dict = "alskfjaldsabc1abc1abc12k23adsfabcabc" A : Union[str, Any] = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) A : List[Any] = "ABABX" A : Any = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) A : Optional[Any] = "AAAB" A : Optional[int] = "ABAAAAAB" assert kmp(pattern, text) # Test 4) A : str = "abcdabcy" A : Optional[int] = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) A : Dict = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
184
from collections import defaultdict def lowercase_ ( _A : int ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Dict = True for v in tree[start]: if v not in visited: ret += dfs(_A ) if ret % 2 == 0: cuts.append(_A ) return ret def lowercase_ ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": A, A : Tuple = 10, 9 A : int = defaultdict(list) A : dict[int, bool] = {} A : list[int] = [] A : List[str] = 0 A : Tuple = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
184
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __snake_case = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __snake_case = TaTokenizerFast __snake_case = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __snake_case = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
365
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''altclip_text_model''' def __init__( self , UpperCamelCase__=25_0002 , UpperCamelCase__=1024 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=4096 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=514 , UpperCamelCase__=1 , UpperCamelCase__=0.02 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-05 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=768 , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) snake_case : Any = vocab_size snake_case : List[Any] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Dict = hidden_act snake_case : Dict = intermediate_size snake_case : int = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : Dict = initializer_range snake_case : int = initializer_factor snake_case : Union[str, Any] = layer_norm_eps snake_case : List[Any] = position_embedding_type snake_case : Any = use_cache snake_case : str = project_dim class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''altclip_vision_model''' def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=3072 , UpperCamelCase__=512 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=32 , UpperCamelCase__="quick_gelu" , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1.0 , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : Optional[int] = hidden_size snake_case : str = intermediate_size snake_case : List[str] = projection_dim snake_case : Optional[Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : str = num_channels snake_case : List[str] = patch_size snake_case : List[Any] = image_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = initializer_factor snake_case : Any = attention_dropout snake_case : Dict = layer_norm_eps snake_case : List[str] = hidden_act @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) snake_case ,snake_case : str = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": snake_case : Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = '''altclip''' __UpperCAmelCase : Optional[Any] = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=2.6592 , **UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : List[str] = kwargs.pop("text_config_dict" , UpperCamelCase__ ) snake_case : Union[str, Any] = kwargs.pop("vision_config_dict" , UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case : List[str] = {} # This is the complete result when using `text_config_dict`. snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case : Optional[Any] = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case : Any = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(UpperCamelCase__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case : Union[str, Any] = {} # This is the complete result when using `vision_config_dict`. snake_case : int = AltCLIPVisionConfig(**UpperCamelCase__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case : Optional[int] = { str(UpperCamelCase__ ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case : int = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case : Optional[Any] = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(UpperCamelCase__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case : Optional[int] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: snake_case : Dict = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ) snake_case : Tuple = AltCLIPVisionConfig(**UpperCamelCase__ ) snake_case : int = projection_dim snake_case : List[str] = logit_scale_init_value snake_case : int = 1.0 @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = copy.deepcopy(self.__dict__ ) snake_case : Optional[int] = self.text_config.to_dict() snake_case : str = self.vision_config.to_dict() snake_case : Optional[int] = self.__class__.model_type return output
112
0
from __future__ import annotations import requests def lowerCAmelCase__ ( a__: Any ) -> dict: '''simple docstring''' _UpperCAmelCase = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCamelCase_ ).json() def lowerCAmelCase__ ( a__: Optional[int] = 1_0 ) -> list[dict]: '''simple docstring''' _UpperCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _UpperCAmelCase = requests.get(lowerCamelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCamelCase_ ) for story_id in story_ids] def lowerCAmelCase__ ( a__: int = 1_0 ) -> str: '''simple docstring''' _UpperCAmelCase = hackernews_top_stories(lowerCamelCase_ ) return "\n".join('* [{title}]({url})'.format(**lowerCamelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
329
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = """▁""" _lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """prophetnet.tokenizer"""} _lowerCAmelCase : Union[str, Any] = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } _lowerCAmelCase : str = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } _lowerCAmelCase : List[str] = { """microsoft/xprophetnet-large-wiki100-cased""": 512, } def SCREAMING_SNAKE_CASE__ ( snake_case : Dict )-> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = collections.OrderedDict() with open(snake_case , "r" , encoding="utf-8" ) as reader: UpperCAmelCase__ : Optional[int] = reader.readlines() for index, token in enumerate(snake_case ): UpperCAmelCase__ : List[str] = token.rstrip("\n" ) UpperCAmelCase__ : Optional[Any] = index return vocab class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ =['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , snake_case__ : Any , snake_case__ : int="[SEP]" , snake_case__ : Tuple="[SEP]" , snake_case__ : int="[SEP]" , snake_case__ : str="[UNK]" , snake_case__ : str="[PAD]" , snake_case__ : List[Any]="[CLS]" , snake_case__ : List[str]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[Any] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise UpperCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) UpperCAmelCase__ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab UpperCAmelCase__ : Dict = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(1_0 ): UpperCAmelCase__ : List[Any] = f'[unused{i}]' UpperCAmelCase__ : Tuple = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab UpperCAmelCase__ : Tuple = 1_2 UpperCAmelCase__ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.__dict__.copy() UpperCAmelCase__ : int = None return state def __setstate__( self : Any , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : Dict , snake_case__ : str ): '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : Any = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self : Tuple , snake_case__ : List[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self : Optional[int] , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def __a ( self : int , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def __a ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
298
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A : """simple docstring""" def __init__( self : Union[str, Any],lowercase_ : int,lowercase_ : List[Any]=3,lowercase_ : Dict=3_2,lowercase_ : List[str]=3,lowercase_ : List[str]=1_0,lowercase_ : List[Any]=[8, 1_6, 3_2, 6_4],lowercase_ : Any=[1, 1, 2, 1],lowercase_ : Any=True,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]="relu",lowercase_ : int=3,lowercase_ : Tuple=None,lowercase_ : Union[str, Any]=["stage2", "stage3", "stage4"],lowercase_ : Tuple=[2, 3, 4],lowercase_ : List[Any]=1,)-> int: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = embeddings_size A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = hidden_act A__ = num_labels A__ = scope A__ = len(lowercase_ ) A__ = out_features A__ = out_indices A__ = num_groups def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : List[str] )-> Tuple: '''simple docstring''' return BitConfig( num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,out_features=self.out_features,out_indices=self.out_indices,num_groups=self.num_groups,) def snake_case__ ( self : Dict,lowercase_ : int,lowercase_ : Optional[int],lowercase_ : Optional[Any] )-> Dict: '''simple docstring''' A__ = BitModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2),) def snake_case__ ( self : Union[str, Any],lowercase_ : List[Any],lowercase_ : Tuple,lowercase_ : Tuple )-> Optional[int]: '''simple docstring''' A__ = self.num_labels A__ = BitForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def snake_case__ ( self : int,lowercase_ : str,lowercase_ : Dict,lowercase_ : List[str] )-> Union[str, Any]: '''simple docstring''' A__ = BitBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[1:] ) # verify backbone works with out_features=None A__ = None A__ = BitBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCamelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' A__ = BitModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_ ) def snake_case__ ( self : Dict )-> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions' ) def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def snake_case__ ( self : Dict )-> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def snake_case__ ( self : Optional[Any] )-> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : List[str] )-> int: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_ ) def snake_case__ ( self : Any )-> Any: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(config=lowercase_ ) for name, module in model.named_modules(): if isinstance(lowercase_,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ),msg=F'Parameter {name} of model {model_class} seems not properly initialized',) self.assertTrue( torch.all(module.bias == 0 ),msg=F'Parameter {name} of model {model_class} seems not properly initialized',) def snake_case__ ( self : Dict )-> Tuple: '''simple docstring''' def check_hidden_states_output(lowercase_ : Any,lowercase_ : Union[str, Any],lowercase_ : Dict ): A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_,lowercase_ ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(lowercase_ ),expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: A__ = layer_type A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def snake_case__ ( self : int )-> str: '''simple docstring''' pass def snake_case__ ( self : Any )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def snake_case__ ( self : str )-> str: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = BitModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _snake_case( ) -> str: '''simple docstring''' A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' A__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowercase_,return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): A__ = model(**lowercase_ ) # verify the logits A__ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3],lowercase_,atol=1E-4 ) ) @require_torch class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (BitBackbone,) if is_torch_available() else () lowerCamelCase = BitConfig lowerCamelCase = False def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' A__ = BitModelTester(self )
7
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowercase_ = False @skip_mps class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionAttendAndExcitePipeline lowerCamelCase = False lowerCamelCase = TEXT_TO_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def snake_case__ ( cls : Any )-> Optional[Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : Optional[Any] )-> Dict: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = A__ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = pipe(**lowercase_ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 6_4, 6_4, 3) ) A__ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_,1E-3 ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def snake_case__ ( self : str )-> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 ) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case__ ( cls : Any )-> Optional[int]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : int )-> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' A__ = torch.manual_seed(5_1 ) A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa ) pipe.to('cuda' ) A__ = 'a painting of an elephant with glasses' A__ = [5, 7] A__ = pipe( prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0] A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
7
1
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return "".join(sorted(lowerCamelCase_ ) ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return word_by_signature[signature(lowerCamelCase_ )] a__ : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a__ : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) a__ : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a__ : Dict = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : List[str] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
"""simple docstring""" def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = int(__lowerCamelCase ) if n_element < 1: UpperCAmelCase_ : List[Any] = ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ : List[Any] = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = (0, 0, 0) UpperCAmelCase_ : Dict = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2, hamming_list[j] * 3, hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _a = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _a = hamming(int(n)) print('-----------------------------------------------------') print(f"""The list with nth numbers is: {hamming_numbers}""") print('-----------------------------------------------------')
61
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _a : Optional[int] = logging.getLogger(__name__) torch.set_grad_enabled(False) _a : Any = """cuda""" if torch.cuda.is_available() else """cpu""" def _lowerCAmelCase ( lowercase , lowercase=100 , lowercase=" " ) -> List[str]: __lowerCAmelCase = text.split(lowercase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowercase ) , lowercase )] def _lowerCAmelCase ( lowercase ) -> dict: __lowerCAmelCase , __lowerCAmelCase = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(lowercase ): titles.append(title if title is not None else """""" ) texts.append(lowercase ) return {"title": titles, "text": texts} def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> dict: __lowerCAmelCase = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=lowercase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __lowerCAmelCase = ctx_encoder(input_ids.to(device=lowercase ) , return_dict=lowercase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _lowerCAmelCase ( lowercase , lowercase , lowercase , ) -> int: ###################################### logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __lowerCAmelCase = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __lowerCAmelCase = dataset.map(lowercase , batched=lowercase , num_proc=processing_args.num_proc ) # And compute the embeddings __lowerCAmelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowercase ) __lowerCAmelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __lowerCAmelCase = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __lowerCAmelCase = dataset.map( partial(lowercase , ctx_encoder=lowercase , ctx_tokenizer=lowercase ) , batched=lowercase , batch_size=processing_args.batch_size , features=lowercase , ) # And finally save your dataset __lowerCAmelCase = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(lowercase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __lowerCAmelCase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=lowercase ) # And save the index __lowerCAmelCase = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(lowercase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _UpperCAmelCase : a : str =field( default=str(Path(lowerCAmelCase_ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) a : str =field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) a : str =field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) a : Optional[str] =field( default=str(Path(lowerCAmelCase_ ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _UpperCAmelCase : a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) a : int =field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _UpperCAmelCase : a : int =field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) a : int =field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _a : Union[str, Any] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _a ,_a ,_a : List[str] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _a : Optional[int] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
46
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[str] = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
1
from statistics import mean, stdev def UpperCAmelCase__ ( _A : list , _A : int = 3 ): '''simple docstring''' a__ =min(_lowerCamelCase ) a__ =max(_lowerCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowerCamelCase ) for x in data] def UpperCAmelCase__ ( _A : list , _A : int = 3 ): '''simple docstring''' a__ =mean(_lowerCamelCase ) a__ =stdev(_lowerCamelCase ) # standardize data return [round((x - mu) / (sigma) , _lowerCamelCase ) for x in data]
188
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: list[int] ): if not nums: return 0 __SCREAMING_SNAKE_CASE : Optional[int] = nums[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for num in nums[1:]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = ( max_excluding + num, max(_lowerCamelCase , _lowerCamelCase ), ) return max(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
112
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : List[Any] = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : List[Any] = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
1
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
298
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return "".join([hex(snake_case__ )[2:].zfill(2 ).upper() for byte in list(snake_case__ )] ) def __lowerCAmelCase ( snake_case__ ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case__ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case__ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
298
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : int = [] lowercase_ : List[Any] = [] for i in range(self.num_layers ): lowercase_ : str = self.in_channels if i == 0 else self.out_channels lowercase_ : int = FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) lowercase_ : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) lowercase_ : Dict = resnets lowercase_ : List[str] = attentions if self.add_downsample: lowercase_ : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any]=True ): lowercase_ : str = () for resnet, attn in zip(self.resnets , self.attentions ): lowercase_ : Any = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) lowercase_ : Optional[int] = attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: lowercase_ : List[str] = self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = True UpperCamelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = [] for i in range(self.num_layers ): lowercase_ : Tuple = self.in_channels if i == 0 else self.out_channels lowercase_ : Dict = FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) lowercase_ : Dict = resnets if self.add_downsample: lowercase_ : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , lowercase_ : int , lowercase_ : Dict , lowercase_ : Tuple=True ): lowercase_ : Optional[Any] = () for resnet in self.resnets: lowercase_ : Union[str, Any] = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: lowercase_ : Tuple = self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = [] lowercase_ : List[Any] = [] for i in range(self.num_layers ): lowercase_ : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase_ : List[Any] = self.prev_output_channel if i == 0 else self.out_channels lowercase_ : str = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) lowercase_ : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) lowercase_ : int = resnets lowercase_ : Tuple = attentions if self.add_upsample: lowercase_ : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int , lowercase_ : Tuple , lowercase_ : int=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowercase_ : str = res_hidden_states_tuple[-1] lowercase_ : Optional[int] = res_hidden_states_tuple[:-1] lowercase_ : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase_ : Optional[int] = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) lowercase_ : List[str] = attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: lowercase_ : int = self.upsamplers_a(lowercase_ ) return hidden_states class __magic_name__ ( nn.Module): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = True UpperCamelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Dict = [] for i in range(self.num_layers ): lowercase_ : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase_ : int = self.prev_output_channel if i == 0 else self.out_channels lowercase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) lowercase_ : int = resnets if self.add_upsample: lowercase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any]=True ): for resnet in self.resnets: # pop res hidden states lowercase_ : int = res_hidden_states_tuple[-1] lowercase_ : List[str] = res_hidden_states_tuple[:-1] lowercase_ : int = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase_ : Union[str, Any] = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: lowercase_ : Dict = self.upsamplers_a(lowercase_ ) return hidden_states class __magic_name__ ( nn.Module): UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): # there is always at least one resnet lowercase_ : List[str] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowercase_ : List[Any] = [] for _ in range(self.num_layers ): lowercase_ : str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) lowercase_ : Union[str, Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) lowercase_ : Optional[Any] = resnets lowercase_ : Optional[int] = attentions def __call__( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : str=True ): lowercase_ : Optional[int] = self.resnets[0](lowercase_ , lowercase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowercase_ : List[Any] = attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) lowercase_ : str = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) return hidden_states
21
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : list[str] | None = None , UpperCamelCase__ : dict[str, float] | None = None , UpperCamelCase__ : bool = False , ) -> tuple[int, float, str]: """simple docstring""" __lowerCamelCase = cipher_alphabet or [chr(UpperCamelCase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowerCamelCase = { 'a': 0.0_84_97, 'b': 0.0_14_92, 'c': 0.0_22_02, 'd': 0.0_42_53, 'e': 0.1_11_62, 'f': 0.0_22_28, 'g': 0.0_20_15, 'h': 0.0_60_94, 'i': 0.0_75_46, 'j': 0.0_01_53, 'k': 0.0_12_92, 'l': 0.0_40_25, 'm': 0.0_24_06, 'n': 0.0_67_49, 'o': 0.0_75_07, 'p': 0.0_19_29, 'q': 0.0_00_95, 'r': 0.0_75_87, 's': 0.0_63_27, 't': 0.0_93_56, 'u': 0.0_27_58, 'v': 0.0_09_78, 'w': 0.0_25_60, 'x': 0.0_01_50, 'y': 0.0_19_94, 'z': 0.0_00_77, } else: # Custom frequencies dictionary __lowerCamelCase = frequencies_dict if not case_sensitive: __lowerCamelCase = ciphertext.lower() # Chi squared statistic values __lowerCamelCase = {} # cycle through all of the shifts for shift in range(len(UpperCamelCase__ ) ): __lowerCamelCase = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowerCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCamelCase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowerCamelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowerCamelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowerCamelCase = decrypted_with_shift.lower().count(UpperCamelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowerCamelCase = decrypted_with_shift.count(UpperCamelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowerCamelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCamelCase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowerCamelCase = min( UpperCamelCase__ , key=UpperCamelCase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
90
from manim import * class A_ ( __lowerCamelCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.25 , width=0.25 ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('CPU' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('GPU' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) gpu.move_to([-1, -1, 0] ) self.add(snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Model' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.add(snake_case ) lowercase = [] lowercase = [] lowercase = [] for i, rect in enumerate(snake_case ): rect.set_stroke(snake_case ) lowercase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=snake_case , buff=0.0 ) self.add(snake_case ) model_cpu_arr.append(snake_case ) self.add(*snake_case , *snake_case , *snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Loaded Checkpoint' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(snake_case ) lowercase = [] lowercase = [] for i, rect in enumerate(snake_case ): lowercase = fill.copy().set_fill(snake_case , opacity=0.7 ) target.move_to(snake_case ) ckpt_arr.append(snake_case ) lowercase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(snake_case ) self.add(*snake_case , *snake_case ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case , snake_case ) lowercase = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case ) lowercase = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowercase = [meta_mem.copy() for i in range(6 )] lowercase = [meta_mem.copy() for i in range(6 )] lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(*snake_case ).arrange(snake_case , buff=0 ) lowercase = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) lowercase = Text('Disk' , font_size=24 ) lowercase = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(snake_case , run_time=3 ) , Write(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) ) lowercase = [] for i, rect in enumerate(snake_case ): lowercase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(snake_case , run_time=1.5 ) ) self.play(*snake_case ) self.play(FadeOut(snake_case ) ) lowercase = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case , run_time=3 ) ) self.play( FadeOut(snake_case , snake_case , *snake_case , *snake_case ) , ) self.wait()
195
0
from ...processing_utils import ProcessorMixin class a_ ( lowerCamelCase ): lowercase = """WhisperFeatureExtractor""" lowercase = """WhisperTokenizer""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.feature_extractor UpperCamelCase = False def A__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True ) -> str: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=_SCREAMING_SNAKE_CASE , language=_SCREAMING_SNAKE_CASE , no_timestamps=_SCREAMING_SNAKE_CASE ) def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop("""audio""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop("""sampling_rate""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop("""text""" , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase = args[0] UpperCamelCase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: UpperCamelCase = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: UpperCamelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: UpperCamelCase = encodings["""input_ids"""] return inputs def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="np" ) -> Dict: """simple docstring""" return self.tokenizer.get_prompt_ids(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE )
360
'''simple docstring''' import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE__ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' SCREAMING_SNAKE_CASE__ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' SCREAMING_SNAKE_CASE__ = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , ) -> List[Any]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase = np.array([re.sub(_SCREAMING_SNAKE_CASE , """""" , _SCREAMING_SNAKE_CASE ) for x in predictions] ) UpperCamelCase = np.array([re.sub(_SCREAMING_SNAKE_CASE , """""" , _SCREAMING_SNAKE_CASE ) for x in references] ) else: UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) if ignore_case: UpperCamelCase = np.char.lower(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.lower(_SCREAMING_SNAKE_CASE ) if ignore_punctuation: UpperCamelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) if ignore_numbers: UpperCamelCase = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = predictions == references return {"exact_match": np.mean(_SCREAMING_SNAKE_CASE ) * 100}
183
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self , lowercase = 3 , lowercase = 3 , lowercase = ("DownEncoderBlock2D",) , lowercase = ("UpDecoderBlock2D",) , lowercase = (64,) , lowercase = 1 , lowercase = "silu" , lowercase = 3 , lowercase = 32 , lowercase = 256 , lowercase = 32 , lowercase = None , lowercase = 0.18_215 , lowercase = "group" , ) -> Union[str, Any]: super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=lowercase , out_channels=lowercase , down_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , double_z=lowercase , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) lowerCAmelCase = VectorQuantizer(lowercase , lowercase , beta=0.25 , remap=lowercase , sane_index_shape=lowercase ) lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=lowercase , out_channels=lowercase , up_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , norm_type=lowercase , ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = True ) -> VQEncoderOutput: lowerCAmelCase = self.encoder(lowercase ) lowerCAmelCase = self.quant_conv(lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = False , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.quantize(lowercase ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(lowercase ) lowerCAmelCase = self.decoder(lowercase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase ) def _snake_case ( self , lowercase , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase = sample lowerCAmelCase = self.encode(lowercase ).latents lowerCAmelCase = self.decode(lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase )
46
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while b: lowerCAmelCase , lowerCAmelCase = b, a % b return a def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE , a % b ) def UpperCAmelCase__ ( ): '''simple docstring''' print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
46
1
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) @dataclass class UpperCamelCase_ : _A : Tuple = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) _A : Optional[Any] = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _A : Any = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _A : List[Any] = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.task_name.lower() class UpperCamelCase_ ( _lowerCAmelCase ): _A : Optional[Any] = 'train' _A : str = 'dev' _A : Tuple = 'test' class UpperCamelCase_ ( _lowerCAmelCase ): _A : Any = 42 _A : Any = 42 _A : Tuple = 42 def __init__( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = Split.train , snake_case__ = None , ) -> int: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = args UpperCAmelCase = glue_processors[args.task_name]() UpperCAmelCase = glue_output_modes[args.task_name] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): try: UpperCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) UpperCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase = label_list[2], label_list[1] UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase = cached_features_file + """.lock""" with FileLock(SCREAMING_SNAKE_CASE_ ): if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not args.overwrite_cache: UpperCAmelCase = time.time() UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase = examples[:limit_length] UpperCAmelCase = glue_convert_examples_to_features( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , max_length=args.max_seq_length , label_list=SCREAMING_SNAKE_CASE_ , output_mode=self.output_mode , ) UpperCAmelCase = time.time() torch.save(self.features , SCREAMING_SNAKE_CASE_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self , snake_case__ ) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return self.label_list
366
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") UpperCAmelCase = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) UpperCAmelCase = model.state_dict() def to_tf_var_name(lowerCAmelCase ): for patt, repl in iter(lowerCAmelCase ): UpperCAmelCase = name.replace(lowerCAmelCase , lowerCAmelCase ) return F'''bert/{name}''' def create_tf_var(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase = tf.get_variable(dtype=lowerCAmelCase , shape=tensor.shape , name=lowerCAmelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase = to_tf_var_name(lowerCAmelCase ) UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase = torch_tensor.T UpperCAmelCase = create_tf_var(tensor=lowerCAmelCase , name=lowerCAmelCase , session=lowerCAmelCase ) tf.keras.backend.set_value(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = session.run(lowerCAmelCase ) print(F'''Successfully created {tf_name}: {np.allclose(lowerCAmelCase , lowerCAmelCase )}''' ) UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase , os.path.join(lowerCAmelCase , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def _lowerCAmelCase ( lowerCAmelCase=None ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""Directory in which to save tensorflow model""" ) UpperCAmelCase = parser.parse_args(lowerCAmelCase ) UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
248
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A__ : Tuple =logging.get_logger(__name__) class UpperCAmelCase : _lowercase: str _lowercase: str = None @staticmethod def lowercase__ ( ) -> Dict: raise NotImplementedError def lowercase__ ( self : List[str] , __snake_case : List[Any] , __snake_case : int , __snake_case : str , **__snake_case : str ) -> str: raise NotImplementedError def lowercase__ ( self : Any , __snake_case : Any ) -> str: raise NotImplementedError def lowercase__ ( self : Dict ) -> Tuple: if not self.is_available(): raise RuntimeError( f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def lowercase__ ( cls : Optional[Any] ) -> str: return f"`pip install {cls.pip_package or cls.name}`" class UpperCAmelCase ( snake_case_ ): _lowercase: Union[str, Any] = '''optuna''' @staticmethod def lowercase__ ( ) -> List[str]: return is_optuna_available() def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , **__snake_case : Dict ) -> Tuple: return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : List[str] , __snake_case : List[Any] ) -> Optional[Any]: return default_hp_space_optuna(__snake_case ) class UpperCAmelCase ( snake_case_ ): _lowercase: List[Any] = '''ray''' _lowercase: Union[str, Any] = '''\'ray[tune]\'''' @staticmethod def lowercase__ ( ) -> Any: return is_ray_available() def lowercase__ ( self : Dict , __snake_case : Dict , __snake_case : int , __snake_case : str , **__snake_case : List[str] ) -> List[str]: return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : int , __snake_case : Dict ) -> Union[str, Any]: return default_hp_space_ray(__snake_case ) class UpperCAmelCase ( snake_case_ ): _lowercase: str = '''sigopt''' @staticmethod def lowercase__ ( ) -> List[Any]: return is_sigopt_available() def lowercase__ ( self : Optional[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : str , **__snake_case : Union[str, Any] ) -> str: return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : Union[str, Any] , __snake_case : str ) -> Union[str, Any]: return default_hp_space_sigopt(__snake_case ) class UpperCAmelCase ( snake_case_ ): _lowercase: List[Any] = '''wandb''' @staticmethod def lowercase__ ( ) -> int: return is_wandb_available() def lowercase__ ( self : List[str] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , **__snake_case : List[str] ) -> Optional[int]: return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : int , __snake_case : Optional[Any] ) -> Any: return default_hp_space_wandb(__snake_case ) A__ : int ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCAmelCase ) > 0: _lowerCAmelCase = available_backends[0].name if len(lowerCAmelCase ) > 1: logger.info( f"{len(lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
70
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: int = KandinskyVaaImgaImgPipeline _lowercase: List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowercase: Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowercase: Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase: List[str] = False @property def lowercase__ ( self : str ) -> List[str]: return 32 @property def lowercase__ ( self : Optional[int] ) -> List[Any]: return 32 @property def lowercase__ ( self : Tuple ) -> str: return self.time_input_dim @property def lowercase__ ( self : Any ) -> Optional[int]: return self.time_input_dim * 4 @property def lowercase__ ( self : int ) -> Optional[Any]: return 1_00 @property def lowercase__ ( self : int ) -> Dict: torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**__snake_case ) return model @property def lowercase__ ( self : Union[str, Any] ) -> Tuple: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Dict ) -> str: torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Optional[int] ) -> Optional[int]: _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**__snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : int , __snake_case : List[str] , __snake_case : List[Any]=0 ) -> Union[str, Any]: _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : str ) -> Tuple: _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) _lowerCAmelCase = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(__snake_case ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Any ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = """A red cartoon frog, 4k""" _lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) _lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
70
1
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=64 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=[1, 16, 4, 4] , UpperCamelCase_=None , ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = parent UpperCamelCase__ :Optional[int] = batch_size UpperCamelCase__ :Tuple = image_size UpperCamelCase__ :int = patch_size UpperCamelCase__ :str = num_channels UpperCamelCase__ :Any = is_training UpperCamelCase__ :Dict = use_labels UpperCamelCase__ :List[Any] = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :Union[str, Any] = num_attention_heads UpperCamelCase__ :Dict = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :List[Any] = hidden_dropout_prob UpperCamelCase__ :Dict = attention_probs_dropout_prob UpperCamelCase__ :Optional[int] = type_sequence_label_size UpperCamelCase__ :Dict = initializer_range UpperCamelCase__ :Optional[int] = scope UpperCamelCase__ :Union[str, Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCamelCase__ :str = (self.image_size // 32) ** 2 UpperCamelCase__ :Dict = num_patches + 1 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :List[Any] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :str = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCamelCase_ , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[int] = ViTHybridModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :List[str] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = self.type_sequence_label_size UpperCamelCase__ :Dict = ViTHybridForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :str = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[Any] = config_and_inputs UpperCamelCase__ :List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _a = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ViTHybridModelTester(self ) UpperCamelCase__ :str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :int = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ :Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :str = model_class(UpperCamelCase_ ) UpperCamelCase__ :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :int = [*signature.parameters.keys()] UpperCamelCase__ :int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Dict = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: UpperCamelCase__ :Optional[Any] = model_class(config=UpperCamelCase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCamelCase__ :List[str] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :List[str] = ViTHybridModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCamelCase_ ) UpperCamelCase__ :Any = self.default_image_processor UpperCamelCase__ :Tuple = prepare_img() UpperCamelCase__ :List[Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase__ :Optional[int] = model(**UpperCamelCase_ ) # verify the logits UpperCamelCase__ :Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) ) @slow @require_accelerate def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCamelCase__ :str = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) UpperCamelCase__ :Tuple = prepare_img() UpperCamelCase__ :Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ) UpperCamelCase__ :Dict = model(**UpperCamelCase_ ) UpperCamelCase__ :Tuple = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCamelCase__ :int = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
358
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __snake_case = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_INIT_CONFIGURATION _a = ['input_ids', 'attention_mask'] _a = DistilBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_="[UNK]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): UpperCamelCase__ :int = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) UpperCamelCase__ :Optional[Any] = do_lower_case UpperCamelCase__ :Optional[Any] = strip_accents UpperCamelCase__ :List[Any] = tokenize_chinese_chars UpperCamelCase__ :Any = normalizer_class(**UpperCamelCase_ ) UpperCamelCase__ :int = do_lower_case def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :List[str] = [self.sep_token_id] UpperCamelCase__ :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
219
0
import numpy as np import qiskit def UpperCamelCase_( lowerCamelCase_ = 8 , lowerCamelCase_ = None ) -> str: _lowercase : int = np.random.default_rng(seed=lowerCamelCase_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowercase : List[str] = 6 * key_len # Measurement basis for Alice's qubits. _lowercase : Optional[Any] = rng.integers(2 , size=lowerCamelCase_ ) # The set of states Alice will prepare. _lowercase : str = rng.integers(2 , size=lowerCamelCase_ ) # Measurement basis for Bob's qubits. _lowercase : Any = rng.integers(2 , size=lowerCamelCase_ ) # Quantum Circuit to simulate BB84 _lowercase : Dict = qiskit.QuantumCircuit(lowerCamelCase_ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowerCamelCase_ ): if alice_state[index] == 1: bbaa_circ.x(lowerCamelCase_ ) if alice_basis[index] == 1: bbaa_circ.h(lowerCamelCase_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowerCamelCase_ ): if bob_basis[index] == 1: bbaa_circ.h(lowerCamelCase_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowercase : Optional[Any] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowercase : Optional[int] = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=1 , seed_simulator=lowerCamelCase_ ) # Returns the result of measurement. _lowercase : Optional[Any] = job.result().get_counts(lowerCamelCase_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowercase : List[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowercase : Optional[int] = gen_key[:key_len] if len(lowerCamelCase_ ) >= key_len else gen_key.ljust(lowerCamelCase_ , '0' ) return key if __name__ == "__main__": print(F"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
21
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : str = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Dict = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Tuple = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : Any = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.99_95 ) -> Tuple: if not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : List[Any] = True _lowercase : Any = va.device _lowercase : Union[str, Any] = va.cpu().numpy() _lowercase : int = va.cpu().numpy() _lowercase : int = np.sum(va * va / (np.linalg.norm(lowerCamelCase_ ) * np.linalg.norm(lowerCamelCase_ )) ) if np.abs(lowerCamelCase_ ) > DOT_THRESHOLD: _lowercase : Any = (1 - t) * va + t * va else: _lowercase : Dict = np.arccos(lowerCamelCase_ ) _lowercase : str = np.sin(lowerCamelCase_ ) _lowercase : int = theta_a * t _lowercase : Dict = np.sin(lowerCamelCase_ ) _lowercase : Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowercase : List[Any] = sin_theta_t / sin_theta_a _lowercase : Dict = sa * va + sa * va if inputs_are_torch: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) return va def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: for param in model.parameters(): _lowercase : Any = value class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=lowerCamelCase, text_encoder=lowerCamelCase, clip_model=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, coca_model=lowerCamelCase, coca_tokenizer=lowerCamelCase, coca_transform=lowerCamelCase, ) _lowercase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCamelCase) else feature_extractor.size['shortest_edge'] ) _lowercase : Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, lowerCamelCase) set_requires_grad(self.clip_model, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase = "auto") -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength), lowerCamelCase) _lowercase : List[Any] = max(num_inference_steps - init_timestep, 0) _lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase, torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase)}''') _lowercase : Any = image.to(device=lowerCamelCase, dtype=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCamelCase) ] _lowercase : int = torch.cat(lowerCamelCase, dim=0) else: _lowercase : int = self.vae.encode(lowerCamelCase).latent_dist.sample(lowerCamelCase) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : str = 0.1_8_2_1_5 * init_latents _lowercase : List[str] = init_latents.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = randn_tensor(init_latents.shape, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) # get latents _lowercase : Any = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = init_latents return latents def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = self.coca_transform(lowerCamelCase).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowercase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Tuple = self.feature_extractor.preprocess(lowerCamelCase) _lowercase : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _lowercase : int = self.clip_model.get_image_features(lowerCamelCase) _lowercase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : int = image_embeddings_clip.repeat_interleave(lowerCamelCase, dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : List[Any] = latents.detach().requires_grad_() _lowercase : Union[str, Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Tuple = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowercase : Any = self.scheduler.alphas_cumprod[timestep] _lowercase : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowercase : List[str] = torch.sqrt(lowerCamelCase) _lowercase : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCamelCase): _lowercase : Dict = self.scheduler.sigmas[index] _lowercase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Dict = 1 / 0.1_8_2_1_5 * sample _lowercase : Optional[Any] = self.vae.decode(lowerCamelCase).sample _lowercase : int = (image / 2 + 0.5).clamp(0, 1) _lowercase : Any = transforms.Resize(self.feature_extractor_size)(lowerCamelCase) _lowercase : Optional[Any] = self.normalize(lowerCamelCase).to(latents.dtype) _lowercase : List[str] = self.clip_model.get_image_features(lowerCamelCase) _lowercase : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : Optional[Any] = spherical_dist_loss(lowerCamelCase, lowerCamelCase).mean() * clip_guidance_scale _lowercase : str = -torch.autograd.grad(lowerCamelCase, lowerCamelCase)[0] if isinstance(self.scheduler, lowerCamelCase): _lowercase : Union[str, Any] = latents.detach() + grads * (sigma**2) _lowercase : List[str] = noise_pred_original else: _lowercase : List[Any] = noise_pred_original - torch.sqrt(lowerCamelCase) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 0.6, lowerCamelCase = 50, lowerCamelCase = 7.5, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1_00, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, lowerCamelCase = 0.8, lowerCamelCase = 0.1, lowerCamelCase = 0.1, ) -> int: """simple docstring""" if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(lowerCamelCase, torch.Generator) and batch_size > 1: _lowercase : Dict = [generator] + [None] * (batch_size - 1) _lowercase : Optional[int] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowercase : str = ', '.join(lowerCamelCase) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : List[Any] = self.get_image_description(lowerCamelCase) if style_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : Dict = self.get_image_description(lowerCamelCase) # get prompt text embeddings for content and style _lowercase : Optional[int] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowercase : Union[str, Any] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowercase : Any = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) # duplicate text embeddings for each generation per prompt _lowercase : Dict = text_embeddings.repeat_interleave(lowerCamelCase, dim=0) # set timesteps _lowercase : Dict = 'offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_offset: _lowercase : Any = 1 self.scheduler.set_timesteps(lowerCamelCase, **lowerCamelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowercase , _lowercase : List[Any] = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device) _lowercase : str = timesteps[:1].repeat(lowerCamelCase) # Preprocess image _lowercase : str = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : int = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : Optional[int] = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) if clip_guidance_scale > 0: _lowercase : Optional[int] = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = slerp( lowerCamelCase, lowerCamelCase, lowerCamelCase) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : Tuple = content_text_input.input_ids.shape[-1] _lowercase : Union[str, Any] = self.tokenizer([''], padding='max_length', max_length=lowerCamelCase, return_tensors='pt') _lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowercase : Union[str, Any] = uncond_embeddings.repeat_interleave(lowerCamelCase, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowercase : List[Any] = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='cpu', dtype=lowerCamelCase).to( self.device) else: _lowercase : Any = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _lowercase : Tuple = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowercase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : Dict = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_eta: _lowercase : List[Any] = eta # check if the scheduler accepts generator _lowercase : Dict = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowercase : str = generator with self.progress_bar(total=lowerCamelCase): for i, t in enumerate(lowerCamelCase): # expand the latents if we are doing classifier free guidance _lowercase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : List[Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Dict = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample # perform classifier free guidance if do_classifier_free_guidance: _lowercase , _lowercase : Optional[Any] = noise_pred.chunk(2) _lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowercase : Tuple = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowercase , _lowercase : List[Any] = self.cond_fn( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Any = 1 / 0.1_8_2_1_5 * latents _lowercase : List[str] = self.vae.decode(lowerCamelCase).sample _lowercase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowercase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase)
21
1
"""simple docstring""" import math import sys def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = '' try: with open(_UpperCamelCase , 'rb' ) as binary_file: __lowerCAmelCase : int = binary_file.read() for dat in data: __lowerCAmelCase : str = F"{dat:08b}" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Dict = {'0': '0', '1': '1'} __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = '', '' __lowerCAmelCase : Optional[Any] = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCAmelCase : Optional[Any] = lexicon[curr_string] result += last_match_id __lowerCAmelCase : Dict = last_match_id + '0' if math.loga(_UpperCamelCase ).is_integer(): __lowerCAmelCase : List[str] = {} for curr_key in list(_UpperCamelCase ): __lowerCAmelCase : List[str] = lexicon.pop(_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = new_lex __lowerCAmelCase : str = last_match_id + '1' index += 1 __lowerCAmelCase : List[str] = '' return result def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = 8 try: with open(_UpperCamelCase , 'wb' ) as opened_file: __lowerCAmelCase : int = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCAmelCase : Any = data_bits[counter:] __lowerCAmelCase : Optional[Any] = data_bits[counter + 1 :] return data_bits def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = read_file_binary(_UpperCamelCase ) __lowerCAmelCase : List[str] = remove_prefix(_UpperCamelCase ) __lowerCAmelCase : str = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
182
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCamelCase__ = getLogger(__name__) lowerCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 8 , _UpperCamelCase = DEFAULT_DEVICE , _UpperCamelCase=False , _UpperCamelCase="summarization" , _UpperCamelCase=None , **_UpperCamelCase , ): __lowerCAmelCase : str = Path(_UpperCamelCase ).open('w' , encoding='utf-8' ) __lowerCAmelCase : Union[str, Any] = str(_UpperCamelCase ) __lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) if fpaa: __lowerCAmelCase : Optional[Any] = model.half() __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_UpperCamelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowerCAmelCase : List[Any] = time.time() # update config with task specific params use_task_specific_params(_UpperCamelCase , _UpperCamelCase ) if prefix is None: __lowerCAmelCase : Optional[int] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_UpperCamelCase , _UpperCamelCase ) ) ): __lowerCAmelCase : List[str] = [prefix + text for text in examples_chunk] __lowerCAmelCase : List[str] = tokenizer(_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase , padding='longest' ).to(_UpperCamelCase ) __lowerCAmelCase : str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_UpperCamelCase , ) __lowerCAmelCase : str = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __lowerCAmelCase : Optional[int] = int(time.time() - start_time ) # seconds __lowerCAmelCase : List[Any] = len(_UpperCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __lowerCAmelCase (): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __lowerCAmelCase (_UpperCamelCase=True ): __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('model_name' , type=_UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_UpperCamelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_UpperCamelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_UpperCamelCase , required=_UpperCamelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_UpperCamelCase , required=_UpperCamelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_UpperCamelCase , required=_UpperCamelCase , default=_UpperCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_UpperCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_UpperCamelCase , default=8 , required=_UpperCamelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_UpperCamelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase : Optional[int] = parser.parse_known_args() __lowerCAmelCase : Optional[int] = parse_numeric_n_bool_cl_kwargs(_UpperCamelCase ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowerCAmelCase : Dict = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase : int = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __lowerCAmelCase : Optional[Any] = generate_summaries_or_translations( _UpperCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_UpperCamelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase : str = calculate_bleu if 'translation' in args.task else calculate_rouge __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCamelCase )] __lowerCAmelCase : dict = score_fn(_UpperCamelCase , _UpperCamelCase ) scores.update(_UpperCamelCase ) if args.dump_args: scores.update(_UpperCamelCase ) if args.info: __lowerCAmelCase : Optional[Any] = args.info if verbose: print(_UpperCamelCase ) if args.score_path is not None: json.dump(_UpperCamelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
182
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( _A : List[str] , _A : Dict , _A : Optional[int] , _A : Any=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: a__ =os.path.abspath(_lowerCamelCase ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) a__ =torch.load(_lowerCamelCase , map_location='''cpu''' ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) a__ =convert_pytorch_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files a__ =convert_pytorch_sharded_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase ) return flax_state_dict def UpperCAmelCase__ ( _A : Tuple[str] , _A : np.ndarray , _A : Dict[str, jnp.ndarray] , _A : str , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(_A : Tuple[str] ) -> bool: return len(set(_lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm a__ =pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean a__ =pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var a__ =pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding a__ =pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer a__ =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): a__ =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): a__ =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ =pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ =pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 a__ =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): a__ =pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): a__ =pt_tuple_key[-2] + '''_v''' if name is not None: a__ =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ ( _A : List[Any] , _A : Dict ): '''simple docstring''' a__ ={k: v.numpy() for k, v in pt_state_dict.items()} a__ =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: a__ =flax_model.params['''params'''] else: a__ =flax_model.params a__ =flatten_dict(_lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: a__ =flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(_lowerCamelCase ) a__ ={} a__ =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) a__ =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ =tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary a__ =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: a__ =pt_tuple_key[1:] # Correctly rename weight parameters a__, a__ =rename_key_and_reshape_tensor( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # add model prefix if necessary a__ =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: a__ =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: a__ =jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown a__ =jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown a__ =jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def UpperCAmelCase__ ( _A : Tuple , _A : List[str] ): '''simple docstring''' import torch # Load the index a__ ={} for shard_file in shard_filenames: # load using msgpack utils a__ =torch.load(_lowerCamelCase ) a__ ={k: v.numpy() for k, v in pt_state_dict.items()} a__ =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: a__ =flax_model.params['''params'''] a__ =flatten_dict(_lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: a__ =flax_model.params a__ =flatten_dict(_lowerCamelCase ) a__ =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) a__ =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ =tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary a__ =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: a__ =pt_tuple_key[1:] # Correctly rename weight parameters a__, a__ =rename_key_and_reshape_tensor( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # add model prefix if necessary a__ =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: a__ =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: a__ =jnp.asarray(_lowerCamelCase ) continue if "var" in flax_key[-1]: a__ =jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown a__ =jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown a__ =jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def UpperCAmelCase__ ( _A : Optional[Any] , _A : Union[str, Any] ): '''simple docstring''' a__ =os.path.abspath(_lowerCamelCase ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class a__ =getattr(_lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(_lowerCamelCase , '''rb''' ) as state_f: try: a__ =from_bytes(_lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase__ ( _A : List[Any] , _A : str ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights a__ =flatten_dict(jax.tree_util.tree_map(lambda _A : x.dtype == jnp.bfloataa , _lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) a__ =jax.tree_util.tree_map( lambda _A : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCamelCase ) a__ =flatten_dict(_lowerCamelCase ) a__ =pt_model.state_dict() a__ =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) a__ =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys a__ =[] a__ =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): a__ =flax_key_tuple[0] == pt_model.base_model_prefix a__ ='''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: a__ =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: a__ =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCamelCase ) not in pt_model_dict: # conv layer a__ =flax_key_tuple[:-1] + ('''weight''',) a__ =jnp.transpose(_lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCamelCase ) not in pt_model_dict: # linear layer a__ =flax_key_tuple[:-1] + ('''weight''',) a__ =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a__ =flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: a__ =flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: a__ =flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: a__ ='''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: a__ ='''.'''.join(_lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. a__ ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: a__ =key.split('''.''' ) a__ =None if key_components[-3::2] == ["parametrizations", "original0"]: a__ =key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: a__ =key_components[-2] + '''_v''' if name is not None: a__ =key_components[:-3] + [name] a__ ='''.'''.join(_lowerCamelCase ) a__ =key if flax_key in special_pt_names: a__ =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict a__ =np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase , np.ndarray ) else flax_tensor a__ =torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list a__ =list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_lowerCamelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
188
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _SCREAMING_SNAKE_CASE : Any = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _SCREAMING_SNAKE_CASE : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase__ ( _lowerCamelCase : str ) -> str: if "://" in dataset_path: lowerCamelCase_ = dataset_path.split('://' )[1] return dataset_path def lowerCamelCase__ ( _lowerCamelCase : fsspec.AbstractFileSystem ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase__ ( _lowerCamelCase : fsspec.AbstractFileSystem , _lowerCamelCase : str , _lowerCamelCase : str ) -> int: lowerCamelCase_ = not is_remote_filesystem(_lowerCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowerCamelCase ) , fs._strip_protocol(_lowerCamelCase ) ) else: fs.mv(_lowerCamelCase , _lowerCamelCase , recursive=_lowerCamelCase ) def lowerCamelCase__ ( ) -> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = threading.Lock()
183
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case__ : str = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
76
from __future__ import annotations def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = str(a__) return len(a__) == 9 and set(a__) == set("""123456789""") def _UpperCAmelCase ( ): '''simple docstring''' for base_num in range(9_9_9_9 , 4_9_9_9 , -1): a_ : Dict = 1_0_0_0_0_2 * base_num if is_9_pandigital(a__): return candidate for base_num in range(3_3_3 , 9_9 , -1): a_ : Tuple = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(a__): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
248
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Optional[int] =StableDiffusionSAGPipeline __A : List[str] =TEXT_TO_IMAGE_PARAMS __A : List[Any] =TEXT_TO_IMAGE_BATCH_PARAMS __A : Optional[int] =TEXT_TO_IMAGE_IMAGE_PARAMS __A : Any =TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict =False def UpperCamelCase__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) UpperCAmelCase_ : List[str] = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowerCAmelCase__ ,set_alpha_to_one=lowerCAmelCase__ ,) torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) UpperCAmelCase_ : List[str] = CLIPTextModel(lowerCAmelCase__ ) UpperCAmelCase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : str = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self ,_snake_case ,_snake_case=0 ): if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase_ : int = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase_ : Tuple = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) UpperCAmelCase_ : Any = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase_ : int = "." UpperCAmelCase_ : List[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = sag_pipe( [prompt] ,generator=lowerCAmelCase__ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="np" ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ : Dict = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase_ : Dict = "." UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = sag_pipe( [prompt] ,generator=lowerCAmelCase__ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="np" ) UpperCAmelCase_ : Union[str, Any] = output.images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Optional[int] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ : Any = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = "." UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : str = sag_pipe( [prompt] ,width=7_68 ,height=5_12 ,generator=lowerCAmelCase__ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="np" ,) UpperCAmelCase_ : Union[str, Any] = output.images assert image.shape == (1, 5_12, 7_68, 3)
367
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowerCamelCase = logging.get_logger(__name__) class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): UpperCAmelCase_ : List[Any] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : Any = kwargs.pop("padding_side" ,"right" ) UpperCAmelCase_ : int = kwargs.pop("return_attention_mask" ,_snake_case ) super().__init__(**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = True ,_snake_case = None ,_snake_case = False ,_snake_case = None ,_snake_case = None ,_snake_case = None ,): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(_snake_case ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] UpperCAmelCase_ : Dict = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_snake_case ) == 0: if return_attention_mask: UpperCAmelCase_ : List[str] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : Tuple = required_input[0] if isinstance(_snake_case ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : int = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_snake_case ): UpperCAmelCase_ : str = required_input[index][0] if return_tensors is None: if is_tf_tensor(_snake_case ): UpperCAmelCase_ : Any = "tf" elif is_torch_tensor(_snake_case ): UpperCAmelCase_ : Optional[int] = "pt" elif isinstance(_snake_case ,(int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : Any = "np" else: raise ValueError( f'''type of {first_element} unknown: {type(_snake_case )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): UpperCAmelCase_ : Optional[Any] = to_numpy(_snake_case ) else: UpperCAmelCase_ : Any = [to_numpy(_snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : List[Any] = self._get_padding_strategies(padding=_snake_case ,max_length=_snake_case ) UpperCAmelCase_ : Dict = processed_features[self.model_input_names[0]] UpperCAmelCase_ : str = len(_snake_case ) if not all(len(_snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : Dict = [] for i in range(_snake_case ): UpperCAmelCase_ : List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : Dict = self._truncate( _snake_case ,max_length=_snake_case ,pad_to_multiple_of=_snake_case ,truncation=_snake_case ,) truncated_inputs.append(_snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : List[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : str = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : Dict = {} for i in range(_snake_case ): # padding UpperCAmelCase_ : Dict = self._pad( truncated_inputs[i] ,max_length=_snake_case ,padding_strategy=_snake_case ,pad_to_multiple_of=_snake_case ,return_attention_mask=_snake_case ,) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : str = value.astype(np.floataa ) batch_outputs[key].append(_snake_case ) return BatchFeature(_snake_case ,tensor_type=_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = PaddingStrategy.DO_NOT_PAD ,_snake_case = None ,_snake_case = None ,): UpperCAmelCase_ : Any = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Any = len(_snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : List[str] = np.ones(len(_snake_case ) ,dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Union[str, Any] = max_length - len(_snake_case ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : str = np.pad( processed_features["attention_mask"] ,(0, difference) ) UpperCAmelCase_ : str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : int = np.pad( _snake_case ,_snake_case ,"constant" ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] ,(difference, 0) ) UpperCAmelCase_ : List[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : Union[str, Any] = np.pad( _snake_case ,_snake_case ,"constant" ,constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : List[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = len(_snake_case ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : Any = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : str = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self ,_snake_case=False ,_snake_case=None ): # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : str = PaddingStrategy(_snake_case ) elif isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = padding else: UpperCAmelCase_ : List[str] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
67
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = value lowerCAmelCase : Optional[int] = None lowerCAmelCase : Tuple = None class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = tree def lowercase__ ( self , snake_case__ ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
108
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["pixel_values"] def __init__( self : Any , _lowercase : bool = True , _lowercase : int = 32 , _lowercase : Any=PILImageResampling.BILINEAR , _lowercase : bool = True , **_lowercase : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = size_divisor SCREAMING_SNAKE_CASE__ = resample super().__init__(**_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : int , _lowercase : int , _lowercase : Optional[ChannelDimension] = None , **_lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_image_size(_lowercase ) # Rounds the height and width down to the closest multiple of size_divisor SCREAMING_SNAKE_CASE__ = height // size_divisor * size_divisor SCREAMING_SNAKE_CASE__ = width // size_divisor * size_divisor SCREAMING_SNAKE_CASE__ = resize(_lowercase , (new_h, new_w) , resample=_lowercase , data_format=_lowercase , **_lowercase ) return image def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[ChannelDimension] = None , **_lowercase : str ): """simple docstring""" return rescale(image=_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Tuple , _lowercase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _lowercase : Optional[bool] = None , _lowercase : Optional[int] = None , _lowercase : int=None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[TensorType, str]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Optional[int] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = size_divisor if size_divisor is not None else self.size_divisor SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) SCREAMING_SNAKE_CASE__ = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(_lowercase ) for img in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(_lowercase , size_divisor=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(_lowercase , scale=1 / 2_55 ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
219
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : List[Any] ={ "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a__ : List[Any] ={ "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } a__ : Optional[int] =f'''{src_lang}-{tgt_lang}''' a__ : Any =f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) a__ : Tuple =os.path.join(SCREAMING_SNAKE_CASE , "README.md" ) print(f'''Generating {path}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project UpperCAmelCase : str = Path(__file__).resolve().parent.parent.parent UpperCAmelCase : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = model_name.split("""-""") UpperCAmelCase : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
148
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" a__ : Tuple =set() a__ : Optional[Any] =[] def parse_line(SCREAMING_SNAKE_CASE : Optional[int] ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ : str =line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE ) > 0: a__ : Union[str, Any] ="\n".join(SCREAMING_SNAKE_CASE ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE ) buffer.clear() continue else: a__ : Optional[Any] =line.strip() buffer.append(SCREAMING_SNAKE_CASE ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE ): a__ : str =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : Optional[int] =set() a__ : Any =[os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for p in os.listdir(SCREAMING_SNAKE_CASE ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return selected_warnings if __name__ == "__main__": def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return values.split("," ) UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) UpperCAmelCase : List[Any] = parser.parse_args() UpperCAmelCase : str = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase : Tuple = extract_warnings(args.output_dir, args.targets) UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
148
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def A ( _lowercase , _lowercase , _lowercase = 10**-10 ): SCREAMING_SNAKE_CASE : Tuple = a while True: SCREAMING_SNAKE_CASE : int = Decimal(_lowercase ) - ( Decimal(eval(_lowercase ) ) / Decimal(eval(str(diff(_lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowercase ) ) < precision: # noqa: S307 return float(_lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
182
import itertools import string from collections.abc import Generator, Iterable def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = iter(_lowercase ) while True: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(itertools.islice(_lowercase , _lowercase ) ) if not chunk: return yield chunk def A ( _lowercase ): SCREAMING_SNAKE_CASE : int = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE : List[str] = '''''' if len(_lowercase ) < 2: return dirty for i in range(len(_lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowercase ) & 1: clean += "X" return clean def A ( _lowercase ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE : Optional[Any] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowercase ) return table def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : Any = prepare_input(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
182
1
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: __lowerCAmelCase : str = UniSpeechSatForSequenceClassification.from_pretrained(__snake_case ,config=__snake_case ) __lowerCAmelCase : Optional[Any] = downstream_dict["projector.weight"] __lowerCAmelCase : List[str] = downstream_dict["projector.bias"] __lowerCAmelCase : Dict = downstream_dict["model.post_net.linear.weight"] __lowerCAmelCase : int = downstream_dict["model.post_net.linear.bias"] return model def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> List[Any]: __lowerCAmelCase : Optional[int] = UniSpeechSatForAudioFrameClassification.from_pretrained(__snake_case ,config=__snake_case ) __lowerCAmelCase : Tuple = downstream_dict["model.linear.weight"] __lowerCAmelCase : List[str] = downstream_dict["model.linear.bias"] return model def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Union[str, Any]: __lowerCAmelCase : Optional[Any] = UniSpeechSatForXVector.from_pretrained(__snake_case ,config=__snake_case ) __lowerCAmelCase : Tuple = downstream_dict["connector.weight"] __lowerCAmelCase : Union[str, Any] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowerCAmelCase : str = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __lowerCAmelCase : Union[str, Any] = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __lowerCAmelCase : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] __lowerCAmelCase : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] __lowerCAmelCase : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] __lowerCAmelCase : Any = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] __lowerCAmelCase : Any = downstream_dict["objective.W"] return model @torch.no_grad() def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Any: __lowerCAmelCase : Any = torch.load(__snake_case ,map_location="cpu" ) __lowerCAmelCase : str = checkpoint["Downstream"] __lowerCAmelCase : Tuple = UniSpeechSatConfig.from_pretrained(__snake_case ) __lowerCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained( __snake_case ,return_attention_mask=__snake_case ,do_normalize=__snake_case ) __lowerCAmelCase : Union[str, Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): __lowerCAmelCase : Optional[int] = convert_classification(__snake_case ,__snake_case ,__snake_case ) elif arch.endswith("ForAudioFrameClassification" ): __lowerCAmelCase : Optional[Any] = convert_diarization(__snake_case ,__snake_case ,__snake_case ) elif arch.endswith("ForXVector" ): __lowerCAmelCase : Any = convert_xvector(__snake_case ,__snake_case ,__snake_case ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: __lowerCAmelCase : Tuple = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(__snake_case ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') __snake_case : Optional[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
58
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case : List[str] = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(_SCREAMING_SNAKE_CASE) def __call__( self: str , _SCREAMING_SNAKE_CASE: Union[str, "Image.Image", List[Dict[str, Any]]] , _SCREAMING_SNAKE_CASE: Union[str, List[str]] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> int: """simple docstring""" if "text_queries" in kwargs: __lowerCAmelCase : List[str] = kwargs.pop("text_queries") if isinstance(_SCREAMING_SNAKE_CASE , (str, Image.Image)): __lowerCAmelCase : Any = {"image": image, "candidate_labels": candidate_labels} else: __lowerCAmelCase : Dict = image __lowerCAmelCase : Optional[int] = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) return results def _SCREAMING_SNAKE_CASE ( self: Any , **_SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: __lowerCAmelCase : Optional[int] = kwargs["threshold"] if "top_k" in kwargs: __lowerCAmelCase : int = kwargs["top_k"] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = load_image(inputs["image"]) __lowerCAmelCase : Union[str, Any] = inputs["candidate_labels"] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = candidate_labels.split(",") __lowerCAmelCase : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : Dict = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) yield { "is_last": i == len(_SCREAMING_SNAKE_CASE) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = model_inputs.pop("target_size") __lowerCAmelCase : Any = model_inputs.pop("candidate_label") __lowerCAmelCase : List[str] = model_inputs.pop("is_last") __lowerCAmelCase : Dict = self.model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = [] for model_output in model_outputs: __lowerCAmelCase : Dict = model_output["candidate_label"] __lowerCAmelCase : int = BaseModelOutput(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.image_processor.post_process_object_detection( outputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): __lowerCAmelCase : Any = outputs["scores"][index].item() __lowerCAmelCase : int = self._get_bounding_box(outputs["boxes"][index][0]) __lowerCAmelCase : List[str] = {"score": score, "label": label, "box": box} results.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE: x["score"] , reverse=_SCREAMING_SNAKE_CASE) if top_k: __lowerCAmelCase : str = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: "torch.Tensor") -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = box.int().tolist() __lowerCAmelCase : Any = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
58
1
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __SCREAMING_SNAKE_CASE : Dict = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_ ( ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = "https://pypi.org/pypi/diffusers/json" _UpperCAmelCase : Optional[int] = json.loads(request.urlopen(_UpperCAmelCase ).read() )["releases"].keys() return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : version.Version(_UpperCAmelCase ) ) def UpperCamelCase_ ( ) -> List[Any]: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _UpperCAmelCase : List[Any] = Path(_UpperCAmelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def UpperCamelCase_ ( _UpperCAmelCase : Union[str, os.PathLike] ) -> List[str]: """simple docstring""" init_hf_modules() _UpperCAmelCase : List[Any] = Path(_UpperCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _UpperCAmelCase : str = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" with open(_UpperCAmelCase , "r" , encoding="utf-8" ) as f: _UpperCAmelCase : Optional[int] = f.read() # Imports of the form `import .xxx` _UpperCAmelCase : str = re.findall("^\s*import\s+\.(\S+)\s*$" , _UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , _UpperCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(_UpperCAmelCase ) ) def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Dict = [module_file] _UpperCAmelCase : Optional[int] = [] # Let's recurse through all relative imports while not no_change: _UpperCAmelCase : List[str] = [] for f in files_to_check: new_imports.extend(get_relative_imports(_UpperCAmelCase ) ) _UpperCAmelCase : str = Path(_UpperCAmelCase ).parent _UpperCAmelCase : Optional[Any] = [str(module_path / m ) for m in new_imports] _UpperCAmelCase : List[Any] = [f for f in new_import_files if f not in all_relative_imports] _UpperCAmelCase : Tuple = [F"""{f}.py""" for f in new_import_files] _UpperCAmelCase : Tuple = len(_UpperCAmelCase ) == 0 all_relative_imports.extend(_UpperCAmelCase ) return all_relative_imports def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" with open(_UpperCAmelCase , "r" , encoding="utf-8" ) as f: _UpperCAmelCase : Optional[Any] = f.read() # Imports of the form `import xxx` _UpperCAmelCase : List[Any] = re.findall("^\s*import\s+(\S+)\s*$" , _UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , _UpperCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module _UpperCAmelCase : Union[str, Any] = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all _UpperCAmelCase : str = list(set(_UpperCAmelCase ) ) _UpperCAmelCase : Tuple = [] for imp in imports: try: importlib.import_module(_UpperCAmelCase ) except ImportError: missing_packages.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F"""{', '.join(_UpperCAmelCase )}. Run `pip install {' '.join(_UpperCAmelCase )}`""" ) return get_relative_imports(_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Any: """simple docstring""" _UpperCAmelCase : Any = module_path.replace(os.path.sep , "." ) _UpperCAmelCase : str = importlib.import_module(_UpperCAmelCase ) if class_name is None: return find_pipeline_class(_UpperCAmelCase ) return getattr(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" from ..pipelines import DiffusionPipeline _UpperCAmelCase : List[Any] = dict(inspect.getmembers(_UpperCAmelCase , inspect.isclass ) ) _UpperCAmelCase : int = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _UpperCAmelCase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) _UpperCAmelCase : Dict = cls return pipeline_class def UpperCamelCase_ ( _UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict[str, str]] = None , _UpperCAmelCase : Optional[Union[bool, str]] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = str(_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ): _UpperCAmelCase : Union[str, Any] = module_file_or_url _UpperCAmelCase : Optional[Any] = "local" elif pretrained_model_name_or_path.count("/" ) == 0: _UpperCAmelCase : Tuple = get_diffusers_versions() # cut ".dev0" _UpperCAmelCase : str = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: _UpperCAmelCase : Tuple = latest_version if latest_version[1:] in available_versions else "main" logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _UpperCAmelCase : Tuple = F"""v{revision}""" elif revision == "main": _UpperCAmelCase : Tuple = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _UpperCAmelCase : List[str] = COMMUNITY_PIPELINES_URL.format(revision=_UpperCAmelCase , pipeline=_UpperCAmelCase ) try: _UpperCAmelCase : str = cached_download( _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , ) _UpperCAmelCase : int = "git" _UpperCAmelCase : Tuple = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _UpperCAmelCase : Union[str, Any] = hf_hub_download( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , ) _UpperCAmelCase : Tuple = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _UpperCAmelCase : Optional[Any] = check_imports(_UpperCAmelCase ) # Now we move the module inside our cached dynamic modules. _UpperCAmelCase : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_UpperCAmelCase ) _UpperCAmelCase : List[Any] = Path(_UpperCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_UpperCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: _UpperCAmelCase : Optional[int] = F"""{module_needed}.py""" shutil.copy(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase : List[Any] = use_auth_token elif use_auth_token is True: _UpperCAmelCase : Tuple = HfFolder.get_token() else: _UpperCAmelCase : Dict = None _UpperCAmelCase : Tuple = model_info(_UpperCAmelCase , revision=_UpperCAmelCase , token=_UpperCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _UpperCAmelCase : Any = submodule_path / commit_hash _UpperCAmelCase : List[str] = full_submodule + os.path.sep + commit_hash create_dynamic_module(_UpperCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(_UpperCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _UpperCAmelCase , F"""{module_needed}.py""" , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) return os.path.join(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict[str, str]] = None , _UpperCAmelCase : Optional[Union[bool, str]] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , **_UpperCAmelCase : Any , ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = get_cached_module_file( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) return get_class_in_module(_UpperCAmelCase , final_module.replace(".py" , "" ) )
31
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Any = """blip_2_vision_model""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int]=14_08 , SCREAMING_SNAKE_CASE_ : Optional[Any]=61_44 , SCREAMING_SNAKE_CASE_ : str=39 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE_ : Dict=2_24 , SCREAMING_SNAKE_CASE_ : Optional[int]=14 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Any=0.0_0001 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : Tuple=1E-10 , SCREAMING_SNAKE_CASE_ : List[Any]=True , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Tuple: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) A: Any = hidden_size A: Union[str, Any] = intermediate_size A: List[Any] = num_hidden_layers A: Any = num_attention_heads A: Optional[int] = patch_size A: int = image_size A: str = initializer_range A: Optional[Any] = attention_dropout A: List[Any] = layer_norm_eps A: Union[str, Any] = hidden_act A: Optional[Any] = qkv_bias @classmethod def _snake_case ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Any ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) A , A: Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": A: Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = """blip_2_qformer""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE_ : str=7_68 , SCREAMING_SNAKE_CASE_ : Tuple=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=30_72 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Any=5_12 , SCREAMING_SNAKE_CASE_ : Dict=0.02 , SCREAMING_SNAKE_CASE_ : Any=1E-12 , SCREAMING_SNAKE_CASE_ : str=0 , SCREAMING_SNAKE_CASE_ : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=14_08 , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: str = vocab_size A: Any = hidden_size A: str = num_hidden_layers A: Tuple = num_attention_heads A: int = hidden_act A: str = intermediate_size A: Dict = hidden_dropout_prob A: List[Any] = attention_probs_dropout_prob A: Dict = max_position_embeddings A: int = initializer_range A: Optional[int] = layer_norm_eps A: List[str] = position_embedding_type A: Optional[int] = cross_attention_frequency A: Optional[Any] = encoder_hidden_size @classmethod def _snake_case ( cls : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : str ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) A , A: List[str] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": A: Optional[Any] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : str = """blip-2""" UpperCamelCase_ : List[str] = True def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Any=32 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) if vision_config is None: A: Optional[Any] = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: A: Tuple = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: A: Optional[Any] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) A: List[Any] = BlipaVisionConfig(**SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = BlipaQFormerConfig(**SCREAMING_SNAKE_CASE_ ) A: Tuple = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' A: Dict = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE_ ) A: List[Any] = self.text_config.tie_word_embeddings A: List[str] = self.text_config.is_encoder_decoder A: Any = num_query_tokens A: Optional[Any] = self.vision_config.hidden_size A: Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES A: int = 1.0 A: Dict = 0.02 @classmethod def _snake_case ( cls : Any , SCREAMING_SNAKE_CASE_ : BlipaVisionConfig , SCREAMING_SNAKE_CASE_ : BlipaQFormerConfig , SCREAMING_SNAKE_CASE_ : PretrainedConfig , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE_ , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A: int = copy.deepcopy(self.__dict__ ) A: Any = self.vision_config.to_dict() A: List[str] = self.qformer_config.to_dict() A: int = self.text_config.to_dict() A: Union[str, Any] = self.__class__.model_type return output
334
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''▁''' class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : int = CamembertTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : str="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Any = vocab_file A: Any = False if not self.vocab_file else True def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: List[str] = [self.cls_token_id] A: List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: List[str] = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
334
1
def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __A = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __A = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __A = subset[i - 1][j] if arr[i - 1] <= j: __A = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
15
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] ="gpt_neox_japanese" def __init__( self : List[Any] , a : Tuple=3_20_00 , a : Dict=25_60 , a : Union[str, Any]=32 , a : Dict=32 , a : Dict=4 , a : Optional[Any]="gelu" , a : Any=1.00 , a : str=1_00_00 , a : List[str]=20_48 , a : str=0.02 , a : Union[str, Any]=1e-5 , a : Optional[Any]=True , a : str=3_19_96 , a : List[str]=3_19_99 , a : str=0.1 , a : Union[str, Any]=0.0 , **a : Optional[Any] , ): """simple docstring""" super().__init__(bos_token_id=a , eos_token_id=a , **a ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_multiple_size __lowerCamelCase = hidden_act __lowerCamelCase = rotary_pct __lowerCamelCase = rotary_emb_base __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = attention_dropout __lowerCamelCase = hidden_dropout
67
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"""vocab_file""": """spiece.model"""} __lowerCamelCase = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } __lowerCamelCase = { """google/bigbird-roberta-base""": 40_96, """google/bigbird-roberta-large""": 40_96, """google/bigbird-base-trivia-itc""": 40_96, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] = ["input_ids", "attention_mask"] A__ : List[int] = [] def __init__(self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : int="<unk>" , snake_case__ : Optional[Any]="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : Dict="<pad>" , snake_case__ : str="[SEP]" , snake_case__ : Optional[Any]="[MASK]" , snake_case__ : Any="[CLS]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : int , ) -> None: '''simple docstring''' snake_case : List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token snake_case : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token snake_case : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token snake_case : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token snake_case : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token snake_case : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token snake_case : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , sep_token=snake_case__ , mask_token=snake_case__ , cls_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Optional[Any] = vocab_file snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : Dict = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : str ) -> Any: '''simple docstring''' snake_case : Optional[int] = self.__dict__.copy() snake_case : List[Any] = None return state def __setstate__(self : Union[str, Any] , snake_case__ : Dict ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Optional[Any] = {} snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return self.sp_model.piece_to_id(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case : List[str] = self.sp_model.IdToPiece(snake_case__ ) return token def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = [] snake_case : Union[str, Any] = "" snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token snake_case : List[Any] = True snake_case : Optional[int] = [] else: current_sub_tokens.append(snake_case__ ) snake_case : Any = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : bool = False , snake_case__ : bool = None , snake_case__ : bool = True , **snake_case__ : Optional[int] , ) -> str: '''simple docstring''' snake_case : Any = kwargs.pop("use_source_tokenizer" , snake_case__ ) snake_case : List[str] = self.convert_ids_to_tokens(snake_case__ , skip_special_tokens=snake_case__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case : List[str] = [] snake_case : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) snake_case : Optional[Any] = [] sub_texts.append(snake_case__ ) else: current_sub_text.append(snake_case__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case : Any = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(snake_case__ ) ) else: snake_case : Optional[int] = "".join(snake_case__ ) snake_case : List[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case : int = self.clean_up_tokenization(snake_case__ ) return clean_text else: return text def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : List[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : int = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : Dict = [self.cls_token_id] snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : str = [self.sep_token_id] snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
10
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
148
"""simple docstring""" import sys from collections import defaultdict class lowerCamelCase__ : def __init__( self ): """simple docstring""" snake_case : Dict = [] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self.node_position[vertex] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Dict = pos def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case : Any = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case : Any = 2 * start + 1 else: snake_case : Union[str, Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case , snake_case : Dict = heap[smallest_child], positions[smallest_child] snake_case , snake_case : Any = ( heap[start], positions[start], ) snake_case , snake_case : str = temp, tempa snake_case : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE ) self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = position[index] while index != 0: snake_case : Dict = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case : Tuple = heap[parent] snake_case : str = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE ) else: snake_case : Union[str, Any] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) break snake_case : Optional[Any] = parent else: snake_case : Optional[int] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , 0 ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = len(SCREAMING_SNAKE_CASE ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = positions[0] snake_case : List[str] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return temp def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): snake_case : Tuple = Heap() snake_case : List[str] = [0] * len(lowercase__ ) snake_case : Optional[int] = [-1] * len(lowercase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case : Optional[int] = [] # Heap of Distance of vertices from their neighboring vertex snake_case : List[Any] = [] for vertex in range(len(lowercase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowercase__ ) heap.node_position.append(lowercase__ ) snake_case : Optional[int] = [] snake_case : Union[str, Any] = 1 snake_case : Union[str, Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case : List[Any] = 0 snake_case : Tuple = distance heap.heapify(lowercase__ , lowercase__ ) for _ in range(1 , len(lowercase__ ) ): snake_case : Optional[Any] = heap.delete_minimum(lowercase__ , lowercase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case : Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowercase__ )] ): snake_case : str = distance heap.bottom_to_top( lowercase__ , heap.get_position(lowercase__ ) , lowercase__ , lowercase__ ) snake_case : Optional[int] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
148
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
367
from string import ascii_uppercase _lowercase : str ={char: i for i, char in enumerate(ascii_uppercase)} _lowercase : Dict =dict(enumerate(ascii_uppercase)) def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> str: """simple docstring""" a__ : Any = len(_lowercase) a__ : Optional[int] = 0 while True: if x == i: a__ : Optional[Any] = 0 if len(_lowercase) == len(_lowercase): break key += key[i] i += 1 return key def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> str: """simple docstring""" a__ : Tuple = """""" a__ : str = 0 for letter in message: if letter == " ": cipher_text += " " else: a__ : List[str] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> str: """simple docstring""" a__ : int = """""" a__ : int = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: a__ : Dict = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : List[Any] = """THE GERMAN ATTACK""" a__ : List[Any] = """SECRET""" a__ : Tuple = generate_key(_lowercase , _lowercase) a__ : str = cipher_text(_lowercase , _lowercase) print(F'''Encrypted Text = {s}''') print(F'''Original Text = {original_text(_lowercase , _lowercase)}''') if __name__ == "__main__": import doctest doctest.testmod() main()
266
0
'''simple docstring''' def lowerCamelCase ( __lowerCamelCase : int ) ->int: _SCREAMING_SNAKE_CASE = [1] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0, 0 _SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 _SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 _SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 for _ in range(1 , __lowerCamelCase ): _SCREAMING_SNAKE_CASE = min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ugly_nums.append(__lowerCamelCase ) if next_num == next_a: ia += 1 _SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(200) = }""")
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''data2vec-text''' def __init__( self , A=3_0522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = classifier_dropout class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
58
1
lowercase_ = """Tobias Carryer""" from time import time class _snake_case : def __init__( self : Optional[int], __lowercase : Dict, __lowercase : Optional[Any], __lowercase : Tuple, __lowercase : Optional[Any]=int(time() ) ): # noqa: B008 lowercase__ = multiplier lowercase__ = increment lowercase__ = modulo lowercase__ = seed def A__ ( self : Optional[Any] ): lowercase__ = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowercase_ = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
355
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = int(SCREAMING_SNAKE_CASE_ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE_ ) lowercase__ , lowercase__ = divmod(SCREAMING_SNAKE_CASE_ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE_ ) + str(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = str(SCREAMING_SNAKE_CASE_ ).strip() if not number: raise ValueError("No input value was provided" ) lowercase__ = "-" if number.startswith("-" ) else "" lowercase__ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE_ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
224
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase_ ( A_ ): lowercase__ = '''fnet''' def __init__( self : str , snake_case_ : str=32_000 , snake_case_ : Tuple=768 , snake_case_ : Dict=12 , snake_case_ : List[Any]=3_072 , snake_case_ : Dict="gelu_new" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Any=512 , snake_case_ : List[str]=4 , snake_case_ : Any=0.02 , snake_case_ : int=1e-12 , snake_case_ : Optional[Any]=False , snake_case_ : Optional[Any]=512 , snake_case_ : Optional[Any]=3 , snake_case_ : Optional[int]=1 , snake_case_ : Dict=2 , **snake_case_ : List[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = use_tpu_fourier_optimizations A__ = tpu_short_seq_length
230
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : str ) -> Dict: '''simple docstring''' A__ = "ZinengTang/tvlt-base" A__ = tempfile.mkdtemp() def __magic_name__ ( self : int , **snake_case_ : Dict ) -> Union[str, Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **snake_case_ ) def __magic_name__ ( self : Optional[int] , **snake_case_ : str ) -> List[str]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Tuple ) -> Any: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) A__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) self.assertIsInstance(processor.image_processor , snake_case_ ) def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([12_000] ) A__ = feature_extractor(snake_case_ , return_tensors="np" ) A__ = processor(audio=snake_case_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([3, 224, 224] ) A__ = image_processor(snake_case_ , return_tensors="np" ) A__ = processor(images=snake_case_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([12_000] ) A__ = np.ones([3, 224, 224] ) A__ = processor(audio=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __magic_name__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
230
1
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model"} __A = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } __A = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] lowercase_ = [] def __init__(self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<s>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : List[str]="<pad>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : List[str]="[MASK]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : int , ) ->None: '''simple docstring''' lowerCamelCase__: Tuple =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token lowerCamelCase__: int =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token lowerCamelCase__: Any =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token lowerCamelCase__: Union[str, Any] =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token lowerCamelCase__: Any =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token lowerCamelCase__: Any =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__: Optional[int] =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token lowerCamelCase__: Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =vocab_file lowerCamelCase__: Optional[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__: int =self.__dict__.copy() lowerCamelCase__: Any =None return state def __setstate__(self : Dict , UpperCAmelCase_ : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: str ={} lowerCamelCase__: Optional[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[Any]) ->Dict: '''simple docstring''' return self.sp_model.piece_to_id(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[str]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.sp_model.IdToPiece(UpperCAmelCase_) return token def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Dict) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =[] lowerCamelCase__: Any ="" lowerCamelCase__: Any =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_) + token lowerCamelCase__: str =True lowerCamelCase__: List[str] =[] else: current_sub_tokens.append(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =False out_string += self.sp_model.decode(UpperCAmelCase_) return out_string.strip() def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Any , ) ->str: '''simple docstring''' lowerCamelCase__: str =kwargs.pop("use_source_tokenizer" , UpperCAmelCase_) lowerCamelCase__: List[str] =self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase__: Union[str, Any] =[] lowerCamelCase__: List[Any] =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_)) lowerCamelCase__: Tuple =[] sub_texts.append(UpperCAmelCase_) else: current_sub_text.append(UpperCAmelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_)) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowerCamelCase__: int =re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(UpperCAmelCase_)) else: lowerCamelCase__: Any ="".join(UpperCAmelCase_) lowerCamelCase__: Dict =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase__: int =self.clean_up_tokenization(UpperCAmelCase_) return clean_text else: return text def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: int =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Any =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__: List[Any] =[self.cls_token_id] lowerCamelCase__: List[str] =[self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: str =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCAmelCase__ :Dict = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :str = TFAutoModel.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = AutoModel.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCAmelCase__ :Tuple = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = AutoModelForPreTraining.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :Tuple = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = TFAutoModelForCausalLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = AutoModelForCausalLM.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) lowerCAmelCase__ :Dict = AutoModelForCausalLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :Optional[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :str = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) lowerCAmelCase__ :str = TFAutoModelForMaskedLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = AutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = AutoModelForMaskedLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :Optional[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCAmelCase__ :Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCAmelCase__ :int = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = AutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 1_4_4_1_0 ) lowerCAmelCase__ :List[str] = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 1_4_4_1_0 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 1_4_4_1_0 ) lowerCAmelCase__ :Optional[int] = AutoModelWithLMHead.from_pretrained(__UpperCAmelCase , from_tf=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 1_4_4_1_0 )
368
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1e-12 ) ->str: """simple docstring""" lowerCAmelCase__ :Tuple = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T lowerCAmelCase__ :int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(_SCREAMING_SNAKE_CASE , norm_emb_a.T ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" __magic_name__ :CLIPConfig __magic_name__ :jnp.dtype = jnp.floataa def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) lowerCAmelCase__ :str = nn.Dense(self.config.projection_dim , use_bias=__UpperCAmelCase , dtype=self.dtype ) lowerCAmelCase__ :Optional[Any] = self.param('concept_embeds' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) lowerCAmelCase__ :Optional[int] = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCAmelCase__ :Any = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (1_7,) ) lowerCAmelCase__ :List[Any] = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.vision_model(__UpperCAmelCase )[1] lowerCAmelCase__ :Optional[int] = self.visual_projection(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = jax_cosine_distance(__UpperCAmelCase , self.special_care_embeds ) lowerCAmelCase__ :Tuple = jax_cosine_distance(__UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCAmelCase__ :Dict = 0.0 lowerCAmelCase__ :List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCAmelCase__ :Optional[Any] = jnp.round(__UpperCAmelCase , 3 ) lowerCAmelCase__ :Tuple = jnp.any(special_scores > 0 , axis=1 , keepdims=__UpperCAmelCase ) # Use a lower threshold if an image has any special care concept lowerCAmelCase__ :List[Any] = is_special_care * 0.01 lowerCAmelCase__ :Union[str, Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCAmelCase__ :Any = jnp.round(__UpperCAmelCase , 3 ) lowerCAmelCase__ :Tuple = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = CLIPConfig __magic_name__ :Tuple = """clip_input""" __magic_name__ :str = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = jnp.floataa , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' if input_shape is None: lowerCAmelCase__ :Dict = (1, 2_2_4, 2_2_4, 3) lowerCAmelCase__ :Any = self.module_class(config=__UpperCAmelCase , dtype=__UpperCAmelCase , **__UpperCAmelCase ) super().__init__(__UpperCAmelCase , __UpperCAmelCase , input_shape=__UpperCAmelCase , seed=__UpperCAmelCase , dtype=__UpperCAmelCase , _do_init=_do_init ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :str = jax.random.normal(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = jax.random.split(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = {'params': params_rng, 'dropout': dropout_rng} lowerCAmelCase__ :Optional[int] = self.module.init(__UpperCAmelCase , __UpperCAmelCase )['params'] return random_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = jnp.transpose(__UpperCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) , rngs={} , )
254
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : Optional[int] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : snake_case__ : Any = PegasusConfig snake_case__ : Any = {} snake_case__ : str = '''gelu''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_3 , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Tuple=9_9 , SCREAMING_SNAKE_CASE__ : Any=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : str=3_7 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : str=2_0 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Any=0 , ) -> Optional[Any]: a_ : List[Any] = parent a_ : Optional[Any] = batch_size a_ : Dict = seq_length a_ : Optional[int] = is_training a_ : List[Any] = use_labels a_ : List[str] = vocab_size a_ : str = hidden_size a_ : Tuple = num_hidden_layers a_ : List[str] = num_attention_heads a_ : Tuple = intermediate_size a_ : List[str] = hidden_dropout_prob a_ : List[Any] = attention_probs_dropout_prob a_ : List[Any] = max_position_embeddings a_ : List[str] = eos_token_id a_ : Optional[Any] = pad_token_id a_ : Union[str, Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: a_ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) a_ : List[Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) a_ : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a_ : Optional[Any] = prepare_pegasus_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: a_ : Any = 2_0 a_ : int = model_class_name(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = model.encode(inputs_dict['input_ids'] ) a_ , a_ : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a_ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) a_ : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a_ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) a_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a_ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) a_ : Dict = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: a_ : Tuple = 2_0 a_ : Optional[int] = model_class_name(SCREAMING_SNAKE_CASE__ ) a_ : int = model.encode(inputs_dict['input_ids'] ) a_ , a_ : Dict = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a_ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a_ : str = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a_ : List[str] = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) a_ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a_ : Any = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) a_ : Optional[int] = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : int , __A : Union[str, Any] , __A : Optional[int]=None , __A : str=None , ) -> List[Any]: """simple docstring""" if attention_mask is None: a_ : List[str] = np.not_equal(__A , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: a_ : str = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : List[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case__ : Optional[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case__ : Optional[Any] = True snake_case__ : List[str] = False snake_case__ : str = False snake_case__ : Any = False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Any = FlaxPegasusModelTester(self ) a_ : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: a_ , a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a_ : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Any ): return model.encode(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) with self.subTest('JIT Enabled' ): a_ : Any = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a_ : Optional[int] = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a_ : List[str] = model_class(SCREAMING_SNAKE_CASE__ ) a_ : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) a_ : str = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , encoder_outputs=SCREAMING_SNAKE_CASE__ , ) with self.subTest('JIT Enabled' ): a_ : List[str] = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a_ : Dict = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: for model_class_name in self.all_model_classes: a_ : Dict = model_class_name.from_pretrained('google/pegasus-large' , from_pt=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = np.ones((1, 1) ) a_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: a_ : List[Any] = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) a_ : List[Any] = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) a_ : Optional[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] a_ : Union[str, Any] = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] a_ : Any = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='np' , truncation=SCREAMING_SNAKE_CASE__ , max_length=5_1_2 , padding=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = model.generate(**SCREAMING_SNAKE_CASE__ , num_beams=2 ).sequences a_ : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) assert tgt_text == decoded
32
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ = logging.get_logger(__name__) class snake_case ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int], *_lowerCamelCase : Union[str, Any], **_lowerCamelCase : Dict ): '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''', _lowerCamelCase, ) super().__init__(*_lowerCamelCase, **_lowerCamelCase )
266
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : str, UpperCamelCase_ : Tuple, UpperCamelCase_ : int, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Union[str, Any]: '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize), dtype=np.floataa) # each value for y in range(lowerCAmelCase__): for x in range(lowerCAmelCase__): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta) __lowercase = np.sin(_theta) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2)) * np.cos(2 * np.pi * _x / lambd + psi) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _a = imread('../image_data/lena.jpg') # turn image in gray scale value _a = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _a = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: _a = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _a = out / out.max() * 2_55 _a = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
359
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict ): __lowercase = dataset __lowercase = process __lowercase = params def __len__( self : str ): return len(self.dataset ) def __getitem__( self : List[Any], UpperCAmelCase__ : int ): __lowercase = self.dataset[i] __lowercase = self.process(UpperCAmelCase__, **self.params ) return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any]=None ): __lowercase = loader __lowercase = infer __lowercase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __lowercase = None __lowercase = loader_batch_size # Internal bookkeeping __lowercase = None __lowercase = None def __len__( self : str ): return len(self.loader ) def __iter__( self : List[str] ): __lowercase = iter(self.loader ) return self def _lowercase ( self : Union[str, Any] ): if isinstance(self._loader_batch_data, torch.Tensor ): # Batch data is simple tensor, just fetch the slice __lowercase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __lowercase = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): # Convert ModelOutput to tuple first __lowercase = element.to_tuple() if isinstance(element[0], torch.Tensor ): __lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): __lowercase = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase__, UpperCAmelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor ): __lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): __lowercase = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __lowercase = None elif isinstance(element[self._loader_batch_index], torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowercase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index], np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowercase = np.expand_dims(element[self._loader_batch_index], 0 ) else: # This is typically a list, so no need to `unsqueeze`. __lowercase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __lowercase = self._loader_batch_data.__class__(UpperCAmelCase__ ) self._loader_batch_index += 1 return result def _lowercase ( self : Tuple ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __lowercase = next(self.iterator ) __lowercase = self.infer(UpperCAmelCase__, **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase__, torch.Tensor ): __lowercase = processed else: __lowercase = list(processed.keys() )[0] __lowercase = processed[key] if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = len(UpperCAmelCase__ ) else: __lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowercase = observed_batch_size # Setting internal index to unwrap the batch __lowercase = processed __lowercase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : int, UpperCAmelCase__ : str=None ): super().__init__(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def __iter__( self : str ): __lowercase = iter(self.loader ) __lowercase = None return self def _lowercase ( self : int ): if self.subiterator is None: __lowercase = self.infer(next(self.iterator ), **self.params ) try: # Try to return next item __lowercase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __lowercase = self.infer(next(self.iterator ), **self.params ) __lowercase = next(self.subiterator ) return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __iter__( self : int ): __lowercase = iter(self.loader ) return self def _lowercase ( self : List[str] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __lowercase = False __lowercase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __lowercase = self.loader_batch_item() __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) if is_last: return accumulator while not is_last: __lowercase = self.infer(next(self.iterator ), **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase__, torch.Tensor ): __lowercase = processed else: __lowercase = list(processed.keys() )[0] __lowercase = processed[key] if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = len(UpperCAmelCase__ ) else: __lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowercase = observed_batch_size __lowercase = processed __lowercase = 0 while self._loader_batch_index < self.loader_batch_size: __lowercase = self.loader_batch_item() __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) if is_last: return accumulator else: __lowercase = processed __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) return accumulator class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : List[Any], UpperCAmelCase__ : Dataset, UpperCAmelCase__ : str ): __lowercase = dataset __lowercase = key def __len__( self : Optional[Any] ): return len(self.dataset ) def __getitem__( self : Union[str, Any], UpperCAmelCase__ : Any ): return self.dataset[i][self.key] class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : Dataset, UpperCAmelCase__ : str, UpperCAmelCase__ : str ): __lowercase = dataset __lowercase = keya __lowercase = keya def __len__( self : Optional[int] ): return len(self.dataset ) def __getitem__( self : Dict, UpperCAmelCase__ : Tuple ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
144
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __lowerCAmelCase : List[Any] =logging.getLogger(__name__) __lowerCAmelCase : int =50 # max width of layer names __lowerCAmelCase : Optional[Any] =70 # max width of quantizer names def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): A__ = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=lowerCAmelCase__ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=lowerCAmelCase__ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=lowerCAmelCase__ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=lowerCAmelCase__ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=lowerCAmelCase__ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=lowerCAmelCase__ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): if args.calibrator == "max": A__ = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) A__ = 'histogram' elif args.calibrator == "mse": A__ = 'histogram' else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) A__ = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase__ ) A__ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase__ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase__ ) def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[int]=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase__ , ["embeddings"] , which="weight" , _disabled=lowerCAmelCase__ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase__ , [""] , _disabled=lowerCAmelCase__ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase__ , args.quant_disable_keyword , _disabled=lowerCAmelCase__ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase__ , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=lowerCAmelCase__ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase__ , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=lowerCAmelCase__ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase__ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase__ , lowerCAmelCase__ ) if args.clip_gelu: clip_gelu(lowerCAmelCase__ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase__ ) def UpperCamelCase ( _lowerCamelCase : str ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Tuple ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase__ ) def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] ): def fusea(_lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Any ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase__ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return A__ = qq._amax.detach().item() A__ = qk._amax.detach().item() A__ = qv._amax.detach().item() A__ = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) qq._amax.fill_(lowerCAmelCase__ ) qk._amax.fill_(lowerCAmelCase__ ) qv._amax.fill_(lowerCAmelCase__ ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): A__ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase__ ) A__ = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase__ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: A__ = mod.weight.shape[0] A__ = mod._weight_quantizer._amax.detach() A__ = torch.ones(lowerCAmelCase__ , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def UpperCamelCase ( _lowerCamelCase : List[Any] ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase__ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) A__ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) A__ = set(range(len(mod.weight.size() ) ) ) - axis_set A__ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase__ , keepdims=lowerCAmelCase__ ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) A__ = amax def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int]=25 , _lowerCamelCase : List[str]=1_80 , _lowerCamelCase : Any=None ): if ignore is None: A__ = [] elif not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): A__ = [ignore] A__ = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase__ , "weight" ): continue A__ = max(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) for name, mod in model.named_modules(): A__ = getattr(lowerCAmelCase__ , "_input_quantizer" , lowerCAmelCase__ ) A__ = getattr(lowerCAmelCase__ , "_weight_quantizer" , lowerCAmelCase__ ) if not hasattr(lowerCAmelCase__ , "weight" ): continue if type(lowerCAmelCase__ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase__ ) is str and s in name]: continue A__ = F"Act:{input_q.extra_repr()}" A__ = F"Wgt:{weight_q.extra_repr()}" A__ = F"{name:{name_width}} {act_str} {wgt_str}" if len(lowerCAmelCase__ ) <= line_width: logger.info(lowerCAmelCase__ ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def UpperCamelCase ( _lowerCamelCase : Tuple ): A__ = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase__ , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] ): A__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: logger.warning(F"{name} has no {quantizer}" ) def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : Dict="both" , **_lowerCamelCase : Union[str, Any] ): A__ = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(lowerCAmelCase__ , lowerCAmelCase__ , "_input_quantizer" , lowerCAmelCase__ , lowerCAmelCase__ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase__ , lowerCAmelCase__ , "_weight_quantizer" , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(lowerCAmelCase__ ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , **_lowerCamelCase : str ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase__ , "_input_quantizer" ) or hasattr(lowerCAmelCase__ , "_weight_quantizer" ): for n in names: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ): set_quantizers(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) elif name.endswith("_quantizer" ): for n in names: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ): A__ = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(lowerCAmelCase__ )
237
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = "cpu" , lowerCAmelCase__ : Union[str, None] = None ) -> None: """simple docstring""" lowerCAmelCase_ : Any = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCAmelCase_ : str = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Dict = src_path torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
224
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__( self , A , A=2 , A=8 , A=True , A=True , A=True , A=True , A=9_9 , A=1_6 , A=5 , A=2 , A=3_6 , A="gelu" , A=0.0 , A=0.0 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Dict: _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Tuple = seq_length _UpperCAmelCase : str = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Any = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Optional[Any] = num_choices _UpperCAmelCase : Any = scope def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[int] = None if self.use_input_mask: _UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[Any] = None if self.use_token_type_ids: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Optional[Any] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : List[str] = self.get_config() _UpperCAmelCase : int = 3_0_0 return config def __lowerCAmelCase ( self ) -> Tuple: ( _UpperCAmelCase ) : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase : str = True _UpperCAmelCase : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , A , A , A , A , A , A , A ) -> List[Any]: _UpperCAmelCase : List[Any] = MraModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> int: _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : int = MraModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase : Tuple = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) _UpperCAmelCase : Any = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ) _UpperCAmelCase : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , A , A , A , A , A , A , A ) -> List[str]: _UpperCAmelCase : Union[str, Any] = MraForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase : int = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , A , A , A , A , A , A , A ) -> int: _UpperCAmelCase : str = MraForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase : Any = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: _UpperCAmelCase : Tuple = self.num_labels _UpperCAmelCase : Optional[int] = MraForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , A , A , A , A , A , A , A ) -> Dict: _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : int = MraForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: _UpperCAmelCase : Optional[Any] = self.num_choices _UpperCAmelCase : Union[str, Any] = MraForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : str = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Any = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : Any = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' a__ =( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a__ =False a__ =False a__ =False a__ =False a__ =() def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : List[str] = MraModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def __lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Optional[int] = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __lowerCAmelCase ( self ) -> List[Any]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = MraModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ) -> List[str]: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : List[str] = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _UpperCAmelCase : int = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )[0] _UpperCAmelCase : str = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[int] = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _UpperCAmelCase : int = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )[0] _UpperCAmelCase : Optional[Any] = 5_0_2_6_5 _UpperCAmelCase : Optional[int] = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Any = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _UpperCAmelCase : List[str] = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : int = model(SCREAMING_SNAKE_CASE_ )[0] _UpperCAmelCase : Optional[Any] = 5_0_2_6_5 _UpperCAmelCase : Any = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Union[str, Any] = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
355
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowerCAmelCase :str = logging.get_logger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) a__ =field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) a__ =field( default=1_2_8 ,metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } ,) a__ =field( default=a ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : str = self.task_name.lower() class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''train''' a__ ='''dev''' a__ ='''test''' class _UpperCAmelCase ( a ): '''simple docstring''' a__ =42 a__ =42 a__ =42 def __init__( self , A , A , A = None , A = Split.train , A = None , ) -> Dict: warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , A , ) _UpperCAmelCase : Dict = args _UpperCAmelCase : int = glue_processors[args.task_name]() _UpperCAmelCase : Any = glue_output_modes[args.task_name] if isinstance(A , A ): try: _UpperCAmelCase : int = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file _UpperCAmelCase : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) _UpperCAmelCase : List[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = label_list[2], label_list[1] _UpperCAmelCase : Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase : List[Any] = cached_features_file + '''.lock''' with FileLock(A ): if os.path.exists(A ) and not args.overwrite_cache: _UpperCAmelCase : str = time.time() _UpperCAmelCase : Dict = torch.load(A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: _UpperCAmelCase : Union[str, Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _UpperCAmelCase : List[Any] = self.processor.get_test_examples(args.data_dir ) else: _UpperCAmelCase : Optional[Any] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _UpperCAmelCase : Tuple = examples[:limit_length] _UpperCAmelCase : str = glue_convert_examples_to_features( A , A , max_length=args.max_seq_length , label_list=A , output_mode=self.output_mode , ) _UpperCAmelCase : Optional[int] = time.time() torch.save(self.features , A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self , A ) -> InputFeatures: return self.features[i] def __lowerCAmelCase ( self ) -> List[Any]: return self.label_list
68
0
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" assert x is not None assert y is not None snake_case__ : List[Any] = len(__lowerCAmelCase ) snake_case__ : Optional[Any] = len(__lowerCAmelCase ) # declaring the array for storing the dp values snake_case__ : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): snake_case__ : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 snake_case__ : int = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) snake_case__ : str = '''''' snake_case__ , snake_case__ : Any = m, n while i > 0 and j > 0: snake_case__ : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: snake_case__ : Optional[Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": A__ = '''AGGTAB''' A__ = '''GXTXAYB''' A__ = 4 A__ = '''GTAB''' A__ , A__ = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
230
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A__ = logging.get_logger(__name__) class a ( __lowerCamelCase ): __lowerCAmelCase : str = ["""input_features""", """is_longer"""] def __init__( self :Union[str, Any] ,__lowercase :str=6_4 ,__lowercase :Any=4_8_0_0_0 ,__lowercase :List[Any]=4_8_0 ,__lowercase :Optional[int]=1_0 ,__lowercase :Optional[int]=1_0_2_4 ,__lowercase :int=0.0 ,__lowercase :List[Any]=False ,__lowercase :float = 0 ,__lowercase :float = 1_4_0_0_0 ,__lowercase :int = None ,__lowercase :str = "fusion" ,__lowercase :str = "repeatpad" ,**__lowercase :List[Any] ,): super().__init__( feature_size=__lowercase ,sampling_rate=__lowercase ,padding_value=__lowercase ,return_attention_mask=__lowercase ,**__lowercase ,) snake_case__ : Optional[Any] = top_db snake_case__ : Tuple = truncation snake_case__ : Tuple = padding snake_case__ : List[Any] = fft_window_size snake_case__ : List[Any] = (fft_window_size >> 1) + 1 snake_case__ : str = hop_length snake_case__ : Dict = max_length_s snake_case__ : List[str] = max_length_s * sampling_rate snake_case__ : List[Any] = sampling_rate snake_case__ : Any = frequency_min snake_case__ : Dict = frequency_max snake_case__ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=__lowercase ,min_frequency=__lowercase ,max_frequency=__lowercase ,sampling_rate=__lowercase ,norm=__lowercase ,mel_scale='''htk''' ,) snake_case__ : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=__lowercase ,min_frequency=__lowercase ,max_frequency=__lowercase ,sampling_rate=__lowercase ,norm='''slaney''' ,mel_scale='''slaney''' ,) def __lowerCamelCase ( self :int ): snake_case__ : Dict = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :np.array ,__lowercase :Optional[np.array] = None ): snake_case__ : List[Any] = spectrogram( __lowercase ,window_function(self.fft_window_size ,'''hann''' ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=__lowercase ,log_mel='''dB''' ,) return log_mel_spectrogram.T def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[str] ,__lowercase :Tuple ,__lowercase :List[str] ): snake_case__ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case__ : Tuple = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case__ : str = [0] # randomly choose index for each part snake_case__ : Dict = np.random.choice(ranges[0] ) snake_case__ : Any = np.random.choice(ranges[1] ) snake_case__ : Dict = np.random.choice(ranges[2] ) snake_case__ : Optional[int] = mel[idx_front : idx_front + chunk_frames, :] snake_case__ : Optional[Any] = mel[idx_middle : idx_middle + chunk_frames, :] snake_case__ : List[str] = mel[idx_back : idx_back + chunk_frames, :] snake_case__ : Optional[Any] = torch.tensor(mel[None, None, :] ) snake_case__ : Any = torch.nn.functional.interpolate( __lowercase ,size=[chunk_frames, 6_4] ,mode='''bilinear''' ,align_corners=__lowercase ) snake_case__ : List[Any] = mel_shrink[0][0].numpy() snake_case__ : Union[str, Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def __lowerCamelCase ( self :Any ,__lowercase :np.array ,__lowercase :str ,__lowercase :int ,__lowercase :List[str] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case__ : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case__ : List[str] = len(__lowercase ) - max_length snake_case__ : Any = np.random.randint(0 ,overflow + 1 ) snake_case__ : Tuple = waveform[idx : idx + max_length] snake_case__ : Tuple = self._np_extract_fbank_features(__lowercase ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case__ : str = self._np_extract_fbank_features(__lowercase ,self.mel_filters ) snake_case__ : Union[str, Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case__ : Union[str, Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case__ : Tuple = np.stack([mel, mel, mel, mel] ,axis=0 ) snake_case__ : List[Any] = False else: snake_case__ : List[Any] = self._random_mel_fusion(__lowercase ,__lowercase ,__lowercase ) snake_case__ : Dict = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: snake_case__ : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case__ : List[str] = int(max_length / len(__lowercase ) ) snake_case__ : List[str] = np.stack(np.tile(__lowercase ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case__ : Union[str, Any] = int(max_length / len(__lowercase ) ) snake_case__ : List[str] = np.stack(np.tile(__lowercase ,__lowercase ) ) snake_case__ : int = np.pad(__lowercase ,(0, max_length - waveform.shape[0]) ,mode='''constant''' ,constant_values=0 ) if truncation == "fusion": snake_case__ : Tuple = self._np_extract_fbank_features(__lowercase ,self.mel_filters ) snake_case__ : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: snake_case__ : List[Any] = self._np_extract_fbank_features(__lowercase ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self :Dict ,__lowercase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowercase :str = None ,__lowercase :Optional[str] = None ,__lowercase :Optional[int] = None ,__lowercase :Optional[int] = None ,__lowercase :Optional[Union[str, TensorType]] = None ,**__lowercase :Optional[int] ,): snake_case__ : Optional[int] = truncation if truncation is not None else self.truncation snake_case__ : Optional[int] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case__ : List[str] = isinstance(__lowercase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) snake_case__ : Optional[int] = is_batched_numpy or ( isinstance(__lowercase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case__ : Optional[Any] = [np.asarray(__lowercase ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase ,np.ndarray ): snake_case__ : Tuple = np.asarray(__lowercase ,dtype=np.floataa ) elif isinstance(__lowercase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ : Dict = [np.asarray(__lowercase )] # convert to mel spectrogram, truncate and pad if needed. snake_case__ : Any = [ self._get_input_mel(__lowercase ,max_length if max_length else self.nb_max_samples ,__lowercase ,__lowercase ) for waveform in raw_speech ] snake_case__ : Any = [] snake_case__ : Tuple = [] for mel, longer in padded_inputs: input_mel.append(__lowercase ) is_longer.append(__lowercase ) if truncation == "fusion" and sum(__lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case__ : Optional[int] = np.random.randint(0 ,len(__lowercase ) ) snake_case__ : List[str] = True if isinstance(input_mel[0] ,__lowercase ): snake_case__ : Optional[int] = [np.asarray(__lowercase ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case__ : Dict = [[longer] for longer in is_longer] snake_case__ : Dict = {'''input_features''': input_mel, '''is_longer''': is_longer} snake_case__ : str = BatchFeature(__lowercase ) if return_tensors is not None: snake_case__ : List[str] = input_features.convert_to_tensors(__lowercase ) return input_features
230
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCAmelCase_ : Optional[Any] = parser.parse_args() if args.model_type == "bert": lowerCAmelCase_ : str = BertForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase_ : List[str] = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCAmelCase_ : Tuple = model.state_dict() lowerCAmelCase_ : int = {} for w in ["word_embeddings", "position_embeddings"]: lowerCAmelCase_ : Dict = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowerCAmelCase_ : Dict = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowerCAmelCase_ : str = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCAmelCase_ : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowerCAmelCase_ : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowerCAmelCase_ : Any = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowerCAmelCase_ : int = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowerCAmelCase_ : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowerCAmelCase_ : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowerCAmelCase_ : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowerCAmelCase_ : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowerCAmelCase_ : List[Any] = state_dict['cls.predictions.decoder.weight'] lowerCAmelCase_ : List[str] = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase_ : Any = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowerCAmelCase_ : Optional[Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
346
'''simple docstring''' from manim import * class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): _a = Rectangle(height=0.5 , width=0.5 ) _a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _a = [mem.copy() for i in range(6 )] _a = [mem.copy() for i in range(6 )] _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = VGroup(__a , __a ).arrange(__a , buff=0 ) _a = Text("CPU" , font_size=24 ) _a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) _a = [mem.copy() for i in range(4 )] _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = Text("GPU" , font_size=24 ) _a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = Text("Model" , font_size=24 ) _a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) _a = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _a = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) cpu_targs.append(__a ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = Text("Loaded Checkpoint" , font_size=24 ) _a = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _a = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) _a = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _a = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a ) , Write(__a ) ) self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) _a = [] _a = [] for i, rect in enumerate(__a ): _a = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) first_animations.append(GrowFromCenter(__a , run_time=1 ) ) _a = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(*__a ) self.wait()
346
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase__( lowercase : List[Any] , lowercase : Any , lowercase : Any ) -> Optional[int]: __snake_case : Optional[int] = 1.5 __snake_case : List[str] = int(factor * num_class_images ) __snake_case : Tuple = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowerCAmelCase__ , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowerCAmelCase__ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: __snake_case : List[Any] = client.query(text=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) >= factor * num_class_images or num_images > 1E4: break else: __snake_case : int = int(factor * num_images ) __snake_case : Any = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowerCAmelCase__ , aesthetic_weight=0.1 , ) __snake_case : Tuple = 0 __snake_case : Tuple = 0 __snake_case : List[Any] = tqdm(desc="downloading real regularization images" , total=lowerCAmelCase__ ) with open(f"""{class_data_dir}/caption.txt""" , "w" ) as fa, open(f"""{class_data_dir}/urls.txt""" , "w" ) as fa, open( f"""{class_data_dir}/images.txt""" , "w" ) as fa: while total < num_class_images: __snake_case : Any = class_images[count] count += 1 try: __snake_case : int = requests.get(images["url"] ) if img.status_code == 200: __snake_case : List[str] = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCAmelCase__( ) -> List[Any]: __snake_case : List[str] = argparse.ArgumentParser("" , add_help=lowerCAmelCase__ ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=lowerCAmelCase__ , type=lowerCAmelCase__ ) parser.add_argument("--class_data_dir" , help="path to save images" , required=lowerCAmelCase__ , type=lowerCAmelCase__ ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=lowerCAmelCase__ ) return parser.parse_args() if __name__ == "__main__": _UpperCamelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
326
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 _UpperCamelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : Optional[Any] = TaTokenizer _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[Any]: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : List[Any] = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __UpperCAmelCase : Any = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = vocab_file __UpperCAmelCase : Any = False if not self.vocab_file else True __UpperCAmelCase : Optional[int] = extra_ids @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __UpperCAmelCase : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , ) return max_model_length def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Any = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __UpperCAmelCase : Optional[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self ) -> Any: '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
254
0
from manim import * class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): _snake_case : Dict = Rectangle(height=0.5 , width=0.5 ) _snake_case : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case : Union[str, Any] = Rectangle(height=0.25 , width=0.25 ) _snake_case : int = [mem.copy() for i in range(6 )] _snake_case : str = [mem.copy() for i in range(6 )] _snake_case : str = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Any = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : List[str] = Text("CPU" , font_size=24 ) _snake_case : List[Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) _snake_case : List[str] = [mem.copy() for i in range(4 )] _snake_case : Optional[int] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Optional[Any] = Text("GPU" , font_size=24 ) _snake_case : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) _snake_case : Dict = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Any = Text("Model" , font_size=24 ) _snake_case : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) _snake_case : Union[str, Any] = [] _snake_case : Dict = [] for i, rect in enumerate(lowercase_ ): _snake_case : List[str] = fill.copy().set_fill(lowercase_ , opacity=0.8 ) target.move_to(lowercase_ ) model_arr.append(lowercase_ ) _snake_case : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowercase_ ) self.add(*lowercase_ , *lowercase_ ) _snake_case : List[str] = [meta_mem.copy() for i in range(6 )] _snake_case : List[str] = [meta_mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Dict = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Dict = Text("Disk" , font_size=24 ) _snake_case : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) disk.move_to([-4, -1.25, 0] ) self.add(lowercase_ , lowercase_ ) _snake_case : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case : int = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) _snake_case : Dict = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowercase_ ) _snake_case : Tuple = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) ) _snake_case : Dict = Square(0.3 ) input.set_fill(lowercase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowercase_ , buff=0.5 ) self.play(Write(lowercase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowercase_ , buff=0.02 ) self.play(MoveToTarget(lowercase_ ) ) self.play(FadeOut(lowercase_ ) ) _snake_case : List[Any] = Arrow(start=lowercase_ , end=lowercase_ , color=lowercase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowercase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _snake_case : Optional[Any] = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ , run_time=3 ) ) _snake_case : Dict = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(lowercase_ ) , Circumscribe(model_arr[0] , color=lowercase_ , **lowercase_ ) , Circumscribe(model_cpu_arr[0] , color=lowercase_ , **lowercase_ ) , Circumscribe(gpu_rect[0] , color=lowercase_ , **lowercase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _snake_case : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowercase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _snake_case : Any = AnimationGroup( FadeOut(lowercase_ , run_time=0.5 ) , MoveToTarget(lowercase_ , run_time=0.5 ) , FadeIn(lowercase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowercase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _snake_case : Union[str, Any] = 0.7 self.play( Circumscribe(model_arr[i] , **lowercase_ ) , Circumscribe(cpu_left_col_base[i] , **lowercase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowercase_ , **lowercase_ ) , Circumscribe(gpu_rect[0] , color=lowercase_ , **lowercase_ ) , Circumscribe(model_arr[i + 1] , color=lowercase_ , **lowercase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowercase_ , **lowercase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowercase_ , **lowercase_ ) , Circumscribe(gpu_rect[0] , color=lowercase_ , **lowercase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _snake_case : Union[str, Any] = a_c _snake_case : List[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowercase_ ) , FadeOut(lowercase_ , run_time=0.5 ) , ) _snake_case : Union[str, Any] = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ , run_time=3 ) , MoveToTarget(lowercase_ ) ) self.wait()
284
def snake_case (__lowercase ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) _snake_case : Any = [True] * (num + 1) _snake_case : str = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowercase ): _snake_case : Optional[int] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Any = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
284
1
import os snake_case : Dict = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" a :List[Any] = 0 a :Optional[Any] = 0 while index < len(UpperCAmelCase_ ) - 1: a :List[str] = SYMBOLS[numerals[index]] a :Union[str, Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :Any = '''''' a :List[str] = num // 1000 numerals += m_count * "M" num %= 1000 a :str = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 a :int = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowerCamelCase ( UpperCAmelCase_ : str = "/p089_roman.txt" ): """simple docstring""" a :Union[str, Any] = 0 with open(os.path.dirname(UpperCAmelCase_ ) + roman_numerals_filename ) as filea: a :Optional[int] = filea.readlines() for line in lines: a :int = line.strip() a :Union[str, Any] = parse_roman_numerals(UpperCAmelCase_ ) a :Optional[Any] = generate_roman_numerals(UpperCAmelCase_ ) savings += len(UpperCAmelCase_ ) - len(UpperCAmelCase_ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
94
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _snake_case ( lowerCamelCase__ : Tuple ) -> List[Any]: lowerCamelCase_ : Union[str, Any] =384 if "tiny" in model_name: lowerCamelCase_ : str =[3, 3, 9, 3] lowerCamelCase_ : Union[str, Any] =[96, 192, 384, 768] if "small" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : List[str] =[96, 192, 384, 768] if "base" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : Tuple =[128, 256, 512, 1_024] lowerCamelCase_ : str =512 if "large" in model_name: lowerCamelCase_ : Optional[int] =[3, 3, 27, 3] lowerCamelCase_ : Optional[int] =[192, 384, 768, 1_536] lowerCamelCase_ : Optional[Any] =768 if "xlarge" in model_name: lowerCamelCase_ : str =[3, 3, 27, 3] lowerCamelCase_ : Optional[Any] =[256, 512, 1_024, 2_048] lowerCamelCase_ : Any =1_024 # set label information lowerCamelCase_ : Dict =150 lowerCamelCase_ : Union[str, Any] ="huggingface/label-files" lowerCamelCase_ : Optional[int] ="ade20k-id2label.json" lowerCamelCase_ : str =json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ : Dict ={int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ : Optional[Any] ={v: k for k, v in idalabel.items()} lowerCamelCase_ : Optional[int] =ConvNextConfig( depths=lowerCamelCase__ , hidden_sizes=lowerCamelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCamelCase_ : Any =UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def _snake_case ( lowerCamelCase__ : str ) -> str: lowerCamelCase_ : List[str] =[] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) -> Dict: lowerCamelCase_ : List[str] =dct.pop(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =val def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Union[str, Any] ={ "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } lowerCamelCase_ : Optional[int] =model_name_to_url[model_name] lowerCamelCase_ : Optional[Any] =torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["state_dict"] lowerCamelCase_ : List[Any] =get_upernet_config(lowerCamelCase__ ) lowerCamelCase_ : Tuple =UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ : Optional[Any] =state_dict.pop(lowerCamelCase__ ) if "bn" in key: lowerCamelCase_ : str =key.replace("bn" , "batch_norm" ) lowerCamelCase_ : Union[str, Any] =val # rename keys lowerCamelCase_ : Tuple =create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image lowerCamelCase_ : List[str] ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowerCamelCase_ : Union[str, Any] =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" ) lowerCamelCase_ : List[str] =SegformerImageProcessor() lowerCamelCase_ : int =processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): lowerCamelCase_ : Tuple =model(lowerCamelCase__ ) if model_name == "upernet-convnext-tiny": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowerCamelCase_ : Dict =torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowerCamelCase_ : Tuple =torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowerCamelCase_ : Dict =torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
144
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , """vision""" ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __call__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return {}, {}, {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = load_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = model_outputs.predicted_depth SCREAMING_SNAKE_CASE__ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = (output * 2_55 / np.max(SCREAMING_SNAKE_CASE__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE__ : List[str] = Image.fromarray(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Any = predicted_depth SCREAMING_SNAKE_CASE__ : Dict = depth return output_dict
25
import copy import random from transformers import CLIPTokenizer class a__ ( snake_case ): """simple docstring""" def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(*lowercase , **lowercase ) A__ = {} def UpperCamelCase ( self , lowercase , *lowercase , **lowercase ) -> str: '''simple docstring''' A__ = super().add_tokens(lowercase , *lowercase , **lowercase ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' " `placeholder_token` that is not already in the tokenizer." ) def UpperCamelCase ( self , lowercase , *lowercase , lowercase=1 , **lowercase ) -> Any: '''simple docstring''' A__ = [] if num_vec_per_token == 1: self.try_adding_tokens(lowercase , *lowercase , **lowercase ) output.append(lowercase ) else: A__ = [] for i in range(lowercase ): A__ = placeholder_token + F'_{i}' self.try_adding_tokens(lowercase , *lowercase , **lowercase ) output.append(lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) A__ = output def UpperCamelCase ( self , lowercase , lowercase=False , lowercase=1.0 ) -> List[Any]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = [] for i in range(len(lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A__ = self.token_map[placeholder_token] A__ = tokens[: 1 + int(len(lowercase ) * prop_tokens_to_load )] if vector_shuffle: A__ = copy.copy(lowercase ) random.shuffle(lowercase ) A__ = text.replace(lowercase , " ".join(lowercase ) ) return text def __call__( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase ) -> str: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase ) , *lowercase , **lowercase , ) def UpperCamelCase ( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase ) -> List[str]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase ) , *lowercase , **lowercase , )
68
0
'''simple docstring''' def UpperCAmelCase ( a_ = 4_0_0_0_0_0_0 ) -> int: """simple docstring""" A_ : List[Any] = [0, 1] A_ : List[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A_ : Union[str, Any] = 0 for j in range(len(a_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'{solution() = }')
164
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 50 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ) -> Union[Tuple, ImagePipelineOutput]: A_ : str = self.unet.config.sample_size A_ : Optional[int] = (batch_size, 3, img_size, img_size) A_ : Any = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A_ : Dict = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A_ : Optional[Any] = self.scheduler.schedule[t] A_ : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A_ , A_ : List[Any] = self.scheduler.add_noise_to_input(_lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : List[str] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A_ : List[Any] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : int = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A_ : Any = self.scheduler.step_correct( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , step_output.prev_sample , step_output["""derivative"""] , ) A_ : Tuple = step_output.prev_sample A_ : Union[str, Any] = (sample / 2 + 0.5).clamp(0 , 1 ) A_ : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : Dict = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
164
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase_ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase_ = model.state_dict() UpperCAmelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase_ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"] UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
346
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase_ = '\\n\n' UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = """cuda""" else: UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = model.to(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) UpperCAmelCase__ = encodings["""input_ids"""] UpperCAmelCase__ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
346
1
__UpperCamelCase : Optional[int] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: # Return True if there is node that has not iterated. a = [False] * len(__lowerCamelCase ) a = [s] a = True while queue: a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) a = True a = u return visited[t] def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: a = [-1] * (len(__lowerCamelCase )) a = 0 a = [] a = [i[:] for i in graph] # Record original cut, copy. while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): a = float("""Inf""" ) a = sink while s != source: # Find the minimum value in select path a = min(__lowerCamelCase , graph[parent[s]][s] ) a = parent[s] max_flow += path_flow a = sink while v != source: a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow a = parent[v] for i in range(len(__lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
347
def __A ( __lowerCamelCase ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
347
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionXLImgaImgPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} a_ = PipelineTesterMixin.required_optional_params - {"""latents"""} a_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase ( self : str ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) __lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=3_2 , ) __lowerCAmelCase = CLIPTextModel(lowerCAmelCase_ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=lowerCAmelCase_ ) __lowerCAmelCase = CLIPTextModelWithProjection(lowerCAmelCase_ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=lowerCAmelCase_ ) __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=0 ) -> Optional[Any]: __lowerCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) __lowerCAmelCase = image / 2 + 0.5 if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ) -> Optional[int]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase ( self : Optional[int] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase ( self : int ) -> Any: pass def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # forward without prompt embeds __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = 3 * ['this is a negative prompt'] __lowerCAmelCase = negative_prompt __lowerCAmelCase = 3 * [inputs['prompt']] __lowerCAmelCase = sd_pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = 3 * ['this is a negative prompt'] __lowerCAmelCase = 3 * [inputs.pop('prompt' )] ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = sd_pipe.encode_prompt(lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) __lowerCAmelCase = sd_pipe( **lowerCAmelCase_ , prompt_embeds=lowerCAmelCase_ , negative_prompt_embeds=lowerCAmelCase_ , pooled_prompt_embeds=lowerCAmelCase_ , negative_pooled_prompt_embeds=lowerCAmelCase_ , ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : int ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str]="cpu" , lowerCAmelCase_ : Optional[Any]=torch.floataa , lowerCAmelCase_ : List[Any]=0 ) -> str: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 6_4, 6_4) ) __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) __lowerCAmelCase = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_inputs(lowerCAmelCase_ ) __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
284
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : Dict = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
284
1
'''simple docstring''' def __magic_name__ ( A ) -> list[int]: snake_case = len(A ) for i in range(A ): for j in range(i + 1 , A ): if numbers[j] < numbers[i]: snake_case , snake_case = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
332
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
1
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP UpperCAmelCase__ : List[str] = False try: UpperCAmelCase__ : List[Any] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = [] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : int = choices SCREAMING_SNAKE_CASE__ : Dict = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE__ : Optional[int] = "*" else: SCREAMING_SNAKE_CASE__ : Tuple = "➔ " def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "" ) -> Union[str, Any]: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , SCREAMING_SNAKE_CASE__ ) else: forceWrite(self.choices[index] , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(SCREAMING_SNAKE_CASE__ ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(SCREAMING_SNAKE_CASE__ ) move_cursor(SCREAMING_SNAKE_CASE__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def __magic_name__ (self ) -> Tuple: """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def __magic_name__ (self ) -> List[str]: """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(SCREAMING_SNAKE_CASE__ )] for number in range(10 )] ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE__ : Dict = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , SCREAMING_SNAKE_CASE__ ) else: return else: return def __magic_name__ (self , SCREAMING_SNAKE_CASE__ = 0 ) -> List[str]: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = default_choice for i in range(len(self.choices ) ): self.print_choice(SCREAMING_SNAKE_CASE__ ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE__ : str = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE__ : Dict = default_choice else: SCREAMING_SNAKE_CASE__ : Tuple = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(SCREAMING_SNAKE_CASE__ , """\n""" ) return choice
25
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ): a__: Any =[randint(-1_000 , 1_000 ) for i in range(10 )] a__: List[str] =randint(-5_000 , 5_000 ) return (arr, r) __UpperCAmelCase = make_dataset() def __lowerCamelCase ( __magic_name__ : list[int] , __magic_name__ : int ): for triplet in permutations(__magic_name__ , 3 ): if sum(__magic_name__ ) == target: return tuple(sorted(__magic_name__ ) ) return (0, 0, 0) def __lowerCamelCase ( __magic_name__ : list[int] , __magic_name__ : int ): arr.sort() a__: Optional[Any] =len(__magic_name__ ) for i in range(n - 1 ): a__ , a__: int =i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ): a__: Optional[Any] ="\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" a__: List[Any] ="\ntriplet_sum1(*dataset)\n" a__: Union[str, Any] ="\ntriplet_sum2(*dataset)\n" a__: List[str] =repeat(setup=__magic_name__ , stmt=__magic_name__ , repeat=5 , number=10_000 ) a__: Tuple =repeat(setup=__magic_name__ , stmt=__magic_name__ , repeat=5 , number=10_000 ) return (min(__magic_name__ ), min(__magic_name__ )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
42
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class lowerCamelCase__ ( _a ): _lowerCAmelCase = 42 class lowerCamelCase__ ( _a , _a ): @register_to_config def __init__( self : Union[str, Any] , _a : int = 1_6 , _a : int = 8_8 , _a : Optional[int] = None , _a : Optional[int] = None , _a : int = 1 , _a : float = 0.0 , _a : int = 3_2 , _a : Optional[int] = None , _a : bool = False , _a : Optional[int] = None , _a : str = "geglu" , _a : bool = True , _a : bool = True , ): super().__init__() a__: List[Any] =num_attention_heads a__: Tuple =attention_head_dim a__: Dict =num_attention_heads * attention_head_dim a__: List[Any] =in_channels a__: Dict =torch.nn.GroupNorm(num_groups=_a , num_channels=_a , eps=1e-6 , affine=_a ) a__: str =nn.Linear(_a , _a ) # 3. Define transformers blocks a__: Optional[int] =nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , cross_attention_dim=_a , activation_fn=_a , attention_bias=_a , double_self_attention=_a , norm_elementwise_affine=_a , ) for d in range(_a ) ] ) a__: Any =nn.Linear(_a , _a ) def _lowerCamelCase ( self : List[str] , _a : str , _a : Optional[Any]=None , _a : int=None , _a : int=None , _a : Optional[int]=1 , _a : Tuple=None , _a : bool = True , ): a__ , a__ , a__ , a__: int =hidden_states.shape a__: str =batch_frames // num_frames a__: Any =hidden_states a__: Optional[int] =hidden_states[None, :].reshape(_a , _a , _a , _a , _a ) a__: Union[str, Any] =hidden_states.permute(0 , 2 , 1 , 3 , 4 ) a__: Tuple =self.norm(_a ) a__: Union[str, Any] =hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _a , _a ) a__: Dict =self.proj_in(_a ) # 2. Blocks for block in self.transformer_blocks: a__: str =block( _a , encoder_hidden_states=_a , timestep=_a , cross_attention_kwargs=_a , class_labels=_a , ) # 3. Output a__: Any =self.proj_out(_a ) a__: Optional[int] =( hidden_states[None, None, :] .reshape(_a , _a , _a , _a , _a ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) a__: Dict =hidden_states.reshape(_a , _a , _a , _a ) a__: List[str] =hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_a )
42
1
'''simple docstring''' from __future__ import annotations __A = [] def _A ( lowercase__ , lowercase__ , lowercase__ ): for i in range(len(lowercase__ ) ): if board[row][i] == 1: return False for i in range(len(lowercase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowercase__ , -1 , -1 ) , range(lowercase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowercase__ , -1 , -1 ) , range(lowercase__ , len(lowercase__ ) ) ): if board[i][j] == 1: return False return True def _A ( lowercase__ , lowercase__ ): if row >= len(lowercase__ ): solution.append(lowercase__ ) printboard(lowercase__ ) print() return True for i in range(len(lowercase__ ) ): if is_safe(lowercase__ , lowercase__ , lowercase__ ): lowercase__ = 1 solve(lowercase__ , row + 1 ) lowercase__ = 0 return False def _A ( lowercase__ ): for i in range(len(lowercase__ ) ): for j in range(len(lowercase__ ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) __A = 8 __A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
164
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = WavaVecaForSequenceClassification.from_pretrained(lowercase__ , config=lowercase__ ) lowercase__ = downstream_dict["""projector.weight"""] lowercase__ = downstream_dict["""projector.bias"""] lowercase__ = downstream_dict["""model.post_net.linear.weight"""] lowercase__ = downstream_dict["""model.post_net.linear.bias"""] return model def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = WavaVecaForAudioFrameClassification.from_pretrained(lowercase__ , config=lowercase__ ) lowercase__ = downstream_dict["""model.linear.weight"""] lowercase__ = downstream_dict["""model.linear.bias"""] return model def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = WavaVecaForXVector.from_pretrained(lowercase__ , config=lowercase__ ) lowercase__ = downstream_dict["""connector.weight"""] lowercase__ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase__ = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase__ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] lowercase__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] lowercase__ = downstream_dict["""objective.W"""] return model @torch.no_grad() def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lowercase__ = torch.load(lowercase__ , map_location="""cpu""" ) lowercase__ = checkpoint["""Downstream"""] lowercase__ = WavaVecaConfig.from_pretrained(lowercase__ ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ , return_attention_mask=lowercase__ , do_normalize=lowercase__ ) lowercase__ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): lowercase__ = convert_classification(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith("""ForAudioFrameClassification""" ): lowercase__ = convert_diarization(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith("""ForXVector""" ): lowercase__ = convert_xvector(lowercase__ , lowercase__ , lowercase__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: lowercase__ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __A = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
164
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask A_ : Any = logging.getLogger(__name__) class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[int] = '''token-classification''' def __init__( self , A__ ): if type(A__ ) == dict: A__ : Union[str, Any] = Namespace(**A__ ) A__ : List[str] = import_module("""tasks""" ) try: A__ : str = getattr(A__ , hparams.task_type ) A__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) A__ : Union[str, Any] = self.token_classification_task.get_labels(hparams.labels ) A__ : Dict = CrossEntropyLoss().ignore_index super().__init__(A__ , len(self.labels ) , self.mode ) def __A ( self , **A__ ): return self.model(**A__ ) def __A ( self , A__ , A__ ): A__ : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": A__ : Optional[int] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids A__ : Union[str, Any] = self(**A__ ) A__ : int = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __A ( self ): A__ : int = self.hparams for mode in ["train", "dev", "test"]: A__ : Optional[int] = self._feature_file(A__ ) if os.path.exists(A__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , A__ ) A__ : int = torch.load(A__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) A__ : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , A__ ) A__ : Union[str, Any] = self.token_classification_task.convert_examples_to_features( A__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=A__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , A__ ) torch.save(A__ , A__ ) def __A ( self , A__ , A__ , A__ = False ): A__ : Dict = self._feature_file(A__ ) logger.info("""Loading features from cached file %s""" , A__ ) A__ : List[Any] = torch.load(A__ ) A__ : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A__ : Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: A__ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: A__ : List[str] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) A__ : Optional[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(A__ , A__ , A__ , A__ ) , batch_size=A__ ) def __A ( self , A__ , A__ ): """Compute validation""" "" A__ : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": A__ : Optional[int] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids A__ : Any = self(**A__ ) A__ , A__ : int = outputs[:2] A__ : Optional[int] = logits.detach().cpu().numpy() A__ : Tuple = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __A ( self , A__ ): A__ : Any = torch.stack([x["""val_loss"""] for x in outputs] ).mean() A__ : List[Any] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) A__ : Any = np.argmax(A__ , axis=2 ) A__ : int = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) A__ : Any = dict(enumerate(self.labels ) ) A__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] A__ : Any = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) A__ : Any = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(A__ , A__ ), """precision""": precision_score(A__ , A__ ), """recall""": recall_score(A__ , A__ ), """f1""": fa_score(A__ , A__ ), } A__ : str = dict(results.items() ) A__ : Optional[int] = results return ret, preds_list, out_label_list def __A ( self , A__ ): # when stable A__ , A__ , A__ : Union[str, Any] = self._eval_end(A__ ) A__ : Optional[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __A ( self , A__ ): # updating to test_epoch_end instead of deprecated test_end A__ , A__ , A__ : List[Any] = self._eval_end(A__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 A__ : List[str] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __A ( A__ , A__ ): # Add NER specific options BaseTransformer.add_model_specific_args(A__ , A__ ) parser.add_argument( """--task_type""" , default="""NER""" , type=A__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=A__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=A__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=A__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) A_ : List[str] = NERTransformer.add_model_specific_args(parser, os.getcwd()) A_ : Optional[Any] = parser.parse_args() A_ : List[str] = NERTransformer(args) A_ : Dict = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 A_ : int = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) A_ : Optional[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
141
from __future__ import annotations def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> tuple[float, list[float]]: A__ : Tuple = list(range(len(lowercase_ ) ) ) A__ : Union[str, Any] = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ : float = 0 A__ : list[float] = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: A__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
141
1
"""simple docstring""" __SCREAMING_SNAKE_CASE : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # Return True if there is node that has not iterated. snake_case_ = [False] * len(_SCREAMING_SNAKE_CASE ) snake_case_ = [s] snake_case_ = True while queue: snake_case_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_SCREAMING_SNAKE_CASE ) snake_case_ = True snake_case_ = u return visited[t] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = [-1] * (len(_SCREAMING_SNAKE_CASE )) snake_case_ = 0 snake_case_ = [] snake_case_ = [i[:] for i in graph] # Record original cut, copy. while bfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = float("""Inf""" ) snake_case_ = sink while s != source: # Find the minimum value in select path snake_case_ = min(_SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) snake_case_ = parent[s] max_flow += path_flow snake_case_ = sink while v != source: snake_case_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ = parent[v] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
347
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() __SCREAMING_SNAKE_CASE : Any = '|'.join(sys.argv[1:]) __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(Rf"""^({joined_dirs}).*?\.py$""") __SCREAMING_SNAKE_CASE : List[str] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
347
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase : def __init__( self :Tuple , lowercase_ :list[list[int]] )-> Union[str, Any]: A__ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(lowerCAmelCase__ ) != 0: A__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise error A__ = rows else: A__ = [] def UpperCAmelCase_ ( self :Tuple )-> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def UpperCAmelCase_ ( self :Optional[Any] )-> int: return len(self.rows ) @property def UpperCAmelCase_ ( self :Any )-> int: return len(self.rows[0] ) @property def UpperCAmelCase_ ( self :Optional[int] )-> tuple[int, int]: return (self.num_rows, self.num_columns) @property def UpperCAmelCase_ ( self :Optional[int] )-> bool: return self.order[0] == self.order[1] def UpperCAmelCase_ ( self :Union[str, Any] )-> Matrix: A__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def UpperCAmelCase_ ( self :Any )-> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def UpperCAmelCase_ ( self :Tuple )-> bool: return bool(self.determinant() ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :int , lowercase_ :int )-> int: A__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def UpperCAmelCase_ ( self :Dict , lowercase_ :int , lowercase_ :int )-> int: if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase_ ( self :Any )-> Matrix: return Matrix( [ [self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def UpperCAmelCase_ ( self :str )-> Matrix: A__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def UpperCAmelCase_ ( self :Optional[int] )-> Matrix: A__ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self :Tuple )-> str: return str(self.rows ) def __str__( self :Tuple )-> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(lowerCAmelCase__ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :list[int] , lowercase_ :int | None = None )-> None: A__ = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(lowerCAmelCase__ ) else: A__ = self.rows[0:position] + [row] + self.rows[position:] def UpperCAmelCase_ ( self :List[str] , lowercase_ :list[int] , lowercase_ :int | None = None )-> None: A__ = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: A__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: A__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self :List[Any] , lowercase_ :object )-> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self :List[str] , lowercase_ :object )-> bool: return not self == other def __neg__( self :Dict )-> Matrix: return self * -1 def __add__( self :List[Any] , lowercase_ :Matrix )-> Matrix: if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self :Tuple , lowercase_ :Matrix )-> Matrix: if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self :Optional[Any] , lowercase_ :Matrix | int | float )-> Matrix: if isinstance(lowerCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ , lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self :List[Any] , lowercase_ :int )-> Matrix: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) A__ = self for _ in range(other - 1 ): result *= self return result @classmethod def UpperCAmelCase_ ( cls :Dict , lowercase_ :list[int] , lowercase_ :list[int] )-> int: return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowerCAmelCase : Tuple =trt.Logger(trt.Logger.WARNING) __lowerCAmelCase : Optional[Any] =absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowerCAmelCase : List[Any] =logging.getLogger(__name__) __lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __lowerCAmelCase : Tuple =parser.parse_args() if args.tokenizer_name: __lowerCAmelCase : int =AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __lowerCAmelCase : Union[str, Any] =args.per_device_eval_batch_size __lowerCAmelCase : List[Any] =(args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowerCAmelCase : Tuple =True __lowerCAmelCase : int ="temp_engine/bert-fp32.engine" if args.fpaa: __lowerCAmelCase : Tuple ="temp_engine/bert-fp16.engine" if args.inta: __lowerCAmelCase : Optional[int] ="temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __lowerCAmelCase : Tuple =1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowerCAmelCase : Optional[Any] =[network.get_input(i) for i in range(network.num_inputs)] __lowerCAmelCase : Any =[_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowerCAmelCase : Optional[Any] =1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowerCAmelCase : int =builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowerCAmelCase : Dict =builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): A__ = np.asarray(inputs["input_ids"] , dtype=np.intaa ) A__ = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) A__ = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _lowerCamelCase ) # start time A__ = time.time() # Run inference context.execute_async( bindings=[int(_lowerCamelCase ) for d_inp in d_inputs] + [int(_lowerCamelCase ), int(_lowerCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time A__ = time.time() A__ = end_time - start_time A__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowerCAmelCase : str =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase : List[Any] =load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowerCAmelCase : Optional[Any] =raw_datasets["validation"].column_names __lowerCAmelCase : Optional[Any] ="question" if "question" in column_names else column_names[0] __lowerCAmelCase : str ="context" if "context" in column_names else column_names[1] __lowerCAmelCase : Optional[Any] ="answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowerCAmelCase : Any =tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __lowerCAmelCase : Any =min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( _lowerCamelCase : Optional[int] ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=_lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A__ = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A__ = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A__ = tokenized_examples.sequence_ids(_lowerCamelCase ) A__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples __lowerCAmelCase : str =raw_datasets["validation"] # Validation Feature Creation __lowerCAmelCase : Union[str, Any] =eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __lowerCAmelCase : List[Any] =default_data_collator __lowerCAmelCase : List[Any] =eval_dataset.remove_columns(["example_id", "offset_mapping"]) __lowerCAmelCase : List[str] =DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. A__ = postprocess_qa_predictions( examples=_lowerCamelCase , features=_lowerCamelCase , predictions=_lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A__ = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: A__ = [{"id": k, "prediction_text": v} for k, v in predictions.items()] A__ = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_lowerCamelCase , label_ids=_lowerCamelCase ) __lowerCAmelCase : Tuple =load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return trt.volume(engine.get_binding_shape(_lowerCamelCase ) ) * engine.get_binding_dtype(_lowerCamelCase ).itemsize # Allocate device memory for inputs and outputs. __lowerCAmelCase : Any =[cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowerCAmelCase : List[Any] =cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowerCAmelCase : List[str] =cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowerCAmelCase : List[str] =cuda.mem_alloc(h_outputa.nbytes) __lowerCAmelCase : int =cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowerCAmelCase : Optional[Any] =cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __lowerCAmelCase : str =0.0 __lowerCAmelCase : Tuple =0 __lowerCAmelCase : List[str] =timeit.default_timer() __lowerCAmelCase : Union[str, Any] =None for step, batch in enumerate(eval_dataloader): __lowerCAmelCase , __lowerCAmelCase : Dict =model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowerCAmelCase , __lowerCAmelCase : List[Any] =outputs __lowerCAmelCase : Tuple =torch.tensor(start_logits) __lowerCAmelCase : Tuple =torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowerCAmelCase : Tuple =accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __lowerCAmelCase : int =(accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowerCAmelCase : List[Any] =logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __lowerCAmelCase : Dict =nested_truncate(all_preds, len(eval_dataset)) __lowerCAmelCase : Optional[int] =timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) __lowerCAmelCase : Optional[Any] =post_processing_function(eval_examples, eval_dataset, all_preds) __lowerCAmelCase : Optional[Any] =metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
123
0
"""simple docstring""" def lowercase__ ( snake_case_ :list[int] ): __UpperCAmelCase = len(snake_case_ ) for i in range(snake_case_ ): for j in range(i + 1 , snake_case_ ): if numbers[j] < numbers[i]: __UpperCAmelCase , __UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowercase : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() _lowercase : Tuple = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
332
"""simple docstring""" def lowercase__ ( snake_case_ :Union[str, Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = max(snake_case_ ) __UpperCAmelCase = min(snake_case_ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case_ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case_ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( snake_case_ :str ): return "".join([chr(snake_case_ ) for i in counting_sort([ord(snake_case_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _lowercase : int = input('Enter numbers separated by a comma:\n').strip() _lowercase : int = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[Any] = 'altclip_text_model' def __init__( self , SCREAMING_SNAKE_CASE__=250002 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=24 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=4096 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=514 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-05 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=768 , **SCREAMING_SNAKE_CASE__ , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowercase : str = vocab_size lowercase : int = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : List[Any] = hidden_act lowercase : Tuple = intermediate_size lowercase : Optional[int] = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : List[str] = type_vocab_size lowercase : int = initializer_range lowercase : List[str] = initializer_factor lowercase : Any = layer_norm_eps lowercase : List[Any] = position_embedding_type lowercase : Dict = use_cache lowercase : Union[str, Any] = project_dim class __SCREAMING_SNAKE_CASE ( A__ ): A : Optional[Any] = 'altclip_vision_model' def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=224 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__="quick_gelu" , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = hidden_size lowercase : Union[str, Any] = intermediate_size lowercase : Dict = projection_dim lowercase : Any = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Optional[Any] = num_channels lowercase : Any = patch_size lowercase : Any = image_size lowercase : List[str] = initializer_range lowercase : List[str] = initializer_factor lowercase : Dict = attention_dropout lowercase : int = layer_norm_eps lowercase : Dict = hidden_act @classmethod def __lowerCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Any = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": lowercase : Dict = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ ): A : str = 'altclip' A : Optional[int] = True def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=2.6592 , **SCREAMING_SNAKE_CASE__ ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase : Dict = kwargs.pop('''text_config_dict''' , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = kwargs.pop('''vision_config_dict''' , SCREAMING_SNAKE_CASE__ ) super().__init__(**SCREAMING_SNAKE_CASE__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase : List[Any] = {} # This is the complete result when using `text_config_dict`. lowercase : Optional[Any] = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase : List[Any] = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: lowercase : Optional[int] = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(SCREAMING_SNAKE_CASE__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase : Union[str, Any] = {} # This is the complete result when using `vision_config_dict`. lowercase : int = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase : Dict = { str(SCREAMING_SNAKE_CASE__ ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase : List[Any] = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: lowercase : Optional[Any] = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(SCREAMING_SNAKE_CASE__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase : Optional[int] = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: lowercase : Tuple = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) lowercase : List[str] = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE__ ) lowercase : str = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE__ ) lowercase : Dict = projection_dim lowercase : str = logit_scale_init_value lowercase : Optional[int] = 1.0 @classmethod def __lowerCamelCase ( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : str = copy.deepcopy(self.__dict__ ) lowercase : List[Any] = self.text_config.to_dict() lowercase : Tuple = self.vision_config.to_dict() lowercase : Optional[int] = self.__class__.model_type return output
173
from __future__ import annotations from math import ceil, floor, sqrt def __lowercase ( _UpperCamelCase = 2000000 ) ->int: """simple docstring""" lowercase : list[int] = [0] lowercase : int for idx in range(1, ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target lowercase : int = 0 # an estimate of b, using the quadratic formula lowercase : float # the largest integer less than b_estimate lowercase : int # the largest integer less than b_estimate lowercase : int # the triangle number corresponding to b_floor lowercase : int # the triangle number corresponding to b_ceil lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:], 1 ): lowercase : List[str] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowercase : str = floor(_UpperCamelCase ) lowercase : int = ceil(_UpperCamelCase ) lowercase : str = triangle_numbers[b_floor] lowercase : str = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowercase : Optional[int] = triangle_b_first_guess * triangle_a lowercase : Tuple = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowercase : Dict = triangle_b_second_guess * triangle_a lowercase : Any = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
173
1
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , """Tatoeba directory does not exist.""" ) class __UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): """simple docstring""" _snake_case = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" self.resolver.convert_models(['heb-eng'] ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.resolver.write_model_card('opus-mt-he-en' , dry_run=lowerCAmelCase_ ) assert mmeta["long_pair"] == "heb-eng"
42
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowercase : Dict = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowercase : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowercase : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, float]: _snake_case = len([g for position, g in enumerate(__A ) if g == main_target[position]] ) return (item, float(__A )) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, str]: _snake_case = random.randint(0 , len(__A ) - 1 ) _snake_case = parent_a[:random_slice] + parent_a[random_slice:] _snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str: _snake_case = list(__A ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case = random.choice(__A ) return "".join(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , ) -> list[str]: _snake_case = [] # Generate more children proportionally to the fitness score. _snake_case = int(parent_a[1] * 100 ) + 1 _snake_case = 10 if child_n >= 10 else child_n for _ in range(__A ): _snake_case = population_score[random.randint(0 , __A )][0] _snake_case , _snake_case = crossover(parent_a[0] , __A ) # Append new string to the population list. pop.append(mutate(__A , __A ) ) pop.append(mutate(__A , __A ) ) return pop def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _snake_case = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__A ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__A ) # Generate random starting population. _snake_case = [] for _ in range(__A ): population.append(''.join([random.choice(__A ) for i in range(len(__A ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case , _snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__A ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case = [evaluate(__A , __A ) for item in population] # Check if there is a matching evolution. _snake_case = sorted(__A , key=lambda __A : x[1] , reverse=__A ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__A ) # Normalize population score to be between 0 and 1. _snake_case = [ (item, score / len(__A )) for item, score in population_score ] # This is selection for i in range(__A ): population.extend(select(population_score[int(__A )] , __A , __A ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__A ) > N_POPULATION: break if __name__ == "__main__": lowercase : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowercase : str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowercase , lowercase , lowercase : Tuple = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
42
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase : Any = logging.get_logger(__name__) class _a : _a : str _a : str = None @staticmethod def UpperCAmelCase__( )-> Union[str, Any]: raise NotImplementedError def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Optional[int] )-> Optional[Any]: raise NotImplementedError def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )-> List[str]: raise NotImplementedError def UpperCAmelCase__( self : str )-> Dict: if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def UpperCAmelCase__( cls : str )-> List[str]: return F'`pip install {cls.pip_package or cls.name}`' class _a ( _lowercase): _a : str = '''optuna''' @staticmethod def UpperCAmelCase__( )-> List[Any]: return is_optuna_available() def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Dict )-> Optional[Any]: return run_hp_search_optuna(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Union[str, Any]: return default_hp_space_optuna(_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : Tuple = '''ray''' _a : Optional[int] = '''\'ray[tune]\'''' @staticmethod def UpperCAmelCase__( )-> Union[str, Any]: return is_ray_available() def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> List[str]: return run_hp_search_ray(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[str] )-> Any: return default_hp_space_ray(_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : str = '''sigopt''' @staticmethod def UpperCAmelCase__( )-> int: return is_sigopt_available() def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Any )-> Optional[Any]: return run_hp_search_sigopt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: return default_hp_space_sigopt(_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): _a : Tuple = '''wandb''' @staticmethod def UpperCAmelCase__( )-> Tuple: return is_wandb_available() def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Union[str, Any] )-> List[str]: return run_hp_search_wandb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict )-> Tuple: return default_hp_space_wandb(_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Tuple = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_a ) > 0: lowerCAmelCase__ : Optional[int] = available_backends[0].name if len(_a ) > 1: logger.info( f'{len(_a )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
352
import math class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any=0 )-> Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Optional[int] = n lowerCAmelCase__ : List[Any] = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowerCAmelCase__ : str = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase__( self : List[Any] )-> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase__ : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )-> str: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
0
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCAmelCase = get_tests_dir('''fixtures/dummy-config.json''') class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Optional[int] ): """simple docstring""" __lowercase =0 def snake_case ( self : Optional[int] ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def snake_case ( self : Optional[int] ): """simple docstring""" __lowercase =AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(__lowercase , __lowercase ) def snake_case ( self : Tuple ): """simple docstring""" __lowercase =AutoConfig.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def snake_case ( self : int ): """simple docstring""" __lowercase =AutoConfig.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def snake_case ( self : Any ): """simple docstring""" __lowercase =AutoConfig.for_model('roberta' ) self.assertIsInstance(__lowercase , __lowercase ) def snake_case ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __lowercase =os.path.join(__lowercase , 'fake-roberta' ) os.makedirs(__lowercase , exist_ok=__lowercase ) with open(os.path.join(__lowercase , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) __lowercase =AutoConfig.from_pretrained(__lowercase ) self.assertEqual(type(__lowercase ) , __lowercase ) def snake_case ( self : Any ): """simple docstring""" try: AutoConfig.register('custom' , __lowercase ) # Wrong model type will raise an error with self.assertRaises(__lowercase ): AutoConfig.register('model' , __lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoConfig.register('bert' , __lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase =CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowercase ) __lowercase =AutoConfig.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def snake_case ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex( __lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): __lowercase =AutoConfig.from_pretrained('bert-base' ) def snake_case ( self : Optional[Any] ): """simple docstring""" with self.assertRaisesRegex( __lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowercase =AutoConfig.from_pretrained(__lowercase , revision='aaaaaa' ) def snake_case ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( __lowercase , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): __lowercase =AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def snake_case ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(__lowercase ): __lowercase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): __lowercase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=__lowercase ) __lowercase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=__lowercase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowercase ) __lowercase =AutoConfig.from_pretrained(__lowercase , trust_remote_code=__lowercase ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def snake_case ( self : List[Any] ): """simple docstring""" class lowerCAmelCase ( A ): lowerCAmelCase_ = "new-model" try: AutoConfig.register('new-model' , __lowercase ) # If remote code is not set, the default is to use local __lowercase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. __lowercase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=__lowercase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub __lowercase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=__lowercase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
141
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = RealmTokenizer def __init__( self : int , __lowercase : Union[str, Any]=None , __lowercase : int=None , __lowercase : List[Any]=True , __lowercase : Any="[UNK]" , __lowercase : Union[str, Any]="[SEP]" , __lowercase : Union[str, Any]="[PAD]" , __lowercase : Tuple="[CLS]" , __lowercase : List[Any]="[MASK]" , __lowercase : Tuple=True , __lowercase : Union[str, Any]=None , **__lowercase : int , ): """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowercase ) != tokenize_chinese_chars ): __lowercase =getattr(__lowercase , normalizer_state.pop('type' ) ) __lowercase =do_lower_case __lowercase =strip_accents __lowercase =tokenize_chinese_chars __lowercase =normalizer_class(**__lowercase ) __lowercase =do_lower_case def snake_case ( self : List[str] , __lowercase : Optional[Any] , **__lowercase : Any ): """simple docstring""" __lowercase =PaddingStrategy.MAX_LENGTH __lowercase =text __lowercase =kwargs.pop('text_pair' , __lowercase ) __lowercase =kwargs.pop('return_tensors' , __lowercase ) __lowercase ={ 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: __lowercase =batch_text_pair[idx] else: __lowercase =None __lowercase =super().__call__(__lowercase , __lowercase , return_tensors=__lowercase , **__lowercase ) __lowercase =encoded_candidates.get('input_ids' ) __lowercase =encoded_candidates.get('attention_mask' ) __lowercase =encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) __lowercase ={key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase , tensor_type=__lowercase ) def snake_case ( self : List[str] , __lowercase : Tuple , __lowercase : Optional[int]=None ): """simple docstring""" __lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self : List[str] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : Dict , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" __lowercase =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
141
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = StableDiffusionPanoramaPipeline __lowerCAmelCase = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): torch.manual_seed(0 ) __a : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __a : Optional[int] = DDIMScheduler() torch.manual_seed(0 ) __a : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __a : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a : Any = CLIPTextModel(_UpperCAmelCase ) __a : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): __a : Any = torch.manual_seed(_UpperCAmelCase ) __a : Any = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Optional[Any] = self.get_dummy_components() __a : List[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __a : Optional[int] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : int = self.get_dummy_inputs(_UpperCAmelCase ) __a : Optional[Any] = sd_pipe(**_UpperCAmelCase ).images __a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : int = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCamelCase ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _lowerCamelCase ( self ): __a : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Optional[int] = self.get_dummy_components() __a : Optional[int] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __a : Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[Any] = self.get_dummy_inputs(_UpperCAmelCase ) __a : Tuple = '''french fries''' __a : Tuple = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) __a : Any = output.images __a : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : Union[str, Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): __a : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Optional[int] = self.get_dummy_components() __a : Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __a : Union[str, Any] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Any = self.get_dummy_inputs(_UpperCAmelCase ) __a : Optional[Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) __a : Dict = output.images __a : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : Union[str, Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): __a : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : int = self.get_dummy_components() __a : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) __a : Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __a : Dict = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) __a : int = sd_pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : Dict = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): __a : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : int = self.get_dummy_components() __a : str = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) __a : Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __a : int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : str = self.get_dummy_inputs(_UpperCAmelCase ) __a : Dict = sd_pipe(**_UpperCAmelCase ).images __a : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : Optional[Any] = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : int = torch.manual_seed(_UpperCAmelCase ) __a : List[str] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : List[Any] = '''stabilityai/stable-diffusion-2-base''' __a : Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) __a : List[str] = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : Any = self.get_inputs() __a : List[Any] = pipe(**_UpperCAmelCase ).images __a : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) __a : Union[str, Any] = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _lowerCamelCase ( self ): __a : List[str] = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) __a : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : Optional[int] = self.get_inputs() __a : List[Any] = pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) __a : Tuple = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: __a : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __a : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) __a : Tuple = latents[0, -3:, -3:, -1] __a : Tuple = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __a : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) __a : List[str] = latents[0, -3:, -3:, -1] __a : Tuple = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __a : List[Any] = False __a : Dict = '''stabilityai/stable-diffusion-2-base''' __a : Optional[Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) __a : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) __a : Union[str, Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : Dict = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowerCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : int = '''stabilityai/stable-diffusion-2-base''' __a : List[str] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) __a : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) __a : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : Any = self.get_inputs() __a : Tuple = pipe(**_UpperCAmelCase ) __a : str = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
188
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=3 , _UpperCAmelCase=224 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = size if size is not None else {'''height''': 18, '''width''': 18} __a : List[Any] = parent __a : Dict = batch_size __a : Dict = num_channels __a : int = image_size __a : Optional[Any] = min_resolution __a : Optional[int] = max_resolution __a : Dict = do_resize __a : List[Any] = size __a : int = do_normalize __a : Optional[Any] = image_mean __a : int = image_std def _lowerCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ViTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : int = EfficientFormerImageProcessorTester(self ) @property def _lowerCamelCase ( self ): return self.image_proc_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processor __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Dict = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a : Any = image_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processor __a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[int] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a : str = image_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processor __a : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __a : Tuple = image_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
188
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowerCamelCase : Optional[Any] = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _lowerCamelCase : Optional[int] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _lowerCamelCase : List[Any] = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _lowerCamelCase : Optional[int] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _lowerCamelCase : Dict = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" for tf_name, hf_name in patterns: A__ = k.replace(lowercase_ , lowercase_ ) return k def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" A__ = BigBirdPegasusConfig(**lowercase_ ) A__ = BigBirdPegasusForConditionalGeneration(lowercase_ ) A__ = torch_model.state_dict() A__ = {} # separating decoder weights A__ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} A__ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): A__ = [k.endswith(lowercase_ ) for ending in KEYS_TO_IGNORE] if any(lowercase_ ): continue A__ = DECODER_PATTERNS A__ = rename_state_dict_key(lowercase_ , lowercase_ ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): A__ = v.T A__ = torch.from_numpy(lowercase_ ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): A__ = [k.endswith(lowercase_ ) for ending in KEYS_TO_IGNORE] if any(lowercase_ ): continue A__ = REMAINING_PATTERNS A__ = rename_state_dict_key(lowercase_ , lowercase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): A__ = v.T A__ = torch.from_numpy(lowercase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" A__ = mapping['''model.embed_positions.weight'''] A__ = mapping.pop('''model.embed_positions.weight''' ) A__ , A__ = torch_model.load_state_dict(lowercase_ , strict=lowercase_ ) A__ = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = tf.train.list_variables(lowercase_ ) A__ = {} A__ = ['''global_step'''] for name, shape in tqdm(lowercase_ , desc='''converting tf checkpoint to dict''' ): A__ = any(pat in name for pat in ignore_name ) if skip_key: continue A__ = tf.train.load_variable(lowercase_ , lowercase_ ) A__ = array return tf_weights def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: """simple docstring""" A__ = get_tf_weights_as_numpy(lowercase_ ) A__ = convert_bigbird_pegasus(lowercase_ , lowercase_ ) torch_model.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCamelCase : int = parser.parse_args() _lowerCamelCase : List[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
14
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _snake_case : str = logging.get_logger(__name__) # pylint: disable=invalid-name class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase : StableDiffusionSafetyChecker , lowerCamelCase : CLIPImageProcessor , ) -> Dict: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def __snake_case ( self : str ) -> List[str]: self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Dict , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , lowerCamelCase : Optional[torch.FloatTensor] = None , **lowerCamelCase : Any , ) -> Optional[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[int] = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Tuple = len(lowerCamelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowerCamelCase )}.' ) # get prompt text embeddings __snake_case : Tuple = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __snake_case : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __snake_case : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : int = text_embeddings.shape __snake_case : Any = text_embeddings.repeat(1 , lowerCamelCase , 1 ) __snake_case : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Any = [""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=' F' {type(lowerCamelCase )}.' ) elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : int = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: __snake_case : Tuple = negative_prompt __snake_case : str = text_input_ids.shape[-1] __snake_case : Dict = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="pt" , ) __snake_case : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Tuple = uncond_embeddings.shape[1] __snake_case : Any = uncond_embeddings.repeat(lowerCamelCase , lowerCamelCase , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __snake_case : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[Any] = torch.randn( lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to(self.device ) __snake_case : int = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: __snake_case : Union[str, Any] = torch.randn( lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) __snake_case : int = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __snake_case : Union[str, Any] = latents_reference.to(self.device ) __snake_case : List[str] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __snake_case : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 __snake_case : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 __snake_case : str = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __snake_case : List[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __snake_case : Tuple = 0 if dx < 0 else dx __snake_case : Union[str, Any] = 0 if dy < 0 else dy __snake_case : Any = max(-dx , 0 ) __snake_case : Optional[int] = max(-dy , 0 ) # import pdb # pdb.set_trace() __snake_case : List[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : List[str] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : Optional[Any] = {} if accepts_eta: __snake_case : List[Any] = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __snake_case : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : List[Any] = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __snake_case : str = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __snake_case : List[Any] = 1 / 0.1_82_15 * latents __snake_case : Dict = self.vae.decode(lowerCamelCase ).sample __snake_case : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __snake_case : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) , return_tensors="pt" ).to( self.device ) __snake_case , __snake_case : str = self.safety_checker( images=lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __snake_case : Dict = None if output_type == "pil": __snake_case : Any = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
123
0
def UpperCamelCase ( snake_case__ : list , snake_case__ : int = 0 ) -> list: UpperCamelCase : List[str] = length or len(snake_case__ ) UpperCamelCase : List[str] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: UpperCamelCase , UpperCamelCase : List[Any] = list_data[i + 1], list_data[i] UpperCamelCase : Dict = True return list_data if not swapped else bubble_sort(snake_case__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
103
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Tuple: # load base model UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(snake_case__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCamelCase : Union[str, Any] = load_file(snake_case__ ) UpperCamelCase : int = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCamelCase : Optional[Any] = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) UpperCamelCase : Optional[Any] = pipeline.text_encoder else: UpperCamelCase : Tuple = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) UpperCamelCase : List[str] = pipeline.unet # find the target layer UpperCamelCase : Optional[Any] = layer_infos.pop(0 ) while len(snake_case__ ) > -1: try: UpperCamelCase : Dict = curr_layer.__getattr__(snake_case__ ) if len(snake_case__ ) > 0: UpperCamelCase : Dict = layer_infos.pop(0 ) elif len(snake_case__ ) == 0: break except Exception: if len(snake_case__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCamelCase : Tuple = layer_infos.pop(0 ) UpperCamelCase : List[Any] = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(snake_case__ ) else: pair_keys.append(snake_case__ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCamelCase : Dict = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCamelCase : Union[str, Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case__ , snake_case__ ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCamelCase : Dict = state_dict[pair_keys[0]].to(torch.floataa ) UpperCamelCase : List[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case__ , snake_case__ ) # update visited list for item in pair_keys: visited.append(snake_case__ ) return pipeline if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.base_model_path __UpperCAmelCase = args.checkpoint_path __UpperCAmelCase = args.dump_path __UpperCAmelCase = args.lora_prefix_unet __UpperCAmelCase = args.lora_prefix_text_encoder __UpperCAmelCase = args.alpha __UpperCAmelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
103
1