code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCAmelCase (__A = 2_000_000): """simple docstring""" _a = [0] _a = 42 for idx in range(1 , ceil(sqrt(target * 2) * 1.1)): triangle_numbers.append(triangle_numbers[-1] + idx) # we want this to be as close as possible to target _a = 0 # the area corresponding to the grid that gives the product closest to target _a = 0 # an estimate of b, using the quadratic formula _a = 42 # the largest integer less than b_estimate _a = 42 # the largest integer less than b_estimate _a = 42 # the triangle number corresponding to b_floor _a = 42 # the triangle number corresponding to b_ceil _a = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1): _a = (-1 + sqrt(1 + 8 * target / triangle_a)) / 2 _a = floor(__A) _a = ceil(__A) _a = triangle_numbers[b_floor] _a = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a) < abs( target - best_product): _a = triangle_b_first_guess * triangle_a _a = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a) < abs( target - best_product): _a = triangle_b_second_guess * triangle_a _a = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
211
'''simple docstring''' import random def lowerCAmelCase (__A): """simple docstring""" _a = num - 1 _a = 0 while s % 2 == 0: _a = s // 2 t += 1 for _ in range(5): _a = random.randrange(2 , num - 1) _a = pow(__A , __A , __A) if v != 1: _a = 0 while v != (num - 1): if i == t - 1: return False else: _a = i + 1 _a = (v**2) % num return True def lowerCAmelCase (__A): """simple docstring""" if num < 2: return False _a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__A) def lowerCAmelCase (__A = 1_024): """simple docstring""" while True: _a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize)) if is_prime_low_num(__A): return num if __name__ == "__main__": lowercase_ = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
211
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Optional[int] ) ->None: '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
"""simple docstring""" import functools from typing import Any def lowercase ( _snake_case : str , _snake_case : list[str] ) ->bool: """simple docstring""" if not isinstance(_snake_case , _snake_case ) or len(_snake_case ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(_snake_case , _snake_case ) or not all( isinstance(_snake_case , _snake_case ) and len(_snake_case ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie __snake_case : dict[str, Any] = {} __snake_case : int = '''WORD_KEEPER''' for word in words: __snake_case : List[Any] = trie for c in word: if c not in trie_node: __snake_case : Union[str, Any] = {} __snake_case : List[str] = trie_node[c] __snake_case : List[str] = True __snake_case : Dict = len(_snake_case ) # Dynamic programming method @functools.cache def is_breakable(_snake_case : int ) -> bool: if index == len_string: return True __snake_case : List[str] = trie for i in range(_snake_case , _snake_case ): __snake_case : Dict = trie_node.get(string[i] , _snake_case ) if trie_node is None: return False if trie_node.get(_snake_case , _snake_case ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
102
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) def a__ ( __UpperCamelCase , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE_ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_ = "" else: SCREAMING_SNAKE_CASE_ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-config.hidden_size :] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val def a__ ( ): SCREAMING_SNAKE_CASE_ = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE_ = 1_0_0_0 SCREAMING_SNAKE_CASE_ = "huggingface/label-files" SCREAMING_SNAKE_CASE_ = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): SCREAMING_SNAKE_CASE_ = 1_9_2 SCREAMING_SNAKE_CASE_ = 7_6_8 SCREAMING_SNAKE_CASE_ = 1_2 SCREAMING_SNAKE_CASE_ = 3 elif deit_name[9:].startswith("small" ): SCREAMING_SNAKE_CASE_ = 3_8_4 SCREAMING_SNAKE_CASE_ = 1_5_3_6 SCREAMING_SNAKE_CASE_ = 1_2 SCREAMING_SNAKE_CASE_ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): SCREAMING_SNAKE_CASE_ = 1_0_2_4 SCREAMING_SNAKE_CASE_ = 4_0_9_6 SCREAMING_SNAKE_CASE_ = 2_4 SCREAMING_SNAKE_CASE_ = 1_6 # load original model from timm SCREAMING_SNAKE_CASE_ = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_ = timm_model.state_dict() SCREAMING_SNAKE_CASE_ = create_rename_keys(__UpperCamelCase , __UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE_ = DeiTForImageClassificationWithTeacher(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE_ = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE_ = DeiTImageProcessor(size=__UpperCamelCase , crop_size=config.image_size ) SCREAMING_SNAKE_CASE_ = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE_ = encoding["pixel_values"] SCREAMING_SNAKE_CASE_ = model(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1E-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A : Dict = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
118
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCamelCase : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ): '''simple docstring''' for attribute in key.split(""".""" ): _lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: _lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: _lowerCAmelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Tuple = value elif weight_type == "weight_g": _lowerCAmelCase : Optional[int] = value elif weight_type == "weight_v": _lowerCAmelCase : str = value elif weight_type == "bias": _lowerCAmelCase : str = value else: _lowerCAmelCase : Tuple = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Tuple = fairseq_model.state_dict() _lowerCAmelCase : str = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _lowerCAmelCase : Any = None for name, value in fairseq_dict.items(): _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase : Any = True elif name.split(""".""" )[0] == "proj": _lowerCAmelCase : Union[str, Any] = fairseq_model.proj _lowerCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase : Union[str, Any] = True if "*" in mapped_key: _lowerCAmelCase : Union[str, Any] = name.split(UpperCamelCase_ )[0].split(""".""" )[-2] _lowerCAmelCase : Optional[Any] = mapped_key.replace("""*""" , UpperCamelCase_ ) if "weight_g" in name: _lowerCAmelCase : List[str] = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Tuple = """weight_v""" elif "bias" in name: _lowerCAmelCase : Dict = """bias""" elif "weight" in name: _lowerCAmelCase : Optional[int] = """weight""" else: _lowerCAmelCase : Optional[Any] = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def _UpperCAmelCase (UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : List[str] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : Optional[int] = name.split(""".""" ) _lowerCAmelCase : List[str] = int(items[0] ) _lowerCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowerCAmelCase : Tuple = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase_ ) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = emb.weight.shape _lowerCAmelCase : Union[str, Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) _lowerCAmelCase : List[Any] = emb.weight.data return lin_layer def _UpperCAmelCase (UpperCamelCase_ : Any ): '''simple docstring''' with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: _lowerCAmelCase : Optional[int] = f.readlines() _lowerCAmelCase : Dict = [line.split(""" """ )[0] for line in lines] _lowerCAmelCase : Dict = len(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCamelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , ): '''simple docstring''' _lowerCAmelCase : Any = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = SpeechaTextaConfig.from_pretrained( UpperCamelCase_ , vocab_size=UpperCamelCase_ , decoder_layers=UpperCamelCase_ , do_stable_layer_norm=UpperCamelCase_ ) _lowerCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _lowerCAmelCase : Tuple = model[0].eval() # set weights for wav2vec2 encoder _lowerCAmelCase : Union[str, Any] = WavaVecaModel(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) _lowerCAmelCase : List[str] = SpeechaTextaForCausalLM(UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) _lowerCAmelCase : Dict = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _lowerCAmelCase : List[Any] = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) _lowerCAmelCase : Any = False # add projection layer _lowerCAmelCase : List[Any] = nn.Parameter(projection_layer.weight ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(projection_layer.bias ) _lowerCAmelCase : Any = create_vocab_dict(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Any = SpeechaTextaTokenizer(os.path.join(UpperCamelCase_ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowerCAmelCase : str = hf_wavavec.config.to_dict() _lowerCAmelCase : Any = tokenizer.pad_token_id _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : Any = tokenizer.eos_token_id _lowerCAmelCase : Union[str, Any] = """speech_to_text_2""" _lowerCAmelCase : Any = """wav2vec2""" _lowerCAmelCase : str = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _lowerCamelCase : Optional[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
159
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCamelCase : List[str] = logging.get_logger(__name__) class __snake_case (_a ): def __init__( self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> None: '''simple docstring''' warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
159
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Namespace ) -> List[str]: '''simple docstring''' return TrainCommand(SCREAMING_SNAKE_CASE_ ) class a__ ( snake_case ): """simple docstring""" @staticmethod def UpperCamelCase ( lowercase ) -> Any: '''simple docstring''' A__ = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=lowercase , required=lowercase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=lowercase , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=lowercase , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=lowercase , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=lowercase , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=lowercase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=lowercase , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=lowercase , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=lowercase , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=lowercase , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=lowercase , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=lowercase , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=lowercase , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=lowercase ) def __init__( self , lowercase ) -> Optional[int]: '''simple docstring''' A__ = logging.get_logger("transformers-cli/training" ) A__ = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=lowercase ) A__ = args.output A__ = args.column_label A__ = args.column_text A__ = args.column_id self.logger.info(F'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": A__ = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'Loading dataset from {args.train_data}' ) A__ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A__ = None if args.validation_data: self.logger.info(F'Loading validation dataset from {args.validation_data}' ) A__ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A__ = args.validation_split A__ = args.train_batch_size A__ = args.valid_batch_size A__ = args.learning_rate A__ = args.adam_epsilon def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
68
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( A_ : Tuple, A_ : int, A_ : Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = LxmertConfig.from_json_file(A_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCamelCase : List[str] = LxmertForPreTraining(A_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A_, A_, A_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
72
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['input_features'] def __init__( self : Union[str, Any] , lowercase_ : Optional[int]=80 , lowercase_ : List[str]=1_6000 , lowercase_ : Union[str, Any]=160 , lowercase_ : List[str]=30 , lowercase_ : Any=400 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=False , **lowercase_ : List[str] , ): super().__init__( feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) UpperCamelCase__ : int =n_fft UpperCamelCase__ : int =hop_length UpperCamelCase__ : Union[str, Any] =chunk_length UpperCamelCase__ : Tuple =chunk_length * sampling_rate UpperCamelCase__ : Any =self.n_samples // hop_length UpperCamelCase__ : Tuple =sampling_rate UpperCamelCase__ : Union[str, Any] =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowercase_ , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowerCAmelCase ( self : Tuple , lowercase_ : np.array ): UpperCamelCase__ : Any =spectrogram( lowercase_ , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase__ : Any =log_spec[:, :-1] UpperCamelCase__ : str =np.maximum(lowercase_ , log_spec.max() - 8.0 ) UpperCamelCase__ : Tuple =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCAmelCase ( lowercase_ : List[np.ndarray] , lowercase_ : List[np.ndarray] , lowercase_ : float = 0.0 ): if attention_mask is not None: UpperCamelCase__ : Optional[int] =np.array(lowercase_ , np.intaa ) UpperCamelCase__ : Optional[Any] =[] for vector, length in zip(lowercase_ , attention_mask.sum(-1 ) ): UpperCamelCase__ : Dict =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase__ : Optional[int] =padding_value normed_input_values.append(lowercase_ ) else: UpperCamelCase__ : Tuple =[(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Dict , lowercase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase_ : bool = True , lowercase_ : Optional[int] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[str] = "max_length" , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , **lowercase_ : Any , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase__ : str =isinstance(lowercase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase__ : Optional[int] =is_batched_numpy or ( isinstance(lowercase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase__ : Union[str, Any] =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray ): UpperCamelCase__ : Union[str, Any] =np.asarray(lowercase_ , dtype=np.floataa ) elif isinstance(lowercase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase__ : int =raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase__ : List[str] =[np.asarray([raw_speech] ).T] UpperCamelCase__ : Union[str, Any] =BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase__ : Tuple =self.pad( lowercase_ , padding=lowercase_ , max_length=max_length if max_length else self.n_samples , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase__ : Any =self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase__ : int =np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase__ : List[str] =padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase__ : Optional[int] =[self._np_extract_fbank_features(lowercase_ ) for waveform in input_features[0]] if isinstance(input_features[0] , lowercase_ ): UpperCamelCase__ : int =[np.asarray(lowercase_ , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase__ : Any =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase__ : Optional[Any] =padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase__ : Any =padded_inputs.convert_to_tensors(lowercase_ ) return padded_inputs def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : Tuple =copy.deepcopy(self.__dict__ ) UpperCamelCase__ : Any =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
359
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase : bool , UpperCAmelCase : bool ): '''simple docstring''' def run_func(UpperCAmelCase : List[str] ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Tuple ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): '''simple docstring''' UpperCamelCase__ : Tuple =random.Random() UpperCamelCase__ : List[str] =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = "TensorFlow" @property def _lowerCAmelCase ( self : int ): return tf.__version__ def _lowerCAmelCase ( self : List[str] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process UpperCamelCase__ : Optional[int] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : str =self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_inference ) def _lowerCAmelCase ( self : str , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : List[str] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : int =self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_train ) def _lowerCAmelCase ( self : Any , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : Optional[Any] =self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_inference ) def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) UpperCamelCase__ : Tuple =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : List[Any] =self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_train ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : Optional[Any] =self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCamelCase__ : Dict =( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ : Dict ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ : List[str] =__import__('''transformers''' , fromlist=[model_class] ) UpperCamelCase__ : Optional[int] =getattr(lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =model_cls(lowercase_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCamelCase__ : Any =TF_MODEL_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ : Optional[int] =config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size UpperCamelCase__ : List[Any] =random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowercase_ , decoder_input_ids=lowercase_ , training=lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowercase_ , training=lowercase_ ) UpperCamelCase__ : Dict =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : List[str] =self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCamelCase__ : Optional[Any] =( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ : Tuple ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ : List[Any] =__import__('''transformers''' , fromlist=[model_class] ) UpperCamelCase__ : Dict =getattr(lowercase_ , lowercase_ ) UpperCamelCase__ : Tuple =model_cls(lowercase_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCamelCase__ : Optional[int] =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ : str =config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size UpperCamelCase__ : Union[str, Any] =random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase__ : Optional[Any] =model(lowercase_ , decoder_input_ids=lowercase_ , labels=lowercase_ , training=lowercase_ )[0] UpperCamelCase__ : Dict =tf.gradients(lowercase_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase__ : Dict =model(lowercase_ , labels=lowercase_ , training=lowercase_ )[0] UpperCamelCase__ : List[str] =tf.gradients(lowercase_ , model.trainable_variables ) return gradients UpperCamelCase__ : List[Any] =encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(lowercase_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase__ : int =timeit.repeat( lowercase_ , repeat=self.args.repeat , number=10 , ) return min(lowercase_ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCAmelCase ( self : Dict , lowercase_ : Callable[[], None] ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) UpperCamelCase__ : Tuple =start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) UpperCamelCase__ : List[str] ='''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() UpperCamelCase__ : Optional[Any] =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase__ : Dict =nvml.nvmlDeviceGetMemoryInfo(lowercase_ ) UpperCamelCase__ : str =meminfo.used UpperCamelCase__ : int =Memory(lowercase_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) UpperCamelCase__ : Union[str, Any] =None else: UpperCamelCase__ : Optional[int] =measure_peak_memory_cpu(lowercase_ ) UpperCamelCase__ : Dict =Memory(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase__ : Tuple =stop_memory_tracing(lowercase_ ) if memory is None: UpperCamelCase__ : List[Any] =summary.total else: UpperCamelCase__ : List[Any] =None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
157
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase : List[str] = logging.get_logger(__name__) def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Any = ["pixel_values"] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = True , a = None , a = True , a = 1 / 2_5_5 , a = True , a = True , a = None , a = None , **a , ) -> None: super().__init__(**a ) lowercase__ : List[Any] = size if size is not None else {'shortest_edge': 2_5_6} lowercase__ : Dict = get_size_dict(a , default_to_square=a ) lowercase__ : Dict = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowercase__ : int = get_size_dict(a , param_name='crop_size' ) lowercase__ : str = do_resize lowercase__ : Dict = size lowercase__ : Optional[int] = do_center_crop lowercase__ : Any = crop_size lowercase__ : Optional[int] = resample lowercase__ : str = do_rescale lowercase__ : str = rescale_factor lowercase__ : Tuple = offset lowercase__ : List[Any] = do_normalize lowercase__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , a , a , a = PILImageResampling.BILINEAR , a = None , **a , ) -> np.ndarray: lowercase__ : str = get_size_dict(a , default_to_square=a ) if "shortest_edge" in size: lowercase__ : Optional[Any] = get_resize_output_image_size(a , size['shortest_edge'] , default_to_square=a ) elif "height" in size and "width" in size: lowercase__ : Union[str, Any] = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(a , size=a , resample=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a = None , **a , ) -> np.ndarray: lowercase__ : Optional[Any] = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a , size=(size['height'], size['width']) , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a = True , a = None , **a , ) -> Any: lowercase__ : Union[str, Any] = image.astype(np.floataa ) if offset: lowercase__ : Optional[int] = image - (scale / 2) return rescale(a , scale=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a , a , a = None , **a , ) -> np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. lowercase__ : List[Any] = to_numpy_array(a ) if do_resize: lowercase__ : int = self.resize(image=a , size=a , resample=a ) if do_center_crop: lowercase__ : Optional[Any] = self.center_crop(a , size=a ) if do_rescale: lowercase__ : Union[str, Any] = self.rescale(image=a , scale=a , offset=a ) if do_normalize: lowercase__ : List[Any] = self.normalize(image=a , mean=a , std=a ) lowercase__ : Optional[Any] = to_channel_dimension_format(a , a ) return image def _UpperCAmelCase ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : List[Any] = resample if resample is not None else self.resample lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Dict = offset if offset is not None else self.offset lowercase__ : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Tuple = image_mean if image_mean is not None else self.image_mean lowercase__ : Any = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : List[Any] = get_size_dict(a , default_to_square=a ) lowercase__ : Dict = crop_size if crop_size is not None else self.crop_size lowercase__ : List[str] = get_size_dict(a , param_name='crop_size' ) if not valid_images(a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) lowercase__ : str = make_batched(a ) lowercase__ : List[Any] = [ [ self._preprocess_image( image=a , do_resize=a , size=a , resample=a , do_center_crop=a , crop_size=a , do_rescale=a , rescale_factor=a , offset=a , do_normalize=a , image_mean=a , image_std=a , data_format=a , ) for img in video ] for video in videos ] lowercase__ : Optional[Any] = {'pixel_values': videos} return BatchFeature(data=a , tensor_type=a )
77
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : int = args.pruning_method lowercase__ : Tuple = args.threshold lowercase__ : str = args.model_name_or_path.rstrip('/' ) lowercase__ : List[Any] = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) lowercase__ : Optional[Any] = torch.load(os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) lowercase__ : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase__ : Tuple = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowercase__ : List[str] = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: lowercase__ : Optional[Any] = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowercase__ : Optional[Any] = MagnitudeBinarizer.apply(inputs=_lowerCAmelCase , threshold=_lowerCAmelCase ) lowercase__ : Optional[int] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase__ : Optional[Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ : Any = TopKBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase__ : Any = name[:-6] lowercase__ : Optional[Any] = model[f"""{prefix_}mask_scores"""] lowercase__ : Tuple = ThresholdBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[str] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase__ : Union[str, Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ , lowercase__ : Tuple = -0.1, 1.1 lowercase__ : Optional[Any] = torch.sigmoid(_lowerCAmelCase ) lowercase__ : Optional[Any] = s * (r - l) + l lowercase__ : Optional[Any] = s_bar.clamp(min=0.0 , max=1.0 ) lowercase__ : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowercase__ : Union[str, Any] = os.path.join( os.path.dirname(_lowerCAmelCase ) , f"""bertarized_{os.path.basename(_lowerCAmelCase )}""" ) if not os.path.isdir(_lowerCAmelCase ): shutil.copytree(_lowerCAmelCase , _lowerCAmelCase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _UpperCamelCase : Dict = parser.parse_args() main(args)
77
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : List[str] = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a = logging.get_logger(__name__) _a = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class A_ ( snake_case__ , snake_case__ ): _lowercase : Any = 'resnet' _lowercase : List[Any] = ['basic', 'bottleneck'] def __init__( self : Dict , UpperCAmelCase : Dict=3 , UpperCAmelCase : Any=6_4 , UpperCAmelCase : List[Any]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , UpperCAmelCase : int=[3, 4, 6, 3] , UpperCAmelCase : Union[str, Any]="bottleneck" , UpperCAmelCase : Union[str, Any]="relu" , UpperCAmelCase : int=False , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Tuple , ) -> str: super().__init__(**UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) __lowerCAmelCase: Tuple = num_channels __lowerCAmelCase: Any = embedding_size __lowerCAmelCase: Optional[int] = hidden_sizes __lowerCAmelCase: Optional[int] = depths __lowerCAmelCase: str = layer_type __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: Optional[int] = downsample_in_first_stage __lowerCAmelCase: Dict = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(UpperCAmelCase ) + 1 )] __lowerCAmelCase , __lowerCAmelCase: Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names ) class A_ ( snake_case__ ): _lowercase : Tuple = version.parse('1.11' ) @property def UpperCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase ( self : int ) -> float: return 1E-3
322
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
1
from __future__ import annotations def _a ( lowerCamelCase: list[float] ) -> float: '''simple docstring''' __A = 0.00 __A = 0 for resistor in resistors: if resistor <= 0: __A = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase ) first_sum += 1 / float(lowerCamelCase ) index += 1 return 1 / first_sum def _a ( lowerCamelCase: list[float] ) -> float: '''simple docstring''' __A = 0.00 __A = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __A = F"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
250
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Optional[int] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct_text_model""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self :Any , _UpperCamelCase :int=5_0244 , _UpperCamelCase :Optional[Any]=768 , _UpperCamelCase :Optional[Any]=64 , _UpperCamelCase :Dict=2048 , _UpperCamelCase :int=12 , _UpperCamelCase :Optional[int]=12 , _UpperCamelCase :Optional[int]=32 , _UpperCamelCase :Dict=128 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :List[str]=1e-6 , _UpperCamelCase :Optional[Any]=1.0 , _UpperCamelCase :Union[str, Any]="gelu_new" , _UpperCamelCase :int=0 , _UpperCamelCase :int=False , _UpperCamelCase :int=0 , _UpperCamelCase :Dict=1 , _UpperCamelCase :Any=False , _UpperCamelCase :Optional[Any]=True , **_UpperCamelCase :Tuple , )-> Dict: __A = vocab_size __A = hidden_size __A = d_kv __A = d_ff __A = num_layers __A = num_heads __A = relative_attention_num_buckets __A = relative_attention_max_distance __A = dropout_rate __A = layer_norm_epsilon __A = initializer_factor __A = use_cache __A = eos_token_id __A = decoder_start_token_id # for backwards compatibility __A = dense_act_fn super().__init__( pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , is_decoder=_UpperCamelCase , **_UpperCamelCase , ) @classmethod def _lowerCAmelCase (cls :List[str] , _UpperCamelCase :Union[str, os.PathLike] , **_UpperCamelCase :List[Any] )-> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCamelCase ) __A , __A = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __A = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct_vision_model""" def __init__(self :Dict , _UpperCamelCase :Optional[Any]=768 , _UpperCamelCase :List[str]=768 , _UpperCamelCase :Any=2048 , _UpperCamelCase :Tuple=64 , _UpperCamelCase :int=12 , _UpperCamelCase :Optional[int]=12 , _UpperCamelCase :Tuple="gelu_new" , _UpperCamelCase :Dict=1e-6 , _UpperCamelCase :int=0.0 , _UpperCamelCase :int=0.0 , _UpperCamelCase :Union[str, Any]=1e-10 , _UpperCamelCase :Tuple=1.0 , _UpperCamelCase :Tuple=4096 , _UpperCamelCase :List[str]=32 , _UpperCamelCase :Optional[Any]=128 , **_UpperCamelCase :List[str] , )-> Any: super().__init__(**_UpperCamelCase ) __A = hidden_size __A = patch_embed_hidden_size __A = d_ff __A = dropout_rate __A = num_hidden_layers __A = num_attention_heads __A = initializer_range __A = initializer_factor __A = attention_dropout __A = layer_norm_eps __A = dense_act_fn __A = seq_len __A = relative_attention_num_buckets __A = relative_attention_max_distance __A = d_kv @classmethod def _lowerCAmelCase (cls :List[str] , _UpperCamelCase :Union[str, os.PathLike] , **_UpperCamelCase :List[str] )-> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCamelCase ) __A , __A = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __A = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """pix2struct""" lowerCAmelCase__ = True def __init__(self :List[Any] , _UpperCamelCase :str=None , _UpperCamelCase :int=None , _UpperCamelCase :List[Any]=1.0 , _UpperCamelCase :int=0.0_2 , _UpperCamelCase :List[str]=False , _UpperCamelCase :Optional[Any]=False , _UpperCamelCase :int=True , **_UpperCamelCase :Any , )-> Optional[Any]: super().__init__(tie_word_embeddings=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) if text_config is None: __A = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __A = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __A = PixaStructTextConfig(**_UpperCamelCase ) __A = PixaStructVisionConfig(**_UpperCamelCase ) __A = self.text_config.decoder_start_token_id __A = self.text_config.pad_token_id __A = self.text_config.eos_token_id __A = initializer_factor __A = initializer_range __A = self.initializer_range __A = self.initializer_range __A = is_vqa @classmethod def _lowerCAmelCase (cls :str , _UpperCamelCase :PixaStructTextConfig , _UpperCamelCase :PixaStructVisionConfig , **_UpperCamelCase :Union[str, Any] )-> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] )-> int: __A = copy.deepcopy(self.__dict__ ) __A = self.text_config.to_dict() __A = self.vision_config.to_dict() __A = self.__class__.model_type return output
250
1
from collections import deque class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> None: """simple docstring""" snake_case_ = process_name # process name snake_case_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time snake_case_ = arrival_time snake_case_ = burst_time # remaining burst time snake_case_ = 0 # total time of the process wait in ready queue snake_case_ = 0 # time from arrival time to completion time class __lowerCAmelCase : """simple docstring""" def __init__( self : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : deque[Process] , _lowerCAmelCase : int , ) -> None: """simple docstring""" # total number of mlfq's queues snake_case_ = number_of_queues # time slice of queues that round robin algorithm applied snake_case_ = time_slices # unfinished process is in this ready_queue snake_case_ = queue # current time snake_case_ = current_time # finished process is in this sequence queue snake_case_ = deque() def lowerCAmelCase__ ( self : Union[str, Any] ) -> list[str]: """simple docstring""" snake_case_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase__ ( self : Dict , _lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" snake_case_ = [] for i in range(len(_lowerCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" snake_case_ = [] for i in range(len(_lowerCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" snake_case_ = [] for i in range(len(_lowerCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase__ ( self : int , _lowerCAmelCase : deque[Process] ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def lowerCAmelCase__ ( self : Dict , _lowerCAmelCase : Process ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase__ ( self : int , _lowerCAmelCase : deque[Process] ) -> deque[Process]: """simple docstring""" snake_case_ = deque() # sequence deque of finished process while len(_lowerCAmelCase ) != 0: snake_case_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowerCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 snake_case_ = 0 # set the process's turnaround time because it is finished snake_case_ = self.current_time - cp.arrival_time # set the completion time snake_case_ = self.current_time # add the process to queue that has finished queue finished.append(_lowerCAmelCase ) self.finish_queue.extend(_lowerCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase__ ( self : Dict , _lowerCAmelCase : deque[Process] , _lowerCAmelCase : int ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" snake_case_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowerCAmelCase ) ): snake_case_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowerCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time snake_case_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowerCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished snake_case_ = 0 # set the finish time snake_case_ = self.current_time # update the process' turnaround time because it is finished snake_case_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowerCAmelCase ) self.finish_queue.extend(_lowerCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase__ ( self : List[Any] ) -> deque[Process]: """simple docstring""" # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): snake_case_ , snake_case_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest SCREAMING_SNAKE_CASE :Any = Process('''P1''', 0, 53) SCREAMING_SNAKE_CASE :List[str] = Process('''P2''', 0, 17) SCREAMING_SNAKE_CASE :str = Process('''P3''', 0, 68) SCREAMING_SNAKE_CASE :Optional[int] = Process('''P4''', 0, 24) SCREAMING_SNAKE_CASE :Union[str, Any] = 3 SCREAMING_SNAKE_CASE :List[Any] = [17, 25] SCREAMING_SNAKE_CASE :List[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) SCREAMING_SNAKE_CASE :Union[str, Any] = Process('''P1''', 0, 53) SCREAMING_SNAKE_CASE :List[str] = Process('''P2''', 0, 17) SCREAMING_SNAKE_CASE :int = Process('''P3''', 0, 68) SCREAMING_SNAKE_CASE :Dict = Process('''P4''', 0, 24) SCREAMING_SNAKE_CASE :int = 3 SCREAMING_SNAKE_CASE :Any = [17, 25] SCREAMING_SNAKE_CASE :List[str] = deque([Pa, Pa, Pa, Pa]) SCREAMING_SNAKE_CASE :Dict = MLFQ(number_of_queues, time_slices, queue, 0) SCREAMING_SNAKE_CASE :str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
159
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE :Any = '''bart''' SCREAMING_SNAKE_CASE :Any = True @st.cache(allow_output_mutation=lowerCAmelCase_ ) def _lowerCAmelCase ( )->List[Any]: '''simple docstring''' if LOAD_DENSE_INDEX: snake_case_ = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) snake_case_ = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) snake_case_ = qar_model.eval() else: snake_case_ , snake_case_ = (None, None) if MODEL_TYPE == "bart": snake_case_ = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) snake_case_ = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) snake_case_ = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) snake_case_ = sas_model.eval() else: snake_case_ , snake_case_ = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCAmelCase_ ) def _lowerCAmelCase ( )->Tuple: '''simple docstring''' if LOAD_DENSE_INDEX: snake_case_ = faiss.StandardGpuResources() snake_case_ = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] snake_case_ = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) snake_case_ = faiss.IndexFlatIP(128 ) snake_case_ = faiss.index_cpu_to_gpu(lowerCAmelCase_ , 1 , lowerCAmelCase_ ) wikiaab_gpu_index_flat.add(lowerCAmelCase_ ) # TODO fix for larger GPU else: snake_case_ , snake_case_ = (None, None) snake_case_ = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCAmelCase_ ) def _lowerCAmelCase ( )->Union[str, Any]: '''simple docstring''' snake_case_ = datasets.load_dataset("eli5" , name="LFQA_reddit" ) snake_case_ = elia["train_eli5"] snake_case_ = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) snake_case_ = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCAmelCase_ ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Union[str, Any] = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[int] = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Union[str, Any] = load_train_data() def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :List[Any]=10 )->int: '''simple docstring''' snake_case_ = embed_questions_for_retrieval([question] , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ , snake_case_ = eli5_train_q_index.search(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = [elia_train[int(lowerCAmelCase_ )] for i in I[0]] return nn_examples def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Optional[int]="wiki40b" , lowerCAmelCase_ :Optional[Any]="dense" , lowerCAmelCase_ :Any=10 )->Union[str, Any]: '''simple docstring''' if source == "none": snake_case_ , snake_case_ = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case_ , snake_case_ = query_qa_dense_index( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: snake_case_ , snake_case_ = query_es_index( lowerCAmelCase_ , lowerCAmelCase_ , index_name="english_wiki40b_snippets_100w" , n_results=lowerCAmelCase_ , ) snake_case_ = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] snake_case_ = "question: {} context: {}".format(lowerCAmelCase_ , lowerCAmelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCAmelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCAmelCase_ : None), } ) def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :int=64 , lowerCAmelCase_ :str=256 , lowerCAmelCase_ :int=False , lowerCAmelCase_ :Optional[int]=2 , lowerCAmelCase_ :Optional[int]=0.9_5 , lowerCAmelCase_ :str=0.8 )->Any: '''simple docstring''' with torch.no_grad(): snake_case_ = qa_sas_generate( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_answers=1 , num_beams=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ , do_sample=lowerCAmelCase_ , temp=lowerCAmelCase_ , top_p=lowerCAmelCase_ , top_k=lowerCAmelCase_ , max_input_length=1_024 , device="cuda:0" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE :Dict = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE :Optional[int] = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE :Optional[Any] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE :Tuple = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE :Any = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE :Tuple = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE :Optional[int] = action_list.index(action_st) SCREAMING_SNAKE_CASE :Any = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE :Optional[int] = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE :List[str] = 3 SCREAMING_SNAKE_CASE :Dict = True SCREAMING_SNAKE_CASE :List[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE :str = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE :str = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE :Union[str, Any] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE :Dict = '''wiki40b''' SCREAMING_SNAKE_CASE :Optional[int] = '''dense''' SCREAMING_SNAKE_CASE :str = '''beam''' SCREAMING_SNAKE_CASE :List[str] = 2 SCREAMING_SNAKE_CASE :int = 64 SCREAMING_SNAKE_CASE :List[str] = 2_56 SCREAMING_SNAKE_CASE :str = None SCREAMING_SNAKE_CASE :Optional[Any] = None SCREAMING_SNAKE_CASE :int = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE :Optional[Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE :str = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE :Optional[Any] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE :Union[str, Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE :List[Any] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE :Any = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE :Optional[Any] = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE :Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE :Any = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE :Optional[Any] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE :List[Any] = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE :str = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :int = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[int] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE :Optional[Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE :Union[str, Any] = support_list[:10] SCREAMING_SNAKE_CASE :int = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :str = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE :Dict = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE :Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE :Tuple = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE :Union[str, Any] = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE :Optional[int] = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE :List[Any] = find_nearest_training(question) SCREAMING_SNAKE_CASE :List[Any] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE :Any = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE :Optional[int] = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
159
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCAmelCase ( UpperCamelCase_ ): __lowerCamelCase = """unispeech""" def __init__( self :List[str] , _lowercase :Optional[Any]=32 , _lowercase :Union[str, Any]=7_68 , _lowercase :List[str]=12 , _lowercase :str=12 , _lowercase :Optional[int]=30_72 , _lowercase :Union[str, Any]="gelu" , _lowercase :Any=0.1 , _lowercase :Dict=0.1 , _lowercase :Optional[int]=0.1 , _lowercase :List[str]=0.0 , _lowercase :Tuple=0.0 , _lowercase :Union[str, Any]=0.1 , _lowercase :int=0.1 , _lowercase :Optional[int]=0.02 , _lowercase :str=1e-5 , _lowercase :List[Any]="group" , _lowercase :Optional[int]="gelu" , _lowercase :Any=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _lowercase :int=(5, 2, 2, 2, 2, 2, 2) , _lowercase :Optional[int]=(10, 3, 3, 3, 3, 2, 2) , _lowercase :List[Any]=False , _lowercase :Dict=1_28 , _lowercase :Optional[int]=16 , _lowercase :List[str]=False , _lowercase :Tuple=True , _lowercase :Union[str, Any]=0.05 , _lowercase :Dict=10 , _lowercase :str=2 , _lowercase :Optional[Any]=0.0 , _lowercase :List[Any]=10 , _lowercase :Optional[int]=0 , _lowercase :Optional[int]=3_20 , _lowercase :Union[str, Any]=2 , _lowercase :Dict=0.1 , _lowercase :Any=1_00 , _lowercase :str=2_56 , _lowercase :List[str]=2_56 , _lowercase :Optional[Any]=0.1 , _lowercase :Optional[int]="mean" , _lowercase :Optional[Any]=False , _lowercase :Tuple=False , _lowercase :str=2_56 , _lowercase :List[Any]=80 , _lowercase :List[str]=0 , _lowercase :Optional[int]=1 , _lowercase :int=2 , _lowercase :Union[str, Any]=0.5 , **_lowercase :List[Any] , ): '''simple docstring''' super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) lowercase__ = hidden_size lowercase__ = feat_extract_norm lowercase__ = feat_extract_activation lowercase__ = list(_a ) lowercase__ = list(_a ) lowercase__ = list(_a ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = num_ctc_classes lowercase__ = vocab_size lowercase__ = do_stable_layer_norm lowercase__ = use_weighted_layer_sum lowercase__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ = num_codevectors_per_group lowercase__ = num_codevector_groups lowercase__ = contrastive_logits_temperature lowercase__ = feat_quantizer_dropout lowercase__ = num_negatives lowercase__ = codevector_dim lowercase__ = proj_codevector_dim lowercase__ = diversity_loss_weight # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # pretraining loss lowercase__ = replace_prob @property def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
362
from collections import namedtuple import requests from lxml import html # type: ignore _snake_case = namedtuple("""covid_data""", """cases deaths recovered""") def _A ( __magic_name__ = "https://www.worldometers.info/coronavirus/" ): lowercase__ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(__magic_name__ ).content ).xpath(__magic_name__ ) ) _snake_case = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
201
0
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
32
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _snake_case = '''pytorch_model.bin''' _snake_case = '''pytorch_model.bin.index.json''' _snake_case = '''adapter_config.json''' _snake_case = '''adapter_model.bin''' _snake_case = '''adapter_model.safetensors''' _snake_case = '''tf_model.h5''' _snake_case = '''tf_model.h5.index.json''' _snake_case = '''model.ckpt''' _snake_case = '''flax_model.msgpack''' _snake_case = '''flax_model.msgpack.index.json''' _snake_case = '''model.safetensors''' _snake_case = '''model.safetensors.index.json''' _snake_case = '''config.json''' _snake_case = '''preprocessor_config.json''' _snake_case = FEATURE_EXTRACTOR_NAME _snake_case = '''generation_config.json''' _snake_case = '''modelcard.json''' _snake_case = '''▁''' _snake_case = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _snake_case = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _snake_case = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _snake_case = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _UpperCamelCase ( snake_case__ ) -> Any: if version.parse(snake_case__ ) < version.parse(snake_case__ ): if "dev" in min_version: __UpperCAmelCase : Dict = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __UpperCAmelCase : str = f'''This example requires a minimum version of {min_version},''' error_message += f''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
157
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _A ( __lowercase , unittest.TestCase ): lowercase__: str = ShapEPipeline lowercase__: Union[str, Any] = ['''prompt'''] lowercase__: Dict = ['''prompt'''] lowercase__: Union[str, Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowercase__: Union[str, Any] = False @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return 32 @property def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return 32 @property def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return 8 @property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__magic_name__ ) @property def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __snake_case : List[Any] = PriorTransformer(**__magic_name__ ) return model @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : Optional[Any] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __snake_case : Any = ShapERenderer(**__magic_name__ ) return model def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" __snake_case : int = self.dummy_prior __snake_case : Optional[int] = self.dummy_text_encoder __snake_case : str = self.dummy_tokenizer __snake_case : List[str] = self.dummy_renderer __snake_case : str = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , ) __snake_case : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowercase__ ( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str=0 ) -> Any: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : int = torch.manual_seed(__magic_name__ ) else: __snake_case : Dict = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Any = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = """cpu""" __snake_case : Optional[int] = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : str = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : str = output.images[0] __snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : List[Any] = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = torch_device == """cpu""" __snake_case : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : str = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Any = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Optional[int] = 1 __snake_case : Union[str, Any] = 2 __snake_case : Any = self.get_dummy_inputs(__magic_name__ ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Optional[int] = batch_size * [inputs[key]] __snake_case : Tuple = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ) -> Dict: """simple docstring""" __snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __snake_case : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __snake_case : Union[str, Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) __snake_case : Any = pipe( """a shark""" , generator=__magic_name__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a = logging.get_logger(__name__) __a = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'deta' A : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=900 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=300 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.25 , **SCREAMING_SNAKE_CASE__ , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = backbone_config.pop('''model_type''' ) lowercase : Any = CONFIG_MAPPING[backbone_model_type] lowercase : List[Any] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = backbone_config lowercase : Union[str, Any] = num_queries lowercase : Any = max_position_embeddings lowercase : int = d_model lowercase : Any = encoder_ffn_dim lowercase : Optional[int] = encoder_layers lowercase : Tuple = encoder_attention_heads lowercase : Optional[Any] = decoder_ffn_dim lowercase : Optional[int] = decoder_layers lowercase : int = decoder_attention_heads lowercase : Any = dropout lowercase : int = attention_dropout lowercase : Dict = activation_dropout lowercase : int = activation_function lowercase : Dict = init_std lowercase : List[str] = init_xavier_std lowercase : Optional[Any] = encoder_layerdrop lowercase : Tuple = auxiliary_loss lowercase : Tuple = position_embedding_type # deformable attributes lowercase : List[str] = num_feature_levels lowercase : Tuple = encoder_n_points lowercase : Optional[int] = decoder_n_points lowercase : Tuple = two_stage lowercase : Optional[Any] = two_stage_num_proposals lowercase : Union[str, Any] = with_box_refine lowercase : Any = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase : Optional[Any] = class_cost lowercase : str = bbox_cost lowercase : List[Any] = giou_cost # Loss coefficients lowercase : Tuple = mask_loss_coefficient lowercase : Any = dice_loss_coefficient lowercase : Dict = bbox_loss_coefficient lowercase : Tuple = giou_loss_coefficient lowercase : Union[str, Any] = eos_coefficient lowercase : Tuple = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return self.encoder_attention_heads @property def __lowerCamelCase ( self ): return self.d_model def __lowerCamelCase ( self ): lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Any = self.backbone_config.to_dict() lowercase : List[str] = self.__class__.model_type return output
337
1
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = PhobertTokenizer lowerCAmelCase__ = False def _lowerCAmelCase (self :Union[str, Any] )-> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] __A = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) __A = ['''#version: 0.2''', '''l à</w>'''] __A = {'''unk_token''': '''<unk>'''} __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCamelCase ) ) def _lowerCAmelCase (self :int , **_UpperCamelCase :List[str] )-> List[Any]: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Tuple )-> Dict: __A = '''Tôi là VinAI Research''' __A = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def _lowerCAmelCase (self :Optional[int] )-> Tuple: __A = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __A = '''Tôi là VinAI Research''' __A = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() __A = tokenizer.tokenize(_UpperCamelCase ) print(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) __A = tokens + [tokenizer.unk_token] __A = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase )
363
import math def _a ( lowerCamelCase: int ) -> int: '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): __A = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase ) if number < 1: __A = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: __A = int(math.log(number // 3 , 2 ) ) + 2 __A = [3, 5] __A = 2 __A = 3 for block in range(1 , lowerCamelCase ): for _ in range(lowerCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): snake_case__ : Optional[Any] = 0 try: snake_case__ : int = proth(number) except ValueError: print(f'ValueError: there is no {number}th Proth number') continue print(f'The {number}th Proth number: {value}')
250
0
'''simple docstring''' def _A ( snake_case , snake_case ) -> str: _lowercase : int = "" for word_or_phrase in separated: if not isinstance(snake_case , snake_case ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
250
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class a__ ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=4 , ): """simple docstring""" _lowercase : int = parent _lowercase : List[str] = batch_size _lowercase : Tuple = seq_length _lowercase : Any = is_training _lowercase : List[Any] = use_attention_mask _lowercase : Dict = use_token_type_ids _lowercase : int = use_labels _lowercase : List[Any] = vocab_size _lowercase : int = hidden_size _lowercase : int = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : Optional[int] = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : str = max_position_embeddings _lowercase : Optional[int] = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : str = initializer_range _lowercase : List[Any] = num_choices def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Any = None if self.use_attention_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : str = None if self.use_token_type_ids: _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Optional[Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = config_and_inputs _lowercase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Tuple = config_and_inputs _lowercase : Any = True _lowercase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : Tuple = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: _lowercase : List[str] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) _lowercase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCamelCase ) @require_flax class a__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) _lowercase : Optional[Any] = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) _lowercase : Optional[Any] = model(_UpperCamelCase )[0] _lowercase : Any = [1, 11, 50265] self.assertEqual(list(output.shape ) , _UpperCamelCase ) # compare the actual values for a slice. _lowercase : Dict = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) _lowercase : int = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) _lowercase : List[Any] = model(_UpperCamelCase )[0] # compare the actual values for a slice. _lowercase : List[str] = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
250
1
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __A = logging.get_logger(__name__) class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str _UpperCAmelCase :str = None @staticmethod def _snake_case ( ): raise NotImplementedError def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): raise NotImplementedError def _snake_case ( self , _UpperCAmelCase ): raise NotImplementedError def _snake_case ( self ): if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def _snake_case ( cls ): return F"""`pip install {cls.pip_package or cls.name}`""" class UpperCAmelCase (lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase :Any = 'optuna' @staticmethod def _snake_case ( ): return is_optuna_available() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return run_hp_search_optuna(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return default_hp_space_optuna(__lowerCAmelCase ) class UpperCAmelCase (lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase :Optional[int] = 'ray' _UpperCAmelCase :Dict = '\'ray[tune]\'' @staticmethod def _snake_case ( ): return is_ray_available() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return run_hp_search_ray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return default_hp_space_ray(__lowerCAmelCase ) class UpperCAmelCase (lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase :Optional[Any] = 'sigopt' @staticmethod def _snake_case ( ): return is_sigopt_available() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return run_hp_search_sigopt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return default_hp_space_sigopt(__lowerCAmelCase ) class UpperCAmelCase (lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase :Optional[Any] = 'wandb' @staticmethod def _snake_case ( ): return is_wandb_available() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return run_hp_search_wandb(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return default_hp_space_wandb(__lowerCAmelCase ) __A = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__UpperCAmelCase ) > 0: lowercase__: Union[str, Any] = available_backends[0].name if len(__UpperCAmelCase ) > 1: logger.info( F"""{len(__UpperCAmelCase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = "ylacombe/bark-small" UpperCamelCase : List[Any] = tempfile.mkdtemp() UpperCamelCase : Optional[int] = "en_speaker_1" UpperCamelCase : Tuple = "This is a test string" UpperCamelCase : Tuple = "speaker_embeddings_path.json" UpperCamelCase : List[str] = "speaker_embeddings" def __UpperCamelCase( self , **A_ ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **A_ ) def __UpperCamelCase( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : Optional[Any] = BarkProcessor(tokenizer=A_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Tuple = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCamelCase : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCamelCase : int = 35 UpperCamelCase : str = 2 UpperCamelCase : Dict = 8 UpperCamelCase : Tuple = { "semantic_prompt": np.ones(A_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCamelCase : Any = processor(text=self.input_string , voice_preset=A_ ) UpperCamelCase : Dict = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(A_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCamelCase : str = os.path.join(self.tmpdirname , "file.npz" ) np.savez(A_ , **A_ ) UpperCamelCase : Union[str, Any] = processor(text=self.input_string , voice_preset=A_ ) UpperCamelCase : List[Any] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(A_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCamelCase : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : str = BarkProcessor(tokenizer=A_ ) UpperCamelCase : str = processor(text=self.input_string ) UpperCamelCase : Tuple = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=A_ , return_attention_mask=A_ , return_token_type_ids=A_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
52
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: List[Any]=0.999 , __UpperCAmelCase: Tuple="cosine" , ) -> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase: List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase: List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCamelCase__ : Dict = [] for i in range(__UpperCAmelCase ): UpperCamelCase__ : Optional[Any] = i / num_diffusion_timesteps UpperCamelCase__ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class lowercase__ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' a : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] a : Union[str, Any] = 2 @register_to_config def __init__( self, __magic_name__ = 1000, __magic_name__ = 0.0_0085, __magic_name__ = 0.012, __magic_name__ = "linear", __magic_name__ = None, __magic_name__ = "epsilon", __magic_name__ = "linspace", __magic_name__ = 0, ) -> Tuple: """simple docstring""" if trained_betas is not None: UpperCamelCase__ : int = torch.tensor(__magic_name__, dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase__ : Dict = torch.linspace(__magic_name__, __magic_name__, __magic_name__, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase__ : List[str] = ( torch.linspace(beta_start**0.5, beta_end**0.5, __magic_name__, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase__ : str = betas_for_alpha_bar(__magic_name__ ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) UpperCamelCase__ : Optional[int] = 1.0 - self.betas UpperCamelCase__ : List[Any] = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(__magic_name__, __magic_name__, __magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None ) -> str: """simple docstring""" if schedule_timesteps is None: UpperCamelCase__ : Dict = self.timesteps UpperCamelCase__ : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase__ : List[str] = 1 if len(__magic_name__ ) > 1 else 0 else: UpperCamelCase__ : List[Any] = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep UpperCamelCase__ : int = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase__ ( self, __magic_name__, __magic_name__, ) -> torch.FloatTensor: """simple docstring""" UpperCamelCase__ : Tuple = self.index_for_timestep(__magic_name__ ) if self.state_in_first_order: UpperCamelCase__ : str = self.sigmas[step_index] else: UpperCamelCase__ : Optional[int] = self.sigmas_interpol[step_index] UpperCamelCase__ : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = None, ) -> str: """simple docstring""" UpperCamelCase__ : Dict = num_inference_steps UpperCamelCase__ : Tuple = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase__ : Union[str, Any] = np.linspace(0, num_train_timesteps - 1, __magic_name__, dtype=__magic_name__ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase__ : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ : List[str] = (np.arange(0, __magic_name__ ) * step_ratio).round()[::-1].copy().astype(__magic_name__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase__ : Optional[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ : List[str] = (np.arange(__magic_name__, 0, -step_ratio )).round().copy().astype(__magic_name__ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) UpperCamelCase__ : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase__ : Optional[Any] = torch.from_numpy(np.log(__magic_name__ ) ).to(__magic_name__ ) UpperCamelCase__ : Any = np.interp(__magic_name__, np.arange(0, len(__magic_name__ ) ), __magic_name__ ) UpperCamelCase__ : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase__ : Any = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ ) # interpolate sigmas UpperCamelCase__ : int = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() UpperCamelCase__ : List[str] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase__ : str = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__magic_name__ ).startswith('''mps''' ): # mps does not support float64 UpperCamelCase__ : Optional[Any] = torch.from_numpy(__magic_name__ ).to(__magic_name__, dtype=torch.floataa ) else: UpperCamelCase__ : List[Any] = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) # interpolate timesteps UpperCamelCase__ : str = self.sigma_to_t(__magic_name__ ).to(__magic_name__, dtype=timesteps.dtype ) UpperCamelCase__ : Dict = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() UpperCamelCase__ : Optional[int] = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCamelCase__ : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase__ : Dict = defaultdict(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[Any]: """simple docstring""" # get log sigma UpperCamelCase__ : Any = sigma.log() # get distribution UpperCamelCase__ : List[str] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCamelCase__ : int = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCamelCase__ : Optional[Any] = low_idx + 1 UpperCamelCase__ : str = self.log_sigmas[low_idx] UpperCamelCase__ : int = self.log_sigmas[high_idx] # interpolate sigmas UpperCamelCase__ : List[Any] = (low - log_sigma) / (low - high) UpperCamelCase__ : str = w.clamp(0, 1 ) # transform interpolation to time range UpperCamelCase__ : Tuple = (1 - w) * low_idx + w * high_idx UpperCamelCase__ : int = t.view(sigma.shape ) return t @property def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return self.sample is None def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = True, ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" UpperCamelCase__ : List[str] = self.index_for_timestep(__magic_name__ ) # advance index counter by 1 UpperCamelCase__ : int = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase__ : Optional[Any] = self.sigmas[step_index] UpperCamelCase__ : Union[str, Any] = self.sigmas_interpol[step_index + 1] UpperCamelCase__ : List[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCamelCase__ : Tuple = self.sigmas[step_index - 1] UpperCamelCase__ : Tuple = self.sigmas_interpol[step_index] UpperCamelCase__ : Dict = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase__ : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase__ : List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase__ : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase__ : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase__ : List[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase__ : List[str] = sigma_interpol - sigma_hat # store for 2nd order step UpperCamelCase__ : Dict = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCamelCase__ : List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCamelCase__ : Union[str, Any] = sigma_next - sigma_hat UpperCamelCase__ : Union[str, Any] = self.sample UpperCamelCase__ : Dict = None UpperCamelCase__ : Optional[int] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, ) -> torch.FloatTensor: """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase__ : List[str] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__magic_name__ ): # mps does not support float64 UpperCamelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device, dtype=torch.floataa ) UpperCamelCase__ : Tuple = timesteps.to(original_samples.device, dtype=torch.floataa ) else: UpperCamelCase__ : str = self.timesteps.to(original_samples.device ) UpperCamelCase__ : int = timesteps.to(original_samples.device ) UpperCamelCase__ : Any = [self.index_for_timestep(__magic_name__, __magic_name__ ) for t in timesteps] UpperCamelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase__ : int = sigma.unsqueeze(-1 ) UpperCamelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Any: """simple docstring""" return self.config.num_train_timesteps
201
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase : str = datasets.utils.logging.get_logger(__name__) lowercase : Union[str, Any] = ['names', 'prefix'] lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase : List[Any] = ['encoding_errors', 'on_bad_lines'] lowercase : Any = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): __magic_name__ = ''',''' __magic_name__ = None __magic_name__ = '''infer''' __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = '''.''' __magic_name__ = None __magic_name__ = '''"''' __magic_name__ = 0 __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = None __magic_name__ = 10000 __magic_name__ = None __magic_name__ = '''strict''' __magic_name__ = '''error''' __magic_name__ = None def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" if self.delimiter is not None: A : Optional[Any] = self.delimiter if self.column_names is not None: A : Optional[Any] = self.column_names @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : str = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): __magic_name__ = CsvConfig def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ): A : str = data_files if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : int = [files] A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A : Tuple = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = [files] A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table: """simple docstring""" if self.config.features is not None: A : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return pa_table def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ): A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ): A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' ) raise
358
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ ) A : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ ) class A ( __snake_case ): __magic_name__ = '''sigmoid''' __magic_name__ = '''softmax''' __magic_name__ = '''none''' @add_end_docstrings( __snake_case , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class A ( __snake_case ): __magic_name__ = False __magic_name__ = ClassificationFunction.NONE def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Optional[Any] = tokenizer_kwargs A : int = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: A : int = self.model.config.return_all_scores if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None: A : Union[str, Any] = top_k A : Dict = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , ) if return_all_scores: A : Optional[int] = None else: A : Dict = 1 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A : Any = '''top_k''' not in kwargs if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: """simple docstring""" A : List[Any] = self.framework if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.model(**SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A : Any = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: A : Optional[int] = self.model.config.function_to_apply else: A : Optional[int] = ClassificationFunction.NONE A : Any = model_outputs['''logits'''][0] A : List[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A : int = sigmoid(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: A : Any = softmax(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: A : int = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A : int = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE ) if top_k is not None: A : Union[str, Any] = dict_scores[:top_k] return dict_scores
311
0
from pathlib import Path import numpy as np from PIL import Image def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return (gray > 127) & (gray <= 255) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = np.zeros_like(_UpperCAmelCase ) lowerCamelCase : Optional[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCamelCase : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCamelCase : str = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCamelCase : Union[str, Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image _snake_case = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" _snake_case = np.array(Image.open(lena_path)) # kernel to be applied _snake_case = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _snake_case = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _snake_case = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
283
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class lowercase_ ( lowerCamelCase_ ): '''simple docstring''' __snake_case = 'xlm' __snake_case = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self : Dict , __UpperCAmelCase : List[str]=30_145 , __UpperCAmelCase : List[Any]=2_048 , __UpperCAmelCase : int=12 , __UpperCAmelCase : Optional[int]=16 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : int=True , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : str=2_048**-0.5 , __UpperCAmelCase : Union[str, Any]=1e-1_2 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Tuple=5 , __UpperCAmelCase : int=True , __UpperCAmelCase : Union[str, Any]="first" , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=None , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[Any]=5 , __UpperCAmelCase : List[Any]=5 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=0 , **__UpperCAmelCase : Dict , ) ->List[Any]: """simple docstring""" a = vocab_size a = emb_dim a = n_layers a = n_heads a = dropout a = attention_dropout a = gelu_activation a = sinusoidal_embeddings a = causal a = asm a = n_langs a = use_lang_emb a = layer_norm_eps a = bos_index a = eos_index a = pad_index a = unk_index a = mask_index a = is_encoder a = max_position_embeddings a = embed_init_std a = init_std a = summary_type a = summary_use_proj a = summary_activation a = summary_proj_to_labels a = summary_first_dropout a = start_n_top a = end_n_top a = mask_token_id a = lang_id if "n_words" in kwargs: a = kwargs["n_words"] super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , **_UpperCamelCase ) class lowercase_ ( lowerCamelCase_ ): '''simple docstring''' @property def __lowerCAmelCase ( self : int ) ->int: """simple docstring""" if self.task == "multiple-choice": a = {0: "batch", 1: "choice", 2: "sequence"} else: a = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _snake_case = logging.get_logger('transformers.models.speecht5') _snake_case = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } _snake_case = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } _snake_case = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } _snake_case = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } _snake_case = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } _snake_case = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } _snake_case = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } _snake_case = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } _snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case = [] _snake_case = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] _snake_case = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] _snake_case = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] _snake_case = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def _A ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[Any]: for attribute in key.split("." ): _lowercase : Dict = getattr(snake_case , snake_case ) if weight_type is not None: _lowercase : Union[str, Any] = getattr(snake_case , snake_case ).shape else: _lowercase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowercase : str = value elif weight_type == "weight_g": _lowercase : List[str] = value elif weight_type == "weight_v": _lowercase : int = value elif weight_type == "bias": _lowercase : Union[str, Any] = value elif weight_type == "running_mean": _lowercase : Union[str, Any] = value elif weight_type == "running_var": _lowercase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowercase : Tuple = value else: _lowercase : int = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _A ( snake_case , snake_case ) -> str: for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowercase , _lowercase : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _A ( snake_case , snake_case , snake_case ) -> Tuple: _lowercase : List[Any] = [] if task == "s2t": _lowercase : str = hf_model.speechta.encoder.prenet.feature_encoder _lowercase : List[str] = MAPPING_S2T _lowercase : Optional[Any] = IGNORE_KEYS_S2T elif task == "t2s": _lowercase : List[Any] = None _lowercase : Tuple = MAPPING_T2S _lowercase : List[str] = IGNORE_KEYS_T2S elif task == "s2s": _lowercase : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder _lowercase : Optional[Any] = MAPPING_S2S _lowercase : Tuple = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(snake_case , snake_case ): logger.info(F'''{name} was ignored''' ) continue _lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == "group" , ) _lowercase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowercase , _lowercase : Optional[int] = key.split(".*." ) if prefix in name and suffix in name: _lowercase : Dict = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowercase : Optional[Any] = True if "*" in mapped_key: _lowercase : int = name.split(snake_case )[0].split("." )[-2] _lowercase : Union[str, Any] = mapped_key.replace("*" , snake_case ) if "weight_g" in name: _lowercase : Dict = "weight_g" elif "weight_v" in name: _lowercase : Optional[Any] = "weight_v" elif "bias" in name: _lowercase : Any = "bias" elif "weight" in name: _lowercase : Dict = "weight" elif "running_mean" in name: _lowercase : List[Any] = "running_mean" elif "running_var" in name: _lowercase : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: _lowercase : str = "num_batches_tracked" else: _lowercase : str = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _A ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: _lowercase : Optional[int] = full_name.split("conv_layers." )[-1] _lowercase : Tuple = name.split("." ) _lowercase : Optional[int] = int(items[0] ) _lowercase : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowercase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowercase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowercase : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowercase : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case ) @torch.no_grad() def _A ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , ) -> Optional[Any]: if config_path is not None: _lowercase : List[str] = SpeechTaConfig.from_pretrained(snake_case ) else: _lowercase : int = SpeechTaConfig() if task == "s2t": _lowercase : List[Any] = config.max_text_positions _lowercase : Optional[int] = SpeechTaForSpeechToText(snake_case ) elif task == "t2s": _lowercase : str = 18_76 _lowercase : str = 6_00 _lowercase : List[Any] = config.max_speech_positions _lowercase : Optional[int] = SpeechTaForTextToSpeech(snake_case ) elif task == "s2s": _lowercase : Tuple = 18_76 _lowercase : List[Any] = config.max_speech_positions _lowercase : str = SpeechTaForSpeechToSpeech(snake_case ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: _lowercase : Any = SpeechTaTokenizer(snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowercase : Optional[int] = AddedToken("<mask>" , lstrip=snake_case , rstrip=snake_case ) _lowercase : int = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) _lowercase : Dict = SpeechTaFeatureExtractor() _lowercase : str = SpeechTaProcessor(tokenizer=snake_case , feature_extractor=snake_case ) processor.save_pretrained(snake_case ) _lowercase : Union[str, Any] = torch.load(snake_case ) recursively_load_weights(fairseq_checkpoint["model"] , snake_case , snake_case ) model.save_pretrained(snake_case ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(snake_case ) model.push_to_hub(snake_case ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
250
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = field(default="image-classification", metadata={"include_in_asdict_even_if_is_default": True} ) __lowerCAmelCase = Features({"image": Image()} ) __lowerCAmelCase = Features({"labels": ClassLabel} ) __lowerCAmelCase = "image" __lowerCAmelCase = "labels" def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) a =copy.deepcopy(self ) a =self.label_schema.copy() a =features[self.label_column] a =label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
215
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __A : """simple docstring""" __lowerCAmelCase = 42 # setable values __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = None @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , __A , __A ) -> List[str]: return cls(common=__A , init_noise_sigma=__A , timesteps=__A ) @dataclass class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCAmelCase = 42 @property def SCREAMING_SNAKE_CASE ( self ) -> str: return True @register_to_config def __init__( self , __A = 1000 , __A = 0.0_001 , __A = 0.02 , __A = "linear" , __A = None , __A = "fixed_small" , __A = True , __A = "epsilon" , __A = jnp.floataa , ) -> List[Any]: a =dtype def SCREAMING_SNAKE_CASE ( self , __A = None ) -> DDPMSchedulerState: if common is None: a =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution a =jnp.array(1.0 , dtype=self.dtype ) a =jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__A , init_noise_sigma=__A , timesteps=__A , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None ) -> jnp.ndarray: return sample def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = () ) -> DDPMSchedulerState: a =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 a =(jnp.arange(0 , __A ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__A , timesteps=__A , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=None , __A=None ) -> str: a =state.common.alphas_cumprod[t] a =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample a =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: a =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": a =jnp.clip(__A , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": a =jnp.log(jnp.clip(__A , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": a =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log a =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": a =variance a =state.common.betas[t] a =(predicted_variance + 1) / 2 a =frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A = None , __A = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: a =timestep if key is None: a =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: a , a =jnp.split(__A , sample.shape[1] , axis=1 ) else: a =None # 1. compute alphas, betas a =state.common.alphas_cumprod[t] a =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) a =1 - alpha_prod_t a =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": a =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": a =model_output elif self.config.prediction_type == "v_prediction": a =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: a =jnp.clip(__A , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t a =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): a =jax.random.split(__A , num=1 ) a =jax.random.normal(__A , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__A , __A , predicted_variance=__A ) ** 0.5) * noise a =jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) a =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__A , state=__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , ) -> jnp.ndarray: return add_noise_common(state.common , __A , __A , __A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , ) -> jnp.ndarray: return get_velocity_common(state.common , __A , __A , __A ) def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
215
1
class lowercase__: """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> List[str]: lowercase_ = data lowercase_ = previous lowercase_ = next_node def __str__( self : Tuple ) -> str: return f'''{self.data}''' def _lowercase ( self : Any ) -> int: return self.data def _lowercase ( self : Union[str, Any] ) -> Optional[int]: return self.next def _lowercase ( self : Tuple ) -> Any: return self.previous class lowercase__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: lowercase_ = head def __iter__( self : Union[str, Any] ) -> str: return self def _lowercase ( self : List[str] ) -> Tuple: if not self.current: raise StopIteration else: lowercase_ = self.current.get_data() lowercase_ = self.current.get_next() return value class lowercase__: """simple docstring""" def __init__( self : Union[str, Any] ) -> Any: lowercase_ = None # First node in list lowercase_ = None # Last node in list def __str__( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = self.head lowercase_ = [] while current is not None: nodes.append(current.get_data() ) lowercase_ = current.get_next() return " ".join(str(SCREAMING_SNAKE_CASE_ ) for node in nodes ) def __contains__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: lowercase_ = self.head while current: if current.get_data() == value: return True lowercase_ = current.get_next() return False def __iter__( self : Dict ) -> Tuple: return LinkedListIterator(self.head ) def _lowercase ( self : Any ) -> Optional[Any]: if self.head: return self.head.get_data() return None def _lowercase ( self : Any ) -> Any: if self.tail: return self.tail.get_data() return None def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Node ) -> None: if self.head is None: lowercase_ = node lowercase_ = node else: self.insert_before_node(self.head , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Node ) -> None: if self.head is None: self.set_head(SCREAMING_SNAKE_CASE_ ) else: self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> None: lowercase_ = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: self.set_head(SCREAMING_SNAKE_CASE_ ) else: self.set_tail(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Node , SCREAMING_SNAKE_CASE_ : Node ) -> None: lowercase_ = node lowercase_ = node.previous if node.get_previous() is None: lowercase_ = node_to_insert else: lowercase_ = node_to_insert lowercase_ = node_to_insert def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Node , SCREAMING_SNAKE_CASE_ : Node ) -> None: lowercase_ = node lowercase_ = node.next if node.get_next() is None: lowercase_ = node_to_insert else: lowercase_ = node_to_insert lowercase_ = node_to_insert def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: lowercase_ = 1 lowercase_ = Node(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.head while node: if current_position == position: self.insert_before_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return current_position += 1 lowercase_ = node.next self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int ) -> Node: lowercase_ = self.head while node: if node.get_data() == item: return node lowercase_ = node.get_next() raise Exception('''Node not found''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if (node := self.get_node(SCREAMING_SNAKE_CASE_ )) is not None: if node == self.head: lowercase_ = self.head.get_next() if node == self.tail: lowercase_ = self.tail.get_previous() self.remove_node_pointers(SCREAMING_SNAKE_CASE_ ) @staticmethod def _lowercase ( SCREAMING_SNAKE_CASE_ : Node ) -> None: if node.get_next(): lowercase_ = node.previous if node.get_previous(): lowercase_ = node.next lowercase_ = None lowercase_ = None def _lowercase ( self : Tuple ) -> Tuple: return self.head is None def a ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
30
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
0
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : int = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __UpperCamelCase ( __lowercase ): lowerCamelCase : Any ="""align_text_model""" def __init__( self , lowerCAmelCase__=3_0522 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> List[str]: super().__init__(**_a ) a : List[str] = vocab_size a : Union[str, Any] = hidden_size a : str = num_hidden_layers a : Tuple = num_attention_heads a : str = hidden_act a : List[Any] = intermediate_size a : List[str] = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : Optional[int] = max_position_embeddings a : str = type_vocab_size a : Optional[Any] = initializer_range a : List[str] = layer_norm_eps a : Optional[int] = position_embedding_type a : List[str] = use_cache a : Optional[Any] = pad_token_id @classmethod def __a ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) a, a : Optional[int] = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": a : List[str] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __UpperCamelCase ( __lowercase ): lowerCamelCase : Optional[Any] ="""align_vision_model""" def __init__( self , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = 2.0 , lowerCAmelCase__ = 3.1 , lowerCAmelCase__ = 8 , lowerCAmelCase__ = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase__ = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase__ = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase__ = [] , lowerCAmelCase__ = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase__ = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase__ = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase__ = 0.25 , lowerCAmelCase__ = "swish" , lowerCAmelCase__ = 2560 , lowerCAmelCase__ = "mean" , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 0.001 , lowerCAmelCase__ = 0.99 , lowerCAmelCase__ = 0.2 , **lowerCAmelCase__ , ) -> int: super().__init__(**_a ) a : Union[str, Any] = num_channels a : List[str] = image_size a : List[Any] = width_coefficient a : Union[str, Any] = depth_coefficient a : Dict = depth_divisor a : Optional[Any] = kernel_sizes a : List[str] = in_channels a : Optional[int] = out_channels a : List[str] = depthwise_padding a : List[Any] = strides a : Dict = num_block_repeats a : Union[str, Any] = expand_ratios a : str = squeeze_expansion_ratio a : Optional[Any] = hidden_act a : str = hidden_dim a : str = pooling_type a : Dict = initializer_range a : int = batch_norm_eps a : int = batch_norm_momentum a : List[str] = drop_connect_rate a : int = sum(_a ) * 4 @classmethod def __a ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) a, a : Optional[int] = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": a : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __UpperCamelCase ( __lowercase ): lowerCamelCase : List[Any] ="""align""" lowerCamelCase : Dict =True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=640 , lowerCAmelCase__=1.0 , lowerCAmelCase__=0.02 , **lowerCAmelCase__ , ) -> Any: super().__init__(**_a ) if text_config is None: a : Union[str, Any] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: a : Tuple = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) a : Union[str, Any] = AlignTextConfig(**_a ) a : Union[str, Any] = AlignVisionConfig(**_a ) a : Union[str, Any] = projection_dim a : List[str] = temperature_init_value a : Optional[Any] = initializer_range @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def __a ( self ) -> Union[str, Any]: a : Dict = copy.deepcopy(self.__dict__ ) a : Dict = self.text_config.to_dict() a : Optional[int] = self.vision_config.to_dict() a : str = self.__class__.model_type return output
350
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
79
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) a : str = getLogger(__name__) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ): '''simple docstring''' UpperCAmelCase : List[Any] = str(__magic_name__ ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ ) UpperCAmelCase : List[str] = Path(__magic_name__ ) UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(__magic_name__ ) UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda() if fpaa: UpperCAmelCase : int = model.half() # determine if we need to increase num_beams use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase : Optional[Any] = num_return_sequences UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase : Any = tokenizer.model_max_length if prefix is None: UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase : Dict = SeqaSeqDataset( __magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ ) UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn ) UpperCAmelCase : Any = [] for batch in tqdm(__magic_name__ ): UpperCAmelCase : List[Any] = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , ) UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) UpperCAmelCase : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__magic_name__ ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(__magic_name__ , __magic_name__ ) return results, sampler.num_replicas def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ ) parser.add_argument( "--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" ) parser.add_argument( "--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument( "--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase : Union[str, Any] = time.time() UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args() UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking. UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase : Optional[Any] = {} if args.src_lang is not None: UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: UpperCAmelCase : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__magic_name__ ) UpperCAmelCase , UpperCAmelCase : str = eval_data_dir( args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , ) if args.local_rank <= 0: UpperCAmelCase : List[str] = Path(args.save_dir ) save_dir.mkdir(exist_ok=__magic_name__ ) UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout ) UpperCAmelCase : Dict = combine_partial_results(__magic_name__ ) if args.num_return_sequences > 1: UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(__magic_name__ , __magic_name__ ) return UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(__magic_name__ ) as f: UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase : Optional[int] = "translation" in args.task UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge" UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = len(__magic_name__ ) UpperCAmelCase : Union[str, Any] = time.time() - start_time UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ ) print(__magic_name__ ) write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(__magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = [] for partial_result in partial_results: records.extend(__magic_name__ ) UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] ) UpperCAmelCase : List[Any] = [x["pred"] for x in records] return preds def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase : Union[str, Any] = None while (time.time() - start_wait) < timeout: UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) ) if len(__magic_name__ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
311
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
"""simple docstring""" __lowercase = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowercase = frozenset(["""prompt""", """negative_prompt"""]) __lowercase = frozenset([]) __lowercase = frozenset(["""image"""]) __lowercase = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""image"""]) __lowercase = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowercase = frozenset(["""prompt""", """image""", """negative_prompt"""]) __lowercase = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowercase = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) __lowercase = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""image""", """mask_image"""]) __lowercase = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowercase = frozenset(["""example_image""", """image""", """mask_image"""]) __lowercase = frozenset(["""class_labels"""]) __lowercase = frozenset(["""class_labels"""]) __lowercase = frozenset(["""batch_size"""]) __lowercase = frozenset([]) __lowercase = frozenset(["""batch_size"""]) __lowercase = frozenset([]) __lowercase = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowercase = frozenset(["""prompt""", """negative_prompt"""]) __lowercase = frozenset(["""input_tokens"""]) __lowercase = frozenset(["""input_tokens"""])
226
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = 9, 14 # noqa: F841 UpperCAmelCase__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase__ = defaultdict(__A ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase__ = mst(__A ) UpperCAmelCase__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase__ = tuple(answer[:2] ) UpperCAmelCase__ = tuple(edge[::-1] ) assert edge in result or reverse in result
65
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") lowerCamelCase = {"""target_lang""": """fi""", """source_lang""": """en"""} lowerCamelCase = """>>zh<<""" lowerCamelCase = """Helsinki-NLP/""" if is_torch_available(): lowerCamelCase = """pt""" elif is_tf_available(): lowerCamelCase = """tf""" else: lowerCamelCase = """jax""" @require_sentencepiece class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MarianTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def __lowerCamelCase ( self : int): '''simple docstring''' super().setUp() __lowercase =['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __lowercase =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase)))) __lowercase =Path(self.tmpdirname) save_json(_lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab']) save_json(_lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file']) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['source_spm']) copyfile(_lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['target_spm']) __lowercase =MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : Optional[int] , **_lowerCAmelCase : List[str]): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : str): '''simple docstring''' return ( "This is a test", "This is a test", ) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase ='</s>' __lowercase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase) , _lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '</s>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '<pad>') self.assertEqual(len(_lowerCAmelCase) , 9) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""") __lowercase =en_de_tokenizer(['I am a small frog'] , return_tensors=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) __lowercase =[3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(_lowerCAmelCase , batch.input_ids[0]) __lowercase =tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_lowerCAmelCase) __lowercase =[x.name for x in Path(_lowerCAmelCase).glob('*')] self.assertIn('source.spm' , _lowerCAmelCase) MarianTokenizer.from_pretrained(_lowerCAmelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =tok( ['I am a small frog' * 1_0_0_0, 'I am a small frog'] , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) self.assertEqual(batch.input_ids.shape , (2, 5_1_2)) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =tok(['I am a tiny frog', 'I am a small frog'] , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0)) @slow def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={'input_ids': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs') __lowercase ='Tämä on testi' __lowercase ='This is a test' __lowercase =[7_6, 7, 2_0_4_7, 2] __lowercase =[6_9, 1_2, 1_1, 9_4_0, 2] __lowercase =tokenizer(_lowerCAmelCase).input_ids self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer(text_target=_lowerCAmelCase).input_ids self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase)
48
'''simple docstring''' from __future__ import annotations import requests def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(_lowerCAmelCase ).json() def _A ( _lowerCAmelCase = 10 ): """simple docstring""" __lowercase ='https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' __lowercase =requests.get(_lowerCAmelCase ).json()[:max_stories] return [get_hackernews_story(_lowerCAmelCase ) for story_id in story_ids] def _A ( _lowerCAmelCase = 10 ): """simple docstring""" __lowercase =hackernews_top_stories(_lowerCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_lowerCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
48
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """WhisperFeatureExtractor""" UpperCAmelCase = """WhisperTokenizer""" def __init__( self ,a_ ,a_ ) -> int: super().__init__(a_ ,a_ ) _UpperCAmelCase : Optional[Any] = self.feature_extractor _UpperCAmelCase : Optional[int] = False def _snake_case ( self ,a_=None ,a_=None ,a_=True ) -> int: return self.tokenizer.get_decoder_prompt_ids(task=a_ ,language=a_ ,no_timestamps=a_ ) def __call__( self ,*a_ ,**a_ ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a_ ,**a_ ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("""audio""" ,a_ ) _UpperCAmelCase : Optional[int] = kwargs.pop("""sampling_rate""" ,a_ ) _UpperCAmelCase : Tuple = kwargs.pop("""text""" ,a_ ) if len(a_ ) > 0: _UpperCAmelCase : Union[str, Any] = args[0] _UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _UpperCAmelCase : Tuple = self.feature_extractor(a_ ,*a_ ,sampling_rate=a_ ,**a_ ) if text is not None: _UpperCAmelCase : int = self.tokenizer(a_ ,**a_ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : Optional[int] = encodings["""input_ids"""] return inputs def _snake_case ( self ,*a_ ,**a_ ) -> List[str]: return self.tokenizer.batch_decode(*a_ ,**a_ ) def _snake_case ( self ,*a_ ,**a_ ) -> Any: return self.tokenizer.decode(*a_ ,**a_ ) def _snake_case ( self ,a_ ,a_="np" ) -> str: return self.tokenizer.get_prompt_ids(a_ ,return_tensors=a_ )
215
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[Any] = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _a ( _lowerCAmelCase , unittest.TestCase ): A = FlaxAutoencoderKL @property def __snake_case (self ) -> Tuple: UpperCAmelCase_: Any = 4 UpperCAmelCase_: List[Any] = 3 UpperCAmelCase_: List[str] = (32, 32) UpperCAmelCase_: Tuple = jax.random.PRNGKey(0 ) UpperCAmelCase_: str = jax.random.uniform(SCREAMING_SNAKE_CASE_, ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Dict = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_: List[Any] = self.dummy_input return init_dict, inputs_dict
82
from typing import TYPE_CHECKING from ....utils import _LazyModule a : Tuple = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
82
1
import random from typing import Any def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[Any]: for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : List[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) lowercase : Any = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) lowercase , lowercase : int = data[b], data[a] return data if __name__ == "__main__": lowercase : str = [0, 1, 2, 3, 4, 5, 6, 7] lowercase : List[str] = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
20
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = coefficient_matrix.shape UpperCAmelCase , UpperCAmelCase : Tuple = constant_matrix.shape if rowsa != colsa: UpperCAmelCase : Union[str, Any] = F"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase ) if colsa != 1: UpperCAmelCase : Union[str, Any] = F"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase ) if rowsa != rowsa: UpperCAmelCase : int = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(UpperCamelCase ) if len(UpperCamelCase ) != rowsa: UpperCAmelCase : Any = ( """Number of initial values must be equal to number of rows in coefficient """ F"matrix but received {len(UpperCamelCase )} and {rowsa}" ) raise ValueError(UpperCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) UpperCAmelCase : int = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = table.shape strictly_diagonally_dominant(UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(UpperCamelCase ): UpperCAmelCase : Any = [] for row in range(UpperCamelCase ): UpperCAmelCase : Dict = 0 for col in range(UpperCamelCase ): if col == row: UpperCAmelCase : str = table[row][col] elif col == cols - 1: UpperCAmelCase : Union[str, Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCAmelCase : int = (temp + val) / denom new_val.append(UpperCamelCase ) UpperCAmelCase : Union[str, Any] = new_val return [float(UpperCamelCase ) for i in new_val] def _snake_case ( UpperCamelCase : List[Any] ): UpperCAmelCase , UpperCAmelCase : str = table.shape UpperCAmelCase : Any = True for i in range(0 , UpperCamelCase ): UpperCAmelCase : Optional[int] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" def _snake_case ( UpperCamelCase : list , UpperCamelCase : list ): _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCamelCase , UpperCamelCase ) ) ) def _snake_case ( UpperCamelCase : list[float] ): if point: if isinstance(UpperCamelCase , UpperCamelCase ): for item in point: if not isinstance(UpperCamelCase , (int, float) ): UpperCAmelCase : Any = ( """Expected a list of numbers as input, found """ F"{type(UpperCamelCase ).__name__}" ) raise TypeError(UpperCamelCase ) else: UpperCAmelCase : int = F"Expected a list of numbers as input, found {type(UpperCamelCase ).__name__}" raise TypeError(UpperCamelCase ) else: raise ValueError("""Missing an input""" ) def _snake_case ( UpperCamelCase : list , UpperCamelCase : list ): _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCamelCase , UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
76
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case_ ( __A ): def __init__( self : Optional[Any] , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ : StableDiffusionSafetyChecker , lowercase_ : CLIPImageProcessor , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Union[str, int]] = "auto" ) -> Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: self.enable_attention_slicing(lowercase_ ) @torch.no_grad() def __call__( self : int , lowercase_ : Union[str, List[str]] , lowercase_ : int = 5_12 , lowercase_ : int = 5_12 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , lowercase_ : Optional[torch.FloatTensor] = None , **lowercase_ : int , ) -> List[Any]: if isinstance(lowercase_ , lowercase_ ): lowercase__ : Optional[int] = 1 elif isinstance(lowercase_ , lowercase_ ): lowercase__ : List[Any] = len(lowercase_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowercase_ )}.''' ) # get prompt text embeddings lowercase__ : List[str] = self.tokenizer( lowercase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) lowercase__ : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ : List[Any] = text_embeddings.shape lowercase__ : Union[str, Any] = text_embeddings.repeat(1 , lowercase_ , 1 ) lowercase__ : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ : List[str] if negative_prompt is None: lowercase__ : int = [""] elif type(lowercase_ ) is not type(lowercase_ ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_ )} !=''' F''' {type(lowercase_ )}.''' ) elif isinstance(lowercase_ , lowercase_ ): lowercase__ : str = [negative_prompt] elif batch_size != len(lowercase_ ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(lowercase_ )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: lowercase__ : Union[str, Any] = negative_prompt lowercase__ : List[Any] = text_input_ids.shape[-1] lowercase__ : Any = self.tokenizer( lowercase_ , padding="max_length" , max_length=lowercase_ , truncation=lowercase_ , return_tensors="pt" , ) lowercase__ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ : Union[str, Any] = uncond_embeddings.shape[1] lowercase__ : str = uncond_embeddings.repeat(lowercase_ , lowercase_ , 1 ) lowercase__ : Optional[int] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ : Tuple = torch.randn( lowercase_ , generator=lowercase_ , device="cpu" , dtype=lowercase_ ).to(self.device ) lowercase__ : Union[str, Any] = torch.randn(lowercase_ , generator=lowercase_ , device="cpu" , dtype=lowercase_ ).to( self.device ) else: lowercase__ : Any = torch.randn( lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) lowercase__ : Tuple = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) else: if latents_reference.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ : Dict = latents_reference.to(self.device ) lowercase__ : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ : str = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ : int = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ : Any = 0 if dx < 0 else dx lowercase__ : Optional[Any] = 0 if dy < 0 else dy lowercase__ : List[Any] = max(-dx , 0 ) lowercase__ : str = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Tuple = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : int = {} if accepts_eta: lowercase__ : List[Any] = eta for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ : Any = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual lowercase__ : Optional[int] = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_ ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ : List[str] = noise_pred.chunk(2 ) lowercase__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[int] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = 1 / 0.1_82_15 * latents lowercase__ : Dict = self.vae.decode(lowercase_ ).sample lowercase__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ : List[str] = self.feature_extractor(self.numpy_to_pil(lowercase_ ) , return_tensors="pt" ).to( self.device ) lowercase__ , lowercase__ : int = self.safety_checker( images=lowercase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ : List[str] = None if output_type == "pil": lowercase__ : List[str] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_ )
87
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = k_size // 2 __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : Any = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : str = height - k_size + 1 __UpperCAmelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : Optional[Any] = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): __UpperCAmelCase : int = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : Tuple = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[Any] = ravel(_UpperCAmelCase ) # reshape and get the dst image __UpperCAmelCase : Optional[Any] = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __A =imread(R"../image_data/lena.jpg") # turn image in gray scale value __A =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __A =gaussian_filter(gray, 3, sigma=1) __A =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
226
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase): snake_case__ = StableUnCLIPImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case__ = frozenset([]) def _UpperCamelCase ( self : Optional[int] ) -> str: _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # image encoding components _UpperCamelCase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) _UpperCamelCase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__UpperCamelCase , projection_dim=__UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=__UpperCamelCase ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCamelCase , layers_per_block=1 , upcast_attention=__UpperCamelCase , use_linear_projection=__UpperCamelCase , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : Optional[int]=True ) -> Tuple: if str(__UpperCamelCase ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(__UpperCamelCase ) else: _UpperCamelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if pil_image: _UpperCamelCase = input_image * 0.5 + 0.5 _UpperCamelCase = input_image.clamp(0 , 1 ) _UpperCamelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCamelCase = DiffusionPipeline.numpy_to_pil(__UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _UpperCamelCase ( self : Tuple ) -> Dict: _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableUnCLIPImgaImgPipeline(**__UpperCamelCase ) _UpperCamelCase = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCamelCase = self.get_dummy_inputs(__UpperCamelCase ) inputs.update({'''image_embeds''': None} ) _UpperCamelCase = sd_pipe(**__UpperCamelCase ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self : Optional[Any] ) -> int: _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> List[str]: _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__UpperCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _UpperCamelCase ( self : int ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__UpperCamelCase ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Dict ) -> int: _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe(__UpperCamelCase , '''anime turle''' , generator=__UpperCamelCase , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe(__UpperCamelCase , '''anime turle''' , generator=__UpperCamelCase , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Dict ) -> List[Any]: _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( __UpperCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
54
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''OwlViTImageProcessor''' snake_case__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Any , __UpperCamelCase : int=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : List[str] ) -> Union[str, Any]: _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCamelCase = kwargs.pop('''feature_extractor''' ) _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self : List[str] , __UpperCamelCase : Dict=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]="max_length" , __UpperCamelCase : List[Any]="np" , **__UpperCamelCase : Optional[int] ) -> Optional[int]: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ) or (isinstance(__UpperCamelCase , __UpperCamelCase ) and not isinstance(text[0] , __UpperCamelCase )): _UpperCamelCase = [self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )] elif isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(text[0] , __UpperCamelCase ): _UpperCamelCase = [] # Maximum number of queries across batch _UpperCamelCase = max([len(__UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCamelCase ) != max_num_queries: _UpperCamelCase = t + [''' '''] * (max_num_queries - len(__UpperCamelCase )) _UpperCamelCase = self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) encodings.append(__UpperCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": _UpperCamelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCamelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCamelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) _UpperCamelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCamelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) _UpperCamelCase = BatchEncoding() _UpperCamelCase = input_ids _UpperCamelCase = attention_mask if query_images is not None: _UpperCamelCase = BatchEncoding() _UpperCamelCase = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ).pixel_values _UpperCamelCase = query_pixel_values if images is not None: _UpperCamelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def _UpperCamelCase ( self : str , *__UpperCamelCase : str , **__UpperCamelCase : str ) -> List[Any]: return self.image_processor.post_process(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : str , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[Any] ) -> Optional[int]: return self.image_processor.post_process_object_detection(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[Any] ) -> int: return self.image_processor.post_process_image_guided_detection(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Any ) -> str: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : Tuple , **__UpperCamelCase : List[Any] ) -> List[str]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , ) return self.image_processor_class @property def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCamelCase , ) return self.image_processor
54
1
# Algorithm for the pigeonhole sorting def A ( _SCREAMING_SNAKE_CASE ) -> List[Any]: lowerCamelCase : Any = min(_SCREAMING_SNAKE_CASE ) # min() finds the minimum value lowerCamelCase : Union[str, Any] = max(_SCREAMING_SNAKE_CASE ) # max() finds the maximum value lowerCamelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowerCamelCase : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowerCamelCase : List[str] = 0 for count in range(_SCREAMING_SNAKE_CASE ): while holes[count] > 0: holes[count] -= 1 lowerCamelCase : int = count + min_val i += 1 def A ( ) -> Optional[Any]: lowerCamelCase : Optional[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_SCREAMING_SNAKE_CASE ) print("Sorted order is:" ," ".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
48
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> Any: lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCamelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase : Optional[int] = "" else: lowerCamelCase : List[str] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase : List[str] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase : Optional[int] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase : Any = in_proj_bias[: config.hidden_size] lowerCamelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase : List[Any] = in_proj_bias[-config.hidden_size :] def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : List[str] = dct.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Any = val def A ( ) -> List[str]: lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : str = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = DeiTConfig() # all deit models have fine-tuned heads lowerCamelCase : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase : Dict = 1000 lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : List[str] = "imagenet-1k-id2label.json" lowerCamelCase : List[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) ) lowerCamelCase : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Tuple = idalabel lowerCamelCase : str = {v: k for k, v in idalabel.items()} lowerCamelCase : Dict = int(deit_name[-6:-4] ) lowerCamelCase : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): lowerCamelCase : Optional[Any] = 192 lowerCamelCase : List[str] = 768 lowerCamelCase : Tuple = 12 lowerCamelCase : Optional[Any] = 3 elif deit_name[9:].startswith("small" ): lowerCamelCase : str = 384 lowerCamelCase : Optional[Any] = 1536 lowerCamelCase : Dict = 12 lowerCamelCase : Optional[int] = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): lowerCamelCase : str = 1024 lowerCamelCase : List[str] = 4096 lowerCamelCase : Any = 24 lowerCamelCase : Dict = 16 # load original model from timm lowerCamelCase : List[Any] = timm.create_model(_SCREAMING_SNAKE_CASE ,pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase : Dict = timm_model.state_dict() lowerCamelCase : Dict = create_rename_keys(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # load HuggingFace model lowerCamelCase : Optional[Any] = DeiTForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCamelCase : Any = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=_SCREAMING_SNAKE_CASE ,crop_size=config.image_size ) lowerCamelCase : str = image_processor(images=prepare_img() ,return_tensors="pt" ) lowerCamelCase : int = encoding["pixel_values"] lowerCamelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = timm_model(_SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE ,outputs.logits ,atol=1e-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
48
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "char" lowerCAmelCase_ = "bpe" lowerCAmelCase_ = "wp" __lowerCamelCase : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["image_processor", "char_tokenizer"] lowerCAmelCase_ = "ViTImageProcessor" lowerCAmelCase_ = "MgpstrTokenizer" def __init__( self : List[Any] , _lowercase : List[Any]=None , _lowercase : Union[str, Any]=None , **_lowercase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _lowercase , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) SCREAMING_SNAKE_CASE__ = tokenizer SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""gpt2""" ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(_lowercase , _lowercase ) def __call__( self : Tuple , _lowercase : Tuple=None , _lowercase : List[Any]=None , _lowercase : Union[str, Any]=None , **_lowercase : List[str] ): """simple docstring""" if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if text is not None: SCREAMING_SNAKE_CASE__ = self.char_tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE__ = encodings["""input_ids"""] return inputs def __a ( self : Optional[int] , _lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = sequences SCREAMING_SNAKE_CASE__ = char_preds.size(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._decode_helper(_lowercase , """char""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._decode_helper(_lowercase , """bpe""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._decode_helper(_lowercase , """wp""" ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE__ = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE__ = scores.index(max(_lowercase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = final_strs SCREAMING_SNAKE_CASE__ = final_scores SCREAMING_SNAKE_CASE__ = char_strs SCREAMING_SNAKE_CASE__ = bpe_strs SCREAMING_SNAKE_CASE__ = wp_strs return out def __a ( self : Any , _lowercase : List[Any] , _lowercase : List[Any] ): """simple docstring""" if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE__ = self.char_decode SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = """[s]""" elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE__ = self.bpe_decode SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = """#""" elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE__ = self.wp_decode SCREAMING_SNAKE_CASE__ = 1_02 SCREAMING_SNAKE_CASE__ = """[SEP]""" else: raise ValueError(f"""Format {format} is not supported.""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [], [] SCREAMING_SNAKE_CASE__ = pred_logits.size(0 ) SCREAMING_SNAKE_CASE__ = pred_logits.size(1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pred_logits.topk(1 , dim=-1 , largest=_lowercase , sorted=_lowercase ) SCREAMING_SNAKE_CASE__ = preds_index.view(-1 , _lowercase )[:, 1:] SCREAMING_SNAKE_CASE__ = decoder(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torch.nn.functional.softmax(_lowercase , dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE__ = preds_max_prob[:, 1:] for index in range(_lowercase ): SCREAMING_SNAKE_CASE__ = preds_str[index].find(_lowercase ) SCREAMING_SNAKE_CASE__ = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE__ = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE__ = pred_index.index(_lowercase ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE__ = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_lowercase ) conf_scores.append(_lowercase ) return dec_strs, conf_scores def __a ( self : Any , _lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(_lowercase )] return decode_strs def __a ( self : Dict , _lowercase : int ): """simple docstring""" return self.bpe_tokenizer.batch_decode(_lowercase ) def __a ( self : Union[str, Any] , _lowercase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(_lowercase )] return decode_strs
204
from __future__ import annotations __lowerCamelCase : Dict = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __lowerCamelCase : Union[str, Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = -1 for j in range(i + 1 , __UpperCamelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE__ = arr[j] break result.append(__UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for i, outer in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE__ = inner break result.append(__UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [-1] * arr_size for index in reversed(range(__UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE__ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCamelCase : List[Any] = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
204
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=snake_case , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case ) return parser.parse_args() def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = parse_args() # Import training_script as a module. _lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCAmelCase = script_fpath.stem _lowerCAmelCase = importlib.import_module(snake_case ) # Patch sys.argv _lowerCAmelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
82
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 1 for i in range(1 , num + 1 ): fact *= i return fact def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 0 while number > 0: _lowerCAmelCase = number % 10 sum_of_digits += last_digit _lowerCAmelCase = number // 10 # Removing the last_digit from the given number return sum_of_digits def _UpperCAmelCase ( snake_case = 1_00 ): """simple docstring""" _lowerCAmelCase = factorial(snake_case ) _lowerCAmelCase = split_and_add(snake_case ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
82
1
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) set_seed(7_7_0) _A = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } _A = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } _A = os.path.dirname(os.path.abspath(__file__)) _A = os.path.join(os.path.expanduser("""~"""), """.cache""") _A = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Dict: lowerCAmelCase__ : int = model_type if use_small: key += "_small" return os.path.join(__UpperCAmelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) hf_hub_download(repo_id=__UpperCAmelCase , filename=__UpperCAmelCase , local_dir=__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase="text" ) -> List[Any]: if model_type == "text": lowerCAmelCase__ : Dict = BarkSemanticModel lowerCAmelCase__ : Optional[Any] = BarkSemanticConfig lowerCAmelCase__ : int = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase__ : str = BarkCoarseModel lowerCAmelCase__ : Optional[Any] = BarkCoarseConfig lowerCAmelCase__ : List[str] = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase__ : Dict = BarkFineModel lowerCAmelCase__ : Any = BarkFineConfig lowerCAmelCase__ : str = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase__ : Tuple = f"""{model_type}_small""" if use_small else model_type lowerCAmelCase__ : int = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__UpperCAmelCase ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) lowerCAmelCase__ : Union[str, Any] = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) # this is a hack lowerCAmelCase__ : Optional[int] = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: lowerCAmelCase__ : List[str] = model_args["""vocab_size"""] lowerCAmelCase__ : str = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase__ : Dict = model_args.pop("""n_head""" ) lowerCAmelCase__ : Tuple = model_args.pop("""n_embd""" ) lowerCAmelCase__ : Any = model_args.pop("""n_layer""" ) lowerCAmelCase__ : Dict = ConfigClass(**checkpoint["""model_args"""] ) lowerCAmelCase__ : Optional[Any] = ModelClass(config=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = GenerationConfigClass() lowerCAmelCase__ : Tuple = model_generation_config lowerCAmelCase__ : List[str] = checkpoint["""model"""] # fixup checkpoint lowerCAmelCase__ : int = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(__UpperCAmelCase ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase__ : str = k[len(__UpperCAmelCase ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase__ : Tuple = new_k.replace(__UpperCAmelCase , new_layer_name_dict[old_layer_name] ) lowerCAmelCase__ : List[Any] = state_dict.pop(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase__ : Any = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} lowerCAmelCase__ : Dict = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase__ : Optional[int] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(__UpperCAmelCase ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(__UpperCAmelCase ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) lowerCAmelCase__ : Dict = model.num_parameters(exclude_embeddings=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = checkpoint["""best_val_loss"""].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(__UpperCAmelCase , 3 )} loss""" ) model.eval() model.to(__UpperCAmelCase ) del checkpoint, state_dict return model def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase="text" ) -> Optional[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase__ : Optional[int] = """cpu""" # do conversion on cpu lowerCAmelCase__ : List[Any] = _get_ckpt_path(__UpperCAmelCase , use_small=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = _load_model(__UpperCAmelCase , __UpperCAmelCase , model_type=__UpperCAmelCase , use_small=__UpperCAmelCase ) # load bark initial model lowerCAmelCase__ : Optional[Any] = _bark_load_model(__UpperCAmelCase , """cpu""" , model_type=__UpperCAmelCase , use_small=__UpperCAmelCase ) if model_type == "text": lowerCAmelCase__ : Optional[Any] = bark_model["""model"""] if model.num_parameters(exclude_embeddings=__UpperCAmelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model lowerCAmelCase__ : Tuple = 5 lowerCAmelCase__ : Optional[Any] = 10 if model_type in ["text", "coarse"]: lowerCAmelCase__ : List[str] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase__ : int = bark_model(__UpperCAmelCase )[0] lowerCAmelCase__ : Dict = model(__UpperCAmelCase ) # take last logits lowerCAmelCase__ : int = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[str] = 8 lowerCAmelCase__ : Dict = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase__ : str = model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Tuple = bark_model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: lowerCAmelCase__ : Optional[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = BarkSemanticConfig.from_pretrained(os.path.join(__UpperCAmelCase , """config.json""" ) ) lowerCAmelCase__ : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(__UpperCAmelCase , """config.json""" ) ) lowerCAmelCase__ : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(__UpperCAmelCase , """config.json""" ) ) lowerCAmelCase__ : Optional[int] = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) lowerCAmelCase__ : Any = BarkSemanticModel.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Dict = BarkCoarseModel.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = BarkFineModel.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) lowerCAmelCase__ : str = BarkConfig.from_sub_model_configs( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Tuple = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase__ : int = BarkModel(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = semantic lowerCAmelCase__ : Union[str, Any] = coarseAcoustic lowerCAmelCase__ : Tuple = fineAcoustic lowerCAmelCase__ : Tuple = codec lowerCAmelCase__ : List[Any] = bark_generation_config Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) bark.save_pretrained(__UpperCAmelCase , repo_id=__UpperCAmelCase , push_to_hub=__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") _A = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
212
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class _lowerCamelCase ( a_ ): def __init__( self : Tuple , UpperCamelCase : List[Any]="" , UpperCamelCase : List[str]="train" ) -> List[Any]: """simple docstring""" assert os.path.isdir(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[Any] = os.listdir(UpperCamelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCAmelCase__ : Any = os.path.join(UpperCamelCase , UpperCamelCase ) if not os.path.isfile(UpperCamelCase ): continue self.documents.append(UpperCamelCase ) def __len__( self : List[Any] ) -> int: """simple docstring""" return len(self.documents ) def __getitem__( self : str , UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Any = self.documents[idx] lowerCAmelCase__ : List[Any] = document_path.split("""/""" )[-1] with open(UpperCamelCase , encoding="""utf-8""" ) as source: lowerCAmelCase__ : List[str] = source.read() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = process_story(UpperCamelCase ) return document_name, story_lines, summary_lines def lowercase_ ( __UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = list(filter(lambda __UpperCAmelCase : len(__UpperCAmelCase ) != 0 , [line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it lowerCAmelCase__ : List[str] = [_add_missing_period(__UpperCAmelCase ) for line in nonempty_lines] # gather article lines lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Optional[int] = deque(__UpperCAmelCase ) while True: try: lowerCAmelCase__ : List[Any] = lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(__UpperCAmelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCAmelCase__ : Any = list(filter(lambda __UpperCAmelCase : not t.startswith("""@highlight""" ) , __UpperCAmelCase ) ) return story_lines, summary_lines def lowercase_ ( __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : List[str] = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: if len(__UpperCAmelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__UpperCAmelCase )) ) return sequence def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : List[str] = torch.ones_like(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = sequence == pad_token_id lowerCAmelCase__ : str = 0 return mask def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Tuple = [tokenizer.encode(__UpperCAmelCase ) for line in story_lines] lowerCAmelCase__ : List[str] = [token for sentence in story_lines_token_ids for token in sentence] lowerCAmelCase__ : int = [tokenizer.encode(__UpperCAmelCase ) for line in summary_lines] lowerCAmelCase__ : Union[str, Any] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Tuple = [] for sequence in batch: lowerCAmelCase__ : Union[str, Any] = -1 lowerCAmelCase__ : List[str] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__UpperCAmelCase ) return torch.tensor(__UpperCAmelCase )
212
1
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(lowercase__ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = _distribute_shards(**lowercase__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = _split_gen_kwargs(lowercase__ , lowercase__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def _snake_case ( lowercase__ , lowercase__ ): if expected is RuntimeError: with pytest.raises(lowercase__ ): _number_of_shards_in_gen_kwargs(lowercase__ ) else: _lowerCamelCase : Tuple = _number_of_shards_in_gen_kwargs(lowercase__ ) assert out == expected
96
from math import factorial def lowerCamelCase__ ( _a , _a , _a): if successes > trials: raise ValueError("successes must be lower or equal to trials") if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers") if not isinstance(_a , _a) or not isinstance(_a , _a): raise ValueError("the function is defined for non-negative integers") if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0") SCREAMING_SNAKE_CASE : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! SCREAMING_SNAKE_CASE : List[Any] = float(factorial(_a)) coefficient /= factorial(_a) * factorial(trials - successes) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
76
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = 10 UpperCamelCase__ = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) UpperCamelCase__ = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(UpperCamelCase__ ) ), }, features=UpperCamelCase__, ) return dataset @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int], UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=UpperCamelCase__ ) return filename # FILE_CONTENT + files lowercase = """\ Text data. Second line of data.""" @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' UpperCamelCase__ = FILE_CONTENT with open(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__ ) return filename @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ): '''simple docstring''' import bza UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' UpperCamelCase__ = bytes(UpperCamelCase__, '''utf-8''' ) with bza.open(UpperCamelCase__, '''wb''' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ): '''simple docstring''' import gzip UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) UpperCamelCase__ = bytes(UpperCamelCase__, '''utf-8''' ) with gzip.open(UpperCamelCase__, '''wb''' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' UpperCamelCase__ = bytes(UpperCamelCase__, '''utf-8''' ) with lza.frame.open(UpperCamelCase__, '''wb''' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(UpperCamelCase__, '''w''' ) as archive: archive.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Dict ): '''simple docstring''' import tarfile UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(UpperCamelCase__, '''w''' ) as f: f.add(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' import lzma UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' UpperCamelCase__ = bytes(UpperCamelCase__, '''utf-8''' ) with lzma.open(UpperCamelCase__, '''wb''' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : List[Any] ): '''simple docstring''' import zipfile UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' UpperCamelCase__ = bytes(UpperCamelCase__, '''utf-8''' ) with zstd.open(UpperCamelCase__, '''wb''' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' UpperCamelCase__ = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__ ) return filename lowercase = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] lowercase = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] lowercase = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } lowercase = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] lowercase = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ): '''simple docstring''' UpperCamelCase__ = datasets.Dataset.from_dict(UpperCamelCase__ ) UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(UpperCamelCase__ ) ) as con: UpperCamelCase__ = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''', tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(UpperCamelCase__, '''w''', newline='''''' ) as f: UpperCamelCase__ = csv.DictWriter(UpperCamelCase__, fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(UpperCamelCase__, '''w''', newline='''''' ) as f: UpperCamelCase__ = csv.DictWriter(UpperCamelCase__, fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' import bza UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(UpperCamelCase__, '''rb''' ) as f: UpperCamelCase__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCamelCase__, '''wb''' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.basename(csv_path.replace('''.csv''', '''.CSV''' ) ) ) f.write(UpperCamelCase__, arcname=os.path.basename(csva_path.replace('''.csv''', '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[int] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.join('''main_dir''', os.path.basename(UpperCamelCase__ ) ) ) f.write(UpperCamelCase__, arcname=os.path.join('''main_dir''', os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) UpperCamelCase__ = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(UpperCamelCase__, '''wb''' ) as f: UpperCamelCase__ = pq.ParquetWriter(UpperCamelCase__, schema=UpperCamelCase__ ) UpperCamelCase__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCamelCase__ ) )] for k in DATA[0]}, schema=UpperCamelCase__ ) writer.write_table(UpperCamelCase__ ) writer.close() return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) UpperCamelCase__ = {'''data''': DATA} with open(UpperCamelCase__, '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) UpperCamelCase__ = {'''data''': DATA_DICT_OF_LISTS} with open(UpperCamelCase__, '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(UpperCamelCase__, '''w''' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(UpperCamelCase__, '''w''' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(UpperCamelCase__, '''w''' ) as f: for item in DATA_312: f.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ): '''simple docstring''' UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(UpperCamelCase__, '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[str] ): '''simple docstring''' import gzip UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(UpperCamelCase__, '''rb''' ) as orig_file: with gzip.open(UpperCamelCase__, '''wb''' ) as zipped_file: zipped_file.writelines(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Tuple ): '''simple docstring''' import gzip UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(UpperCamelCase__, '''rb''' ) as orig_file: with gzip.open(UpperCamelCase__, '''wb''' ) as zipped_file: zipped_file.writelines(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[int] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : str, UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.join('''nested''', os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.join('''main_dir''', os.path.basename(UpperCamelCase__ ) ) ) f.write(UpperCamelCase__, arcname=os.path.join('''main_dir''', os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(UpperCamelCase__, '''w''' ) as f: f.add(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) f.add(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : int, UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(UpperCamelCase__, '''w''' ) as f: f.add(UpperCamelCase__, arcname=os.path.join('''nested''', os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): '''simple docstring''' UpperCamelCase__ = ['''0''', '''1''', '''2''', '''3'''] UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(UpperCamelCase__, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = ['''0''', '''1''', '''2''', '''3'''] UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(UpperCamelCase__, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = ['''0''', '''1''', '''2''', '''3'''] UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(UpperCamelCase__, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.join('''main_dir''', os.path.basename(UpperCamelCase__ ) ) ) f.write(UpperCamelCase__, arcname=os.path.join('''main_dir''', os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Tuple, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.basename('''unsupported.ext''' ) ) f.write(UpperCamelCase__, arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) UpperCamelCase__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( ): '''simple docstring''' return os.path.join('''tests''', '''features''', '''data''', '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( ): '''simple docstring''' return os.path.join('''tests''', '''features''', '''data''', '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : Any, UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ) ) f.write(UpperCamelCase__, arcname=os.path.basename(UpperCamelCase__ ).replace('''.jpg''', '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''', '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''', '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
371
from __future__ import annotations from collections import Counter from random import random class __lowercase : '''simple docstring''' def __init__( self : List[Any] ): UpperCamelCase__ = {} def A_ ( self : List[Any] , _a : str ): UpperCamelCase__ = {} def A_ ( self : List[Any] , _a : str , _a : str , _a : float ): if nodea not in self.connections: self.add_node(_a ) if nodea not in self.connections: self.add_node(_a ) UpperCamelCase__ = probability def A_ ( self : Optional[Any] ): return list(self.connections ) def A_ ( self : Tuple , _a : str ): UpperCamelCase__ = 0 UpperCamelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : list[tuple[str, str, float]], UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = Counter(graph.get_nodes() ) UpperCamelCase__ = start for _ in range(UpperCamelCase__ ): UpperCamelCase__ = graph.transition(UpperCamelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
35
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) __SCREAMING_SNAKE_CASE = len(bin(lowerCAmelCase_ )[3:] ) __SCREAMING_SNAKE_CASE = bin(abs(lowerCAmelCase_ ) - (1 << binary_number_length) )[3:] __SCREAMING_SNAKE_CASE = ( ( "1" + "0" * (binary_number_length - len(lowerCAmelCase_ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
54
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase_ ( self : Any ) -> int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(UpperCAmelCase__ ) # fails here def UpperCAmelCase_ ( self : List[Any] ) -> Any: __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
54
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=33 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: """simple docstring""" A : Optional[Any] = parent A : str = batch_size A : str = seq_length A : List[str] = is_training A : List[str] = use_input_mask A : Tuple = use_token_type_ids A : str = use_labels A : List[Any] = vocab_size A : Any = hidden_size A : List[str] = num_hidden_layers A : Optional[int] = num_attention_heads A : Union[str, Any] = intermediate_size A : Optional[int] = hidden_act A : List[Any] = hidden_dropout_prob A : str = attention_probs_dropout_prob A : Tuple = max_position_embeddings A : Union[str, Any] = type_vocab_size A : List[str] = type_sequence_label_size A : List[Any] = initializer_range A : str = num_labels A : Dict = num_choices A : str = scope def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : List[Any] = None if self.use_input_mask: A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) A : str = None A : Dict = None A : Union[str, Any] = None if self.use_labels: A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : List[str] = ids_tensor([self.batch_size] , self.num_choices ) A : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Optional[Any] = EsmModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A : List[str] = model(UpperCamelCase__ ) A : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Tuple = EsmForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Optional[int] = self.num_labels A : Tuple = EsmForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A : int = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Tuple = self.prepare_config_and_inputs() ( A ) : int = config_and_inputs A : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = False __magic_name__ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = () __magic_name__ = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = True def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : str = EsmModelTester(self ) A : str = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A : Dict = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def __lowerCAmelCase ( self ) -> str: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[str] = EsmModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs()[0] A : str = EsmEmbeddings(config=UpperCamelCase__ ) A : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) A : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) A : Tuple = create_position_ids_from_input_ids(UpperCamelCase__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase__ , UpperCamelCase__ ) ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs()[0] A : str = EsmEmbeddings(config=UpperCamelCase__ ) A : Optional[int] = torch.empty(2 , 4 , 30 ) A : Any = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] A : Any = torch.as_tensor([expected_single_positions, expected_single_positions] ) A : Tuple = embeddings.create_position_ids_from_inputs_embeds(UpperCamelCase__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase__ , UpperCamelCase__ ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" pass @require_torch class A ( __snake_case ): @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): A : Any = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() A : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A : Optional[int] = model(UpperCamelCase__ )[0] A : str = 33 A : Any = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) A : Optional[int] = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" with torch.no_grad(): A : str = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() A : List[str] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A : List[Any] = model(UpperCamelCase__ )[0] # compare the actual values for a slice. A : Dict = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
370
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]: """simple docstring""" A : Tuple = '''bilinear''' A : Optional[int] = max_size A : Dict = short_edge_length def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Tuple = [] for img in imgs: A, A : str = img.shape[:2] # later: provide list and randomly choose index for resize A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if h < w: A, A : Tuple = size, scale * w else: A, A : str = scale * h, size if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size: A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Tuple = newh * scale A : int = neww * scale A : List[str] = int(neww + 0.5 ) A : int = int(newh + 0.5 ) if img.dtype == np.uinta: A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE ) A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A : str = np.asarray(SCREAMING_SNAKE_CASE ) else: A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A : List[Any] = nn.functional.interpolate( SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE ) return img_augs class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A : str = cfg.INPUT.FORMAT A : int = cfg.SIZE_DIVISIBILITY A : Optional[int] = cfg.PAD_VALUE A : Dict = cfg.INPUT.MAX_SIZE_TEST A : Optional[Any] = cfg.MODEL.DEVICE A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) A : List[str] = [im.shape[-2:] for im in images] A : Optional[Any] = [ nn.functional.pad( SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : str = [images] if single_image: assert len(SCREAMING_SNAKE_CASE ) == 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A : Tuple = torch.tensor([im.shape[:2] for im in images] ) A : Dict = self.aug(SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!" A, A : str = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__ ) tensor[:, 1].clamp_(min=0 , max=snake_case__ ) tensor[:, 2].clamp_(min=0 , max=snake_case__ ) tensor[:, 3].clamp_(min=0 , max=snake_case__ )
311
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PhobertTokenizer UpperCamelCase = False def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = ['#version: 0.2', 'l à</w>'] lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def a__ ( self : Dict , **A_ : Dict ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : Dict , A_ : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ = 'Tôi là VinAI Research' lowerCamelCase_ = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = 'Tôi là VinAI Research' lowerCamelCase_ = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() lowerCamelCase_ = tokenizer.tokenize(A_ ) print(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
204
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class A: '''simple docstring''' UpperCamelCase = BlenderbotConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : int , A_ : Optional[int] , A_ : List[str]=13 , A_ : str=7 , A_ : Any=True , A_ : Any=False , A_ : Optional[Any]=99 , A_ : List[str]=32 , A_ : List[str]=2 , A_ : Dict=4 , A_ : List[str]=37 , A_ : List[str]=0.1 , A_ : Optional[int]=0.1 , A_ : str=20 , A_ : str=2 , A_ : Optional[Any]=1 , A_ : int=0 , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase_ = prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def a__ ( self : Tuple , A_ : Union[str, Any] , A_ : List[str] ) -> int: """simple docstring""" lowerCamelCase_ = TFBlenderbotModel(config=A_ ).get_decoder() lowerCamelCase_ = inputs_dict['input_ids'] lowerCamelCase_ = input_ids[:1, :] lowerCamelCase_ = inputs_dict['attention_mask'][:1, :] lowerCamelCase_ = inputs_dict['head_mask'] lowerCamelCase_ = 1 # first forward pass lowerCamelCase_ = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_ = model(A_ , attention_mask=A_ )[0] lowerCamelCase_ = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : List[Any]=None , lowercase : List[str]=None , lowercase : List[Any]=None , lowercase : Tuple=None , lowercase : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: lowerCamelCase_ = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFBlenderbotModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_tokenizers @require_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = ['''My friends are cool but they eat too many carbs.'''] UpperCamelCase = '''facebook/blenderbot-400M-distill''' @cached_property def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = self.tokenizer(self.src_text , return_tensors='tf' ) lowerCamelCase_ = self.model.generate( model_inputs.input_ids , ) lowerCamelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
204
1
def _lowercase ( UpperCamelCase_ = 200 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [1, 2, 5, 10, 20, 50, 100, 200] SCREAMING_SNAKE_CASE__ = [0] * (pence + 1) SCREAMING_SNAKE_CASE__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(UpperCamelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
169
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case = 50_00_00 __snake_case ,__snake_case = os.path.split(__file__) __snake_case = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.map(**UpperCamelCase_ ) @get_duration def _lowercase ( UpperCamelCase_ , **UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = dataset.filter(**UpperCamelCase_ ) def _lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) SCREAMING_SNAKE_CASE__ = generate_example_dataset( os.path.join(UpperCamelCase_ , 'dataset.arrow' ) , UpperCamelCase_ , num_examples=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=UpperCamelCase_ ) def tokenize(UpperCamelCase_ ): return tokenizer(examples['text'] ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='numpy' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='pandas' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='torch' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=lambda UpperCamelCase_ : None , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(UpperCamelCase_ , function=UpperCamelCase_ , batched=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = filter(UpperCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase_ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase_ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
169
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): lowercase = ['input_values', 'padding_mask'] def __init__( self : Tuple , a : int = 1 , a : int = 24_000 , a : float = 0.0 , a : float = None , a : float = None , **a : List[str] , ): '''simple docstring''' super().__init__(feature_size=a , sampling_rate=a , padding_value=a , **a ) lowerCAmelCase__ : Optional[Any] = chunk_length_s lowerCAmelCase__ : str = overlap @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowerCamelCase ( self : Any ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : List[Any] , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : Optional[Union[bool, str, PaddingStrategy]] = None , a : Optional[bool] = False , a : Optional[int] = None , a : Optional[Union[str, TensorType]] = None , a : Optional[int] = None , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Dict = bool( isinstance(a , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase__ : List[str] = [np.asarray(a , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(a , np.ndarray ): lowerCAmelCase__ : Dict = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowerCAmelCase__ : Optional[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase__ : List[Any] = [np.asarray(a ).T] # verify inputs are valid for idx, example in enumerate(a ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowerCAmelCase__ : int = None lowerCAmelCase__ : Any = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowerCAmelCase__ : Dict = min(array.shape[0] for array in raw_audio ) lowerCAmelCase__ : Dict = int(np.floor(max_length / self.chunk_stride ) ) lowerCAmelCase__ : Optional[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowerCAmelCase__ : Any = max(array.shape[0] for array in raw_audio ) lowerCAmelCase__ : Union[str, Any] = int(np.ceil(max_length / self.chunk_stride ) ) lowerCAmelCase__ : Optional[int] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowerCAmelCase__ : Optional[int] = 'max_length' else: lowerCAmelCase__ : Dict = input_values # normal padding on batch if padded_inputs is None: lowerCAmelCase__ : Dict = self.pad( a , max_length=a , truncation=a , padding=a , return_attention_mask=a , ) if padding: lowerCAmelCase__ : Union[str, Any] = padded_inputs.pop('attention_mask' ) lowerCAmelCase__ : List[str] = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowerCAmelCase__ : Dict = example[..., None] input_values.append(example.T ) lowerCAmelCase__ : Optional[Any] = input_values if return_tensors is not None: lowerCAmelCase__ : int = padded_inputs.convert_to_tensors(a ) return padded_inputs
212
from __future__ import annotations lowerCamelCase__ = list[list[int]] # assigning initial values to the grid lowerCamelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Matrix | None: if location := find_empty_location(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ , lowerCAmelCase__ : Any = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[Any] = digit if sudoku(SCREAMING_SNAKE_CASE_ ) is not None: return grid lowerCAmelCase__ : List[Any] = 0 return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for row in grid: for cell in row: print(SCREAMING_SNAKE_CASE_ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") lowerCamelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
212
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : List[Any] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
366
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A__ : List[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } A__ : Optional[int] = { 'facebook/blenderbot_small-90M': 512, } class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Tuple = BlenderbotSmallTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : str=None , snake_case__ : Any="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : str=False , snake_case__ : int=True , **snake_case__ : Tuple , ): super().__init__( ByteLevelBPETokenizer( vocab=snake_case__ , merges=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , ) , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , **snake_case__ , ) lowerCamelCase_ : Optional[int] =add_prefix_space def UpperCAmelCase__ ( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[str]=None ): lowerCamelCase_ : Optional[Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : int =[self.sep_token_id] lowerCamelCase_ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
209
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCAmelCase (__A): """simple docstring""" _a = VideoMAEConfig() set_architecture_configs(_lowerCAmelCase , _lowerCAmelCase) if "finetuned" not in model_name: _a = False if "finetuned" in model_name: _a = """huggingface/label-files""" if "kinetics" in model_name: _a = 400 _a = """kinetics400-id2label.json""" elif "ssv2" in model_name: _a = 174 _a = """something-something-v2-id2label.json""" else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''') _a = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''') , '''r''')) _a = {int(_lowerCAmelCase): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase (__A , __A): """simple docstring""" if "small" in model_name: _a = 384 _a = 1_536 _a = 12 _a = 16 _a = 12 _a = 3 _a = 192 _a = 768 elif "large" in model_name: _a = 1_024 _a = 4_096 _a = 24 _a = 16 _a = 12 _a = 8 _a = 512 _a = 2_048 elif "huge" in model_name: _a = 1_280 _a = 5_120 _a = 32 _a = 16 _a = 12 _a = 8 _a = 640 _a = 2_560 elif "base" not in model_name: raise ValueError('''Model name should include either \"small\", \"base\", \"large\", or \"huge\"''') def lowerCAmelCase (__A): """simple docstring""" if "encoder." in name: _a = name.replace('''encoder.''' , '''''') if "cls_token" in name: _a = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''') if "decoder_pos_embed" in name: _a = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''') if "pos_embed" in name and "decoder" not in name: _a = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''') if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''') if "decoder.blocks" in name: _a = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''') if "blocks" in name: _a = name.replace('''blocks''' , '''videomae.encoder.layer''') if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''') if "attn" in name and "bias" not in name: _a = name.replace('''attn''' , '''attention.self''') if "attn" in name: _a = name.replace('''attn''' , '''attention.attention''') if "norm1" in name: _a = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name: _a = name.replace('''norm2''' , '''layernorm_after''') if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''') if "decoder_embed" in name: _a = name.replace('''decoder_embed''' , '''decoder.decoder_embed''') if "decoder_norm" in name: _a = name.replace('''decoder_norm''' , '''decoder.decoder_norm''') if "decoder_pred" in name: _a = name.replace('''decoder_pred''' , '''decoder.decoder_pred''') if "norm.weight" in name and "decoder" not in name and "fc" not in name: _a = name.replace('''norm.weight''' , '''videomae.layernorm.weight''') if "norm.bias" in name and "decoder" not in name and "fc" not in name: _a = name.replace('''norm.bias''' , '''videomae.layernorm.bias''') if "head" in name and "decoder" not in name: _a = name.replace('''head''' , '''classifier''') return name def lowerCAmelCase (__A , __A): """simple docstring""" for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(_lowerCAmelCase) if key.startswith('''encoder.'''): _a = key.replace('''encoder.''' , '''''') if "qkv" in key: _a = key.split('''.''') if key.startswith('''decoder.blocks'''): _a = config.decoder_hidden_size _a = int(key_split[2]) _a = """decoder.decoder_layers.""" if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = config.hidden_size _a = int(key_split[1]) _a = """videomae.encoder.layer.""" if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val return orig_state_dict def lowerCAmelCase (): """simple docstring""" _a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''') _a = np.load(_lowerCAmelCase) return list(_lowerCAmelCase) def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = get_videomae_config(_lowerCAmelCase) if "finetuned" in model_name: _a = VideoMAEForVideoClassification(_lowerCAmelCase) else: _a = VideoMAEForPreTraining(_lowerCAmelCase) # download original checkpoint, hosted on Google Drive _a = """pytorch_model.bin""" gdown.cached_download(_lowerCAmelCase , _lowerCAmelCase , quiet=_lowerCAmelCase) _a = torch.load(_lowerCAmelCase , map_location='''cpu''') if "model" in files: _a = files["""model"""] else: _a = files["""module"""] _a = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase) model.load_state_dict(_lowerCAmelCase) model.eval() # verify model on basic input _a = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) _a = prepare_video() _a = image_processor(_lowerCAmelCase , return_tensors='''pt''') if "finetuned" not in model_name: _a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''') _a = torch.load(_lowerCAmelCase) _a = model(**_lowerCAmelCase) _a = outputs.logits _a = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _a = torch.Size([1, 400]) _a = torch.tensor([-0.92_91, -0.40_61, -0.93_07]) elif model_name == "videomae-small-finetuned-ssv2": _a = torch.Size([1, 174]) _a = torch.tensor([0.26_71, -0.46_89, -0.82_35]) elif model_name == "videomae-base": _a = torch.Size([1, 1_408, 1_536]) _a = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]]) elif model_name == "videomae-base-short": _a = torch.Size([1, 1_408, 1_536]) _a = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]]) # we verified the loss both for normalized and unnormalized targets for this one _a = torch.tensor([0.51_42]) if config.norm_pix_loss else torch.tensor([0.64_69]) elif model_name == "videomae-large": _a = torch.Size([1, 1_408, 1_536]) _a = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]]) elif model_name == "videomae-large-finetuned-kinetics": _a = torch.Size([1, 400]) _a = torch.tensor([0.07_71, 0.00_11, -0.36_25]) elif model_name == "videomae-huge-finetuned-kinetics": _a = torch.Size([1, 400]) _a = torch.tensor([0.24_33, 0.16_32, -0.48_94]) elif model_name == "videomae-base-short-finetuned-kinetics": _a = torch.Size([1, 400]) _a = torch.tensor([0.65_88, 0.09_90, -0.24_93]) elif model_name == "videomae-base-finetuned-kinetics": _a = torch.Size([1, 400]) _a = torch.tensor([0.36_69, -0.06_88, -0.24_21]) elif model_name == "videomae-base-short-ssv2": _a = torch.Size([1, 1_408, 1_536]) _a = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]]) elif model_name == "videomae-base-short-finetuned-ssv2": _a = torch.Size([1, 174]) _a = torch.tensor([-0.05_37, -0.15_39, -0.32_66]) elif model_name == "videomae-base-ssv2": _a = torch.Size([1, 1_408, 1_536]) _a = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]]) elif model_name == "videomae-base-finetuned-ssv2": _a = torch.Size([1, 174]) _a = torch.tensor([0.19_61, -0.83_37, -0.63_89]) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''') # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4) else: print('''Logits:''' , logits[0, :3, :3]) assert torch.allclose(logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4) print('''Logits ok!''') # verify loss, if applicable if model_name == "videomae-base-short": _a = outputs.loss assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-4) print('''Loss ok!''') if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCAmelCase) model.save_pretrained(_lowerCAmelCase) if push_to_hub: print('''Pushing to the hub...''') model.push_to_hub(_lowerCAmelCase , organization='''nielsr''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
211
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"{test_file} instead." ) snake_case__ : Dict = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) snake_case__ : int = components[:-1] + [test_fn.replace(""".py""" , """""" )] snake_case__ : int = """.""".join(_lowerCAmelCase ) return test_module_path def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : str = get_module_path(_lowerCAmelCase ) snake_case__ : Union[str, Any] = importlib.import_module(_lowerCAmelCase ) return test_module def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[Any] = [] snake_case__ : Optional[int] = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[str] = [] snake_case__ : Any = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case__ : List[str] = getattr(_lowerCAmelCase , """all_model_classes""" , [] ) if len(_lowerCAmelCase ) > 0: test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Any = get_test_classes(_lowerCAmelCase ) snake_case__ : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Optional[int] = test_class() if hasattr(_lowerCAmelCase , """setUp""" ): test.setUp() snake_case__ : Any = None if hasattr(_lowerCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case__ : Tuple = test.model_tester.__class__ return model_tester def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[Any] = get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = [] for test_class in test_classes: snake_case__ : Tuple = get_model_tester_from_test_class(_lowerCAmelCase ) if tester_class is not None: tester_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(_lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Any = get_model_classes(_lowerCAmelCase ) snake_case__ : Any = { model_class: get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Union[str, Any] = get_model_classes(_lowerCAmelCase ) snake_case__ : str = { model_class: get_tester_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o.__name__ elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_json(_lowerCAmelCase ) for x in o] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {to_json(_lowerCAmelCase ): to_json(_lowerCAmelCase ) for k, v in o.items()} else: return o
35
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : Any, UpperCamelCase__ : List[str], UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase__ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } UpperCamelCase__ = F"""{src_lang}-{tgt_lang}""" UpperCamelCase__ = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=UpperCamelCase__, exist_ok=UpperCamelCase__ ) UpperCamelCase__ = os.path.join(UpperCamelCase__, '''README.md''' ) print(F"""Generating {path}""" ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(UpperCamelCase__ ) # make sure we are under the root of the project lowercase = Path(__file__).resolve().parent.parent.parent lowercase = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowercase = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
367
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' def __init__( self : Any , *_a : Optional[Any] , **_a : Any ): warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
35
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Tuple = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) def _lowerCAmelCase ( *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(UpperCamelCase_ , ["""torch"""] ) def _lowerCAmelCase ( *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(UpperCamelCase_ , ["""torch"""] ) def _lowerCAmelCase ( *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(UpperCamelCase_ , ["""torch"""] ) def _lowerCAmelCase ( *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(UpperCamelCase_ , ["""torch"""] ) def _lowerCAmelCase ( *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(UpperCamelCase_ , ["""torch"""] ) def _lowerCAmelCase ( *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(UpperCamelCase_ , ["""torch"""] ) def _lowerCAmelCase ( *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(UpperCamelCase_ , ["""torch"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Tuple = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : List[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Tuple = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Tuple = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Dict = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : List[str] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : str = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[Any] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Optional[int] = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Any = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : int = ['''torch'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""torch"""])
100
'''simple docstring''' # Lint as: python3 import itertools import os import re a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])") a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") a : str = re.compile(R"(?<!_)_(?!_)") a : List[Any] = re.compile(R"(_{2,})") a : List[Any] = R"^\w+(\.\w+)*$" a : Dict = R"<>:/\|?*" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) return name.lower() def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ ) UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" ) def lowercase ( __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __magic_name__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__magic_name__ )}-{split}" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) if filetype_suffix: prefix += F".{filetype_suffix}" UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) return F"{filepath}*" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) if shard_lengths: UpperCAmelCase : Tuple = len(__magic_name__ ) UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )] if filetype_suffix: UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: UpperCAmelCase : int = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
311
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __a ( __UpperCamelCase ): __lowercase : Union[List[PIL.Image.Image], np.ndarray] __lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
288
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '''▁''' __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} __lowerCAmelCase = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } __lowerCAmelCase = {'''vinai/bartpho-syllable''': 10_24} class __a ( __UpperCamelCase ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__: List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowercase__: Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowercase__: Dict = vocab_file lowercase__: str = monolingual_vocab_file lowercase__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__: List[Any] = {} lowercase__: Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: str = cnt cnt += 1 with open(lowerCAmelCase__ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): lowercase__: Optional[Any] = line.strip().split()[0] lowercase__: Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase__ ) not in self.fairseq_tokens_to_ids: lowercase__: Optional[int] = len(self.fairseq_tokens_to_ids ) lowercase__: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = self.__dict__.copy() lowercase__: Tuple = None lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__: Union[str, Any] = {} lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] lowercase__: Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Dict = [self.sep_token_id] lowercase__: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = ''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: int = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: lowercase__: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(lowerCAmelCase__ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
288
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowerCAmelCase : Union[str, Any] = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _lowerCAmelCase : Optional[Any] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _lowerCAmelCase : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def UpperCAmelCase_ ( self :Tuple ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :Any , lowerCamelCase :List[str] , lowerCamelCase :int=4 , lowerCamelCase :Union[str, Any]=False ) -> Dict: UpperCAmelCase__ = compute_bleu( reference_corpus=lowerCamelCase , translation_corpus=lowerCamelCase , max_order=lowerCamelCase , smooth=lowerCamelCase ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
169
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : List[str] = 1_6 _lowerCAmelCase : List[Any] = 3_2 def lowerCAmelCase ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": UpperCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) set_seed(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase__ = os.path.split(_lowerCAmelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase__ = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCAmelCase ), "epoch": epoch, } , step=_lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCAmelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
169
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = ShapEImgaImgPipeline _UpperCamelCase : Any = ['''image'''] _UpperCamelCase : Dict = ['''image'''] _UpperCamelCase : Dict = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCamelCase : Optional[Any] = False @property def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" return 32 @property def lowercase ( self: Any ) -> Tuple: """simple docstring""" return 32 @property def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase ( self: List[str] ) -> Any: """simple docstring""" return 8 @property def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCamelCase_ = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) return model @property def lowercase ( self: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = CLIPImageProcessor( crop_size=224 , do_center_crop=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def lowercase ( self: Optional[int] ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } UpperCamelCase_ = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } UpperCamelCase_ = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.dummy_prior UpperCamelCase_ = self.dummy_image_encoder UpperCamelCase_ = self.dummy_image_processor UpperCamelCase_ = self.dummy_renderer UpperCamelCase_ = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=_SCREAMING_SNAKE_CASE , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) UpperCamelCase_ = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any]=0 ) -> Tuple: """simple docstring""" UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def lowercase ( self: List[Any] ) -> int: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = output.images[0] UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase_ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self: List[Any] ) -> Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase ( self: Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch_device == "cpu" UpperCamelCase_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase_ = batch_size * [inputs[key]] UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: List[Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) UpperCamelCase_ = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase_ = pipe( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
328
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
1
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : float = 3.0 class _UpperCAmelCase ( unittest.TestCase ): def A ( self : List[str] ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=A ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def A ( self : Union[str, Any] ) -> Optional[int]: # If no defaults are changed, `to_kwargs` returns an empty dict. lowercase_ : Optional[Any] = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() lowercase_ : Union[str, Any] = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowercase_ : Dict = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , A ) @require_multi_gpu def A ( self : Any ) -> Any: lowercase_ : Any = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A , env=os.environ.copy() ) if __name__ == "__main__": __A : Dict = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __A : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) __A : Optional[Any] = torch.nn.Linear(100, 200) __A : Tuple = accelerator.prepare(model) # Check the values changed in kwargs __A : List[Any] = '''''' __A : Any = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
33
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """camembert""" def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = classifier_dropout class __A ( lowerCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
209
0
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE = 5_0 ) -> int: __lowerCAmelCase: List[str] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
108
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __A = get_logger(__name__) class snake_case : SCREAMING_SNAKE_CASE_ : List[Any] = """dummy_data""" SCREAMING_SNAKE_CASE_ : List[Any] = """datasets""" SCREAMING_SNAKE_CASE_ : Any = False def __init__( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[Version, str] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[List[Callable]] = None , )-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: Tuple = dataset_name __lowerCAmelCase: Optional[Any] = cache_dir __lowerCAmelCase: Optional[int] = use_local_dummy_data __lowerCAmelCase: Optional[Any] = config # download_callbacks take a single url as input __lowerCAmelCase: List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCAmelCase: Union[str, Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCAmelCase: List[str] = str(UpperCamelCase__) # to be downloaded __lowerCAmelCase: Dict = None __lowerCAmelCase: Dict = None @property def lowercase_ ( self : List[str])-> str: '''simple docstring''' if self._dummy_file is None: __lowerCAmelCase: Tuple = self.download_dummy_data() return self._dummy_file @property def lowercase_ ( self : Dict)-> Optional[Any]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join("dummy" , self.version_name) @property def lowercase_ ( self : List[str])-> Any: '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip") def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCAmelCase: str = cached_path( UpperCamelCase__ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase__ , force_extract=UpperCamelCase__) return os.path.join(UpperCamelCase__ , self.dummy_file_name) @property def lowercase_ ( self : Dict)-> List[Any]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def lowercase_ ( self : Optional[Any])-> Tuple: '''simple docstring''' if self._bucket_url is None: __lowerCAmelCase: int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/")) return self._bucket_url @property def lowercase_ ( self : str)-> Optional[int]: '''simple docstring''' if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/").split("/")[:-1]) def lowercase_ ( self : List[Any] , UpperCamelCase__ : int , *UpperCamelCase__ : List[str])-> Optional[int]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCAmelCase: List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCAmelCase: str = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase__ , UpperCamelCase__): return self.create_dummy_data_dict(UpperCamelCase__ , UpperCamelCase__) elif isinstance(UpperCamelCase__ , (list, tuple)): return self.create_dummy_data_list(UpperCamelCase__ , UpperCamelCase__) else: return self.create_dummy_data_single(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Dict , *UpperCamelCase__ : int)-> Dict: '''simple docstring''' return self.download_and_extract(UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any])-> str: '''simple docstring''' return self.download_and_extract(UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : str)-> List[str]: '''simple docstring''' return path def lowercase_ ( self : Optional[Any])-> Any: '''simple docstring''' return {} def lowercase_ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase__ , UpperCamelCase__): for single_url in single_urls: download_callback(UpperCamelCase__) else: __lowerCAmelCase: Union[str, Any] = single_urls download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Dict = [os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(Path(UpperCamelCase__).name)) for x in single_urls] else: __lowerCAmelCase: Any = single_urls __lowerCAmelCase: Optional[int] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(Path(UpperCamelCase__).name)) __lowerCAmelCase: Dict = value # make sure that values are unique if all(isinstance(UpperCamelCase__ , UpperCamelCase__) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique __lowerCAmelCase: Any = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase_ ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any])-> int: '''simple docstring''' __lowerCAmelCase: Tuple = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCAmelCase: Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , UpperCamelCase__)) for url in data_url) __lowerCAmelCase: str = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url) if data_url and (is_tf_records or is_pubmed_records): __lowerCAmelCase: Optional[int] = [data_url[0]] * len(UpperCamelCase__) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCAmelCase: Optional[Any] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(UpperCamelCase__) return dummy_data_list def lowercase_ ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any])-> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(UpperCamelCase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCAmelCase: List[Any] = os.path.join(UpperCamelCase__ , urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(UpperCamelCase__) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase_ ( self : List[str])-> Dict: '''simple docstring''' pass def lowercase_ ( self : Union[str, Any])-> Tuple: '''simple docstring''' pass def lowercase_ ( self : Dict , UpperCamelCase__ : str)-> int: '''simple docstring''' def _iter_archive_members(UpperCamelCase__ : str): # this preserves the order of the members inside the ZIP archive __lowerCAmelCase: Optional[Any] = Path(self.dummy_file).parent __lowerCAmelCase: Optional[int] = path.relative_to(UpperCamelCase__) with ZipFile(self.local_path_to_dummy_data) as zip_file: __lowerCAmelCase: Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(UpperCamelCase__) __lowerCAmelCase: str = Path(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = _iter_archive_members(UpperCamelCase__) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(UpperCamelCase__).as_posix(), file_path.open("rb") def lowercase_ ( self : str , UpperCamelCase__ : str)-> str: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Dict = [paths] for path in paths: if os.path.isfile(UpperCamelCase__): if os.path.basename(UpperCamelCase__).startswith((".", "__")): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase__): if os.path.basename(UpperCamelCase__).startswith((".", "__")): continue dirnames.sort() for filename in sorted(UpperCamelCase__): if filename.startswith((".", "__")): continue yield os.path.join(UpperCamelCase__ , UpperCamelCase__)
108
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class UpperCAmelCase_ ( _a ): '''simple docstring''' a__ = """align_text_model""" def __init__( self : Dict , UpperCamelCase__ : Any=3_0522 , UpperCamelCase__ : Tuple=768 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : List[Any]=3072 , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[str]=512 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Optional[Any]=1E-12 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Union[str, Any]="absolute" , UpperCamelCase__ : List[Any]=True , **UpperCamelCase__ : List[Any] , ) -> Tuple: """simple docstring""" super().__init__(**snake_case_ ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_act __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = use_cache __magic_name__ = pad_token_id @classmethod def _lowercase ( cls : Union[str, Any] , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" cls._set_token_in_kwargs(snake_case_ ) __magic_name__ = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __magic_name__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case_ , **snake_case_ ) class UpperCAmelCase_ ( _a ): '''simple docstring''' a__ = """align_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 600 , UpperCamelCase__ : float = 2.0 , UpperCamelCase__ : float = 3.1 , UpperCamelCase__ : int = 8 , UpperCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ : List[int] = [] , UpperCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ : float = 0.25 , UpperCamelCase__ : str = "swish" , UpperCamelCase__ : int = 2560 , UpperCamelCase__ : str = "mean" , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 0.001 , UpperCamelCase__ : float = 0.99 , UpperCamelCase__ : float = 0.2 , **UpperCamelCase__ : Optional[int] , ) -> str: """simple docstring""" super().__init__(**snake_case_ ) __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = width_coefficient __magic_name__ = depth_coefficient __magic_name__ = depth_divisor __magic_name__ = kernel_sizes __magic_name__ = in_channels __magic_name__ = out_channels __magic_name__ = depthwise_padding __magic_name__ = strides __magic_name__ = num_block_repeats __magic_name__ = expand_ratios __magic_name__ = squeeze_expansion_ratio __magic_name__ = hidden_act __magic_name__ = hidden_dim __magic_name__ = pooling_type __magic_name__ = initializer_range __magic_name__ = batch_norm_eps __magic_name__ = batch_norm_momentum __magic_name__ = drop_connect_rate __magic_name__ = sum(snake_case_ ) * 4 @classmethod def _lowercase ( cls : str , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" cls._set_token_in_kwargs(snake_case_ ) __magic_name__ = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __magic_name__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case_ , **snake_case_ ) class UpperCAmelCase_ ( _a ): '''simple docstring''' a__ = """align""" a__ = True def __init__( self : int , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Tuple=640 , UpperCamelCase__ : List[Any]=1.0 , UpperCamelCase__ : List[str]=0.02 , **UpperCamelCase__ : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**snake_case_ ) if text_config is None: __magic_name__ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: __magic_name__ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) __magic_name__ = AlignTextConfig(**snake_case_ ) __magic_name__ = AlignVisionConfig(**snake_case_ ) __magic_name__ = projection_dim __magic_name__ = temperature_init_value __magic_name__ = initializer_range @classmethod def _lowercase ( cls : Union[str, Any] , UpperCamelCase__ : AlignTextConfig , UpperCamelCase__ : AlignVisionConfig , **UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def _lowercase ( self : List[Any] ) -> Any: """simple docstring""" __magic_name__ = copy.deepcopy(self.__dict__ ) __magic_name__ = self.text_config.to_dict() __magic_name__ = self.vision_config.to_dict() __magic_name__ = self.__class__.model_type return output
88
'''simple docstring''' from PIL import Image def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Image: def brightness(_lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __a = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
35
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _lowerCamelCase ( lowerCamelCase_ : Optional[Any] ): """simple docstring""" return EnvironmentCommand() def _lowerCamelCase ( lowerCamelCase_ : Tuple ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' @staticmethod def _UpperCamelCase ( snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = parser.add_parser('env' ) download_parser.set_defaults(func=snake_case_ ) download_parser.add_argument( '--accelerate-config_file' , default=snake_case_ , help='The accelerate config file to use for the default values in the launching script.' , ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , *snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = accelerate_config_file def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 'not installed' if is_safetensors_available(): import safetensors UpperCAmelCase_ : Dict = safetensors.__version__ elif importlib.util.find_spec('safetensors' ) is not None: import safetensors UpperCAmelCase_ : Optional[Any] = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' UpperCAmelCase_ : Any = 'not installed' UpperCAmelCase_ : int = 'not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase_ : str = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(snake_case_ ): UpperCAmelCase_ : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase_ : Union[str, Any] = ( '\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) UpperCAmelCase_ : List[Any] = 'not installed' UpperCAmelCase_ : Optional[Any] = 'NA' if is_torch_available(): import torch UpperCAmelCase_ : List[str] = torch.__version__ UpperCAmelCase_ : Optional[Any] = torch.cuda.is_available() UpperCAmelCase_ : Union[str, Any] = 'not installed' UpperCAmelCase_ : List[Any] = 'NA' if is_tf_available(): import tensorflow as tf UpperCAmelCase_ : Any = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase_ : str = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase_ : Optional[Any] = bool(tf.config.list_physical_devices('GPU' ) ) UpperCAmelCase_ : str = 'not installed' UpperCAmelCase_ : int = 'not installed' UpperCAmelCase_ : Optional[Any] = 'not installed' UpperCAmelCase_ : int = 'NA' if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase_ : Tuple = flax.__version__ UpperCAmelCase_ : Union[str, Any] = jax.__version__ UpperCAmelCase_ : int = jaxlib.__version__ UpperCAmelCase_ : Optional[Any] = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase_ : Union[str, Any] = { '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': F'''{safetensors_version}''', 'Accelerate version': F'''{accelerate_version}''', 'Accelerate config': F'''{accelerate_config_str}''', 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'Tensorflow version (GPU?)': F'''{tf_version} ({tf_cuda_available})''', 'Flax version (CPU?/GPU?/TPU?)': F'''{flax_version} ({jax_backend})''', 'Jax version': F'''{jax_version}''', 'JaxLib version': F'''{jaxlib_version}''', 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(snake_case_ ) ) return info @staticmethod def _UpperCamelCase ( snake_case_ ): '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
274
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : str = nn.Parameter(torch.ones(1 , snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : int = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) UpperCAmelCase_ : Tuple = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = (embeds * self.std) + self.mean return embeds
274
1
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str ) -> Union[str, Any]: def get_masked_lm_array(__lowerCamelCase : str ): _snake_case = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _snake_case = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) if "kernel" in name: _snake_case = array.transpose() return torch.from_numpy(__lowerCamelCase ) def get_encoder_array(__lowerCamelCase : str ): _snake_case = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _snake_case = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) if "kernel" in name: _snake_case = array.transpose() return torch.from_numpy(__lowerCamelCase ) def get_encoder_layer_array(__lowerCamelCase : int , __lowerCamelCase : str ): _snake_case = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _snake_case = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) if "kernel" in name: _snake_case = array.transpose() return torch.from_numpy(__lowerCamelCase ) def get_encoder_attention_layer_array(__lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : List[str] ): _snake_case = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _snake_case = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) _snake_case = array.reshape(__lowerCamelCase ) if "kernel" in name: _snake_case = array.transpose() return torch.from_numpy(__lowerCamelCase ) print(f'''Loading model based on config from {config_path}...''' ) _snake_case = BertConfig.from_json_file(__lowerCamelCase ) _snake_case = BertForMaskedLM(__lowerCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _snake_case = model.bert.encoder.layer[layer_index] # Self-attention _snake_case = layer.attention.self _snake_case = get_encoder_attention_layer_array( __lowerCamelCase , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) _snake_case = get_encoder_attention_layer_array( __lowerCamelCase , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) _snake_case = get_encoder_attention_layer_array( __lowerCamelCase , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) _snake_case = get_encoder_attention_layer_array( __lowerCamelCase , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) _snake_case = get_encoder_attention_layer_array( __lowerCamelCase , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) _snake_case = get_encoder_attention_layer_array( __lowerCamelCase , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output _snake_case = layer.attention.output _snake_case = get_encoder_attention_layer_array( __lowerCamelCase , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) _snake_case = get_encoder_attention_layer_array( __lowerCamelCase , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) _snake_case = get_encoder_layer_array(__lowerCamelCase , '''_attention_layer_norm/gamma''' ) _snake_case = get_encoder_layer_array(__lowerCamelCase , '''_attention_layer_norm/beta''' ) # Intermediate _snake_case = layer.intermediate _snake_case = get_encoder_layer_array(__lowerCamelCase , '''_intermediate_dense/kernel''' ) _snake_case = get_encoder_layer_array(__lowerCamelCase , '''_intermediate_dense/bias''' ) # Output _snake_case = layer.output _snake_case = get_encoder_layer_array(__lowerCamelCase , '''_output_dense/kernel''' ) _snake_case = get_encoder_layer_array(__lowerCamelCase , '''_output_dense/bias''' ) _snake_case = get_encoder_layer_array(__lowerCamelCase , '''_output_layer_norm/gamma''' ) _snake_case = get_encoder_layer_array(__lowerCamelCase , '''_output_layer_norm/beta''' ) # Embeddings _snake_case = get_encoder_array('''_position_embedding_layer/embeddings''' ) _snake_case = get_encoder_array('''_type_embedding_layer/embeddings''' ) _snake_case = get_encoder_array('''_embedding_norm_layer/gamma''' ) _snake_case = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head _snake_case = model.cls.predictions.transform _snake_case = get_masked_lm_array('''dense/kernel''' ) _snake_case = get_masked_lm_array('''dense/bias''' ) _snake_case = get_masked_lm_array('''layer_norm/gamma''' ) _snake_case = get_masked_lm_array('''layer_norm/beta''' ) _snake_case = get_masked_lm_array('''embedding_table''' ) # Pooling _snake_case = BertPooler(config=__lowerCamelCase ) _snake_case = get_encoder_array('''_pooler_layer/kernel''' ) _snake_case = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__lowerCamelCase ) # Integration test - should load without any errors ;) _snake_case = BertForMaskedLM.from_pretrained(__lowerCamelCase ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) UpperCAmelCase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
288
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) class lowerCAmelCase__ ( A_ ): __a = """masked_bert""" def __init__( self : Union[str, Any] , _lowerCamelCase : Any=30522 , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Tuple=12 , _lowerCamelCase : Any=12 , _lowerCamelCase : str=3072 , _lowerCamelCase : str="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : int=0.0_2 , _lowerCamelCase : Union[str, Any]=1e-12 , _lowerCamelCase : Union[str, Any]=0 , _lowerCamelCase : List[str]="topK" , _lowerCamelCase : Optional[Any]="constant" , _lowerCamelCase : Optional[Any]=0.0 , **_lowerCamelCase : str , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = pruning_method _snake_case = mask_init _snake_case = mask_scale
288
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" __A = old_name if "patch_embed" in old_name: __A = old_name.split("." ) if layer == "0": __A = old_name.replace("0" , "convolution1" ) elif layer == "1": __A = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": __A = old_name.replace("3" , "convolution2" ) else: __A = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(r"\d\.\d" , lowerCAmelCase_ ): __A = r'\b\d{2}\b' if bool(re.search(lowerCAmelCase_ , lowerCAmelCase_ ) ): __A = re.search(r"\d\.\d\d." , lowerCAmelCase_ ).group() else: __A = re.search(r"\d\.\d." , lowerCAmelCase_ ).group() if int(match[0] ) < 6: __A = old_name.replace(lowerCAmelCase_ , "" ) __A = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) __A = 'intermediate_stages.' + trimmed_name else: __A = old_name.replace(lowerCAmelCase_ , "" ) if int(match[2] ) < num_meta4D_last_stage: __A = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: __A = str(int(match[2] ) - num_meta4D_last_stage ) __A = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: __A = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: __A = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: __A = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: __A = trimmed_name.replace("fc2" , "linear_out" ) __A = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(r".\d." , lowerCAmelCase_ ): __A = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: __A = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __A = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __A = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: __A = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: __A = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: __A = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: __A = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __A = new_name.replace("norm" , "layernorm" ) __A = 'efficientformer.' + new_name else: __A = 'efficientformer.encoder.' + new_name return new_name def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" for key in checkpoint.copy().keys(): __A = checkpoint.pop(lowerCAmelCase_ ) __A = val return checkpoint def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return image def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> List[Any]: """simple docstring""" __A = torch.load(lowerCAmelCase_ , map_location="cpu" )['model'] __A = EfficientFormerConfig.from_json_file(lowerCAmelCase_ ) __A = EfficientFormerForImageClassificationWithTeacher(lowerCAmelCase_ ) __A = '_'.join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) __A = config.depths[-1] - config.num_metaad_blocks + 1 __A = convert_torch_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() __A = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __A = prepare_img() __A = 2_5_6 __A = 2_2_4 __A = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) __A = processor(images=lowerCAmelCase_ , return_tensors="pt" ).pixel_values # original processing pipeline __A = Compose( [ Resize(lowerCAmelCase_ , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(lowerCAmelCase_ ), ToTensor(), Normalize(lowerCAmelCase_ , lowerCAmelCase_ ), ] ) __A = image_transforms(lowerCAmelCase_ ).unsqueeze(0 ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) __A = model(lowerCAmelCase_ ) __A = outputs.logits __A = (1, 1_0_0_0) if "l1" in model_name: __A = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :1_0] , lowerCAmelCase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __A = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :1_0] , lowerCAmelCase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __A = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(lowerCAmelCase_ ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="Add model" , use_temp_dir=lowerCAmelCase_ , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="Add image processor" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
369
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = 10 def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = [1, 2, 3, 4] __UpperCamelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __UpperCamelCase , __UpperCamelCase = process_story(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = '''''' __UpperCamelCase , __UpperCamelCase = process_story(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __UpperCamelCase , __UpperCamelCase = process_story(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ['''It was the best of times.'''] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3, 4] ) __UpperCamelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 0 ).numpy() , expected.numpy() ) def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 23 ).numpy() , expected.numpy() ) def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 1 ).numpy() , expected.numpy() ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = 101 __UpperCamelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __UpperCamelCase = compute_token_type_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) np.testing.assert_array_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
328
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
1
class A : """simple docstring""" def __init__(self ): __lowercase= """""" __lowercase= """""" __lowercase= [] def _A (self , lowerCAmelCase , lowerCAmelCase ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __lowercase= self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __lowercase= self.__min_dist_top_down_dp(snake_case_ , n - 1 ) __lowercase= self.__min_dist_top_down_dp(m - 1 , snake_case_ ) __lowercase= self.__min_dist_top_down_dp(m - 1 , n - 1 ) __lowercase= 1 + min(snake_case_ , snake_case_ , snake_case_ ) return self.dp[m][n] def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= worda __lowercase= worda __lowercase= [[-1 for _ in range(len(snake_case_ ) )] for _ in range(len(snake_case_ ) )] return self.__min_dist_top_down_dp(len(snake_case_ ) - 1 , len(snake_case_ ) - 1 ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= worda __lowercase= worda __lowercase= len(snake_case_ ) __lowercase= len(snake_case_ ) __lowercase= [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __lowercase= j elif j == 0: # second string is empty __lowercase= i elif worda[i - 1] == worda[j - 1]: # last characters are equal __lowercase= self.dp[i - 1][j - 1] else: __lowercase= self.dp[i][j - 1] __lowercase= self.dp[i - 1][j] __lowercase= self.dp[i - 1][j - 1] __lowercase= 1 + min(snake_case_ , snake_case_ , snake_case_ ) return self.dp[m][n] if __name__ == "__main__": lowerCAmelCase = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() lowerCAmelCase = input('''Enter the first string: ''').strip() lowerCAmelCase = input('''Enter the second string: ''').strip() print() print(F'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(F'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
371
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
0
"""simple docstring""" import datasets from .evaluate import evaluate lowerCAmelCase__ = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' lowerCAmelCase__ = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' lowerCAmelCase__ = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowerCAmelCase : List[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowerCAmelCase : Any = evaluate(dataset=snake_case__ , predictions=snake_case__ ) return score
108
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ = "" , snake_case__ = False ): """simple docstring""" lowerCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase : str = is_leaf lowerCAmelCase : str = prefix def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = 0 for q, w in zip(self.prefix , snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self , snake_case__ ): """simple docstring""" for word in words: self.insert(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.prefix == word: lowerCAmelCase : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase : Optional[Any] = RadixNode(prefix=snake_case__ , is_leaf=snake_case__ ) else: lowerCAmelCase : Tuple = self.nodes[word[0]] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase : Optional[Any] = remaining_prefix lowerCAmelCase : int = self.nodes[matching_string[0]] lowerCAmelCase : List[Any] = RadixNode(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = aux_node if remaining_word == "": lowerCAmelCase : Optional[int] = True else: self.nodes[matching_string[0]].insert(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase : List[str] = list(self.nodes.values() )[0] lowerCAmelCase : List[str] = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase : Optional[int] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase : Optional[Any] = list(incoming_node.nodes.values() )[0] lowerCAmelCase : int = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase : Tuple = merging_node.nodes return True def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = "banana bananas bandana band apple all beast".split() lowerCAmelCase : List[str] = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE ) assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def a__ ( ): '''simple docstring''' assert test_trie() def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = RadixNode() lowerCAmelCase : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(SCREAMING_SNAKE_CASE ) print("Words:" , SCREAMING_SNAKE_CASE ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
108
1
def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' assert column_title.isupper() UpperCAmelCase : str =0 UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase ) - 1 UpperCAmelCase : List[Any] =0 while index >= 0: UpperCAmelCase : Union[str, Any] =(ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
78
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : List[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : Any ='''rougeLsum''' UpperCAmelCase : Optional[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] UpperCAmelCase : List[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCAmelCase_ ( )-> Any: '''simple docstring''' UpperCAmelCase : str =['''rouge1''', '''rouge2''', '''rougeL'''] UpperCAmelCase : int =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) UpperCAmelCase : Tuple =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) assert score_sep == score_no_sep def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : int =[ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] UpperCAmelCase : Any =[ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) == calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] UpperCAmelCase : Optional[Any] =[ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] UpperCAmelCase : Optional[int] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] , newline_sep=__lowerCAmelCase )['''rougeLsum'''] UpperCAmelCase : int =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =Path('''examples/seq2seq/test_data/wmt_en_ro''' ) UpperCAmelCase : Tuple =calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
78
1
import math from collections.abc import Callable def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : Any = xa lowerCAmelCase__ : List[str] = xa while True: if x_n == x_na or function(UpperCamelCase__ ) == function(UpperCamelCase__ ): raise ZeroDivisionError('''float division by zero, could not find root''' ) lowerCAmelCase__ : Tuple = x_na - ( function(UpperCamelCase__ ) / ((function(UpperCamelCase__ ) - function(UpperCamelCase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowerCAmelCase__ : Union[str, Any] = x_na lowerCAmelCase__ : List[str] = x_na def lowerCamelCase_ ( _a ): """simple docstring""" return math.pow(UpperCamelCase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
131
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(UpperCamelCase__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
273
0
"""simple docstring""" UpperCAmelCase_ : Optional[int] = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ : Any = {value: key for key, value in MORSE_CODE_DICT.items()} def _A (__a ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _A (__a ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def _A () -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Morse code here!''' print(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = encrypt(__a ) print(__a ) SCREAMING_SNAKE_CASE_ : Any = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
352
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) SCREAMING_SNAKE_CASE_ : Dict = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_slow.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_) SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_fast.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase_) self.assertIsInstance(processor_fast.tokenizer , lowercase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase_) self.assertIsInstance(processor_fast.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''') SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
318
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : List[Any] = 'AutoImageProcessor' SCREAMING_SNAKE_CASE : Union[str, Any] = 'AutoTokenizer' def __init__( self : Dict ,lowercase__ : int ,lowercase__ : List[Any] ): super().__init__(lowercase__ ,lowercase__ ) __lowercase = self.image_processor def __call__( self : int ,lowercase__ : Dict=None ,lowercase__ : int=None ,lowercase__ : str=None ,**lowercase__ : str ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,*lowercase__ : Union[str, Any] ,**lowercase__ : Optional[Any] ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,*lowercase__ : Optional[int] ,**lowercase__ : Tuple ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return ["input_ids", "attention_mask", "pixel_values"]
104
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : Tuple = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
0
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _SCREAMING_SNAKE_CASE = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _SCREAMING_SNAKE_CASE = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): __lowercase = SavedModel() __lowercase = [] with open(os.path.join(lowerCamelCase_ , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: __lowercase = json.load(lowerCamelCase_ )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowerCamelCase_ )] ) with open(lowerCamelCase_ , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) __lowercase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowercase = sorted(lowerCamelCase_ ) __lowercase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowerCamelCase_ ) if strict and len(lowerCamelCase_ ) > 0: raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(lowerCamelCase_ ) > 0: print(f"Found the following incompatible ops for the opset {opset}:" ) print(*lowerCamelCase_ , sep='''\n''' ) else: print(f"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
217
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = 1 __lowercase = 2 while i * i <= n: __lowercase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _lowerCAmelCase ( ): __lowercase = 1 __lowercase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase_ ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
217
1
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = set() # edges = list of graph's edges _lowerCAmelCase : Dict = get_edges(_lowerCamelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowerCAmelCase , _lowerCAmelCase : List[Any] = edges.pop() chosen_vertices.add(_lowerCamelCase ) chosen_vertices.add(_lowerCamelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowerCamelCase ) return chosen_vertices def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
36
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"text": Value("string")}) a_ = Features({}) a_ = "text" @property def A ( self : List[str] ) -> Dict[str, str]: return {self.text_column: "text"}
304
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Dict = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class A_ : """simple docstring""" def __init__( self :str , lowercase_ :str , lowercase_ :int=13 , lowercase_ :Optional[Any]=7 , lowercase_ :List[Any]=True , lowercase_ :List[Any]=True , lowercase_ :List[str]=False , lowercase_ :Optional[Any]=True , lowercase_ :List[Any]=99 , lowercase_ :List[str]=64 , lowercase_ :int=5 , lowercase_ :List[str]=4 , lowercase_ :Any=64 , lowercase_ :int="gelu" , lowercase_ :Optional[int]=0.1 , lowercase_ :Union[str, Any]=0.1 , lowercase_ :Union[str, Any]=5_12 , lowercase_ :List[Any]=16 , lowercase_ :Optional[Any]=2 , lowercase_ :str=0.02 , lowercase_ :Any=3 , lowercase_ :Tuple=4 , lowercase_ :Optional[Any]=None , ) -> int: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def UpperCAmelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def UpperCAmelCase__ ( self :Tuple ) -> int: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self :List[str] ) -> List[str]: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Optional[int] , lowercase_ :List[Any] , lowercase_ :Tuple , lowercase_ :Union[str, Any] , lowercase_ :str , lowercase_ :Any ) -> Any: UpperCAmelCase = MPNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , lowercase_ ) UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self :Dict , lowercase_ :str , lowercase_ :Any , lowercase_ :Any , lowercase_ :Union[str, Any] , lowercase_ :str , lowercase_ :int ) -> int: UpperCAmelCase = MPNetForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self :Dict , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Optional[int] , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :List[str] ) -> Optional[int]: UpperCAmelCase = self.num_labels UpperCAmelCase = MPNetForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :Any , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :Optional[Any] , lowercase_ :Optional[int] , lowercase_ :Optional[int] ) -> Any: UpperCAmelCase = self.num_choices UpperCAmelCase = MPNetForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Tuple , lowercase_ :str , lowercase_ :Tuple , lowercase_ :Any , lowercase_ :str , lowercase_ :Union[str, Any] ) -> Dict: UpperCAmelCase = self.num_labels UpperCAmelCase = MPNetForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self :Any ) -> Dict: UpperCAmelCase = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __UpperCamelCase = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True def UpperCAmelCase__ ( self :Optional[Any] ) -> int: UpperCAmelCase = MPNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase__ ( self :Optional[int] ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :int ) -> Optional[int]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> int: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase_ ) def UpperCAmelCase__ ( self :List[Any] ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Dict ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase_ ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self :Dict ) -> List[str]: UpperCAmelCase = MPNetModel.from_pretrained('microsoft/mpnet-base' ) UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) UpperCAmelCase = model(lowercase_ )[0] UpperCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
78
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = list(range(len(lowercase_ ) ) ) UpperCAmelCase = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) UpperCAmelCase = 0 UpperCAmelCase = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: UpperCAmelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
78
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=True , lowerCAmelCase__=1 / 2_5_5 , lowerCAmelCase__=True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Dict = batch_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : str = min_resolution SCREAMING_SNAKE_CASE_ : Tuple = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Tuple = size SCREAMING_SNAKE_CASE_ : str = do_normalize SCREAMING_SNAKE_CASE_ : List[str] = image_mean SCREAMING_SNAKE_CASE_ : str = image_std SCREAMING_SNAKE_CASE_ : int = do_rescale SCREAMING_SNAKE_CASE_ : Optional[Any] = rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = do_pad def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ): """simple docstring""" if not batched: SCREAMING_SNAKE_CASE_ : List[Any] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ : Tuple = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE_ : List[str] = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE_ : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ : Tuple = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE_ : int = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ : List[str] = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE_ : List[str] = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ : Dict = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_rescale' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_pad' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ : Dict = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them SCREAMING_SNAKE_CASE_ : Dict = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE_ : str = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowerCAmelCase__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowerCAmelCase__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowerCAmelCase__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowerCAmelCase__ ) ) # verify orig_size SCREAMING_SNAKE_CASE_ : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowerCAmelCase__ ) ) # verify size SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowerCAmelCase__ ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : List[str] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} SCREAMING_SNAKE_CASE_ : Dict = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE_ : Dict = DeformableDetrImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : int = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowerCAmelCase__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowerCAmelCase__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowerCAmelCase__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowerCAmelCase__ ) ) # verify masks SCREAMING_SNAKE_CASE_ : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowerCAmelCase__ ) # verify orig_size SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowerCAmelCase__ ) ) # verify size SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowerCAmelCase__ ) )
162
def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(A__ ) for i in range(n - 1 ): for j in range(i + 1, A__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a__ ( A__ ): if len(A__ ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE_ : Optional[int] = len(A__ ) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = arr[0:mid] SCREAMING_SNAKE_CASE_ : List[str] = arr[mid:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = count_inversions_recursive(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = count_inversions_recursive(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _count_cross_inversions(A__, A__ ) SCREAMING_SNAKE_CASE_ : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 while i < len(A__ ) and j < len(A__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE_ : Optional[int] = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ', A__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE_ : int = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', A__ ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : List[str] = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', A__ ) if __name__ == "__main__": main()
162
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowercase_ = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowercase_ = '''UperNetConfig''' class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , _A : List[Any] , _A : Dict , _A : str , _A : Dict = 0 , _A : Optional[int] = False , _A : Optional[Any] = 1 , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( in_channels=_A , out_channels=_A , kernel_size=_A , padding=_A , bias=_A , dilation=_A , ) __SCREAMING_SNAKE_CASE : Any = nn.BatchNormad(_A ) __SCREAMING_SNAKE_CASE : List[str] = nn.ReLU() def UpperCAmelCase__ ( self : str , _A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.conv(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.batch_norm(_A ) __SCREAMING_SNAKE_CASE : Tuple = self.activation(_A ) return output class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , _A : Union[str, Any] , _A : str , _A : Union[str, Any] ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Any = [ nn.AdaptiveAvgPoolad(_A ), UperNetConvModule(_A , _A , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_A ) , _A ) def UpperCAmelCase__ ( self : int , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = input for layer in self.layers: __SCREAMING_SNAKE_CASE : Optional[int] = layer(_A ) return hidden_state class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Dict , _A : Tuple , _A : List[str] , _A : int , _A : Any ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Any = pool_scales __SCREAMING_SNAKE_CASE : List[Any] = align_corners __SCREAMING_SNAKE_CASE : str = in_channels __SCREAMING_SNAKE_CASE : Tuple = channels __SCREAMING_SNAKE_CASE : List[Any] = [] for i, pool_scale in enumerate(_A ): __SCREAMING_SNAKE_CASE : List[Any] = UperNetPyramidPoolingBlock(pool_scale=_A , in_channels=_A , channels=_A ) self.blocks.append(_A ) self.add_module(str(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = [] for ppm in self.blocks: __SCREAMING_SNAKE_CASE : int = ppm(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.functional.interpolate( _A , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_A ) return ppm_outs class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , _A : str , _A : Any ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Tuple = config __SCREAMING_SNAKE_CASE : str = config.pool_scales # e.g. (1, 2, 3, 6) __SCREAMING_SNAKE_CASE : Optional[Any] = in_channels __SCREAMING_SNAKE_CASE : str = config.hidden_size __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __SCREAMING_SNAKE_CASE : Any = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __SCREAMING_SNAKE_CASE : Tuple = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __SCREAMING_SNAKE_CASE : int = nn.ModuleList() __SCREAMING_SNAKE_CASE : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __SCREAMING_SNAKE_CASE : Optional[int] = UperNetConvModule(_A , self.channels , kernel_size=1 ) __SCREAMING_SNAKE_CASE : Any = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_A ) self.fpn_convs.append(_A ) __SCREAMING_SNAKE_CASE : Tuple = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase__ ( self : List[str] , _A : Dict ): """simple docstring""" if isinstance(_A , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = inputs[-1] __SCREAMING_SNAKE_CASE : Any = [x] psp_outs.extend(self.psp_modules(_A ) ) __SCREAMING_SNAKE_CASE : int = torch.cat(_A , dim=1 ) __SCREAMING_SNAKE_CASE : int = self.bottleneck(_A ) return output def UpperCAmelCase__ ( self : int , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_A ) ) # build top-down path __SCREAMING_SNAKE_CASE : Dict = len(_A ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE : Tuple = laterals[i - 1].shape[2:] __SCREAMING_SNAKE_CASE : Dict = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_A , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE : Tuple = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) __SCREAMING_SNAKE_CASE : int = torch.cat(_A , dim=1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.fpn_bottleneck(_A ) __SCREAMING_SNAKE_CASE : List[Any] = self.classifier(_A ) return output class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Dict , _A : str , _A : List[Any] = 2 , _A : Optional[int] = 3 , _A : Any = 1 ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Optional[int] = config __SCREAMING_SNAKE_CASE : List[str] = config.auxiliary_in_channels __SCREAMING_SNAKE_CASE : Any = config.auxiliary_channels __SCREAMING_SNAKE_CASE : Optional[int] = config.auxiliary_num_convs __SCREAMING_SNAKE_CASE : Any = config.auxiliary_concat_input __SCREAMING_SNAKE_CASE : Dict = in_index __SCREAMING_SNAKE_CASE : Dict = (kernel_size // 2) * dilation __SCREAMING_SNAKE_CASE : Tuple = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_A , padding=_A , dilation=_A ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_A , padding=_A , dilation=_A ) ) if self.num_convs == 0: __SCREAMING_SNAKE_CASE : List[str] = nn.Identity() else: __SCREAMING_SNAKE_CASE : Tuple = nn.Sequential(*_A ) if self.concat_input: __SCREAMING_SNAKE_CASE : int = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_A , padding=kernel_size // 2 ) __SCREAMING_SNAKE_CASE : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase__ ( self : List[Any] , _A : Tuple ): """simple docstring""" if isinstance(_A , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : List[Any] , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = encoder_hidden_states[self.in_index] __SCREAMING_SNAKE_CASE : Optional[int] = self.convs(_A ) if self.concat_input: __SCREAMING_SNAKE_CASE : Dict = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __SCREAMING_SNAKE_CASE : Any = self.classifier(_A ) return output class __UpperCamelCase ( _lowercase ): """simple docstring""" lowerCAmelCase_ = UperNetConfig lowerCAmelCase_ = "pixel_values" lowerCAmelCase_ = True def UpperCAmelCase__ ( self : Optional[Any] , _A : int ): """simple docstring""" if isinstance(_A , _A ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Tuple , _A : Any , _A : Any=False ): """simple docstring""" if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Dict = value lowercase_ = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase_ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , _lowercase , ) class __UpperCamelCase ( _lowercase ): """simple docstring""" def __init__( self : List[Any] , _A : Union[str, Any] ): """simple docstring""" super().__init__(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __SCREAMING_SNAKE_CASE : List[Any] = UperNetHead(_A , in_channels=self.backbone.channels ) __SCREAMING_SNAKE_CASE : Dict = UperNetFCNHead(_A ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_A , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase__ ( self : List[str] , _A : List[Any] = None , _A : Union[str, Any] = None , _A : str = None , _A : Optional[Any] = None , _A : Optional[Any] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE : int = output_attentions if output_attentions is not None else self.config.output_attentions __SCREAMING_SNAKE_CASE : Optional[int] = self.backbone.forward_with_filtered_kwargs( _A , output_hidden_states=_A , output_attentions=_A ) __SCREAMING_SNAKE_CASE : str = outputs.feature_maps __SCREAMING_SNAKE_CASE : int = self.decode_head(_A ) __SCREAMING_SNAKE_CASE : str = nn.functional.interpolate(_A , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.auxiliary_head is not None: __SCREAMING_SNAKE_CASE : Dict = self.auxiliary_head(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.functional.interpolate( _A , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_A ) __SCREAMING_SNAKE_CASE : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss __SCREAMING_SNAKE_CASE : List[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_A , _A ) __SCREAMING_SNAKE_CASE : List[str] = loss_fct(_A , _A ) __SCREAMING_SNAKE_CASE : int = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __SCREAMING_SNAKE_CASE : Optional[int] = (logits,) + outputs[1:] else: __SCREAMING_SNAKE_CASE : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_A , logits=_A , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
303
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
'''simple docstring''' import argparse from collections import defaultdict import yaml A__ : str ='''docs/source/en/_toctree.yml''' def UpperCamelCase__ ( lowerCAmelCase ) -> str: """simple docstring""" _lowerCAmelCase = defaultdict(lowerCAmelCase ) _lowerCAmelCase = [] _lowerCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowerCAmelCase ) _lowerCAmelCase = new_doc_list _lowerCAmelCase = [key for key, value in counts.items() if value > 1] _lowerCAmelCase = [] for duplicate_key in duplicates: _lowerCAmelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowerCAmelCase ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _lowerCAmelCase = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowerCAmelCase ) # Sort return overview_doc def UpperCamelCase__ ( lowerCAmelCase=False ) -> List[str]: """simple docstring""" with open(lowerCAmelCase , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase = api_doc[scheduler_idx]["""sections"""] _lowerCAmelCase = clean_doc_toc(lowerCAmelCase ) _lowerCAmelCase = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase = api_doc with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase , allow_unicode=lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def UpperCamelCase__ ( lowerCAmelCase=False ) -> Union[str, Any]: """simple docstring""" with open(lowerCAmelCase , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase = False _lowerCAmelCase = api_doc[pipeline_idx]["""sections"""] _lowerCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase = pipeline_doc["""section"""] _lowerCAmelCase = clean_doc_toc(lowerCAmelCase ) if overwrite: _lowerCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase ) # sort overall pipeline doc _lowerCAmelCase = clean_doc_toc(lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase = api_doc with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase , allow_unicode=lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A__ : Tuple =parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
370
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if not (isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _lowerCAmelCase = len(lowerCAmelCase ) _lowerCAmelCase = len(lowerCAmelCase ) _lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _lowerCAmelCase = i _lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
220
0
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE ) -> list[list[int]]: __lowerCAmelCase: Any = [] if len(__SCREAMING_SNAKE_CASE ) == 1: return [nums.copy()] for _ in range(len(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase: int = nums.pop(0 ) __lowerCAmelCase: Any = permute(__SCREAMING_SNAKE_CASE ) for perm in permutations: perm.append(__SCREAMING_SNAKE_CASE ) result.extend(__SCREAMING_SNAKE_CASE ) nums.append(__SCREAMING_SNAKE_CASE ) return result def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: def backtrack(__SCREAMING_SNAKE_CASE ): if start == len(__SCREAMING_SNAKE_CASE ) - 1: output.append(nums[:] ) else: for i in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = nums[i], nums[start] backtrack(start + 1 ) __lowerCAmelCase , __lowerCAmelCase: Any = nums[i], nums[start] # backtrack __lowerCAmelCase: str = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __A = permutea([1, 2, 3]) print(res) doctest.testmod()
217
"""simple docstring""" __A = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list[str]: __lowerCAmelCase: Tuple = set() # keep track of all the paths to be checked __lowerCAmelCase: Optional[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: List[Any] = path[-1] if node not in explored: __lowerCAmelCase: str = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Optional[int] = list(__SCREAMING_SNAKE_CASE ) new_path.append(__SCREAMING_SNAKE_CASE ) queue.append(__SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Dict = [start] __lowerCAmelCase: Any = set(__SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: int = {start: 0, target: -1} while queue: __lowerCAmelCase: Optional[Any] = queue.pop(0 ) if node == target: __lowerCAmelCase: Dict = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__SCREAMING_SNAKE_CASE ) queue.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[str] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
217
1
"""simple docstring""" class UpperCamelCase_ : def __init__( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> Tuple: UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = graph self._normalize_graph(a_ , a_ ) UpperCAmelCase_ : Dict = len(a_ ) UpperCAmelCase_ : Union[str, Any] = None def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: if sources is int: UpperCAmelCase_ : Optional[int] = [sources] if sinks is int: UpperCAmelCase_ : int = [sinks] if len(a_ ) == 0 or len(a_ ) == 0: return UpperCAmelCase_ : int = sources[0] UpperCAmelCase_ : Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(a_ ) > 1 or len(a_ ) > 1: UpperCAmelCase_ : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) UpperCAmelCase_ : Optional[int] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: UpperCAmelCase_ : List[str] = max_input_flow UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : List[str] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: UpperCAmelCase_ : Optional[int] = max_input_flow UpperCAmelCase_ : Optional[int] = size - 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = algorithm(self ) class UpperCamelCase_ : def __init__( self : int , lowerCAmelCase_ : Optional[int] ) -> str: UpperCAmelCase_ : List[Any] = flow_network UpperCAmelCase_ : List[str] = flow_network.verticesCount UpperCAmelCase_ : Union[str, Any] = flow_network.sourceIndex UpperCAmelCase_ : Dict = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that UpperCAmelCase_ : str = flow_network.graph UpperCAmelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: if not self.executed: self._algorithm() UpperCAmelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass class UpperCamelCase_ (SCREAMING_SNAKE_CASE__ ): def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] ) -> List[Any]: super().__init__(a_ ) # use this to save your result UpperCAmelCase_ : int = -1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class UpperCamelCase_ (SCREAMING_SNAKE_CASE__ ): def __init__( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: super().__init__(a_ ) UpperCAmelCase_ : int = [[0] * self.verticies_count for i in range(self.verticies_count )] UpperCAmelCase_ : List[Any] = [0] * self.verticies_count UpperCAmelCase_ : Optional[Any] = [0] * self.verticies_count def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule UpperCAmelCase_ : Optional[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list UpperCAmelCase_ : Optional[int] = 0 while i < len(a_ ): UpperCAmelCase_ : str = vertices_list[i] UpperCAmelCase_ : Dict = self.heights[vertex_index] self.process_vertex(a_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(a_ ) ) UpperCAmelCase_ : Any = 0 else: i += 1 UpperCAmelCase_ : Tuple = sum(self.preflow[self.source_index] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(a_ , a_ ) self.relabel(a_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> str: UpperCAmelCase_ : Optional[Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Dict: UpperCAmelCase_ : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): UpperCAmelCase_ : int = self.heights[to_index] if min_height is not None: UpperCAmelCase_ : Union[str, Any] = min_height + 1 if __name__ == "__main__": lowerCamelCase_ = [0] lowerCamelCase_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowerCamelCase_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowerCamelCase_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowerCamelCase_ = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
359
"""simple docstring""" import re import string import numpy as np import datasets lowerCamelCase_ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCamelCase_ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCamelCase_ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[Any]=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase_ : str = np.array([re.sub(lowerCAmelCase_ , "" , lowerCAmelCase_ ) for x in predictions] ) UpperCAmelCase_ : Dict = np.array([re.sub(lowerCAmelCase_ , "" , lowerCAmelCase_ ) for x in references] ) else: UpperCAmelCase_ : int = np.asarray(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.asarray(lowerCAmelCase_ ) if ignore_case: UpperCAmelCase_ : Optional[Any] = np.char.lower(lowerCAmelCase_ ) UpperCAmelCase_ : int = np.char.lower(lowerCAmelCase_ ) if ignore_punctuation: UpperCAmelCase_ : Any = string.punctuation.maketrans("" , "" , string.punctuation ) UpperCAmelCase_ : Any = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : Any = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) if ignore_numbers: UpperCAmelCase_ : Dict = string.digits.maketrans("" , "" , string.digits ) UpperCAmelCase_ : Optional[Any] = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : int = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = predictions == references return {"exact_match": np.mean(lowerCAmelCase_ ) * 100}
253
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __lowerCAmelCase , ) class UpperCAmelCase_ ( __lowerCAmelCase): snake_case__ = RobertaConfig snake_case__ = '''roberta''' def __init__( self : Optional[int] , __UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ ) _UpperCamelCase = RobertaEmbeddings(lowerCAmelCase_ ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __lowerCAmelCase , ) class UpperCAmelCase_ ( __lowerCAmelCase): snake_case__ = RobertaConfig snake_case__ = '''roberta''' def __init__( self : str , __UpperCamelCase : Union[str, Any] ) -> int: super().__init__(lowerCAmelCase_ ) _UpperCamelCase = config.num_labels _UpperCamelCase = config.num_hidden_layers _UpperCamelCase = DeeRobertaModel(lowerCAmelCase_ ) _UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) _UpperCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[int]=-1 , __UpperCamelCase : List[str]=False , ) -> Dict: _UpperCamelCase = self.num_layers try: _UpperCamelCase = self.roberta( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , ) _UpperCamelCase = outputs[1] _UpperCamelCase = self.dropout(lowerCAmelCase_ ) _UpperCamelCase = self.classifier(lowerCAmelCase_ ) _UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCamelCase = e.message _UpperCamelCase = e.exit_layer _UpperCamelCase = outputs[0] if not self.training: _UpperCamelCase = entropy(lowerCAmelCase_ ) _UpperCamelCase = [] _UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCamelCase = MSELoss() _UpperCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _UpperCamelCase = [] for highway_exit in outputs[-1]: _UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(lowerCAmelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _UpperCamelCase = MSELoss() _UpperCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCAmelCase_ ) if train_highway: _UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _UpperCamelCase = (loss,) + outputs if not self.training: _UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
364
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCAmelCase = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def lowercase ( a__ : Union[str, Any] , a__ : int , a__ : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : List[Any] ) -> Optional[Any]: if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(a__ ) , version.parse(a__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( a__ : str , a__ : Optional[str] = None ) -> None: _UpperCamelCase = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , a__ ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = requirement, None, None else: _UpperCamelCase = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_full.split(''',''' ) # there could be multiple requirements _UpperCamelCase = {} for w in want_range: _UpperCamelCase = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": _UpperCamelCase = '''.'''.join([str(a__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) return # check if any version is installed try: _UpperCamelCase = importlib.metadata.version(a__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) def lowercase ( a__ : Tuple ) -> Any: _UpperCamelCase = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(a__ , a__ )
54
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: # initialize config if "resnet-50" in model_name: A_ = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: A_ = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) A_ = DetrConfig(use_timm_backbone=UpperCAmelCase__, backbone_config=UpperCAmelCase__ ) # set label attributes A_ = """panoptic""" in model_name if is_panoptic: A_ = 2_50 else: A_ = 91 A_ = """huggingface/label-files""" A_ = """coco-detection-id2label.json""" A_ = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A_ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: # here we list all keys to be renamed (original name on the left, our name on the right) A_ = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ = state_dict.pop(UpperCAmelCase__ ) A_ = val def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> Tuple: A_ = """""" if is_panoptic: A_ = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) A_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[:2_56, :] A_ = in_proj_bias[:2_56] A_ = in_proj_weight[2_56:5_12, :] A_ = in_proj_bias[2_56:5_12] A_ = in_proj_weight[-2_56:, :] A_ = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) A_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[:2_56, :] A_ = in_proj_bias[:2_56] A_ = in_proj_weight[2_56:5_12, :] A_ = in_proj_bias[2_56:5_12] A_ = in_proj_weight[-2_56:, :] A_ = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention A_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) A_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ = in_proj_weight_cross_attn[:2_56, :] A_ = in_proj_bias_cross_attn[:2_56] A_ = in_proj_weight_cross_attn[2_56:5_12, :] A_ = in_proj_bias_cross_attn[2_56:5_12] A_ = in_proj_weight_cross_attn[-2_56:, :] A_ = in_proj_bias_cross_attn[-2_56:] def UpperCAmelCase__ ( ) -> Any: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__=False ) -> Union[str, Any]: A_ , A_ = get_detr_config(UpperCAmelCase__ ) # load original model from torch hub A_ = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'''Converting model {model_name}...''' ) A_ = torch.hub.load("""facebookresearch/detr""", model_name_to_original_name[model_name], pretrained=UpperCAmelCase__ ).eval() A_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase__ ): if is_panoptic: A_ = """detr.""" + src rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase__, is_panoptic=UpperCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ = state_dict.pop(UpperCAmelCase__ ) A_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ = state_dict.pop(UpperCAmelCase__ ) A_ = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ = state_dict.pop(UpperCAmelCase__ ) A_ = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ = state_dict.pop(UpperCAmelCase__ ) A_ = val # finally, create HuggingFace model and load state dict A_ = DetrForSegmentation(UpperCAmelCase__ ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # verify our conversion on an image A_ = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ = DetrImageProcessor(format=UpperCAmelCase__ ) A_ = processor(images=prepare_img(), return_tensors="""pt""" ) A_ = encoding["""pixel_values"""] A_ = detr(UpperCAmelCase__ ) A_ = model(UpperCAmelCase__ ) assert torch.allclose(outputs.logits, original_outputs["""pred_logits"""], atol=1e-3 ) assert torch.allclose(outputs.pred_boxes, original_outputs["""pred_boxes"""], atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs["""pred_masks"""], atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') __lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
162
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[list[float]]: A_ = [] for data in source_data: for i, el in enumerate(UpperCAmelCase__ ): if len(UpperCAmelCase__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(UpperCAmelCase__ ) ) return data_lists def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list[list[float]]: A_ = [] for dlist, weight in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = min(UpperCAmelCase__ ) A_ = max(UpperCAmelCase__ ) A_ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A_ = F'''Invalid weight of {weight:f} provided''' raise ValueError(UpperCAmelCase__ ) score_lists.append(UpperCAmelCase__ ) return score_lists def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[float]: A_ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(UpperCAmelCase__ ): A_ = final_scores[j] + ele return final_scores def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list[list[float]]: A_ = get_data(UpperCAmelCase__ ) A_ = calculate_each_score(UpperCAmelCase__, UpperCAmelCase__ ) A_ = generate_final_scores(UpperCAmelCase__ ) # append scores to source data for i, ele in enumerate(UpperCAmelCase__ ): source_data[i].append(UpperCAmelCase__ ) return source_data
162
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case_ = logging.get_logger(__name__) snake_case_ = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class A_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" __UpperCamelCase = "convnextv2" def __init__( self :List[Any] , lowercase_ :Dict=3 , lowercase_ :Any=4 , lowercase_ :Union[str, Any]=4 , lowercase_ :Tuple=None , lowercase_ :str=None , lowercase_ :Tuple="gelu" , lowercase_ :Optional[Any]=0.02 , lowercase_ :int=1E-12 , lowercase_ :Tuple=0.0 , lowercase_ :Optional[int]=2_24 , lowercase_ :Dict=None , lowercase_ :Dict=None , **lowercase_ :int , ) -> str: super().__init__(**a__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
364
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Optional[Any] , lowercase_ :CLIPSegForImageSegmentation , lowercase_ :CLIPSegProcessor , lowercase_ :AutoencoderKL , lowercase_ :CLIPTextModel , lowercase_ :CLIPTokenizer , lowercase_ :UNetaDConditionModel , lowercase_ :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ :StableDiffusionSafetyChecker , lowercase_ :CLIPImageProcessor , ) -> List[str]: super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: UpperCAmelCase = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = dict(scheduler.config ) UpperCAmelCase = 1 UpperCAmelCase = FrozenDict(lowercase_ ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = dict(scheduler.config ) UpperCAmelCase = True UpperCAmelCase = FrozenDict(lowercase_ ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=lowercase_ , segmentation_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> List[str]: self.enable_attention_slicing(lowercase_ ) def UpperCAmelCase__ ( self :int ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self :Optional[Any] ) -> List[str]: if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self :Optional[Any] , lowercase_ :Union[str, List[str]] , lowercase_ :Union[torch.FloatTensor, PIL.Image.Image] , lowercase_ :str , lowercase_ :int = 5_12 , lowercase_ :int = 5_12 , lowercase_ :int = 50 , lowercase_ :float = 7.5 , lowercase_ :Optional[Union[str, List[str]]] = None , lowercase_ :Optional[int] = 1 , lowercase_ :float = 0.0 , lowercase_ :Optional[torch.Generator] = None , lowercase_ :Optional[torch.FloatTensor] = None , lowercase_ :Optional[str] = "pil" , lowercase_ :bool = True , lowercase_ :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ :int = 1 , **lowercase_ :int , ) -> int: UpperCAmelCase = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) UpperCAmelCase = self.segmentation_model(**lowercase_ ) UpperCAmelCase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase = self.numpy_to_pil(lowercase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , )
181
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a_ ) , """Tatoeba directory does not exist.""" ) class a ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : Tuple ) -> Optional[int]: lowerCamelCase_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=_lowerCamelCase ) @slow def UpperCamelCase ( self : int ) -> Tuple: self.resolver.convert_models(['heb-eng'] ) @slow def UpperCamelCase ( self : Dict ) -> int: lowerCamelCase_ , lowerCamelCase_ = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_lowerCamelCase ) assert mmeta["long_pair"] == "heb-eng"
183
"""simple docstring""" _UpperCamelCase : List[str] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) _UpperCamelCase : str = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 1_2, 'Pm': 1_5, 'Em': 1_8, 'Zm': 2_1, 'Ym': 2_4, } def _SCREAMING_SNAKE_CASE ( __snake_case : float , __snake_case : str , __snake_case : str ): '''simple docstring''' lowercase = from_type.lower().strip('s' ) lowercase = to_type.lower().strip('s' ) lowercase = UNIT_SYMBOL.get(__snake_case , __snake_case ) lowercase = UNIT_SYMBOL.get(__snake_case , __snake_case ) if from_sanitized not in METRIC_CONVERSION: lowercase = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(__snake_case )}' ) raise ValueError(__snake_case ) if to_sanitized not in METRIC_CONVERSION: lowercase = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(__snake_case )}' ) raise ValueError(__snake_case ) lowercase = METRIC_CONVERSION[from_sanitized] lowercase = METRIC_CONVERSION[to_sanitized] lowercase = 1 if from_exponent > to_exponent: lowercase = from_exponent - to_exponent else: lowercase = -(to_exponent - from_exponent) return value * pow(10 , __snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
220
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _SCREAMING_SNAKE_CASE : str = parser.parse_args() _SCREAMING_SNAKE_CASE : int = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _SCREAMING_SNAKE_CASE : Optional[int] = CLIPImageProcessor() _SCREAMING_SNAKE_CASE : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _SCREAMING_SNAKE_CASE : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
218
def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = str(_A ) while len(_A ) != 1: SCREAMING_SNAKE_CASE__ = [int(_A ) for i in num_string] SCREAMING_SNAKE_CASE__ = 1 for i in range(0 , len(_A ) ): total *= numbers[i] SCREAMING_SNAKE_CASE__ = str(_A ) steps += 1 return steps def UpperCAmelCase_ ( _A ): '''simple docstring''' if not isinstance(_A , _A ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = str(_A ) while len(_A ) != 1: SCREAMING_SNAKE_CASE__ = [int(_A ) for i in num_string] SCREAMING_SNAKE_CASE__ = 0 for i in range(0 , len(_A ) ): total += numbers[i] SCREAMING_SNAKE_CASE__ = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
218
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCAmelCase__ : Dict = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCAmelCase__ : List[Any] = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCAmelCase__ : Optional[int] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase : List[str] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowerCAmelCase : Tuple = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(state_dict.keys() ) for name in state_dict_keys: SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(a ) # emb -> embedding if name.startswith('emb.' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , a ) # ffn -> feed_forward SCREAMING_SNAKE_CASE_ : Any = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): SCREAMING_SNAKE_CASE_ : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): SCREAMING_SNAKE_CASE_ : List[str] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": SCREAMING_SNAKE_CASE_ : Any = 'rwkv.' + name SCREAMING_SNAKE_CASE_ : Dict = weight return state_dict def A_ ( a , a , a , a=None , a=None , a=False , a=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 5_0_2_7_7 SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(a ) tokenizer.save_pretrained(a ) # 2. Build the config SCREAMING_SNAKE_CASE_ : List[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: SCREAMING_SNAKE_CASE_ : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) SCREAMING_SNAKE_CASE_ : str = RwkvConfig( vocab_size=a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(a ) # 3. Download model file then convert state_dict SCREAMING_SNAKE_CASE_ : List[Any] = hf_hub_download(a , a ) SCREAMING_SNAKE_CASE_ : int = torch.load(a , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_state_dict(a ) # 4. Split in shards and save SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = shard_checkpoint(a ) for shard_file, shard in shards.items(): torch.save(a , os.path.join(a , a ) ) if index is not None: SCREAMING_SNAKE_CASE_ : Any = os.path.join(a , a ) # Save the index as well with open(a , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : int = json.dumps(a , indent=2 , sort_keys=a ) + '\n' f.write(a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) SCREAMING_SNAKE_CASE_ : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: SCREAMING_SNAKE_CASE_ : List[str] = torch.load(os.path.join(a , a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a , a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(a ) model.push_to_hub(a , max_shard_size='2GB' ) tokenizer.push_to_hub(a ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
253
0
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=125 , lowercase=None , **lowercase , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase_ = [f'<extra_id_{i}>' for i in range(lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCamelCase_ = len(set(filter(lambda lowercase : bool("extra_id" in str(lowercase ) ) , lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else pad_token lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else eos_token lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else unk_token super().__init__( eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , extra_ids=lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = extra_ids lowerCamelCase_ = 2**8 # utf is 8 bits # define special tokens dict lowerCamelCase_ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } lowerCamelCase_ = len(self.special_tokens_encoder ) lowerCamelCase_ = len(lowercase ) for i, token in enumerate(lowercase ): lowerCamelCase_ = self.vocab_size + i - n lowerCamelCase_ = {v: k for k, v in self.special_tokens_encoder.items()} @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase )) + [1] return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1] def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[int]: if len(lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = self._add_eos_if_not_present(lowercase ) if token_ids_a is None: return token_ids_a else: lowerCamelCase_ = self._add_eos_if_not_present(lowercase ) return token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = [chr(lowercase ) for i in text.encode("utf-8" )] return tokens def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Dict: if token in self.special_tokens_encoder: lowerCamelCase_ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: lowerCamelCase_ = self.added_tokens_encoder[token] elif len(lowercase ) != 1: lowerCamelCase_ = self.unk_token_id else: lowerCamelCase_ = ord(lowercase ) + self._num_special_tokens return token_id def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Dict: if index in self.special_tokens_decoder: lowerCamelCase_ = self.special_tokens_decoder[index] else: lowerCamelCase_ = chr(index - self._num_special_tokens ) return token def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: lowerCamelCase_ = b"" for token in tokens: if token in self.special_tokens_decoder: lowerCamelCase_ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: lowerCamelCase_ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: lowerCamelCase_ = token.encode("utf-8" ) elif token in self.added_tokens_encoder: lowerCamelCase_ = token.encode("utf-8" ) else: lowerCamelCase_ = bytes([ord(lowercase )] ) bstring += tok_string lowerCamelCase_ = bstring.decode("utf-8" , errors="ignore" ) return string def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: return ()
47
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A =pd.read_csv('''sample_data.csv''', header=None) __A =df.shape[:1][0] # If you're using some other dataset input the target column __A =df.iloc[:, 1:2] __A =actual_data.values.reshape(len_data, 1) __A =MinMaxScaler().fit_transform(actual_data) __A =1_0 __A =5 __A =2_0 __A =len_data - periods * look_back __A =actual_data[:division] __A =actual_data[division - look_back :] __A, __A =[], [] __A, __A =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A =np.array(train_x) __A =np.array(test_x) __A =np.array([list(i.ravel()) for i in train_y]) __A =np.array([list(i.ravel()) for i in test_y]) __A =Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __A =model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __A =model.predict(x_test)
47
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
79
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) __SCREAMING_SNAKE_CASE = len(bin(lowerCAmelCase_ )[3:] ) __SCREAMING_SNAKE_CASE = bin(abs(lowerCAmelCase_ ) - (1 << binary_number_length) )[3:] __SCREAMING_SNAKE_CASE = ( ( "1" + "0" * (binary_number_length - len(lowerCAmelCase_ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
54
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for ch in input_str: __SCREAMING_SNAKE_CASE = ord(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = pow(2 , lowerCAmelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowerCAmelCase_ ): print(f"""{i}\t\t{d}""" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for j in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [float("inf" )] * vertex_count __SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: __SCREAMING_SNAKE_CASE = distance[u] + w __SCREAMING_SNAKE_CASE = check_negative_cycle(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() a__ : Union[str, Any] = int(input('''Enter number of vertices: ''').strip()) a__ : Any = int(input('''Enter number of edges: ''').strip()) a__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) a__ , a__ , a__ : str = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) a__ : str = {'''src''': src, '''dst''': dest, '''weight''': weight} a__ : str = int(input('''\nEnter shortest path source:''').strip()) a__ : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
195
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' a_ = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' a_ = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def __UpperCamelCase ( self : int , a : Any , a : Tuple , a : str=None , a : int=True , a : Optional[Any]=False ) -> List[str]: """simple docstring""" if rouge_types is None: SCREAMING_SNAKE_CASE : Any = ["rouge1", "rouge2", "rougeL", "rougeLsum"] SCREAMING_SNAKE_CASE : List[str] = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a ) if use_aggregator: SCREAMING_SNAKE_CASE : Union[str, Any] = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for ref, pred in zip(a , a ): SCREAMING_SNAKE_CASE : int = scorer.score(a , a ) if use_aggregator: aggregator.add_scores(a ) else: scores.append(a ) if use_aggregator: SCREAMING_SNAKE_CASE : Optional[int] = aggregator.aggregate() else: SCREAMING_SNAKE_CASE : Tuple = {} for key in scores[0]: SCREAMING_SNAKE_CASE : List[Any] = [score[key] for score in scores] return result
76
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCamelCase__ = datasets.logging.get_logger(__name__) UpperCamelCase__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' UpperCamelCase__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' UpperCamelCase__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="dummy_doc" ) -> Dict: UpperCAmelCase__ : List[str] = {doc: key_lines} UpperCAmelCase__ : int = {doc: sys_lines} UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : int = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : str = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : str = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase__ : Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : str = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( '''Number of resulting singleton clusters in the key ''' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ '''files, respectively''' ) return doc_coref_infos def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : str = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Optional[int] = 0 for name, metric in metrics: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: UpperCAmelCase__ : Any = (conll / 3) * 1_00 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'''conll_score''': conll} ) return output_scores def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : int = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: UpperCAmelCase__ : str = line.split()[5] if not parse_col == "-": UpperCAmelCase__ : Tuple = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase_ ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def lowercase_ ( self : Tuple , _A : Union[str, Any] , _A : Tuple , _A : Dict=True , _A : Optional[int]=False , _A : str=False , _A : List[str]=False ): '''simple docstring''' UpperCAmelCase__ : Any = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: UpperCAmelCase__ : int = util.check_gold_parse_annotation(_A ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase__ : List[str] = evaluate( key_lines=_A , sys_lines=_A , metrics=_A , NP_only=_A , remove_nested=_A , keep_singletons=_A , min_span=_A , ) return score
181
0
'''simple docstring''' import heapq def __magic_name__ ( A ) -> set[int]: snake_case = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices snake_case = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices snake_case = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: snake_case = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
import argparse import os import re _lowerCAmelCase : Tuple = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _lowerCAmelCase : Optional[int] = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings _lowerCAmelCase : Any = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : bool = False ): """simple docstring""" with open(_snake_case , 'r' , encoding='utf-8' ) as f: __a =f.read() __a =content.split('\n' ) __a =[] __a =0 while line_idx < len(_snake_case ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __a =len(re.search(r'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 __a =[] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __a =line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __a =sorted(_snake_case , key=lambda _snake_case : _re_identifier.search(_snake_case ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_snake_case ) ) elif "\n".join(_snake_case ) != content: return True def UpperCamelCase_( _snake_case : bool = False ): """simple docstring""" __a =[os.path.join(_snake_case , _snake_case ) for f in os.listdir(_snake_case ) if f.endswith('.py' )] __a =[sort_auto_mapping(_snake_case , overwrite=_snake_case ) for fname in fnames] if not overwrite and any(_snake_case ): __a =[f for f, d in zip(_snake_case , _snake_case ) if d] raise ValueError( F'The following files have auto mappings that need sorting: {", ".join(_snake_case )}. Run `make style` to fix' ' this.' ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _lowerCAmelCase : Union[str, Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
218
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" __a =old_name if "patch_embed" in old_name: __a , __a , __a =old_name.split('.' ) if layer == "0": __a =old_name.replace('0' , 'convolution1' ) elif layer == "1": __a =old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __a =old_name.replace('3' , 'convolution2' ) else: __a =old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , _snake_case ): __a =r'\b\d{2}\b' if bool(re.search(_snake_case , _snake_case ) ): __a =re.search(r'\d\.\d\d.' , _snake_case ).group() else: __a =re.search(r'\d\.\d.' , _snake_case ).group() if int(match[0] ) < 6: __a =old_name.replace(_snake_case , '' ) __a =trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __a ='intermediate_stages.' + trimmed_name else: __a =old_name.replace(_snake_case , '' ) if int(match[2] ) < num_meta4D_last_stage: __a =trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __a =str(int(match[2] ) - num_meta4D_last_stage ) __a =trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __a =trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __a =trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __a =trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __a =trimmed_name.replace('fc2' , 'linear_out' ) __a ='last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , _snake_case ): __a =old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __a =new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a =new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a =new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __a =new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __a =new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __a =new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __a ='efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a =new_name.replace('norm' , 'layernorm' ) __a ='efficientformer.' + new_name else: __a ='efficientformer.encoder.' + new_name return new_name def UpperCamelCase_( _snake_case : List[str] , _snake_case : Dict ): """simple docstring""" for key in checkpoint.copy().keys(): __a =checkpoint.pop(_snake_case ) __a =val return checkpoint def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image def UpperCamelCase_( _snake_case : Path , _snake_case : Path , _snake_case : Path , _snake_case : bool ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' )['model'] __a =EfficientFormerConfig.from_json_file(_snake_case ) __a =EfficientFormerForImageClassificationWithTeacher(_snake_case ) __a ='_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __a =config.depths[-1] - config.num_metaad_blocks + 1 __a =convert_torch_checkpoint(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __a =prepare_img() __a =256 __a =224 __a =EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __a =processor(images=_snake_case , return_tensors='pt' ).pixel_values # original processing pipeline __a =Compose( [ Resize(_snake_case , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_snake_case ), ToTensor(), Normalize(_snake_case , _snake_case ), ] ) __a =image_transforms(_snake_case ).unsqueeze(0 ) assert torch.allclose(_snake_case , _snake_case ) __a =model(_snake_case ) __a =outputs.logits __a =(1, 1000) if "l1" in model_name: __a =torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a =torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a =torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(_snake_case ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=_snake_case , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=_snake_case , ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
218
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = None __snake_case = BloomTokenizerFast __snake_case = BloomTokenizerFast __snake_case = True __snake_case = False __snake_case = 'tokenizer_file' __snake_case = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def UpperCamelCase_ ( self ) -> Optional[int]: super().setUp() _SCREAMING_SNAKE_CASE : Optional[int] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self , **__lowerCamelCase ) -> Any: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Tuple = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] _SCREAMING_SNAKE_CASE : List[str] = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] _SCREAMING_SNAKE_CASE : Dict = tokenizer.batch_encode_plus(__lowerCamelCase )["input_ids"] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase=6 ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE : Dict = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _SCREAMING_SNAKE_CASE : Tuple = "This is a simple input" _SCREAMING_SNAKE_CASE : str = ["This is a simple input 1", "This is a simple input 2"] _SCREAMING_SNAKE_CASE : Dict = ("This is a simple input", "This is a pair") _SCREAMING_SNAKE_CASE : Dict = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(__lowerCamelCase , max_length=__lowerCamelCase ) tokenizer_r.encode_plus(__lowerCamelCase , max_length=__lowerCamelCase ) tokenizer_r.batch_encode_plus(__lowerCamelCase , max_length=__lowerCamelCase ) tokenizer_r.encode(__lowerCamelCase , max_length=__lowerCamelCase ) tokenizer_r.batch_encode_plus(__lowerCamelCase , max_length=__lowerCamelCase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) _SCREAMING_SNAKE_CASE : List[str] = None # Hotfixing padding = None self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("xnli" , "all_languages" , split="test" , streaming=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = next(iter(__lowerCamelCase ) )["premise"] # pick up one data _SCREAMING_SNAKE_CASE : Optional[Any] = list(sample_data.values() ) _SCREAMING_SNAKE_CASE : Optional[int] = list(map(tokenizer.encode , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Any = [tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) for x in output_tokens] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
364
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
0
'''simple docstring''' class A__ : # Public class to implement a graph def __init__( self : List[Any] , _a : int , _a : int , _a : list[list[bool]] ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =row _SCREAMING_SNAKE_CASE =col _SCREAMING_SNAKE_CASE =graph def A ( self : List[str] , _a : int , _a : int , _a : list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A ( self : Dict , _a : int , _a : int , _a : list[list[bool]] ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _SCREAMING_SNAKE_CASE =[-1, 0, 1, -1, 1, -1, 0, 1] _SCREAMING_SNAKE_CASE =True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _a ) def A ( self : str ) -> int: # And finally, count all islands. '''simple docstring''' _SCREAMING_SNAKE_CASE =[[False for j in range(self.COL )] for i in range(self.ROW )] _SCREAMING_SNAKE_CASE =0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_a , _a , _a ) count += 1 return count
47
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCamelCase : List[Any] = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" lowerCamelCase : Optional[Any] = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" lowerCamelCase : int = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" return float((preds == labels).mean() ) def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =simple_accuracy(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =en_sentvecs.shape[0] # mean centering _SCREAMING_SNAKE_CASE =en_sentvecs - np.mean(_UpperCamelCase , axis=0 ) _SCREAMING_SNAKE_CASE =in_sentvecs - np.mean(_UpperCamelCase , axis=0 ) _SCREAMING_SNAKE_CASE =cdist(_UpperCamelCase , _UpperCamelCase , 'cosine' ) _SCREAMING_SNAKE_CASE =np.array(range(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =sim.argsort(axis=1 )[:, :10] _SCREAMING_SNAKE_CASE =np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Any ) -> List[str]: '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), 'references': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def A ( self : List[str] , _a : Tuple , _a : Optional[int] ) -> int: '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_a , _a )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_a , _a ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
47
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : str = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''visual_bert''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=512 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : str = vocab_size __A : Union[str, Any] = max_position_embeddings __A : Dict = hidden_size __A : Optional[Any] = visual_embedding_dim __A : int = num_hidden_layers __A : str = num_attention_heads __A : int = intermediate_size __A : List[str] = hidden_act __A : str = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : str = initializer_range __A : List[str] = type_vocab_size __A : Tuple = layer_norm_eps __A : Union[str, Any] = bypass_transformer __A : int = special_visual_initialize
190
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : Dict = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]: __A : Dict = (images / 2 + 0.5).clamp(0 , 1 ) __A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Dict = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]: if images.ndim == 3: __A : List[Any] = images[None, ...] __A : List[str] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : str = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
import os from datetime import datetime as dt from github import Github UpperCAmelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def UpperCAmelCase_ ( ): lowercase = Github(os.environ['GITHUB_TOKEN'] ) lowercase = g.get_repo('huggingface/diffusers' ) lowercase = repo.get_issues(state='open' ) for issue in open_issues: lowercase = sorted(issue.get_comments() , key=lambda __SCREAMING_SNAKE_CASE : i.created_at , reverse=__SCREAMING_SNAKE_CASE ) lowercase = comments[0] if len(__SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
195
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Union[str, Any] = "pt" _lowerCAmelCase : List[Any] = "tf" def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained(self.test_model, from_pt=__a) model_tf.save_pretrained(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides _lowerCAmelCase : List[str] = FeaturesManager.determine_framework(self.test_model, __a) self.assertEqual(__a, __a) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a) _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(__a, __a) self.assertEqual(__a, __a) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a) _lowerCAmelCase : int = FeaturesManager.determine_framework(__a, __a) self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(__a) self.assertEqual(__a, self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a) _lowerCAmelCase : List[Any] = FeaturesManager.determine_framework(__a) self.assertEqual(__a, self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=__a) with patch("transformers.onnx.features.is_tf_available", __a): _lowerCAmelCase : str = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__a, self.framework_pt) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Tuple = MagicMock(return_value=__a) with patch("transformers.onnx.features.is_torch_available", __a): _lowerCAmelCase : int = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__a, self.framework_tf) # Both in environment -> use PyTorch _lowerCAmelCase : Union[str, Any] = MagicMock(return_value=__a) _lowerCAmelCase : str = MagicMock(return_value=__a) with patch("transformers.onnx.features.is_tf_available", __a), patch( "transformers.onnx.features.is_torch_available", __a): _lowerCAmelCase : str = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__a, self.framework_pt) # Both not in environment -> raise error _lowerCAmelCase : Optional[int] = MagicMock(return_value=__a) _lowerCAmelCase : str = MagicMock(return_value=__a) with patch("transformers.onnx.features.is_tf_available", __a), patch( "transformers.onnx.features.is_torch_available", __a): with self.assertRaises(__a): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model)
300
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
0
def A_ ( A__ , A__ , A__ ) -> float: if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate a__ : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly a__ : List[Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
225
def A_ ( A__ , A__ , A__ ) -> float: if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate a__ : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly a__ : List[Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
225
1
"""simple docstring""" from math import pi def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
17
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase : def __init__( self :Union[str, Any] , lowercase_ :Tuple , lowercase_ :str=13 , lowercase_ :Tuple=30 , lowercase_ :List[Any]=2 , lowercase_ :Any=3 , lowercase_ :int=True , lowercase_ :List[Any]=True , lowercase_ :int=32 , lowercase_ :int=2 , lowercase_ :int=4 , lowercase_ :List[str]=37 , lowercase_ :Optional[Any]="gelu" , lowercase_ :List[str]=0.1 , lowercase_ :Tuple=0.1 , lowercase_ :Tuple=10 , lowercase_ :Optional[Any]=0.0_2 , lowercase_ :List[str]=3 , lowercase_ :Optional[Any]=0.6 , lowercase_ :Union[str, Any]=None , )-> Optional[int]: A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = mask_ratio A__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self :str )-> List[str]: A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :Optional[int] )-> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Optional[int] , lowercase_ :List[Any] , lowercase_ :Tuple )-> Any: A__ = TFViTMAEModel(config=_lowerCamelCase ) A__ = model(_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :str , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] )-> Optional[Any]: A__ = TFViTMAEForPreTraining(_lowerCamelCase ) A__ = model(_lowerCamelCase , training=_lowerCamelCase ) # expected sequence length = num_patches A__ = (self.image_size // self.patch_size) ** 2 A__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A__ = 1 A__ = TFViTMAEForPreTraining(_lowerCamelCase ) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(_lowerCamelCase , training=_lowerCamelCase ) A__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self :int )-> Union[str, Any]: A__ = self.prepare_config_and_inputs() (A__) = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): __lowercase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowercase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowercase = False __lowercase = False __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :Dict )-> Any: A__ = TFViTMAEModelTester(self ) A__ = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self :Tuple )-> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def UpperCAmelCase_ ( self :Any )-> Any: pass def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_lowerCamelCase ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self :str )-> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self :Any )-> List[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def UpperCAmelCase_ ( self :Union[str, Any] )-> str: np.random.seed(2 ) A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A__ = model_class(_lowerCamelCase ) A__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A__ = model(_lowerCamelCase , noise=_lowerCamelCase ) A__ = copy.deepcopy(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A__ = model(**_lowerCamelCase , noise=_lowerCamelCase ) A__ = outputs_dict[0].numpy() A__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self :List[Any] )-> Optional[Any]: np.random.seed(2 ) A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowercase_ :Optional[Any] ): A__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCamelCase ): A__ = v.numpy() else: A__ = np.array(_lowerCamelCase ) return inputs_np_dict for model_class in self.all_model_classes: A__ = model_class(_lowerCamelCase ) A__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A__ = prepare_numpy_arrays(_lowerCamelCase ) A__ = model(_lowerCamelCase , noise=_lowerCamelCase ) A__ = model(**_lowerCamelCase , noise=_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :Optional[Any] )-> Optional[int]: np.random.seed(2 ) A__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A__ = tf.constant(_lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A__ = tf_noise super().check_pt_tf_models(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self :Dict )-> Tuple: np.random.seed(2 ) A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCamelCase ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(_lowerCamelCase , _lowerCamelCase ),) if isinstance(_lowerCamelCase , _lowerCamelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCamelCase , "_keras_serializable" , _lowerCamelCase ) } A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A__ = tf.convert_to_tensor(_lowerCamelCase ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: A__ = main_layer_class(_lowerCamelCase ) A__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } A__ = tf.keras.Model(_lowerCamelCase , outputs=main_layer(_lowerCamelCase ) ) A__ = model(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(_lowerCamelCase , "keras_model.h5" ) model.save(_lowerCamelCase ) A__ = tf.keras.models.load_model( _lowerCamelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCamelCase , tf.keras.Model ) A__ = model(_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) @slow def UpperCAmelCase_ ( self :str )-> Optional[int]: np.random.seed(2 ) A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A__ = model_class(_lowerCamelCase ) A__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A__ = model(_lowerCamelCase , noise=_lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": A__ = outputs.last_hidden_state.numpy() A__ = 0 else: A__ = outputs.logits.numpy() A__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase , saved_model=_lowerCamelCase ) A__ = model_class.from_pretrained(_lowerCamelCase ) A__ = model(_lowerCamelCase , noise=_lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": A__ = after_outputs['''last_hidden_state'''].numpy() A__ = 0 else: A__ = after_outputs['''logits'''].numpy() A__ = 0 A__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1E-5 ) def UpperCAmelCase_ ( self :Optional[Any] )-> str: np.random.seed(2 ) A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = int((config.image_size // config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A__ = model_class(_lowerCamelCase ) A__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A__ = model(_lowerCamelCase , noise=_lowerCamelCase ) A__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCamelCase ) A__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config A__ = model_class.from_config(model.config ) A__ = new_model(_lowerCamelCase ) # Build model new_model.set_weights(model.get_weights() ) A__ = new_model(_lowerCamelCase , noise=_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase_ ( self :List[str] )-> str: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def UpperCAmelCase_ ( self :List[Any] )-> List[str]: pass @slow def UpperCAmelCase_ ( self :Optional[Any] )-> List[str]: A__ = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCamelCase ) def UpperCamelCase ( ): A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self :int )-> Any: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self :Optional[Any] )-> Dict: np.random.seed(2 ) A__ = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_lowerCamelCase , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A__ = ViTMAEConfig() A__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A__ = np.random.uniform(size=(1, num_patches) ) # forward pass A__ = model(**_lowerCamelCase , noise=_lowerCamelCase ) # verify the logits A__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A__ = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _lowerCamelCase , atol=1E-4 )
354
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase : def __init__( self :Optional[Any] , lowercase_ :int , lowercase_ :Union[str, Any]=13 , lowercase_ :Union[str, Any]=10 , lowercase_ :Any=3 , lowercase_ :Tuple=2 , lowercase_ :List[Any]=2 , lowercase_ :int=True , lowercase_ :int=True , lowercase_ :List[str]=32 , lowercase_ :Dict=5 , lowercase_ :List[Any]=4 , lowercase_ :List[Any]=37 , lowercase_ :List[Any]="gelu" , lowercase_ :int=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :List[Any]=10 , lowercase_ :int=0.0_2 , lowercase_ :Union[str, Any]="divided_space_time" , lowercase_ :Tuple=None , )-> Tuple: A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = patch_size A__ = num_frames A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = attention_type A__ = initializer_range A__ = scope A__ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token A__ = (image_size // patch_size) ** 2 A__ = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase_ ( self :str )-> str: A__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :int )-> Any: A__ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) A__ = self.num_labels return config def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :List[str] , lowercase_ :List[Any] , lowercase_ :Tuple )-> Optional[int]: A__ = TimesformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :Tuple , lowercase_ :Tuple , lowercase_ :Dict )-> Tuple: A__ = TimesformerForVideoClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) # verify the logits shape A__ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__ = self.prepare_config_and_inputs() A__, A__, A__ = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __lowercase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __lowercase = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :Union[str, Any] )-> Optional[int]: A__ = TimesformerModelTester(self ) A__ = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :int , lowercase_ :Dict , lowercase_ :int=False )-> str: A__ = copy.deepcopy(lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def UpperCAmelCase_ ( self :Union[str, Any] )-> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple: pass def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Dict: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self :Dict )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self :Any )-> List[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TimesformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> str: if not self.has_attentions: pass else: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = self.model_tester.seq_length A__ = self.model_tester.num_frames A__ = True A__ = False A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) A__ = len(lowercase_ ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) A__ = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase_ ( self :List[Any] )-> List[str]: def check_hidden_states_output(lowercase_ :Dict , lowercase_ :int , lowercase_ :List[Any] ): A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase_ ) , lowercase_ ) A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( ): A__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) A__ = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self :Optional[Any] )-> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self :int )-> Any: A__ = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowercase_ ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(video[:8] , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): A__ = model(**lowercase_ ) # verify the logits A__ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowercase_ ) A__ = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
123
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : List[Any] = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : int = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Union[str, Any]: __A : List[Any] = (images / 2 + 0.5).clamp(0 , 1 ) __A : int = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Any = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : Dict ) -> Tuple: if images.ndim == 3: __A : str = images[None, ...] __A : Union[str, Any] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : List[Any] = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : Optional[int] = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): lowerCAmelCase = None class SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): lowerCAmelCase = PandasConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') __A : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_UpperCAmelCase , (str, list, tuple)): __A : Union[str, Any] = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __A : Tuple = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files})) return splits def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A : List[str] = table_cast(_UpperCAmelCase , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase)): with open(_UpperCAmelCase , 'rb') as f: __A : Optional[int] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase)) yield i, self._cast_table(_UpperCAmelCase)
190
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' lowercase_ :List[Any] = git.Repo(search_parent_directories=lowercase_ ) lowercase_ :int = { '''repo_id''': str(lowercase_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(lowercase_ , '''git_log.json''' ) , '''w''' ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def UpperCamelCase ( _a ) -> List[Any]: '''simple docstring''' if params.n_gpu <= 0: lowercase_ :Any = 0 lowercase_ :Tuple = -1 lowercase_ :Optional[int] = True lowercase_ :Union[str, Any] = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ :Any = int(os.environ['''WORLD_SIZE'''] ) lowercase_ :Dict = int(os.environ['''N_GPU_NODE'''] ) lowercase_ :Dict = int(os.environ['''RANK'''] ) # number of nodes / node ID lowercase_ :Optional[Any] = params.world_size // params.n_gpu_per_node lowercase_ :Union[str, Any] = params.global_rank // params.n_gpu_per_node lowercase_ :Dict = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ :str = 1 lowercase_ :Optional[Any] = 0 lowercase_ :Union[str, Any] = 0 lowercase_ :Optional[Any] = 0 lowercase_ :Optional[int] = 1 lowercase_ :Dict = 1 lowercase_ :Optional[Any] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ :List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ :Union[str, Any] = params.n_nodes > 1 # summary lowercase_ :Tuple = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def UpperCamelCase ( _a ) -> Tuple: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
357
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Any = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE : Tuple = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Tuple =VOCAB_FILES_NAMES lowercase : Dict =PRETRAINED_VOCAB_FILES_MAP lowercase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[Any] =["""input_ids""", """attention_mask"""] lowercase : str =TaTokenizer lowercase : List[int] =[] def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="</s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_=100 , UpperCamelCase_=None , **UpperCamelCase_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase_ :Union[str, Any] = [f"<extra_id_{i}>" for i in range(UpperCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ :Tuple = len(set(filter(lambda UpperCamelCase_ : bool('''extra_id_''' in str(UpperCamelCase_ ) ) , UpperCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , extra_ids=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase_ :Union[str, Any] = vocab_file lowercase_ :Optional[int] = False if not self.vocab_file else True lowercase_ :Dict = extra_ids @staticmethod def UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ :Optional[int] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase_ , ) return max_model_length def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ :Dict = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ :str = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase ( self ): return list( set(filter(lambda UpperCamelCase_ : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase ( self ): return [self.convert_tokens_to_ids(UpperCamelCase_ ) for token in self.get_sentinel_tokens()]
252
0